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Dihydropteroate Synthase Mutation and Failure
of Pyrimethamine/Sulfadoxine Prophylaxis
in Human Immunodeficiency Virus–Positive
and –Negative Patients
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To investigate the possible association between different prophylactic sulfa drugs and the genotype of the
Pneumocystis jiroveci dihydropteroate synthase (DHPS) gene, we examined DHPS polymorphisms in clinical
specimens from 158 immunosuppressed patients (38 HIV-negative and 120 HIV-positive), using polymerase
chain reaction–single-strand conformation polymorphism. Fifty-seven (36.1%) of 158 patients were infected
with a mutant DHPS genotype. All patients who developed P. jiroveci pneumonia (PcP) while receiving
pyrimethamine/sulfadoxine (PM/SD) prophylaxis ( ) had a strain harboring DHPS with an amino acidn p 14
change at position 57 (ProrSer). This mutation was only present in 20 (14%) of 144 patients not receiving
prophylaxis ( ). Hospitalization in a specific hospital was an independent risk factor for having P.P ! .001
jiroveci harboring the same DHPS mutation, which indirectly supports that interhuman transmission may
affect the dissemination of the mutant strains.

Pneumocystis carinii special form hominis, which has

recently been renamed Pneumocystis jiroveci [1, 2], is

one of the most common opportunistic pathogens

causing severe life-threatening pneumonia in immu-

nocompromised patients. Cotrimoxazole, the combi-

nation of trimethoprim (TMP) and sulfamethoxazole
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(SMZ), is the drug of choice for the treatment and pro-

phylaxis of P. jiroveci pneumonia (PcP) [3, 4]. TMP is

an inhibitor of dihydrofolate reductase (DHFR), whereas

SMZ inhibits dihydropteroate synthase (DHPS). Both

enzymes are involved in the biosynthesis of folic acid.

Experiments in animal models [5, 6] have suggested

that the anti-Pneumocystis activity of TMP/SMZ is due

only to SMZ. Dapsone is a derivative of sulfa drugs

(sulfone) that is also frequently used for prophylaxis

and targets DHPS. The widespread use of sulfa drugs in

the prevention and treatment of PcP in recent years has

been found to be associated with an increase in the prev-

alence of specific mutations in the gene coding for DHPS

[7–9]. These mutations are similar to those known to

confer sulfa drug resistance in other pathogens [10, 11].

The P. jiroveci DHPS mutations have been associated with

a failure of TMP/SMZ in prophylaxis [7– 9, 12–17] and

possibly in treatment [8, 12].

Some studies have reported the efficacy of pyrime-

thamine/sulfadoxine (PM/SD) in the prevention of PcP
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and toxoplasmosis in human immunodeficiency virus (HIV)–

infected individuals [18–20]. Like TMP/SMZ, PM/SD is a com-

bination of a DHFR inhibitor (PM) and DHPS inhibitor (SD).

PM/SD is not recommended as prophylaxis against PcP for

HIV-infected patients in the US Public Health Service/Infec-

tious Disease Society of America guidelines [3] or for HIV-

negative patients [4], because its efficacy has not been well

documented. No study has yet investigated the possibility of P.

jiroveci DHPS mutations conferring resistance to PM/SD. To

investigate the contribution of the use of different sulfa drugs

in the epidemiology of DHPS mutations, we conducted an

epidemiological study of P. jiroveci DHPS mutations in our

collection of clinical specimens from patients who had received

different prophylactic agents, including PM/SD.

PATIENTS, MATERIALS, AND METHODS

Characteristics of patients. Specific information on demo-

graphic and clinical characteristics, chemoprophylaxis, treat-

ment regimens, and PcP outcome were obtained from patients’

medical charts. Patients were considered as having received

sulfa prophylaxis if they had received TMP/SMZ, PM/SD, or

dapsone during the 3 months preceding the date of diagnosis

with PcP. The duration of sulfa prophylaxis ranged from 7 days

to the entire 3-month period. In 3 hospitals (A, D, and E),

PM/SD was the first-choice regimen for prophylaxis at a dose

of 1 or 3 tablets every 2 weeks (first and fifteenth day of the

month), whereas, in the 2 other hospitals, aerosolized pentam-

idine was most frequently used as prophylaxis. The failure of

sulfa prophylaxis was defined as the development of PcP in

patients who received sulfa prophylaxis. Death attributed to

PcP was defined as death occurring in the hospital and for

which the treating physician had recorded PcP as the primary

cause of death. All chart abstractions were done without knowl-

edge of the DHPS genotyping results. Consent was obtained

from all patients. Study protocols and patient consent forms

were approved by each site’s institutional review board,

Specimens. Specimens were 167 bronchoalveolar lavage

(BAL) samples obtained from 158 HIV-positive and -negative

immunosuppressed patients with confirmed PcP who were hos-

pitalized in 5 hospitals in Lyon, France: hospital A, 62 patients;

hospital B, 43 patients; hospital C, 30 patients; hospital D, l6

patients; and hospital E, 7 patients. BAL specimens were col-

lected between April 1993 and December 1996 and were stored

at �20�C before analysis. The 167 BAL specimens from 158

cases corresponded to all available specimens and represented

66% of the PcP cases that occurred during that period in the

5 hospitals (7 patients had a subsequent episode of PcP that

was excluded from the present analysis). To set up the poly-

merase chain reaction (PCR)–single-strand conformation poly-

morphism (SSCP) method to differentiate the different DHPS

alleles, specimens collected from a hospital in Lausanne, Swit-

zerland, were also analyzed.

P. jiroveci DHPS amplification and genotyping. DNA was

extracted from BAL specimens by use of the QIAamp DNA

Blood Mini Kit (QIAGEN). A region of 318 bp spanning the

putative drug binding site of the DHPS, in which P. jiroveci

mutations were observed, was amplified using PCR primers

Ahum [21] and Bhs′ (5′-ACCTTCCCCCACTTATATC-3′). PCR

was carried out with reagents of the HotStar Taq DNA Poly-

merase Kit (QIAGEN). PCR conditions included a hot start

for 10 min at 95�C, followed by 35 cycles consisting of 30 s at

94�C, 30 s at 52�C, and 1 min at 72�C. The reaction ended

with 5 min of extension at 72�C.

P. jiroveci DHPS genotyping was done using the PCR-SSCP

technique described elsewhere [22], with migration at 4�C for

4 h and 15 min in Pharmacia-Biosciences delect buffer. DNA

sequencing was done as described elsewhere [23].

Statistical analysis. To compare the patients infected by

P. jiroveci strains harboring DHPS mutations with those in-

fected by a wild-type (wt) DHPS genotype, we used the 2-sided

Wilcoxon rank sum test for continuous variables and the x2

and Fisher’s exact tests for proportions. The significance level

was .05 in all tests. Significant univariate predictors of infection

with a mutant DHPS strain were then candidates for inclusion

in a logistic-regression model that was built through a forward

selection process. The model was then tested for confounding

by each of the excluded covariates. The Wald test was used to

report the significance level of the predictors in the final model.

Predictors of death attributed to PcP were investigated using

the same strategy. Statistical analyses were done with STATA

statistical software (version 6.0; Stata).

RESULTS

Patients. One hundred sixty-seven BAL specimens from 158

patients diagnosed with PcP in 5 hospitals in Lyon, France,

were included in the study. The majority ( ; 76%) ofn p 120

the patients were HIV infected, and 24% (38/158) were HIV-

negative but had various other causes of immunodeficiency

(lung, kidney, and heart transplantation; chemotherapy for ma-

lignant lymphoma; sarcoidosis; leucocytoclastic vasculitis;

chronic myeloid leukemia; chronic lymphocytic leukemia; and

lung cancer). The characteristics of the patients are reported

in table 1, according to HIV serological status and prophylactic

regimen. There were no significant differences in demographic

or clinical characteristics between patients who harbored P.

jiroveci with DHPS mutations and those who did not. The

patients’ medical charts stated that no patient has received sulfa

drugs for any other purpose than PcP, and none received sul-

fadiazine as a treatment for toxoplasmosis before the diagnosis

of PcP.
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Table 1. Characteristics of 38 human immunodeficiency virus (HIV)–negative and 120 HIV-positive
patients with Pneumocystis jiroveci pneumonia (PcP) from 5 hospitals in Lyon.

Characteristic Sulfa prophylaxisa Other or no prophylaxisb Overall

HIV-negative (n p 38 [24%]) 8 30 38 (100)

Age, mean � SD (range), years 44 � 14 (20–61) 50 � 20 (4–73) 49 � 19 (4–73)

Sex

Male 7 17 24 (63.2)

Female 1 13 14 (36.8)

HIV-positive (n p 120 [76%]) 12 (10) 108 (90) 120 (100)

Age, mean � SD (range), years 39 � 10 (28–56) 38 � 10 (4–69) 38 � 10 (4–69)

Sex

Male 11 92 103 (85.8)

Female 1 16 17 (14.2)

HIV risk factor

Homosexual 7 44 51 (42.5)

Heterosexual 2 35 37 (30.8)

Intravenous drug user 1 6 7 (5.9)

Other 2 23 25 (20.8)

CD4 cell count, median cells/mL (range)c 7.5 (0–58) 31 (0–390) 28 (0–390)

Cerebral toxoplasmosis 0 0 0

NOTE. Data are no. (%), except where noted.
a Patients who received pyrimethamine/sulfadoxine ( ), trimethoprim and sulfamethoxazole ( ), or dapsonen p 14 n p 5

( ).n p 1
b Patients who received pentamidine ( ) or atovaquone ( ) prophylaxis or no prophylaxis at all ( ).n p 23 n p 2 n p 113
c CD4 cell counts at the time of diagnosis of PcP were documented in the medical chart for 113 of 120 HIV-positive

patients; 3 patients had a CD4 cell count 1200 cells/mL (231, 242, and 390).

Detection of DHPS alleles using PCR-SSCP. A portion of

the P. jiroveci DHPS locus (318 bp) was amplified by a single-

round PCR from 167 BAL specimens. Four different SSCP

patterns made of 2 bands corresponding to the 2 strands of

the PCR product were observed in our collection of specimens

(figure 1). Three PCR products producing each of the 4 patterns

were sequenced. Each pattern was found to correspond to a

single DHPS allele. One allele had a threonine at position 55

and a proline at position 57 and was defined as WT, because

it was the allele found in patients before the introduction of

sulfa drug prophylaxis in 1989 [7–9], as well as in most P.

carinii special forms infecting various mammals [24]. Two al-

leles harbored a single mutation, at nt 165 or 171, leading to

an amino acid change within the putative sulfa-binding site at

positions 55 (ThrrAla, M1 for mutation 1) or 57 (ProrSer,

M2). The fourth allele presented both substitutions (M3). These

4 different DHPS alleles are identical to those that have been

described in other studies [7–9]. We did not observe other

DHPS polymorphisms. The M1 allele was actually displayed

only by 3 specimens collected in Lausanne’s hospital. The sta-

bility of the DHPS locus over time was assessed by analyzing

2–3 consecutive BAL specimens obtained within intervals of

8–21 days during the same PcP episode in 8 patients. No var-

iation in the DHPS genotype was observed in these patients.

Six different P. jiroveci DHPS genotypes were observed

among the 158 patients with PcP (table 2). The majority

( ; 63.9%) of the patients were infected with P. jirovecin p 101

harboring the WT DHPS. The remaining patients were infected

with either a mutant DHPS strain only ( ; 24.0%) orn p 38

with a mixture of 2 DHPS genotypes ( ; 12.1%) includ-n p 19

ing, most often, a mutant and a wt DHPS allele. To simplify

the subsequent analyses, specimens that contained a mixture

of WT and mutant DHPS genotypes were classified in the cor-

responding mutant category. The mixture of M2 and M3 DHPS

genotypes (2 patients) was classified in the M3 DHPS genotype

category. The proportion of the specimens with mutant DHPS

varied from 25% to 57%, according to the hospital (figure 2).

There were no significant differences among the proportions

of the specimens with mutant DHPS observed in the 5 hospitals

( , x2 test).P p .21

Predictors of infection with P. jiroveci harboring DHPS mu-

tations. The patients who received sulfa prophylaxis (16

[80.0%] of 20) were more likely to harbor P. jiroveci mutant

DHPS strains than those who did not (41 [29.7%] of 138;

, Fisher’s exact test; figure 2). A review of the entireP p .00002

medical history of the patients revealed that 32 of 41 patients

with DHPS mutations had never received sulfa drug prophy-

laxis or treatment at any given time. Nine patients had had a

short exposure (maximum, 2 weeks) to sulfa drugs 13 months

before the PcP episode but were switched to pentamidine be-
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Figure 1. Single-strand conformation polymorphism (SSCP) detection
of the 4 different Pneumocystis jiroveci dihydropteroate synthase (DHPS)
alleles. Each band corresponds to 1 of the 2 single strands of the poly-
merase chain reaction (PCR) product. M1, mutation 1 (Thr55Ala); M2,
mutation 2 (Pro57Ser); M3, mutation 3 (Thr55Ala, Pro57Ser); wt, wild
type.

Table 2. Pneumocystis jiroveci dihydrop-
teroate synthase (DHPS) genotypes in 158 pa-
tients with P. jiroveci pneumonia from 5 hos-
pitals in Lyon, as revealed by polymerase
chain reaction–single-strand conformation
polymorphism.

DHPS genotype No. (%) of patients

wt 101 (63.9)

Mutant

M2 29 (18.3)

M3 9 (5.7)

Mixeda

wt + M2 5 (3.2)

wt + M3 12 (7.6)

M2 + M3 2 (1.3)

NOTE. M2, mutation 2 (Pro57Ser); M3, mutation
3 (Thr55Ala, Pro57Ser). wt, wild type.

a Patients harbored 2 DHPS alleles, which suggests
coinfection with 2 P. jiroveci types.

cause of adverse effects. There was no significant difference in

the rate of DHPS mutations between patients with and those

without pentamidine prophylaxis

We then investigated predictors of infection by M2 DHPS

genotype, the most frequent mutation we found. Results of the

univariate analysis are shown in table 3. HIV infection, hos-

pitalization in hospital A, and anti-PcP prophylaxis (particu-

larly with sulfa drugs) were predictors of infection caused by

P. jiroveci harboring the M2 DHPS genotype. In multivariate

analysis, sulfa prophylaxis and hospitalization in hospital A

were independent risk factors for having P. jiroveci harboring

this mutation (table 4). Because the 14 patients receiving PM/

SD prophylaxis were all infected with the P. jiroveci M2 DHPS

mutant, we could not precisely quantify the association between

PM/SD and this mutation through multivariate analysis. Hos-

pitalization in hospital A remained the only independent pre-

dictor of the M2 DHPS genotype when the analysis was re-

stricted to patients not receiving PM/SD prophylaxis (odds

ratio, 3.90 [95% confidence interval, 1.44–10.53]; ).P p .007

DHPS mutations in patients without prophylaxis. Thirty-

one (27.4%) of 113 patients who, according to their medical

records, did not receive any prophylaxis (i.e., no sulfa, pen-

tamidine, or atovaquone prophylaxis) had a mutant DHPS

strain. Moreover, 9 (20.5%) of 44 patients who presented with

PcP as the first symptom of HIV infection (and who had no

prophylaxis) also harbored mutant DHPS strains.

Risk factors associated with death attributed to PcP. In

univariate analysis, the rates of death attributed to PcP was

similar in patients who had a P. jiroveci mutant DHPS and

those who did not. Death attributed to PcP was only associated

with HIV-negative status (12/38 [32%] vs. 18/120 [15%] in

HIV-positive patients; ) and older age (mean age, 46P p .032

years in nonsurvivors vs. 39 years in survivors; ). How-P p .043

ever, these 2 predictors were no longer significant in multi-

variate analysis.

DISCUSSION

In the present study involving 158 patients diagnosed with PcP,

the PCR-SSCP method was rapid and efficient for the identi-

fication of the P. jiroveci DHPS alleles that were associated with

the failure of sulfa prophylaxis. We and others have previously

described that the PCR-SSCP method is suitable to detect sin-

gle–base-pair polymorphisms [22] and for genotyping [23, 25,

26]. The DHPS locus was found to be stable at least over 3

weeks, which is an essential feature for epidemiological studies.

DHPS mutations were found in 80.0% of the immunosup-

pressed patients with failure of sulfa prophylaxis, whereas only

29.7% of the patients without such prophylaxis harbored a

mutant DHPS strain. This association is significant and con-

sistent with the results of other investigators, who found DHPS

mutations in 19.0%–84.6% of the patients receiving sulfa pro-

phylaxis at PcP occurrence, compared with 4.0%–47.5% of

patients not receiving this prophylaxis [8, 9, 12–17]. All of these

observations strongly suggest that the mutations are selected

by drug pressure.

The present study shows a significant association between a

specific DHPS mutation (M2) and 1 prophylactic agent (PM/

SD). This association further supports the selection of DHPS

mutations by sulfa drugs. It also suggests that the type of DHPS

mutation selected may depend on the type of prophylactic agent
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Table 3. Univariate analysis of demographic and clinical risk factors for infection
with Pneumocystis jiroveci dihydropteroate synthase genotype M2, in 158 patients
with P. jiroveci pneumonia from 5 hospitals in Lyon.

Risk factor

Genotype M2

P
Negative
(n p 124)

Positive
(n p 34)

Male sex 99 (80) 28 (82) .813

Hospitalization in hospital A 40 (32) 22 (65) .001

Prophylaxis (all regimensa) 28 (23) 17 (50) .003

Sulfa prophylaxis (PM/SD, TMP/SMZ, dapsone) 5 (4) 15 (44) !.001

PM/SD prophylaxis 0 (0) 14 (41) !.001

HIV infection 101 (81) 19 (56) .003

Age, mean (range), years 41 (4–73) 39 (4–61) .876

CD4 cell count, mean cells/mL (range) 60 (0–390) 36 (4–242) .233

NOTE. Data are no. (%) of patients, except where noted. HIV, human immunodeficiency virus;
PM/SD, pyrimethamine-sulfadoxine; TMP/SMZ, trimethoprim-sulfamethoxazole.

a All regimens included PM/SD, TMP/SMZ, dapsone, pentamidine, and atovaquone prophylaxis.

Table 4. Multivariate analysis of demographic and clinical risk
factors for infection with Pneumocystis jiroveci dihydropteroate
synthase genotype M2 among the 158 patients with P. jiroveci
pneumonia from 5 hospitals in Lyon.

Risk factor Adjusted OR (95% CI) P

Sulfa prophylaxis 26.04 (7.38–91.92) !.001

Hospitalization in hospital A 5.53 (2.05–14.97) .001

NOTE. CI, confidence interval; OR, odds ratio.

used. In agreement with this observation, the M3 DHPS ge-

notype was the allele most often observed in studies where

TMP/SMZ or high-dose dapsone (100 mg daily) were first-

choice regimens for prophylaxis (44%–98% of M3 allele among

mutated alleles) [12–16]. In only 1 study was the frequency of

the allele much lower (only 13% of M3 in patients receiving

TMP/SMZ) [9]. On the other hand, the M1 DHPS genotype

was the most frequent allele (57%) in Italian patients receiving

low-dose dapsone prophylaxis (50 mg daily) [17]. These ob-

servations suggest that 2 DHPS mutations may be required for

TMP/SMZ or high-dose dapsone prophylaxis failure, whereas

1 DHPS mutation may be sufficient to cause the failure of PM/

SD or low-dose dapsone prophylaxis. This may be due to a

lower affinity of SD for DHPS than SMZ or dapsone. However,

it is also possible that other factors, such as geographic location,

play a role in the prevalence of the different types of DHPS

mutations. On the basis of the homology of the 3-dimensional

structure of DHPS with Escherichia coli [27], the 2-aa changes

observed in P. jiroveci DHPS are located in the active site of

the enzyme. The replacement of Thr by Ala at position 55 and/

or of Pro by Ser at position 57 may alter the position of the

critical Arg56 involved in binding to sulfa drugs and, thereby,

may decrease the affinity to these drugs.

All patients who developed PcP under PM/SD prophylaxis

were infected with P. jiroveci harboring the M2 DHPS genotype.

This finding could be partially explained by the fact that some

patients in Lyon were receiving suboptimal prophylaxis at the

time of PcP. Indeed, they were receiving 1 or 3 tablets of PM/

SD every 2 weeks, whereas only a dose of 1 to 2 tablets weekly

has been reported to be effective [18–20]. An alternative ex-

planation could be that PM/SD prophylaxis may be ineffective

in preventing PcP in patients who acquire de novo a P. jiroveci

strain harboring the M2 mutation and that such strains were

less prevalent in the other studies. In agreement with this hy-

pothesis, the M2 DHPS genotype was rarely observed in studies

that have reported DHPS genotyping data [7–8, 12–17]. The

efficacy of PM/SD prophylaxis to prevent PcP in immunosup-

pressed patients requires further investigation.

Hospitalization in hospital A was another independent risk

factor for having P. jiroveci harboring the M2 DHPS genotype.

Thirty-four percent of the patients in this hospital were HIV-

negative transplant recipients or patients with hematologic dis-

eases who were hospitalized several weeks before developing PcP,

which suggests that they may have acquired P. jiroveci within the

hospital either from a common source or by direct or indirect

contact with a patient with active PcP (authors’ unpublished

data). There was no evidence that patients had contacts or shared

a potential common source outside the hospital. Several circum-

stances in hospital A may actually have contributed to inter-

human transmission. There was no policy of isolation between

potentially infectious and susceptible patients, the anti-PcP pro-

phylaxis was suboptimal in most patients, and, when permitted

by their general condition, patients were allowed to move freely

about the units and to share a TV room.

The interhuman transmission of mutant DHPS strains, either

within a hospital or in the community, is further supported by
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Figure 2. Proportions of mutant Pneumocystis jiroveci dihydropteroate synthase, according to hospital and sulfa prophylaxis, in the 158 patients
with P. jiroveci pneumonia. White bars, patients whose medical chart documented sulfa prophylaxis. Black bars, patients whose charts did not document
sulfa prophylaxis prescription. Overall, data from 5 hospitals were combined.

the presence of P. jiroveci mutant DHPS strains in patients

whose medical charts did not document any anti-PcP prophy-

laxis or who presented with PcP as the first manifestation of

their HIV infection. The presence of P. jiroveci DHPS mutations

among patients newly diagnosed with HIV also has been de-

scribed elsewhere [9, 14]. Although it is difficult to rule out

that these patients have received sulfa drugs for a reason un-

related to HIV infection, such cases are more likely to represent

direct or indirect cross-infections from patients exposed to pro-

phylaxis. The interhuman transmission of P. jiroveci was also

suggested by the observation of clusters of PcP cases [28–30]

and the finding of P. jiroveci DNA in the noses of immuno-

competent health care workers who were in contact with a

patient who had PcP [31].

We did not observe any difference in the rate of death at-

tributed to PcP between patients who were infected with P.

jiroveci mutant DHPS strains and those infected with P. jiroveci

harboring WT DHPS alleles. This is consistent with results

obtained by others [8] but contrasts with those of Navin et al.

[15], who reported a high rate of death attributable to PcP

among patients infected with P. jiroveci harboring WT DHPS

alleles. The reason for this discrepancy is presently unknown.

Virulence factors not related to the DHPS locus might be in-

volved. A specific P. jiroveci genotype has been associated with

a more severe clinical presentation [32]. HIV-negative status

and older age were associated with a higher rate of death at-

tributed to PcP in univariate analysis. The fact that these 2

predictors did not reach statistical significance in multivariate

analyses may be due to mutual confounding (the HIV-negative

patients being older than HIV-positive patients).

In summary, the present results show an association between

the failure of PM/SD prophylaxis and a specific DHPS mutation

(M2), which further suggests that sulfa drug pressure is re-

sponsible for the selection of DHPS mutations and that P.

jiroveci sulfa drug resistance is emerging. They also suggest that

interhuman transmission is involved in the dissemination of

the DHPS mutations and that being infected with P. jiroveci

mutant DHPS strains (independently of the type of DHPS mu-

tation) does not affect the outcome of disease.
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