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ABSTRACT 

Background: Skeletal muscle insulin resistance (IR) and reduced mitochondrial capacity have 

both been reported to be affected by aging. The purpose of this study was to compare the effects 

of calorie restriction-induced weight loss and exercise on IR, skeletal muscle mitochondrial 

content and mitochondrial enzyme activities in older overweight to obese individuals. Methods: 

Insulin-stimulated rates of glucose disposal (Rd) were determined using the hyperinsulinemic 

euglycemic clamp before and after completing 16 weeks of either calorie restriction to induce 

weight loss (N=7) or moderate exercise (N=10). Mitochondrial volume density (Vd), 

mitochondria membrane content (cardiolipin), and activities of electron transport chain 

(rotenone-sensitive NADH-oxidase), TCA cycle (citrate synthase) and ß-oxidation pathway (ß-

hydroxyacyl CoA dehydrogenase; ß-HAD) were measured in percutaneous biopsies of the vastus 

lateralis before and after the interventions. Results: Rd improved similarly (18.2±9.0%, p<0.04) 

with both weight loss and exercise. Moderate exercise significantly increased Vd (14.5±2.0% 

p<0.05), cardiolipin content (22.5±13.4% p<0.05), rotenone-sensitive NADH-oxidase 

(65.7±13.2% p=0.02) and ß-HAD (30.7±6.8% p=<0.03) activity, but not citrate synthase activity 

(10.1±4.0%). In contrast, calorie restriction-induced weight loss did not affect mitochondrial 

content, NADH-oxidase or ß-HAD, yet increased citrate synthase activity (44.1 ± 21.1% 

p=<0.04). Exercise (increase) or weight loss (decrease) induced a remodeling of cardiolipin with 

a small (2-3%), but significant change in the relative content of tetralinoleoyl cardiolipin. 

Conclusion: Exercise increases both mitochondria content and mitochondrial electron transport 

chain and fatty acid oxidation enzyme activities within skeletal muscle, while calorie restriction-

induced weight loss did not, despite similar improvements in insulin sensitivity in overweight 

older adults. Key words: Glucose uptake, muscle metabolism, human aging, calorie dietary 

restriction, obesity. 



INTRODUCTION 

Skeletal muscle insulin resistance (IR) has been linked to the etiology of type 2 diabetes 

(T2D) in both aging (1) and obesity (2). Although the exact causes of IR remain unexplained, 

chronic nutritional oversupply, i.e., overweight and obesity, is considered to be a major 

contributor in the development of IR (3). In addition, insufficient physical activity (4) or specific 

age-related alterations in glucose metabolism and mitochondria function (5, 6) are associated 

with IR. Weight loss induced by moderate calorie restriction (CR) or chronic exercise leads to a 

significant drop in plasma insulin and improves insulin sensitivity in middle age obese or elderly 

overweight individuals (4, 7).  

Insulin-dependent glucose transport has been reported to be closely associated with 

skeletal muscle oxidative metabolism. Low oxidative type skeletal muscle fibers have reduced 

content of glucose transporter Glut 4 and reduced insulin sensitivity in comparison to high 

oxidative fibers (8). Exercise significantly increases both Glut 4 and mitochondrial content in 

human skeletal muscle (9, 10). Over-expression of PGC-1β in skeletal muscle increases tissue 

oxidative capacity and ameliorates suppressing effect of high –fat diet on insulin dependent 

glucose transport (10). Obesity and T2D are associated with mitochondria remodeling as 

indicated by the multiple changes in mitochondrial proteome and mitochondrial enzyme 

activities (11-13).  

Little is known about the effects of CR calorie restriction on mitochondria in older 

humans. The CALERIE study reported that while CR caloric restriction-induced weight loss 

increases mitochondrial DNA content in skeletal muscle, the activities of mitochondrial enzymes 

were not increased (14). This study was limited, however, to middle age subjects. Bariatric 

surgery-induced weight loss did not increase markers of mitochondrial content in middle aged 



adults, but did improve qualitative aspects of mitochondrial respiration (15). We are not aware of 

any study that has specifically examined the effects of CR-induced weight loss on skeletal 

muscle mitochondria in older subjects. Moreover, nearly all studies of mitochondria and aging 

have been limited to one or two measures of mitochondrial content or function, and therefore 

have not accounted for potential differential effects on various components of mitochondrial 

energetics that include ß-oxidation, the tricarboxylic acid (TCA) cycle, and electron transport 

chain.  

In addition to the loss of muscle mass and quality associated with aging (16), there are 

also increases in adiposity. Given that over 70% of men and women in the U.S. over the age of 

60 are either overweight or obese (17), it is critical to evaluate the specific effects of exercise and 

CR-induced weight loss on mitochondria in older overweight to obese humans. Therefore, this 

study examined the separate effects of CR-induced weight loss and exercise on several aspects of 

mitochondria content and performance assessed by mitochondria enzyme profiling in human 

skeletal muscle. A second purpose An exploratory aim was to evaluate whether or not alterations 

in the various parameters of mitochondrial content and performance, including cardiolipin 

molecular species, the tricarboxylic acid (TCA) cycle, electron transport chain or ß-oxidation 

activities, are associated with improved insulin sensitivity with CR-induced weight loss or 

exercise. 

 

 

 

 

 



STUDY METHODS AND DESIGN 

Participants. Seventeen overweight to moderately obese (body mass index [BMI] = 28.0 – 32.0 

kg/m2) men and women aged 60 – 75 years were recruited from the Pittsburgh metropolitan and 

surrounding areas. The study was approved by the University of Pittsburgh Institutional Review 

Board and a written informed consent was obtained from each volunteer. Participants were 

considered for this study if they (a) had no history of clinically significant cardiovascular 

disease; (b) had a resting systolic blood pressure of 150 mmHg or less and diastolic blood 

pressure of 95 mmHg or less; (c) were a nonsmoker; (d) was a stable weight (no gain or loss of 

>6 kg in 6 months); and (e) were sedentary (currently participating in aerobic exercise <2 d/wk). 

Participants who had T2D were excluded based on self-reported diabetic medication use, fasting 

glucose >120mg/dL or 2-hr glucose >200mg/dL obtained during a standard oral glucose 

tolerance test (75g, OGTT). Clinical baseline characteristics of the study participants are 

presented in Table 1. The interventions lasted 16 weeks after initial baseline assessments. 

Dietary Calorie restriction intervention. The intervention was aimed at a target weight loss of 

8% -10 % of baseline weight, by a reduction in calorie intake (18). A caloric restriction of 500 – 

1,000 kcal/d (<30% of calories from fat) was implemented based on the participant’s baseline 

weight. Total caloric needs were determined by multiplying the participant’s baseline weight 

(kg) by 25. From this, the dietitian made the required caloric adjustments to produce a negative 

energy intake resulting in a loss of 0.5 – 1.0 kg of body weight per week. 

Exercise intervention. Subjects performed exercise nearly 5 days per week at moderate-intensity 

exercise (60–70% of maximal heart rate as determined during a maximal capacity aerobic test). 

Three sessions were supervised in our facility and two were unsupervised. Mostly, the exercise 

included using of a stationary cycle, treadmill, or walking as previously described (18). The 



exercise program was progressive such that by the last 8 weeks, exercise sessions were 

performed at about 40 minutes and the intensity of the exercise was raised to 75% of their 

maximal heart rate. Participants wore a polar for each exercise session, and at the end of each 

session, an average heart rate, exercise duration, and rating of perceived exertion were recorded. 

Exercise sessions consisted of treadmill or outside brisk walking as the primary mode of exercise 

and cycling as a secondary mode. Each participant was issued a personal binder with exercise 

logs to record exercise session data (ie, heart rate, duration, and intensity), and the exercise logs 

were reviewed weekly for exercise adherence.  

Body weight and lean mass. Body weight was measured weekly using a Scale Tronix electronic 

scale (Tronix Inc., Wheaton, IL). Dual-energy x-ray absorptiometry (DXA; GE Lunar Prodigy 

scanner, Encore software 2005; General Electric, Milwaukee, WI) was used to measure changes 

in total fat mass (FM) and fat-free mass (FFM). 

Metabolic assessments. Hyperinsulinemic euglycemic glucose clamps were used to measure 

insulin sensitivity (4). Maximal aerobic capacity (VO2max) was measured on a stationary cycle as 

described previously (19). 

Analysis of mitochondria content and enzyme activities. Percutaneous biopsy samples of the 

vastus lateralis muscle (15–25 mg wet weight) were obtained by Bergstrom needle and flash 

frozen in liquid nitrogen and stored at -80C. A portion of the muscle sample was fixed for 

determination of Volume density by TEM. Frozen biopsy specimen was analyzed for cardiolipin 

content, citrate synthase, ß-HAD and electron transport chain NADH-oxidase as described in the 

supplemental section follows. Total particulate fraction that contains more than 95% of tissue 

mitochondria was isolated by centrifuging from skeletal muscle biopsy homogenate (20). 

Particulate fraction was used to assess cardiolipin content (21), activity of whole mitochondrial 



electron transport chain (rotenone-sensitive NADH:O2 oxidoreductase), citrate synthase (20), 

and ß-HAD (13). The soluble fraction (supernatant) was used to estimate activity of creatine 

kinase and remaining activities of citrate synthase and ß-HAD that were released from 

mitochondria due to tissue freezing. Activity of ß-HAD have been measured in the reverse 

reaction by standard method adapted for higher sensitivity to our HPLC technique (13). Activity 

of rotenone-sensitive NADH:O2 oxidoreductase in total particulate fraction, prepared from 

muscle homogenate, was measured in the presence of alamethicin as described previously (20).  

Creatine kinase (CK) activity was measured as a marker of muscle fiber content in biopsy (22). 

Mitochondrial volume density (Vd), i.e., the percentage of the cell volume occupied by total 

mitochondrial volume, reflects mitochondrial content and was measured in biopsy specimens by 

stereological methods and transmission electron microscopy as described previously (23). 

Tetraoleoyl cardiolipin (internal standard) was purchased from Avanti Polar lipids Inc. 

(Alabaster, AL). 1-Pyrenyldiazomethane (PDAM) was obtained from Molecular Probes (Eugene, 

Oregon). Citrate Synthase, ß-HAD, and NADH:O2 oxidoreductase activities and cardiolipin 

content were normalized to CK activity to control for muscle fiber content. Ratios between 

activity of mitochondrial electron transport chain (NADH-oxidase), ß-oxidation (β-HAD), and 

TCA cycle (Citrate Synthase) were also calculated to examine changes in the relative capacity 

for mitochondrial electron transport chain/TCA or ß-oxidation/TCA. 

Statistical analysis. Statistical analyses were performed using the Statistical Package for the 

Social Sciences (SPSS for Mac, v18). Baseline group differences were assessed using a one-way 

analysis of variance (ANOVA). Differences in baseline ratio variables (Metabolic Status and 

Gender) were determined with a Pearson’s chi-squared test. A two-way repeated-measures 

ANCOVA was used to determine main (group, treatment) and interaction effects for all outcome 



variables. Baseline values for each variable were used as covariates.  Log transformations were 

used when ANOVA assumptions of normality were not met. Pearson’s correlation coefficient 

was used to relate alterations in mitochondrial parameters to changes in insulin sensitivity.  

Statistical significance was assumed a priori at P<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 

Baseline comparison between groups. Age, Gender ratio, Weight, BMI, Fat mass and FFM 

were not different between groups at baseline (Table 1, P>0.05). The ratio of IGT/NGT was 

significantly different, with more NGT and less IGT participants in the exercise group (Table 1, 

P<0.05). The exercise group also had lower fasting glucose and HbA1C (Table 1, P<0.05). 

VO2max (ml/min/kgFFM) was also higher in the exercise group (Table 1, P<0.05). Insulin 

sensitivity and the majority of mitochondrial measurements (Vd, cardiolipin content, NADH-

oxidase and B-HAD activity) were not different between groups at baseline (Table 1, P>0.05). 

Effects of intervention on insulin sensitivity, physical fitness and body composition. Insulin 

sensitivity (Rd) improved by 1.25 mg/kgFFM/min (18.9±9.8%) with calorie restriction weight 

loss and by 0.86 mg/kgFFM/min (18.3 ± 8.2%) with exercise interventions (Figure 1, both 

P<0.05). Neither fasting glucose nor HbA1C was significantly altered with either intervention 

(Table 1, P>0.05). The exercise intervention increased cardiovascular fitness as evidenced by a 

modest, but significant increase in VO2max (P<0.05), which did not occur in weight loss (Table 

1, P>0.05). Weight loss reduced body weight and body fat to a greater extent compared to 

exercise (P<0.05). Weight loss also resulted in a significant reduction in fat-free mass, which 

was not observed with Exercise (P<0.05).  

Effects of intervention on mitochondrial content. Mitochondrial Vd was increased by exercise 

(P<0.05), but not CR-induced weight loss (Figure 2A, P>0.05). Similarly, exercise significantly 

increased cardiolipin content (22.5±13.4% P<0.05), but CR-induced weight loss did not change 

cardiolipin content significantly (Figure 2B, P>0.05). The predominant molecular form of 

cardiolipin in human skeletal muscle is tetralinoleoyl cardiolipin (TL-CL) (21) that represented 

~75% of total cardiolipin at baseline (Table 2). Both interventions induced small, but statistically 



significant changes in the composition of cardiolipin molecular forms (Table 2, P<0.05). 

Exercise increased by ~2% the proportion of TL-CL, and decreased the relative content of the 

more saturated species of cardiolipin (Table 2, P<0.05). In contrast, CR-induced weight loss 

induced ~3% reduction in the proportion of TL-CL while increasing the proportion of saturated 

species of cardiolipin (Table 2, P<0.05). 

Effects of intervention on mitochondrial enzymatic activities. Exercise and CR-induced 

weight loss both increased citrate synthase activity normalized to biopsy creatine kinase (Time 

Effect, Figure 3B, P<0.05). Baseline level of citrate synthase activity was lower in the CR group 

and increased only in response to the CR intervention (both P<0.05). This was in contrast to the 

effects on ß–HAD and rotenone-sensitive NADH-oxidase; exercise increased ß-HAD and 

rotenone–sensitive NADH-oxidase activities by 30.7±6.8% and 65±13% (both P<0.05), 

respectively, while CR-induced weight loss did not significantly alter these mitochondrial 

enzyme activities (Figure 3A & C, P>0.05). In order to further examine whether or not the 

respective interventions had specific effects on these selected enzyme activities of mitochondrial 

TCA cycle, ß-oxidation or electron transport chain, simple ratios were calculated. Exercise 

significantly increased the ratios of NADH-oxidase/citrate synthase and ß-HAD/citrate synthase 

(Figure 4A & B, both P<0.05). These ratios were not affected by CR-induced weight loss 

(P>0.05), indicating a proportionately greater exercise-induced increase in both the total activity 

of electron transport chain and ß-HAD relative to citrate synthase. A correlation analysis was 

conducted within each group individually and with all participants combined to examine whether 

change in mitochondrial measurements (content and activity) related to improvements in insulin 

sensitivity. We found, however, that none of the mitochondrial content or function changes, were 

associated with the improved insulin sensitivity induced by these interventions (all P>0.05). 



DISCUSSION 

Effects of exercise or caloric restriction on skeletal muscle mitochondria. 

The primary findings of our study were that exercise training improved skeletal muscle 

(vastus lateralis) mitochondria content, mitochondrial electron transport chain activity or β-HAD 

activity in overweight to obese older adults, which was in stark contrast to little effect of CR-

induced weight loss on mitochondria, despite similar improvements in insulin sensitivity. Our 

findings are in accord with several previous reports in middle-aged subjects. We have previously 

demonstrated that exercise training superimposed on CR-induced weight loss increases both 

mitochondrial electron transport chain capacity and mitochondrial content (assessed by 

cardiolipin and EM) in obese insulin resistant subjects (7, 24) and in those with type 2 diabetes 

(23), while CR-induced weight loss alone increased neither mitochondria content, nor ETC or β-

HAD (13, 24). Our data are in agreement with those from the CALERIE study, which 

demonstrated that CR-induced weight loss had no effect on mitochondrial cytochrome c oxidase 

or β-HAD activities in vastus lateralis biopsy in overweight middle-age volunteers (14). In 

contrast to CR-induced weight loss, exercise significantly increased the NADH oxidase/citrate 

synthase ratio. We hypothesize that this is related to the specific increased capacity of 

mitochondria to oxidize NADH (increase in ETC activity) with the increased energy demands by 

exercise.  

One goal of our study was to quantify intervention responses in mitochondria content as 

an integrated indicator of changes in mitochondrial biogenesis and mitophagy, the cellular 

processes that regulate mitochondrial content. Exercise increased cardiolipin content, contrary to 

CR-induced weight loss. While this study was not statistically powered to examine correlations 

between changes in variables, the amount of exercise (energy expenditure per week) performed 



was strongly associated (r2=0.56, P<0.01) with the increase in cardiolipin, suggesting a dose-

response effect of exercise on cardiolipin content. This suggests that the increase of insulin 

sensitivity after CR does not provide a sufficiently strong signal to induce robust mitochondria 

biogenesis in skeletal muscle of overweight elderly, or that there is a “resistance” in aged skeletal 

muscle to the anabolic effects of insulin (25). This hypothesis is supported by our demonstration 

that exercise training, but not CR-induced weight loss, increased mitochondria volume density. 

In the CALERIE study it was reported that CR increases the content of mitochondrial DNA 

(mDNA) and mitochondrial transcription factor A (TFAM) (14). The mitochondrial network 

contains variable number of DNA copies (26) and it is quite possible that the increase in mDNA 

and TFAM may be disconnected from changes in mitochondrial volume density. An alternative 

interpretation is that CR stimulated mitochondrial biogenesis and mitophagy (clearance) to a 

similar degree resulting in no change in markers of content.  

A significant proportion of mitochondrial proteome can be acetylated and could be a 

potential target for deacetylase activity of Sirt 3 (27). High-fat diets reduce the content of Sirt 3 

and leads to hyperacetylation of mitochondrial proteome in skeletal muscle and liver (28). 

Recent studies in rodents indicate that CR calorie restriction sharply increases expression of Sirt 

3 in skeletal muscle mitochondria (29). Although we did not directly measure Sirt 3 expression 

or content, our study is the first to examine the separate effects of CR-induced weight loss and 

exercise on ß-oxidation, TCA cycle and electron transport chain activities in aging human 

muscle, thus providing a more comprehensive analysis of mitochondrial performance in response 

to these interventions. These data indicate that increases in mitochondria content, ß-oxidation or 

electron transport chain activities are not required for improved insulin sensitivity and are in 

agreement with our recent observations in bariatric surgery patients (15). These data suggest that 



either a decreased energy supply through CR-induced weight loss or an increase in energy 

demand by exercise can promote beneficial effects on insulin sensitivity, providing further 

evidence that obesity-induced insulin resistance in skeletal muscle can be caused by either 

excessive influx of nutrients or reduced energy expenditure, physical inactivity or lack of 

exercise.  It is possible that a sustained imbalance between nutritional supply and energy 

expenditure generates a metabolic signal that restricts insulin-dependent glucose uptake in 

skeletal muscle. Due to intricate nature of metabolic controls and lack of data on human skeletal 

muscle metabolome, it is impossible currently to specify a metabolite(s) or a signaling pathway 

that attenuates glucose transport in response to nutritional oversupply. However, products from 

incomplete ß-oxidation or reactive oxygen species emission may play a role (30, 31). 

In addition to specific intervention effects on mitochondria, we found that overweight 

older subjects respond differently to both interventions in comparison to younger subjects.  

Exercise induced robust responses in both ß-oxidation and electron transport chain that were 

absent with CR-induced weight loss, though the increase in citrate synthase activity was 

significantly increased only in the CR-induced weight loss group. Although the increase in 

citrate synthase activity after CR may be a partial anabolic response, we cannot exclude the 

possibility that the increase in citrate synthase activity may be mediated by post translational 

modification and reflects activation of TCA cycle flux in demand for increased processing of 

amino acids into oxaloacetate to support oxidation of fatty acid released from adipose tissue 

during caloric restriction. Exercise, due to increased number and recruitment of Glut4 (32), could  

provide an additional flux of glucose into muscle that supports anaplerosis and spares amino 

acids from oxidation that is manifested as the preservation of fat-free mass in exercise contrary 

to weight loss.  This remains to be proven, however, and should be explored further. 



Effects of exercise or caloric restriction on the cardiolipin – mitochondrial remodeling? 

The differential effects of exercise and CR-induced weight loss on cardiolipin 

composition in our study suggests differences in mitochondrial remodeling with CR-induced 

weight loss and exercise, which has recently been implicated in insulin resistance of obesity (33). 

The increases in tetralinoleoyl cardiolipin with exercise is also consistent with our prior 

observations that this unsaturated species can represent up to 83% of total tissue cardiolipin in 

muscle from highly insulin sensitive, exercise-trained young individuals (25) and can be 

increased with exercise (15). Cardiolipin is a mitochondria-specific phospholipid and is 

important for numerous mitochondria functions (34-36). However, its exact role in mitochondria 

is still not completely understood (34, 35). The presence of four fatty acids and molecular 

symmetry of many cardiolipin species (37) suggest that this phospholipid can be a “fastening 

tool” that maintains structural integrity of mitochondrial respiratory complexes  or correct crista 

folding. Additionally, it was suggested that two phosphates in cardiolipin molecule can form an 

intermolecular proton trap that can help maintain proton gradient across mitochondrial 

membrane (38). 

Once nascent cardiolipin is synthesized it is remodeled into a tissue specific pattern of 

cardiolipin molecular species (34, 37). In human skeletal muscle “mature” cardiolipin is 

represented primarily by tetralinoleoyl cardiolipin. Tetralinoleoyl cardiolipin is perhaps linked to 

fatty acid oxidation in mitochondria, since it is present in very low amounts in tissues and cells 

that mostly rely on the oxidation of glucose for production of ATP (brain, transformed cells). 

Mechanisms for cardiolipin remodeling still have not completely understood. The content of 

tetralinoleoyl cardiolipin in mitochondria is also sensitive to tissue metabolic state. High-fat diet 

leads to dramatic decrease in tetralinoleoyl cardiolipin content or total cardiolipin linoleate in rat 



heart (39). Additional studies need to be performed to determine whether these small changes in 

cardiolipin composition with CR-induced weight loss or exercise are related to mitochondrial 

function or improvements in fuel metabolism, including insulin action.  

The prevailing paradigm is that aging is associated with insulin resistance and declining 

mitochondria function (6). CR is often touted as being the best means to improve or slow age-

related loss of function. Within the context of human aging, the effects of life-long CR are 

difficult, if not impossible, to objectively ascertain. Moreover, investigating the impact of CR-

induced weight loss in older humans who are already overweight or obese – comprising more 

than 70% of the older U.S. population – is more likely to have a greater translation. There are 

very little data examining the effects of CR-induced weight loss on skeletal muscle insulin 

resistance and mitochondria specifically in older humans. CR-induced weight loss alone is 

sufficient to improve insulin sensitivity in overweight to obese older adults, which may be 

informative regarding the potential benefits of weight loss alone on cardiometabolic risk. It is 

also possible that the elderly do not improve their insulin sensitivity in response to exercise as 

well as younger adults (40). From these considerations, CR could be an intervention of choice to 

treat obesity in elderly. It was clear from our results that these benefits on insulin sensitivity 

could be derived with or without concomitant effects on markers of the capacity for fatty acid 

oxidation or oxidative phosphorylation. An additional potential pitfall of CR in the elderly is a 

loss of lean body mass (18). Specific molecular mechanisms underlying the loss of muscle mass 

during CR need to be elucidated. For example, it has recently been demonstrated that induction 

of PGC1 alpha, which is known to promote mitochondria biogenesis (41), can also play a role in 

maintaining muscle mass in models of muscle wasting (42). Therefore, it is possible that 



increases in mitochondria or the transcriptional factors involved in mitochondrial biogenesis also 

play a role in attenuating the loss of muscle mass induced by CR caloric restriction.  

A potential limitation of the study design is that it is not a randomized controlled trial and 

this likely resulted in baseline differences in fasting glucose, HbA1C and VO2max. Citrate 

synthase activity was also lower in the calorie restriction group at baseline and may have 

influenced the response to the intervention. However, we do not believe these baseline 

differences greatly influenced the muscle focused endpoints (IS and mitochondria) and concern 

is mitigated by the fact that we statistically controlled for baseline values of each variable in the 

ANCOVA analysis. A second limitation is that the study was not statistically powered to 

adequately examine change associations. We found that none of the mitochondrial content or 

function changes, were associated with the improved insulin sensitivity induced by these 

interventions. The multi-factorial etiology of insulin resistance (lipitoxicity, inflammation, 

autophagy) may have also confounded potential relationships between mitochondria and Rd. 

In summary, CR-induced weight loss and exercise are two distinct clinical interventions 

that can improve insulin sensitivity despite very different effects on skeletal muscle mitochondria 

biogenesis and performance. Our study neither confirms nor denies a mechanistic or causal link 

between mitochondria and insulin resistance. The etiology of insulin resistance is multi-factorial. 

It is therefore likely that there are many means to improve or ameliorate insulin resistance. 

Mitochondria function is far more complex than simply mitochondria biogenesis or content, or 

even measures of enzyme activity. Further investigations should examine additional aspects of 

mitochondrial function in response to insulin-sensitizing exercise and CR interventions to gain a 

better understanding of the potential links between mitochondria and insulin resistance in 

humans.  
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FIGURE LEGENDS 

Figure 1. Effect of Exercise or Calorie Restriction interventions on skeletal muscle insulin 

sensitivity in older sedentary individuals. Glucose Clamps were performed before (Pre) and after 

the interventions (Post). Data represent Mean ± SEM. * = P<0.05, Significant within-group 

differences between Pre- and Post-intervention. Abbreviations: Rd; Rate of disappearance of 

glucose, FFM; Fat free mass. 

Figure 2. Effect of Exercise or Calorie Restriction interventions on mitochondrial volume 

density (A) or cardiolipin content (marker of mitochondrial mass) (B) in skeletal muscle biopsy 

from older sedentary individuals. Biopsies were analyzed before (Pre) and after the interventions 

(Post). Cardiolipin content was normalized to CK activity to control for muscle fiber content. 

Data represent Mean ± SEM. * = P<0.05, Significant within-group differences between Pre- and 

Post-intervention. Abbreviations: CK; Creatine Kinase activity. 

Figure 3. Effect of Exercise or Calorie Restriction interventions on markers of mitochondrial 

mass and electron transport chain activity in skeletal muscle biopsy from older sedentary 

individuals. Biopsies were analyzed before (Pre) and after the interventions (Post). The total 

activities of β-HAD (A), citrate synthase (B), and rotenone-sensitive-NADH oxidase (C) in 

biopsies were normalized to the Creatine Kinase activity. Citrate Synthase, ß-HAD, and 

NADH:O2 oxidoreductase activities were normalized to CK activity to control for muscle fiber 

content. Data represent Mean ± SEM. φ = P<0.05, Significant Time Effect. * = P<0.05, 

Significant within-group differences between Pre- and Post-intervention. ** = P < 0.05, 

Significant between-group difference at the Pre-intervention time point. Abbreviations: CK; 

Creatine Kinase activity, NADH; Nicotinamide adenine dinucleotide. 

Figure 4. Ratios between activity of mitochondrial electron transport chain (NADH-oxidase), β-

oxidation (β-HAD), and TCA cycle (Citrate Synthase) in skeletal muscle before (Pre) and after 

(Post) the Exercise and Calorie Restriction interventions. Total NADH-oxidase (A) or β-HAD 

(B) activities in biopsy were normalized to Citrate Synthase activity to examine changes in the 

relative capacity for mitochondrial electron transport chain/TCA or ß-oxidation/TCA. Data 

represent Mean ± SEM. * = P<0.05, Significant within-group differences between Pre- and Post-

intervention. Abbreviations: CS; Citrate Synthase activity, NADH; Nicotinamide adenine 

dinucleotide.  
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Table 1. Changes in weight, body composition, maximal aerobic capacity, blood chemistry 

and exercise intervention adherence.  

 EXERCISE WEIGHT LOSS 
 Pre-INT Post-INT Pre-INT Post-INT 
N 10  7  
Gender (F/M) 6/4  4/3  
Metabolic status 
(IGT/NGT) 4/6  7/0 ‡  

Age   68.0 ± 1.5    67.6 ± 2.0    
Weight (kg)  84.2 ± 3.2 82.2 ± 3.0* 87.4 ± 3.8 79.7 ± 3.5* 
BMI 30.4 ± 0.8 29.8 ± 0.8* 31.7 ± 1.3 28.9 ± 1.3* 
Fat Mass (kg) 35.6 ± 2.1 32.4 ± 2.0* 38.0 ± 2.3 32.4 ± 2.7* 
FFM (kg)  45.7 ± 2.7 46.3 ± 2.9 45.7 ± 3.2 43.9 ± 2.9* 
Fasting glucose (mg/dL) 92.7 ± 5.1 91.6 ± 3.5 104.0 ± 5.5** 98.1 ± 2.5 
HBA1c (%) 5.66 ± 0.09 5.84 ± 0.12 6.03 ± 0.13** 5.81 ± 0.13 
Fasting insulin (µU/mL)
  5.31 ± 0.51 5.37 ± 0.89 8.08 ± 3.05 4.62 ± 1.45* 

VO2max 
(mL/kgFFM/min) 35.9 ± 2.0 38.7 ± 2.3* 28.00 ± 2.32** 30.8 ± 1.98 

Time per exercise session 
(min/session)    39.3 ± 0.8       

Sessions per week    3.68 ± 0.3       
Exercise energy 
expenditure per session 
(Kcal/session) 

   273 ± 28.2       

Exercise energy 
expenditure per week 
(Kcal/week) 

   1016 ± 144       

 

Values are means ± SEM. *Significant within-group differences between Pre- and Post-

Intervention; P<0.05. **Significant between-group difference at the Pre-Intervention time 

point; P<0.05. ‡ Significant difference in baseline ratio as determined by Pearson’s chi-

squared test; P<0.05. 



Table 2. Changes in cardiolipin species. 
 
 
Cardiolipin (CL) 
(% of total) 

Pre EX 
 

Post EX 
 

Pre CR 
 

Post CR 
 

N 10  7  
Tetralinoleoyl CL 76.5 ± 

1.1 
78.2 ± 1.1* 

P=0.02 
74.8 ± 1.3 71.5 ± 1.3* 

P=0.05 
Trilinoleoyl-monooleoyl CL 15.4 ± 

0.7 
14.6 ± 0.7 

P=0.06 
16.7 ± 1.1 19.2 ± 1.2* 

P=0.05 
Dilinoleoyl-dioleoyl CL 4.9 ± 0.3 4.5 ± 0.3* 

P=0.05 
4.7 ± 0.3 5.5 ± 0.4 

P=0.06 
Trilinoleoyl-monostearoyl CL 1.9 ± 0.2 1.5 ± 0.1* 

P<0.01 
2.4 ± 0.1 2.6 ± 0.2 

Values are means ± SE. *Significant differences between Pre- and Post-Intervention. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



Figures legends 

Figure 1: Effect of exercise or calorie restriction interventions on skeletal muscle insulin 

sensitivity in older sedentary individuals. Glucose clamps were performed before (pre) and after 

the interventions (post). Data represent Mean ± SEM. *p < .05, Significant within-group 

differences between pre- and post-intervention. Rd = Rate of disappearance of glucose; FFM = 

Fat free 

mass. 

Figure 2: Effect of exercise or calorie restriction interventions on mitochondrial volume density 

(A) or cardiolipin content (marker of mitochondrial mass) (B) in skeletal muscle biopsy from 

older sedentary individuals. Biopsies were analyzed before (pre) and after the interventions 

(post). Cardiolipin content was normalized to creatine kinase (CK) activity to control for muscle 

fiber content. Data represent Mean ± SEM. *p < .05, Significant within-group differences 

between pre- and post-intervention. 

Figure 3: Effect of exercise or calorie restriction interventions on markers of mitochondrial mass 

and electron transport chain activity in skeletal muscle biopsy from older sedentary individuals. 

Biopsies were analyzed before (pre) and after the interventions (post). The total activities of β-

HAD (A), citrate synthase (B), and rotenone-sensitive- Nicotinamide adenine dinucleotide 

(NADH) oxidase (C) in biopsies were normalized to the creatine kinase (CK) activity. Citrate 

Synthase, β-HAD, and NADH:O2 oxidoreductase activities were normalized to CK activity to 

control for muscle fiber content. Data represent Mean ± SEM. φp < .05, Significant time effect. 

*p < .05, Significant within-group differences between pre- and post-intervention. **p < .05, 

Significant between-group difference at the pre-intervention time point. 

Figure 4: Ratios between activity of mitochondrial electron transport chain (Nicotinamide 



adenine dinucleotide; NADH-oxidase), β-oxidation (β-HAD), and tricarboxylic acid (TCA) 

cycle (Citrate Synthase; CS) in skeletal muscle before (pre) and after (post) the exercise and 

calorie restriction interventions. Total NADH-oxidase (A) or β-HAD (B) activities in biopsy 

were normalized to CS activity to examine changes in the relative capacity for mitochondrial 

electron transport chain/TCA or β-oxidation/TCA. Data represent Mean ± SEM. *p < .05, 

Significant within-group differences between pre- and post-intervention. 
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