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Abstract

The thalamus is a preeminent brain relay and has a substantial role in regulating the motor
and the sensory signals driven by the cortical-subcortical pathways. Although relatively small
in size, it is characterised by a complex anatomical architecture built of numerous small
nuclei, differing between them in both histological and functional aspect. The nuclei are
mediating the broadly spread involvement of the thalamus in the neurological functioning
and therefore, are of key importance in many neurodevelopmental and neurodegenerative
studies and clinical treatments.

The central interest in this thesis is the ventro-intermediate thalamic nuclei (Vim) that repre-
sents the most commonly used target for treatment of drug-resistant patients in functional
neurosurgical procedures, such as Deep Brain Stimulation and Gamma Knife Surgery. The
treatment planning of these procedures is mainly depended on images obtained from Mag-
netic Resonance Imaging (MRI) techniques that presents an enhanced characterisation of the
soft tissue. Unfortunately, current standard MRI protocols used in everyday clinical practice
are not able to provide a direct visualisation of the thalamic subparts and therefore, alter-
natively, indirect targeting approaches, prone to engender variabilities, are applied. Hence,
a standardisation of the targeting procedure via computer-assisted image-processing tech-
niques becomes of crucial importance to support the treatment planning.

The diffusion-weighted MR images (DWI) by depicting the water molecules displacement
give exquisite details about the underlying tissue microstructure and therefore, are able
to discriminate the thalamic nuclei regarding their different fibre characteristics. For the
problematic of automated parcellation of the thalamic subparts, several methods exploring
the DWI information have been proposed, but they are mainly based on coarse diffusion
measures. In this thesis, I propose the use of the orientation distribution functions (ODF)
expressed in spherical harmonics basis that is fully characterising the diffusion process at each
voxel and therefore outperforms the state-of-the art features. The built framework was tested
in an extensive cohort of 123 healthy subjects and 65 tremor patients demonstrating its ability
of robust and reproducible segmentation of seven thalamic groups of nuclei closely matching
the histological atlas of Morel. One of them is the group of motor-related nuclei including
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Abstract

the Vim, whose spatial distribution was further validated in a follow-up data of 18 tremor
patients. However, the DWI are mainly limited by theirs spatial resolution and therefore could
not provide more refined outline comparable to the size of the thalamic nuclei.
Ultra-high magnetic-field of 7T allows an improved spatial resolution, considerably increased
signal to noise ratio as well as a superior sensitivity to magnetic susceptibility engendered
contrast. In that context, the susceptibility-weighted images (SWI) acquired at 7 T are not only
providing a complementary tissue characterisations regarding the 3T DWI but also they allow
a direct visualisation of the thalamic subparts. Another contribution of this thesis refers the
image analysis developments for exploring the 7T SWI advantages that, in current literature are
done mainly in a qualitative manner. For five young healthy subjects, the spatial distribution
of the thalamic subparts resulting from the ODF-based clustering was validated. Moreover,
the comparison between the visually distinguishable Vim against the clinical targeting and the
automatically segmented group of motor nuclei gave new insights of this nucleus localisation.
Classical atlas-based registration techniques for segmenting the VIM based on 7T SWI were
also applied. Finally, the combination between the spatial prior of the Vim and the intensity-
based features distinguishable on 7T SWI led to an automated discrimination of the Vim
area.
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Résumé

Le thalamus est une région-relais cérébrale prééminente qui joue un rôle important dans la
régulation du moteur et des signaux sensoriels conduits par les voies cortico-sous-corticales.
Malgré sa taille relativement petite, il se caractérise par une architecture anatomique complexe
constituée de nombreux petits noyaux qui diffèrent entre eux sur le plan histologique et
fonctionnel. Les noyaux modèrent la grande implication du thalamus dans le fonctionnement
neurologique et, par conséquent, sont d’une importance clé dans de nombreuses études
neurodéveloppementales et neurodégénératives ainsi que des traitements cliniques.

L’intérêt central de cette thèse est le noyau thalamique ventro-intermédiaire (Vim) qui repré-
sente la cible la plus couramment utilisée pour le traitement des tremblements pharmaco-
résistants dans le cadre d’interventions neurochirurgicales fonctionnelles, telles que la stimu-
lation cérébrale profonde et la chirurgie Gamma Knife. La planification du traitement de ces
procédures dépend principalement des images obtenues à l’aide de techniques d’imagerie par
résonance magnétique (IRM) qui présentent une meilleure caractérisation des tissus mous.
Malheureusement, les protocoles d’IRM standards actuellement utilisés dans la pratique cli-
nique quotidienne ne sont pas capables de fournir une visualisation directe des sous-parties
thalamiques. Comme alternative, des approches de ciblage indirect susceptibles d’engendrer
des variabilités, sont appliquées. Par conséquent, une standardisation de la procédure de
ciblage par des techniques de traitement d’images assistées par ordinateur devient d’une
importance cruciale pour soutenir la planification du traitement.

Les images d’IRM pondérées en diffusion (DWI), en dépeignant le déplacement des molécules
d’eau, donnent des détails exquis sur la microstructure tissulaire sous-jacente et sont donc
capables de discriminer les noyaux thalamiques par leurs différentes caractéristiques de fibres.
Dans le domaine de la parcellisation automatisée des sous-parties thalamiques, plusieurs
méthodes explorant l’information de DWI ont été proposées, mais elles sont principalement
basées sur des mesures de diffusion grossière. Dans cette thèse, je propose l’utilisation des
fonctions de distribution d’orientation (ODF) exprimées en harmoniques sphériques qui
caractérisent pleinement le processus de diffusion à chaque voxel et ainsi surpassent les carac-
téristiques de l’état de l’art. La méthode développée a été testée dans une vaste cohorte de 123
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Résumé

sujets sains et 65 patients présentant des tremblements, démontrant sa capacité à segmenter,
de façon robuste et reproductible, sept groupes de noyaux thalamiques correspondant étroite-
ment à l’histologie présentée dans l’atlas de Morel. L’un d’entre eux est le groupe des noyaux
liés à la motricité, incluant le Vim, dont la distribution spatiale a été validée dans les données
de suivi de 18 patients atteints de tremblements. Cependant, les DWI sont principalement
limitées par leur résolution spatiale et ne peuvent donc pas fournir un contour plus raffiné
comparable à la taille des noyaux thalamiques.
Le champ magnétique ultra-élevé de 7 T permet une résolution spatiale améliorée, un rapport
signal sur bruit considérablement augmenté ainsi qu’une sensibilité supérieure au contraste
engendré par la susceptibilité magnétique. Dans ce contexte, les images pondérées par la
susceptibilité (SWI) acquises à 7 T fournissent non seulement une caractérisation complémen-
taire des tissus en ce qui concerne le 3W DWI, mais permettent également une visualisation
directe des sous-parties thalamiques, dont le Vim. Une autre contribution de cette thèse
concerne les développements de l’analyse d’images pour explorer les avantages du SWI à 7
T lesquels, dans la littérature actuelle, sont réalisés principalement de manière qualitative.
Pour cinq jeunes sujets sains, la distribution spatiale des sous-parties thalamiques résultant
du regroupement basé sur l’ODF a été validée. De plus, la comparaison entre le Vim visuel-
lement discernable, le ciblage clinique et le groupe de noyaux moteurs automatiquement
segmenté a donné de nouvelles informations sur la localisation de ce noyau. Des techniques
classiques basées sur des atlas pour segmenter le Vim en utilisant l’information de SWI à 7
T ont également été appliquées. Enfin, la combinaison entre l’a priori spatial du Vim et les
caractéristiques basées sur l’intensité que l’on peut distinguer sur le 7 T SWI a conduit à une
discrimination automatique de la région de Vim.
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1
Introduction

1.1 Thalamus

The thalamus is, at the same time, a preeminent brain relay and a substantial regulator of the
motor and sensory signals driven by the cortical-subcortical pathways. With its ovoid shape
it represents the largest diencephalon entity, and thereupon, it occupies the central brain
core. Laterally it is delimited by the posterior part of the internal capsule and medially by the
lateral wall of the third ventricle. Following the brain symmetry, each hemisphere includes a
thalamus. Both thalami meet at the brain mid-plane. The anatomical position of the thalamus
could be closely related to its function [1, 2].

The name of the thalamus origins from the Greek word thalamos meaning the "inner chamber"
or "storeroom" of ancient Greek or Roman house. In clear anatomical context was initially
used by Galen, a biomedical scientist that lived in the first century of the current era and
remained the most influential one until the beginning of the Renaissance. According to the
literature, with the term thalamos, Galen was alluding to a brain region in the inferior horn
of the lateral ventricle, resembling an inner chamber, which could be seen as a reservoir of

vital spirit for regeneration and continuity of the optical nerve and therefore, the eye [1, 2].
Similarly, the word thalamus could also take roots from the same Egyptian word thalamos

meaning antechamber or "a small room leading to the main one" that again in some way
illustrates this brain structure [1].

Approximatively, the thalamus occupies 15 cm3 or, in other words, 1% of the total human brain
volume. In average, both its height and width are around 20 mm, while in the rostrocaudal
directions it measures about 30 mm. Regarding the number of cells, the estimation of the

1



Chapitre 1. Introduction

FIGURE 1.1 – Schematic representation of the thalamus, its localization and simplified struc-
ture. Adapted from [4]

thalamic neurons goes up to 10 million [2, 3].

The thalamus is characterised by a complex anatomical architecture (see figure 1.1). It is
composed of numerous small isolated groups of distinct cells, the thalamic nuclei, differing
between them in both anatomical and functional aspect. The pioneer study concerning the
thalamic subdivision dates from 1822 by the neuroanatomist Karl Friedrich Burdach indicating
only three segments. Through a dissection of post-mortem human brains, Burdach was able
to identify, for the first time, the internal medullary lamina that represents a Y-shaped fibres-
bundle (see figure 1.1) subdividing the thalamus into its anterior (superior), medial (inner)
and lateral (external) part [1]. Since then, the knowledge of the thalamic inner structure has
considerably increased, and nowadays more than 50 nuclei are identified [2, 3].

Each nucleus receives a different input and furthermore, sends a particular afferent signal
to one or a few specific cortical regions from the same hemisphere via the thalamocortical
white-matter pathways [1–3, 5]. In terms of nature of the incoming fibres, there are two
groups of thalamic nuclei. The first group represents the nuclei which receive afferents from
the ascending pathways before they go to the cortex such as the sensory information, the

2



1.1. Thalamus

basal ganglia’s and the cerebellum’s output. Consequently, they are called the first order relays.
Without changing the essence of the incoming signal, the primary role of the first order
nuclei is to moderate or, to filter the received signal with the intention to send the "right
message" to the respective cortical area. Differently, the other group known as the second

order relays encloses the nuclei which receive afferents mainly from the cortex and transmit
further this information to another cortical area. Hence, they allow and, at the same time,
control the communication between different cortical regions and therefore, are indispensable
for regulating high-order cortical functions [5–7]. Additionally, both types of relays have, in
general, different projections. The first order nuclei transmit principally to the primary cortical
regions, while the second order nuclei to the association cortex [5]. Nevertheless, the barrier
between both types of nuclei should not be considered in an absolute manner [6].

FIGURE 1.2 – Colour-coded representation of the main thalamic connections. Each thalamic
subpart is projection towards different brain area. Adapted from [8].

As exception of the well-defined connection patterns previously described, there is a third
smaller group of thalamic nuclei that have rather spread diffused cortical projections. They
are known as the non-specific thalamic nuclei and enclose the inter-laminar nuclei taking part
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of the internal medullary lamina, and the thalamic reticular nucleus (TRN), which represents
the thalamic envelope [3].

The TRN, in particular, receives signals from both thalamus and the cortex, but on its turn, it
projects only towards the thalamus, i.e. different thalamic nuclei. Moreover, it acts as a major
inhibitor system of the thalamic function [6, 9].

The number of nuclei, their nomenclature and extent vary among the investigators and with
the criteria used for defining them. The classical delimitation of the nuclei relays on the
underlying anatomy seen through the myelo- and the cytoarchitectural inspections of the
thalamic histology [10, 11]. The most commonly used atlases, Morel’s [12] and Schaltenbrand
and Wahren’s [13], are representing such subdivision. However, the scientific and technical
modernisation, allowing more profound insights and refined details, suggested a much higher
complexity of the thalamic structure. Additionally, it changed the perception of the nuclei
as a singleton with its proper, well-defined, structure, function and connection [1, 5]. The
cells composing one structural thalamic entity are not compulsorily portraying the same
function and connection, rather the same type of cells forms a pathway passing through
neighbouring anatomically defined nuclei. In that sense, a structural nucleus encloses many
separate pathways functionally independent that not necessarily interact with the nucleus
itself [5]. Consequently, the thalamic connectivity provides different subdivision pattern [14,
15] (see figure 1.3). Nonetheless, despite the achieved advanced knowledge, many aspects of
the thalamus and its relation with the cortex remain still an enigma [3, 5].

(a) Schaltenbrand and Wahren’s
atlas [13]

(b) Morel’s atlas [12] (c) Thalamic connectivity
atlas [14]

FIGURE 1.3 – Visual comparison between axial slices of the three most commonly used tha-
lamic atlases. One can observe that the atlas build from the thalamic connections (panel
(c)) shows different division pattern that the histology (panels (a) and (b)). Nonetheless, a
dissimilarity can also be noticed between those based on histology criteria. Morel’s atlas, as
more recent one, is using calcium-binding proteins for the subdivision, while Schaltenbrand
is based on simple myeloarchitectonic survey.
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1.1.1 Thalamic function

The initial association of the thalamus with the optic nerve remained the main thalamic
interpretation throughout a relatively long period. In the 18th century only, the thalamus
started to be seen as a relay of many sensory afferents. In that time, several postmortem
studies related the lesions observed solely in the thalamus with the loss of sight, hearing,
memory, and sensation of touch, smell and taste. Additionally, some investigations indicated
the involvement of the thalamus in the motor control [1, 5].

With the rise of the microscopic anatomical studies, in the second half of last century, the tha-
lamus was further inspected at a synaptic level which revealed more extensively the complex
network of thalamocortical and intrathalamic connections and therefore, the thalamic role [1].
Today the thalamus is known as the key brain relay that regulates and modulates all the motor
and sensory systems but also cognitive functions such as awareness, consciousness, attention,
memory and language [3]. The only exception is the olfactory, i.e. smell afferents that do not
pass through the thalamus before reaching the cortex [16].

In that sense, nowadays many neuroscientific studies demonstrated the thalamic involvement
in a wide range of functional impairments. For instance, a degeneration or damage of specific
thalamic cells or connections could cause a severe chronic pain on the contralateral part
of the body [17–20], a partial or complete blindness [21, 22], insomnia [23–25], vestibular
disorders [26, 27] and memory loss [28]. Structural changes in the thalamus or in its anato-
mical subparts has also been related to schizophrenia [29–31], Alzheimer’s disease [32–34],
epilepsy [35–37], multiple sclerosis [38–40], and movement disorders [41].

We could only agree with M. Guillery and M. Sherman [5] that the thalamus should be rather
seen as "deepest layer of the cortex", and furthermore, since the cortex and the thalamus are
in a mutual functional dependence, a proper and profound analysis of either one of them
should always include the other. Or using the words of M. Sherman : "cerebral cortex without
thalamus is rather like a great church organ without an organist : fascinating, but useless" [5].

1.1.2 Clinical target

The ventral thalamic part, acting as a relay in the cerebello-thalamo-cortical pathway, is well
known as the motor thalamus [42, 43]. Its primary projections are towards the motor and
premotor cortex, the supplementary motor area and the cerebellum. It is also connected to
the basal ganglia and substantia nigra [42, 44]. Consequently, it is of crucial importance for
the control of movement and thereby, substantial in movement disorders studies [44, 45].

One of the most frequent and, at the same time, most severe movement disorders is the
essential tremor (ET) affecting 9% of the worldwide population above 60 years old [43, 46–49].
It is manifesting with a forceful shaking of the arms during voluntary movements that in later
stage could spread to other parts of the body causing important physical disabilities [46, 50].
Although the cause and the underlying mechanism of ET is still not fully understood [43, 48,
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49, 51, 52], one specific motor thalamic subpart, the ventral intermediate nucleus (Vim), is
of central interest in the related research. As initially described by the neurosurgeon Guiot in
1960s, the cells building the Vim are with neuronal activity bursting almost synchronously with
the peripheral tremor and therefore, they are very likely to engender the tremor [51, 53, 54].

The initial therapy for ET involves sedative medication but, unfortunately, one to two-quarters
of the patients are becoming resistant to such treatment [46, 50, 55, 56]. As alternative, ste-
reotactic neurosurgical procedures, such as deep brain stimulation (DBS) [46], gamma knife
surgery (GKS) [57] and high intensity focussed ultrasound (HIFU) [47], are nowadays applied
for treatment of drug-resistant tremor [50, 56]. For all these surgery the Vim is established as a
highly effective target for ET arrest [58, 59].

DBS is currently accepted as the gold standard neurosurgical treatment of tremor in medically
refractory cases, allowing an intraoperative confirmation of the targeting and an immediate
post-operative clinical effect [46, 55, 60, 61]. It represents an implantation of electrodes in the
previously set target for neuromodulation of its function and, as such, it stands as an invasive
treatment enclosing the risks of open surgical procedures [47].

(a) Schematic portrayal of Gamma Knife Surgery - a focal
radiation using as source the radioactive Cobalt-60 gamma
ray. Adapted from [62]

(b) Guiot targeting. The treatment planning re-
quires 1. T1w, 2. T2w, 3. FA colour (all shown in
coronal view) 4. T2 CISS (sagittal view) on which
the quadrilateral of Guiot is superimposed

FIGURE 1.4 – Treatment of tremor in Gamma Knife Surgery framework. The main isodose of 90
Gy (internal green round contour shown in (b)1-3) is centred on the Guiot point representing
the Vim. As internal capsule (appearing in red on FA colour) should be preserved intact, the
marginal isodose of 15 Gy (external green ellipsoidal contour) is adapted accordingly.

Complementary to DBS are HIFU and GKS as minimally invasive approaches since they
do not require opening of the skull. HIFU uses 1000 ultrasound rays for generating a focal
lesion, which size and location are controlled via MR thermography measuring in real time
the temperature of the targeted area [47]. On the other hand, GKS is a focal radiation based on
the high-precision convergence of multiple Cobalt-60 gamma rays (see figure 1.4(a)) [63, 64]
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allowing the healthy tissue to stay intact. Moreover, in contrast to DBS and HIFU, GKS is
lacking in immediate intraoperative confirmation of the target localisation. However, both
GKS and HIFU are fully image-guided techniques or, in other words, their targeting relies
solely on the information provided by the images acquired for the treatment planning. These
acquisitions are principally based on magnetic resonance imaging (MRI).

Unfortunately, current standard MRI protocols used in everyday clinical practice are not able
to provide a direct visualisation of the Vim (refer to figures (see figure 1.4(b) and figure 1.5) [43,
59]. Therefore, the targeting is performed in indirect manner by employing methodologies
build upon known brain landmarks, such as the anterior commissure (AC) and the posterior
commissure (PC) [59].

Since none of the used landmarks is in a well-determined relationship with the underlying
thalamic morphology, the currently used indirect targeting approaches are insensitive to the
anatomical inter-subject variability [53, 59]. Furthermore, among the centres worldwide there
is no consensus regarding the gold standard method for targeting the Vim.

In Lausanne University Hospital (CHUV) the Vim targeting for GKS treatment purposes
is achieved by employing the quadrilateral of Guiot (see figure 1.4(b)) which is requiring
identification of the AC and PC as well as the height of the thalamus on the pre-operative
images [53]. The same treatment procedure is also applied in Marseille University Hospital
(CHU Timone) in France with which the thesis project was in close collaboration.

To optimally select those landmarks, the GKS treatment planning is involving several MRI
modalities : T1-weighted (T1w), T2-weighted, T2-weighted Constructive Interference Steady
State (CISS)/Fiesta and diffusion weighted images (DWI) [65]. The role of the DWI is to only
ensure intactness of the internal capsule by the applied radiation gradient (see figure 1.4(b)).
More details about DWI as a MRI modality will be discussed further bellow. Combining
information from all the modalities in an accurate manner demands mainly a voxel-to-voxel
matching between the used images. In Appendix A1 we provide an assessment of the accuracy
of the standard voxel-based registration used in such framework. The study shows that the
committed error for multi-modal registration is less than the voxel-size of the used images.
Moreover, it demonstrates that there is no statistically significant difference between the voxel-
wise registration and the one based on the stereotactic frame only, which is predominantly
used for the Gamma Knife treatment planning.

A precise definition of the target’s position is crucial for an optimal clinical outcome [59]. In this
context, having a standardised procedure, i.e. an accurate and robust automatic segmentation
of the Vim addressing the current limitations, becomes of crucial importance to support the
ET treatment planning.
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1.2 Magnetic Resonance Imaging of the thalamus

MRI is a noninvasive imaging technique that, in contrast to other clinically used imaging
modalities, provides an enhanced characterization of the soft tissue [66]. Additionally, its
acquisitions are not involving any ionizing radiation and are able to image a sequence of
equidistant slices parallel to any plane of the human body [67]. These advantages led MRI to
become an indispensable medical tool for a wide range of noninvasive diagnostic procedures
and surgical treatments [66].

However, as previously mentioned, the information available from current clinical MRI proto-
col is very poor in regards the identification of Vim (figure 1.4(b) and figure 1.5). In fact, due to
the great number of its axonal connections in regards its relatively small size, the thalamus
appears with highly insufficient intrinsic contrast on standard T1w and T2w images which
makes impossible the distinction of any features within [68].

FIGURE 1.5 – Comparison between the thalamus appearing on the T1w images (right panel)
with the corresponding axial slice of the Schaltenbrand atlas (left pannel, [13]). The T1w
images, as well as the other current standard modalities, could not provide enough intrinsic
contrast for distinguishing the thalamic subparts. The thalamus on them is appearing as a
homogeneous region.

One possible image-based alternative could be the use of digital atlases. Nevertheless, such
methodology also presents various limitations. Primarily, there are very few thalamic at-
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lases [12, 13, 69] which, in addition, are built from a few species only. Hence, they are highly
limited at including the inter-individual thalamic variations which are not homogeneous [12].
Moreover, due to the low intrinsic contrast inside the thalamus, a classical registration between
the subject’s image and the atlas template could also lead to an inaccurate matching of the
thalamic structures.

The conversion of the atlases into digital format is also facing several challenges mainly en-
gender from the relatively low resolution of their slices together with the variable inter-slice
distance as well as the complex thalamic architecture difficult to accurately capture on such
slice-scale [70]. Another drawback comes from the inconsistency between the outlines of
different atlases and their nomenclature. For instance, the neurosurgeons and the anatomists
utilize mainly the atlas of Schaltenbrand and Wahren [13] built upon a postmortem myeloar-
chitectonic inspection and existing only in a paper book format. Morel’s atlas [12] gives the
histology revealed by calcium-binding proteins is further digitalised and therefore, most com-
monly used. Both atlases are based on different terminology and therefore, a correspondence
between them is difficult to achieve [70] (figure 1.3).

Recent advancement in the field of MRI technologies provides, however, a highly promising
potential for a more precise resolution of the thalamic subparts based solely on the proper
subject anatomy [70] and, as such, they should further be explored.

1.2.1 Diffusion Weighted Imaging

In unhindered homogeneous medium, a molecule moves freely in random direction due to
the thermal energy that is carrying [71]. In other words, it follows an isotropic diffusion that
is also known as Brownian motion [72, 73]. However, in a heterogeneous milieu where there
are different barriers or obstacles, the diffusion of the molecule becomes more restricted. For
instance, the white matter of the brain is composed of densely distributed axons forming
coherently aligned fibres that transmit the signals to the cortex [71]. As consequence, the water
molecules inside the brain, representing 73% of its total volume [74], are mainly constrained
in diffusion parallel to the direction of the axonal pathways, while motions perpendicular to it
are hindered. Hence, in such structured tissue there is an anisotropic diffusion [71, 75].

Initially introduced in the middle of the 1980s, the diffusion-weighted MR images (DWI)
nowadays evolved into a remarkably powerful tool for an unique and profound analysis of
the underlying microstructure of the human body. While capturing the preferred diffusion
orientation of the water molecules’ natural displacement inside a structured tissue, the DWI
reveals the architecture of that tissue in a noninvasive manner [75, 76]. The fundamentals of
its acquisition rely on introducing a spatially varying magnetic field with pairs of encoded
gradient pulses that engender phase difference between the moving water molecules causing
loss of signal in the direction of the applied gradient. In other words, it only measures the
displacement occurred in the imposed gradient axis [76].

9



Chapitre 1. Introduction

(a) Fibres orientation (b) Corresponding tensor

FIGURE 1.6 – Tensor representation of the diffusion orientation within a voxel. In (b) the vectors
≤1,≤2 and ≤3 are the eigenvectors of the fitted tensor, while ∏1,∏2 and ∏3 its eigenvalues. The
eigenvector ≤1 corresponding to the biggest eigenvalue (∏1) is parallel to the main direction of
the fibres. Adapted from [80]

Knowing that the axonal diameter is between 0.1 to 20 µm [77], DWI could be seen as a
quantitative method that reveals, within a voxel, the average properties of the water diffusion
happening at microscopic level [75, 76].

The simplest invariant model describing the diffusion profile in a voxel scale is the Diffusion
Tensor (DT) modelling introduced in 1994 [78]. While assuming that the diffusion process of
the water molecules follows a Gaussian distribution, this model uses an ellipsoid representa-
tion to express the level of anisotropy (figure 1.6). The ellipsoid is defined by a 3x3 symmetric
and semi-positive matrix expressing the diffusion variation along the different axis. Therefore,
it requires six degrees of freedom or, in terms of acquisition, at least six non-collinear encoded
gradient directions [71, 75, 79].

The eigendecomposition of the tensor depicts the shape of the fitted ellipsoid : the eigenvec-
tors are representing its principle directions, while the eigenvalues are giving the maximum
radius in each plane (figure 1.6(b)). Hence, for an isotropic diffusion the shape of the ellip-
soid is mainly spherical, while for a highly anisotropic milieu it tends towards the form of a
slender cylinder [71]. Furthermore, the eigenvector corresponding to the biggest eigenvalue is
presumed to be parallel to the respective fibre direction.

The DT eigenvalues are also used to derive scalar maps characterizing the diffusion. One
example is the fractional anisotropy (FA) map that quantifies the degree of anisotropy at each
voxel [81] :

F A =
p

(∏1 °∏2)2 + (∏2 °∏3)2 + (∏3 °∏1)2
q

2(∏2
1 +∏2

2 +∏2
3)

(1.1)

where ∏1,∏2 and ∏3 are the three eigenvalues respectively.
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FA takes values in the range between 0 and 1. From its definition, we could see that low FA
values correspond to voxels with isotropic, while the high ones to anisotropic diffusion.

As first diffusion MRI modelling, DT has been widely used as a quantitative tool for many
neurodegenerative and neurodevelopmental studies such as the cerebrovascular diseases,
multiple sclerosis, schizophrenia and brain tumours [75]. However, being a Gaussian model-
ling, it is rather too simplistic for an accurate portraying of the complex diffusion process. DT
is adequate for describing the orientation of a single fibre population. Among the voxels that
could be imaged in the brain via DWI, one to two-thirds incorporates a crossing between the
white matter fibres [82] for which DTI will fail to fit accurately the respective signal [75, 83]
(refer to figure 1.7).

FIGURE 1.7 – Illustration of the DTI limitation for different fiber populations. While it can well
model an anisotropic diffusion population (B), it fails to portrait the cases of fibre crossings
(A) and fibre bending (C). Taken from [84].

Several methods have been proposed to address this limitation and, with the introduction of
the acquisition scheme providing high angular resolution diffusion imaging (HARDI), more
suitable model emerged [85]. HARDI relies on a large number of uniformly distributed gradient
directions for the DWI acquisition which provides more refined details of the underlying local
diffusion orientation [75, 85].

One of the most widely used model-free HARDI approaches is the Q-Ball Imaging (QBI) [83]
that is able to characterise the full angular profile of probability density function of water
molecules’ diffusion displacement. This angular estimation is also known as the diffusion
orientation distribution function (ODF), and it represents a spherical function whose maxi-
mum radius, at each voxel, is parallel to the intrinsic fibre orientation [75, 86].
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Diffusion ODF, or further referred as ODF only, can be estimated directly with the Funk-
Random transform (FRT) [83]. Each point of the obtained spherical function, while corres-
ponding to an unique direction, represents the great circle integral of the signal on the sphere
delimited by the perpendicular plane passing through the chosen point [75, 86].

Taking advantage of the Spherical Harmonics (SH) representation, Descoteaux proposed an
analytical solution of the QBI signal that is fast, robust to noise and flexible in acquisition
parameters [86]. The SH basis can be represented as follows :

Y m
l (µ,¡) =

s
(2l +1)

4º
(l °m)!
(l +m)!

P m
l cos(µ)ei m¡ (1.2)

where µ 2 [0,º], ¡ 2 [0,2º], P m
l is an associated Legendre polynomial, l the order and m the

phase factor [86].

FIGURE 1.8 – Illustration of the squared real part of the SH basis up to order 3, where the
colours from blue to red are representing the value incremental from minimum to maximum
respectively. Taken from [87].

.

To solve the FRT function in such framework, the SH basis was modified into symmetrical,
real and orthonormal :

Y j =

8
><

>:

p
2Re(Y m

k ), if -k ∑ m < 0
Y 0

k , if m=0p
2Img (Y m

k ), if 0 < m ∑ k
(1.3)
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for k = 0,2,4, ..., l and m taking values between °k, ...,0, ...,k and j = j (k,m) = (k2+k+2)/2+m.

Hence, having c j as the SH coefficient describing the HARDI signal, the ODF could be estima-
ted as :

™(µ,¡) =
(l+1)(l+2)/2X

j=1
2ºPl ( j )(0)c j Y j (µ,¡) (1.4)

Subsequently, Descoteaux provides a vectorial representation of the diffusion signal which is
easily explorable and, in this thesis, it would be of central interest for the delimitation of the
thalamic subparts.

1.2.2 Susceptibility Weighted Imaging

Susceptibility-weighted imaging (SWI) is an MRI technique that generates a unique image
contrast relying on tissue sensitivity to magnetic susceptibility effects [88–90] The magnetic
susceptibility, in a general sense, describes the degree of magnetisation in an object resulting
from an external field [91]. Moreover, the variations of local magnetic properties engender
from a slight field perturbations cause susceptibility contrast appearing inside the scanned
biological tissue [91].

In the framework of standard gradient echo imaging, SWI is built as a combination of the MRI
signal’s magnitude and phase, both of them strongly affected by the magnetic susceptibility
and the tissue geometry. More precisely, the magnitude information is derived from the
differences in effective transverse signal relaxation (T2* effect), while the phase-shifting is
occurring, for sufficiently long echo times, as a result of magnetic susceptibilities differences
between the neighbouring tissues [88, 89].

Several tissues, such as the de-oxygenated blood vessels, the axonal lesions, the air/tissue
interfaces, as well as the calcium and iron-laden tissue, manifest an unique magnetic suscepti-
bility differences with respect its surroundings [88, 90, 91]. Accordingly, for these tissues, SWI
provides a more enhanced contrast than the standard T1, T2 or T2*-weighted imaging [88].

The susceptibility-based contrast imaging of the brain started towards the end of the 1980s
employing 1.5 T machines and, despite the low resolution and the poor sensitivity to the
field perturbation, they were however able to reveal some brain pathologies such as stroke,
trauma and tumours [91]. Today, higher magnetic field strength, like 7 T for instance, allows
an improved spatial resolution, considerably increased signal to noise ratio (SNR) as well as a
superior sensitivity to magnetic susceptibility engendered contrast [91]. Hence, along with
the MRI advancements, SWI has gained an expanded popularity in brain-pathology studies
mainly related to vascular diseases, but also brain degeneration and malfunction [88, 90–92].
Additionally, it also provides better visualization of the deep brain structures [93].
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FIGURE 1.9 – Thalamic structures seen on 7T SWI (panels A and C) in comparison with the
Schaltenbrand atlas (panels B and C). Adapted from [93]

Although oriented more to basal ganglia, the study of Abosch et al. [93] introduced the first
evidence for in vivo identification of the thalamic nuclei on SWI acquired at 7 T. On those
images, the thalamus is no longer appearing as a homogeneous region but with numerous
internal contrast modulations. A comparison between the observed thalamic features and
the histological parcellation given by Schaltenbrand and Wahren’s atlas indicate the shape
and localization-based differentiation of the Pulvinar, the medio-dorsal part and several
ventral nuclei including the Vim. Particularly, the Vim appears as a well-distinguishable hyper-
intensity structure surrounded by darker regions (see figure 1.9).

The presented observation have a qualitative character and were made based on data from a
single subject. But, at the same time, they introduce a new mean of vital importance for an
unbiased and direct discrimination of the complex thalamic architecture.
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1.3 Thesis goals and outline

The central objective of this thesis is to develop an automated segmentation of the anatomical
thalamic subparts based on multi-modal MRI information from both 3 and 7 T. Through such
parcellation, the primary goal is to provide an improved and more standardised 3D targeting
of the Vim for the surgical treatment of drug-resistant tremor. Additionally, knowing the role
of the thalamus and its involvement in many neurological diseases, an automated outline of
all the other nuclei would be beneficial, beyond targeting, in a wide range of clinical studies
and applications.

Chapter 2 presents the automated framework I developed for segmentation of seven tha-
lamic regions, each of them enclosing anatomically different group of nuclei. One of the
segmented group is the motor-related nuclei including the Vim. The segmentation is based on
both spatial position and local diffusion properties form 3 T DWI, expressed by the ODF coef-
ficients in the SH basis to explore the full angular characterisation of the complex diffusion
process inside the thalamus. The method was tested and evaluated on a dataset of 35 healthy
subject which showed its robustness and the anatomical meaning of the outlined subparts
regarding the Morel’s atlas. In additional scan-rescan dataset of 8 subject, the reproducibility
of the method was also demonstrated. Furthermore, the proposed approach outperforms the
state-of-the-art in reproducibility and matching the anatomy presented by Morel.

Chapter 3 covers the application of the developed segmentation method in clinical cases or,
more precisely, 65 drug-resistant tremor patients treated with GKS. The available follow-up
data from one-third of the cohort allowed validation of the segmented motor group of nuclei
with respect the radiologically observable contrast enhancement corresponding to the surgical
target. Moreover, exploring again the ODF coefficients in SH basis, a sub-segmentation of
the motor-nuclei cluster allowed a more narrowed localization of the targeted Vim. These
findings were confirmed in 2 additional ET patient that were treated with DBS.

Chapter 4 presents a comparison between four methods that define the Vim : the targeting
with the quadrilateral of Guiot, the 3T diffusion-based segmentation of the motor nuclei, the
manual delineation on the 7T SWI and the multi-atlas delineation employing the SWI features
for a more accurate thalamic matching. Although done on a small dataset from healthy
subjects, this analysis imply better discrimination of the Guiot points and the manually
outlined Vim-area inside the automatically segmented motor group of nuclei. Moreover,
the Vim outline provided by the SWI-based atlas matches closely the manual delineation.

Chapter 5 shows the combination of both 3T DWI and 7T SWI information for an auto-
mated segmentation of the Vim nuclei. The proposed framework was tested on a dataset
including young and elderly subjects for which the SWI contrast and the distinguishable re-
gions appear differently. Lacking a ground truth, the outcome was compared to the respective
manual delineation showing the potential of the proposed framework to detect the Vim area.

Chapter 6 concludes this thesis and disscuses about the possible future extensions.
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2
Thalamic Parcellation

The work presented in this chapter is originally published as “Robust thalamic nuclei segmen-
tation method based on local diffusion magnetic resonance properties“ with co-authors : E.
Najdenovska, G. Battistella, P. Maeder, N. Ghazaleh, A. Daducci, J.-P. Thiran, S. Jacquemont, C.
Tuleasca, M. Levivier, E. Fornari and M. Bach Cuadra in Brain Structure and Function 2017,
Volume 222, Issue 5, pp 2203–2216. E. Najdenovska, G. Battistella, E. Fornari and M. Bach
Cuadra are equally contributing authors.

An extension of this study over a bigger cohort of healthy subject was done subsequently and
the results are shown in section A.2.2 of the Appendixes.

2.1 Introduction

The thalamus, which is involved in the regulation of several sensorimotor and cognitive
functions, acts as a relay station between cortical and subcortical areas. Many neural signals
directed towards the cortex are routed through the thalamus via long ascending fiber tracts,
while short fibers connect the thalamus to deep gray matter structures and cerebellum. The
thalamus has a complex architecture, made of small cytoarchitectonically subdivided nuclei
[1], which are connected to each other by intra-thalamic fibers. These nuclei mediate the
thalamus’s involvement in a wide range of neurological functions and, therefore, are of key
importance in many neurodevelopmental and neurodegenerative disorders.

The automatic segmentation of the thalamic nuclei in vivo using magnetic resonance imaging
(MRI) has been limited by the difficulty of obtaining high-resolution images with sufficient
contrast and by the lack of appropriate MRI-based features [2, 3]. The majority of the published
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studies for thalamic nuclei segmentation are based on information derived from diffusion-
weighted MR imaging (DWI). These approaches use local diffusion properties, such as the full
diffusion tensor [4–7] and principal diffusion directions [8–12], global diffusion properties
utilizing long-distance projections of each nucleus to the cortex [13, 14], or a combination
of both local and global diffusion properties [15]. These approaches are of potential interest,
but they present several drawbacks. Some of them use data acquired with a relatively low
number of diffusion gradient directions [4, 6, 10, 12], while others can only identify few nuclei
within the thalamus [11, 15]. Importantly, most methods require a prior knowledge for the
primer initialization and give an outcome that is very sensitive to it [4, 8, 9, 11, 13–15]. Overall,
robustness and consistency could not be properly evaluated because most of these methods
have been tested in only a few subjects [4, 5, 7–9, 11, 13].

Tractography-based approaches [13, 14] represent an interesting alternative to the afore-
mentioned local-based ones. They provide functionally reliable clusters [16], although these
clusters do not necessarily correspond to cytoarchitectonic delineation [17]. Moreover, they
are of limited use if the subject has abnormal white matter status or in the presence of large fo-
cal brain lesions, like tumors or vascular lesions. In such cases, fiber reconstruction algorithms
can easily fail to identify the connectivity patterns.

The primary objective of this work is to introduce a novel segmentation framework for delinea-
ting the thalamic nuclei. The originality of our method is the use of the complete orientation
distribution functions (ODFs) rather than a summary statistics, using diffusion MR images at
3 T. The use of spherical harmonics (SH) for the ODFs representation provides full angular
characterization of the diffusion process at each voxel.

The framework was tested on 35 healthy volunteers. The diffusion data were acquired using a
diffusion-weighted imaging (DWI) sequence widely used in a clinical setting, with the aim of
potentially providing a useful tool in everyday clinical practice.

The evaluation of the results was performed both qualitatively, by an experienced neuroradio-
logist who compared them to a histological atlas, and quantitatively, by measuring clusters’
extent and clusters’ spatial distribution across subjects and hemispheres. We further assessed
the reproducibility of our findings using a scan-rescan analysis as well as the robustness of
our method across different MR scanners and sequence parameters. At last, we compared our
results with the organization of the long connections between each thalamic nucleus and its
projections depicted by diffusion MR-based tractography. Our approach could be of potential
interest for studying brain anatomy in healthy subjects and for clinical purposes in patients
with subcortical white matter lesions or tumours where global thalamo-cortical tractography
cannot be performed.
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2.2 Materials and methods

The local institutional review board approved the study and all participants gave written
informed consent.

2.2.1 Data

The core of the research project (build-up of the segmentation pipeline, qualitatively and
quantitative evaluation of the results) was built using subjects whose demographic charac-
teristics are described in section Dataset 1. We further assessed robustness across different
sequences and scanners, and intra-subject reproducibility of the thalamic clusters using two
additional datasets (Dataset 2 and Dataset 3).

Dataset 1

Thirty-seven healthy subjects with no history of neurological illnesses, aged 20–70 years (mean
± std, 42.5 ± 12 years), were recruited. The exclusion criterion was the presence of white
matter alterations visible on fluid-attenuated inversion recovery (FLAIR) images examined by
an experienced neuroradiologist. Two subjects were excluded because of technical problems
during MRI acquisition leading to a final dataset of 35 control subjects. All subjects were
scanned in a 3-T Siemens Trio scanner (Siemens AG, Erlangen, Germany) using a 32-channel
head coil. The protocol included a sagittal T1-weighted gradient-echo sequence (MPRAGE),
160 contiguous slices, 1-mm isotropic voxel, repetition time (TR) 2300 ms, echo time (TE) 2.98
ms, field of view 256 mm as a basis for segmentation. FLAIR contrast images were acquired
with a voxel size of 0.9 × 0.9 × 2.5 mm3, flip angle 150±, TR 9500 ms, TE 84 ms, 32 axial slices.
Diffusion-weighted images were acquired using a spin-echo echo-planar imaging sequence
(64 gradient directions, b value 1000 s/mm2, voxel size 2 × 2 × 2.5 mm3, 52 axial slices, TR 6700
ms, TE 89 ms, field of view 192 × 192 mm) plus 1 volume without diffusion weighting (b value
0 s/mm2, i.e. b0) at the beginning of the sequence as anatomic reference for motion and eddy
current correction.

Dataset 2

Six healthy males (30.2 ± 6.2 years) were imaged with a 3-T Prisma Siemens scanner (Siemens
AG, Erlangen, Germany). For all of them, an identical diffusion sequence was acquired twice
the same day using the following parameters : TR/TE = 7800/78 ms, flip angle = 90±, 60 gradient
directions with b value = 2000 s/mm2, voxel size of 2 x 2 x 2 mm3, 60 axial slices and 10 volumes
without diffusion weighting. Additional MPRAGE was obtained with TR/TE = 2300/2 ms, flip
angle = 9±, voxel size of 1 × 1 × 1.2 mm3, 160 axial slices.
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Dataset 3

The third dataset was composed of two elderly essential-tremor patients (2 males, 86 years of
age) treated with Gamma Knife thalamotomy. The images were acquired at two different time
points : the day before the treatment and 6 months after using a 3-T Prisma Siemens scanner.
The parameters for the diffusion sequence were similar to those used for Data 1 : TR/TE =
7100/84 ms, flip angle = 90±, 64 gradient directions with b value = 1000 s/mm2, voxel size of 2.2
x 2.2 x 2.2 mm3, 62 axial slices and 10 volumes without diffusion weighting. The corresponding
MPRAGEs on both dates were obtained with TR/TE = 2300/2 ms, flip angle = 9±, voxel size of 1
× 1 × 1.2 mm3, 160 axial slices. Both patients underwent Gamma Knife surgery on their left
thalamus, and consequently, we performed analyses only on their right thalamus.

2.2.2 Pre-processing

Diffusion-weighted images were first filtered using an isotropic Gaussian kernel (æ = 0.8 mm3)
and then analyzed with FSL (http://www.fmrib.ox.ac.uk/fsl/index.html). The pre-processing of
the diffusion dataset (64 gradient directions) involved motion and eddy current correction. In
this step, each diffusion-weighted image was registered to the b0 image (no diffusion encoding)
using a 12-parameter affine transformation. This transformation accounts for motion between
scans and residual eddy current distortions present in the diffusion-weighted images. The
diffusion tensor was then estimated [18] and the three eigenvalues of the tensor were used to
compute the fractional anisotropy (FA) map for each subject on a voxel-by-voxel basis [19].
This scalar measure of white matter fiber integrity was used to refine the segmentation of the
thalamus (see section 2.2.3 for details).

In addition, the T1-weighted image was automatically segmented in the subject’s native space
in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using the unified
segmentation approach [20] implemented in SPM8 (Wellcome Trust Centre for Neuroimaging :
http://www.fil.ion.ucl.ac.uk/spm/) running under Matlab 7.11 (MathWorks Inc, Sherborn,
MA, USA). The T1-weighted image was registered to the diffusion space using a rigid-body
transformation with 6 degrees of freedom and Mattes Mutual Information as cost function
[21]. The same transformation was then applied to the CSF probability map. The CSF image,
together with the FA image, were used to increase the accuracy of the automatic thalamus
extraction as described in the following paragraph.

2.2.3 Thalamus extraction

The processing steps to obtain an accurate mask of the whole thalamus are summarized in
figure 2.1 . First, we performed cortical and subcortical parcellation of the T1-weighted images
with the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu). The subcortical parcellation
includes the pre-processing of the MRI data (bias correction, intensity normalization) and
the subcortical labeling of the tissues classes [22, 23]. Second, the labels corresponding to the
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right and the left thalamus were identified, converted to binary masks, and registered to the
diffusion space by applying the previously estimated transform (details in section 2.2.2). Third,
the registered binary masks of the thalamus were then refined using the CSF and FA maps. To
exclude partial volume contaminations, we only considered voxels with CSF probability value
lower than 0.05. In addition, to avoid partial volume of the internal capsule in the proximity
of the thalamus, voxels within a 2-mm distance from the border of the mask with FA values
greater than 0.55 were also excluded. All these steps were performed in each subject’s diffusion
space.

FIGURE 2.1 – Outline of the main pre-processing steps for accurate thalamus extraction

2.2.4 Reconstruction of the orientation distribution functions (ODFs)

The orientation distribution functions (ODFs, equation 2.1) were computed using q-ball
imaging in constant solid angle [24] using the Qboot tool available in FSL :

ODFC S A(u) / F RT {¢2
b ln(° ln

S(u)
S(0)

)} (2.1)

where FRT is the Funk Radom transform, and ¢2
b the Laplace–Beltrami operator. The diffusion

signal S was modeled by means of the real and symmetric spherical harmonic (SH) basis as in
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[25] :

ln(° ln
S(u)
S(0)

) =
(l+1)(l+2)/2X

j=1
c j Y j (u)+ebstr (2.2)

with c j the coefficient of the j th SH basis function Y j , l the maximum SH basis order, and
ebstr the Bootstrapped residual.

For each subject, the Qboot algorithm was applied by setting the maximum number of ODF
peaks to be detected to 2 using 50 samples for residual bootstrapping [26], as in the default
settings of the Qboot command in FSL. The maximum SH basis order was instead set to 6
(l = 6). Results of the Qboot bootstrapping were samples of ODF shapes for each voxel, and
the mean coefficients of each voxel served as inputs to the clustering algorithm.

The SH basis allows a full angular characterization of the ODFs (figure 2.2) by means of real-SH
vectors. Therefore, it was possible to assess similarities of diffusion properties across ODFs
using simple distance metrics [27].

FIGURE 2.2 – Visualization of the ODFs in a slice of the thalamus. The yellow contour in A
delineates the thalamus, while B provides a close-up view of the ODFs shapes inside the
thalamic area identified by the light-blue box
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2.2.5 Clustering of the thalamic nuclei

Clustering was performed using a modified unsupervised k-means algorithm. A schematic
overview of our method is shown in figure 2.3. Inputs were mean SH coefficients and voxel
position. The number of clusters to be segmented was set to seven based on a preliminary
analysis that used a lower number of subjects aimed at determining the maximum number
of clusters that would provide a robust segmentation pattern across subjects. Additionally,
previous studies subdivided the thalamus in seven nuclei [13, 14].

FIGURE 2.3 – Schematic overview of the clustering framework. Segmentation of the seven
thalamic nuclei has been performed using a k-means clustering algorithm with two equally
weighted features : the spatial position of the voxels inside the thalamus (x, y, z) and the mean
ODF coefficients (Ci , i 2 [1,28]) expressed in the SH basis of maximum order 6. k-means is
initialized in a data-driven fashion

The decision metric for the final clustering was a combination of the Euclidean distance
of the voxels position and of the Euclidean distance calculated from the SH coefficients
(equation 2.3) :

kODF °ODF ‘k=

vuut
RX

j=1
(c j ° c ‘

j )2 (2.3)

To avoid any bias in the k-means clustering, we applied a scaling factor (SODF ) to the SH
coefficients to scale the ODF distances inside the interval of the spatial-distance values. The
scaling factor SODF = 55 was first empirically estimated on a small group of subjects and then
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applied to the remaining dataset. The contribution of the two features to the final clustering
was equal, i.e. the weight Æ was set to 0.5.

To avoid dependency of the results on the initialization method, we first ran 5000 randomly
initialized k-means, using only the position as the input feature, and then used the average
centroid over the 5000 results as the initial setting for the clustering algorithm.

2.2.6 Evaluation of the results

To assess the robustness of the outcome, we studied the average spatial distribution of the
resulting clustering. Clustering results were all registered to the Montreal Neurological Institute
(MNI) space using a combination of rigid, affine, and B-spline transformations (with 5 as
maximum allowed displacement of the control grid along each axis) implemented in 3D Slicer
(http://www.slicer.org). We then created a weighted average map in which each voxel was
defined with the label value represented by the majority of subjects in that voxel (we will
further refer to it as weighted mean map by majority voting or just mean segmentation map).

The assessment of the thalamic nuclei clustering is extremely challenging due to the absence of
a gold standard, and this limitation is shared by all previously proposed techniques. Moreover,
none of the methods in the literature evaluated reproducibility across different time points
or different diffusion sequences. To this end, four different approaches for evaluating the
anatomical consistency of our results were used.

(a) Qualitative evaluation

An experienced neuroradiologist (PM) visually assessed the quality of the segmentation results
and further compared them to Morel histological atlas [17].

(b) Quantitative evaluation

i. Symmetry between the left and the right thalamus. To test the symmetry between results of
the left and right thalamus, we statistically compared the volume and the spatial distribution
of the centroids of each segmented cluster between the left and the right hemisphere using
a non-parametric Wilcoxon signed-rank test. All analyses were performed on the subjects’
diffusion space. For each hemisphere, each cluster volume was normalized by the size of
the thalamus to take into account the inter- and the intra-individual size variability. The
distribution of the centroids was calculated using a distance map representing the relative
position of the centroids’ coordinates to the closest contour of the thalamus mask.

ii. Intra-subject reproducibility. We assessed intra-subject variability using scan–rescan data
from Dataset 2 and Dataset 3. For each subject, we performed the clustering on both time
points scans separately. The resulting clusters obtained from each dataset were brought to
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the same image space by applying a rigid 6-parameter transformation, which was estimated
with 3D Slicer [21]. Finally, clusters of scan–rescan time points were quantitatively compared
using : – Dice’s coefficient for assessing the overlap
– Euclidean distance between the centroids
– Modified Hausdorff distance for evaluating the similarity between the cluster contours. The
modified distance has been shown to be more robust to outliers than the traditional Hausdorff
distance [28].

(c) Comparison with thalamic long connections

The behavior of our algorithm, which uses local information derived from DWI, was compared
to the organization of the long fibers connections between the thalamus and its afferent and
efferent projections. We used probabilistic tractography (computed with probtrackx from FSL
package) to highlight those pathways. Based on anatomy [29], we first identified, for each
group of thalamic nuclei, the regions characterizing its afferent and efferent connections. The
mask of the whole left thalamus was maintained as a constant seed region in the tractography,
while target masks were chosen according to the regions representing the two endpoints of
each specific pathway of interest.

The results of the tractography showed the portion of the thalamus whose fibers were connec-
ted to the target masks. We then compared the location of those subparts of the thalamus
with our clustering results. For each cluster, we defined the frequency of success (FS) as the
percentage of subjects in which the tract of interest overlapped the expected cluster.

For each cluster in each subject, probabilistic streamlines were computed using the modified
Euler integration [30], by drawing 7000 individual samples using a value of 0.5 mm for step
length and 0.2 for curvature threshold. To reduce potential bias from spurious tracts, we have
excluded voxels having probabilistic streamlines value below 5% of the maximum. All the
streamlines between the respective that survive this threshold were considered as part of the
tracts of interest and included in a mask.

(d) Comparison with state-of-art methods based on local diffusion properties

Up to date, the angular difference (AD) between the principle directions of the diffusion
tensor was considered as the most reliable local feature for thalamic nuclei parcellation [8].
To assess our contribution and the advantage of using SH representations of the ODFs over
existing techniques, we compared the results of our pipeline with those obtained using AD
as feature. First, we computed the diffusion tensor at each voxel with FSL diffusion toolbox,
and then, instead of using the Euclidean distance between the ODF coefficients inside the
clustering framework, we calculated the angular difference between the main eigenvector of
the diffusion tensor [8, 10, 12]. In order to have both distances in the same range of values
within the k-means algorithm, we scaled AD after computing it by a factor of 6, which was
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empirically determined. Comparison between ODF and AD features is done at one time point
(using Morel’s atlas for validation in two different axial slices) as well as with scan–rescan
setting.

2.3 Results

The thalamic nuclei clustering in Dataset 1 was highly reproducible and characterized by
a robust pattern of spatial distribution. Only one subject out of the 35 deviated from this
pattern. In fact, he presented an intensity spike in ODF coefficients’ values as an artifact of the
reconstruction that anomalously biased the clustering. Therefore, this subject was removed
from further analysis. The mean segmentation map that represents the spatial distribution
pattern is shown in figure 2.4 , while figure 2.5 gives an example of five individual results.

FIGURE 2.4 – Rendering of the weighted mean clustering map by majority voting. The map
is superposed on a T1-weighted image in the Montreal Neurological Institute (MNI) space
in sagittal (A) and transversal (B) views. Panel C represents the mean ODF characteristic
for each cluster. Each averaged ODFs were reconstructed on a representative subject and
superposed on the weighted mean clustering map. Thalamic nuclei are color-coded as follows :
brown for the anterior group (A), maroon for the ventral anterior group (VA), light pink for the
medio-dorsal group (MD), red for the ventral latero-ventral group (VLV), blue for the ventral
latero-dorsal group (VLD), green for the pulvinar (Pu), and cyan for the cluster representing
the central lateral nucleus, the lateral posterior and a portion of the medial part of the pulvinar
(CL–LP–PuM)

(a) Qualitative evaluation

For each subject, the expert evaluated the spatial distribution and extent of the clusters
segmented with our algorithm, and while comparing them to Morel’s atlas, he labeled each
cluster by its anatomical correspondence (see figures 2.4, 2.6 and 2.7). Six out of seven clusters
could be uniquely identified as a known anatomical nucleus or group of nuclei, and we,
therefore, assigned the name of the dominant nucleus to each of them in each respective
group. The seventh cluster instead, was characterized by two predominant nuclei, the central
lateral (CL) and the lateral posterior (LP), as well as by a portion of the anterior part of the
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FIGURE 2.5 – Individual results of the thalamic nuclei segmentation. Spatial distribution of
the segmented nuclei are shown in axial view for five different cases and superposed on each
subject’s MPRAGE image

TABLE 2.1 – Statistical comparison of the normalized volumes of the thalamic nuclei across
hemispheres

Volume

Wilcoxon signed-rank Pu A MD VLD CL-LP_PuM VA VLV
p value 0.77 0.55 0.5 0.28 0.14 0.63 0.25

Median values (mm)
Left 0.1319 0.1599 0.1571 0.1239 0.1248 0.1540 0.1371
Right 0.1331 0.1618 0.1606 0.1317 0.1317 0.1513 0.1326

medial pulvinar (PuM). The anatomical partitions derived from our clustering were labeled as
follows : anterior group (A), ventral anterior group (VA), medio-dorsal group (MD), ventral
latero-ventral group (VLV), ventral latero-dorsal group (VLD), pulvinar (Pu) and CL–LP–PuM
group (see figures 2.4, 2.6 and 2.7).

Based on the qualitative comparison with the histological atlas, one subject did not pass the
expert evaluation, since the spatial distribution of the segmented clusters deviated from the
one of the other 33 cases. We assume that such an outcome is due to large neuroanatomical
variation, but since it represented an outlier, we decided to exclude this subject from further
evaluation analyses.

(b) Quantitative evaluation

i. Symmetry between the left and the right thalamus. We observed an important symmetry
between the results on the left and on the right thalamus across all subjects, which was
confirmed by our statistical analysis. As shown in tables 2.1 and 2.2 respectively, neither
the normalized volumes nor the centroids distribution of the corresponding cluster over
hemispheres were significantly different.

ii. Intra-subject reproducibility. The resulting clustering from Dataset 2 and Dataset 3 presented
the same segmentation pattern as observed for the 33 subjects in Dataset 1. Similarly, the same
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FIGURE 2.6 – Comparison of the results of our clustering algorithm with the Morel’s histological
atlas. A shows a sagittal view of the Morel atlas. B-D show instead the spatial distribution of
the thalamic nuclei segmented with our framework in the same sagittal slice for three different
cases in the Talairach space. Each color gives the anatomical correspondence of each group of
nuclei

pattern was observed in the scan–rescan analysis in both datasets. In particular, for all the 14
inspected thalami, the average Dice’s coefficient value per cluster was always higher than 0.8,
while centroid’s and Hausdorff distance were lower than the original spatial resolution of the
diffusion images used. Table 2.3 gives a summary of these results, while figures 2.7, A.9 and A.10
in the Appendixes show a visual illustration of them, together with additional comparisons
with Morel’s atlas.

(c) Comparison with thalamic long connections

According to the anatomy [29], we reconstructed six specific pathways, one for each nucleus
characterized by a unique anatomical distribution, i.e. A, VA, MD, VLD, VLV, and Pu. The res-
pective pairs of target masks that define the specific pathway for each cluster are summarized
in table 2.4.
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FIGURE 2.7 – Resulting clustering from the scan–rescan analysis compared with two different
axial slices from the Morel’s atlas (D 4.5 and D 10.8 top and bottom row, respectively)

This approach included all clusters except CL–LP–PuM since it is composed by more than one
dominant nucleus ; thus, its specific pathway could not be uniquely identified.

The estimated average FS for all clusters was 92.4% with minimum value of 81.8% for the VA
cluster and maximum of 100% for the pulvinar. More details about FS values for each cluster,
respectively, are given in table table 2.4.

An illustration of the motor tract passing through the VLV cluster is given in figure 2.8. Examples
of the reconstruction of two other tracts are shown in figure A.11 of the Appendixes.

(d) Comparison with state-of-art methods based on local diffusion properties

Unlike the results given by our ODF-based approach, the AD-based segmentation clustered
nuclei whose spatial distribution could not be uniquely assigned to a specific anatomical
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TABLE 2.2 – Statistical comparison of the centroids distribution of the thalamic nuclei across
hemispheres

Centroids’ border distance

Wilcoxon signed-rank Pu A MD VLD CL-LP_PuM VA VLV
p value 0.75 0.4 0.36 0.49 0.39 0.79 0.24

Median values (mm)
Left 2 2.2361 2.1180 2 2 2.2361 2
Right 2 2.2361 2.2361 2.2361 2.2361 2.2361 2

TABLE 2.3 – Quantitative measures of similarity between the scan–rescan clusters

Measure Dice coefficient Centroids’ distance (mm) Hausdorf distance (mm)

Cluster Mean Variance Mean Variance Mean Variance
Pu 0.93 0.0007 0.56 0.08 0.17 0.0025
A 0.90 0.0024 0.86 0.34 0.24 0.0036
MD 0.84 0.0080 1.36 1.08 0.28 0.0055
VLD 0.87 0.0018 0.98 0.26 0.27 0.0043
CL-LP-PuM 0.83 0.0101 1.41 1.24 0.28 0.0053
VA 0.89 0.0016 0.79 0.28 0.26 0.0038
VLV 0.89 0.0031 0.66 0.26 0.22 0.0019

TABLE 2.4 – Summary of the pairs of target masks chosen for the reconstruction of the pathways
characteristic of each group of nuclei

Cluster Target 1 Target 2 FS (%)

A Anterior cingulate cortex Fornix 97
VA Premotor cortex (Broadman area 6) Substantia nigra 81.8
MD Middle frontal sulcus Amygdala 90.9
VLD Posterior singular cortex Fornix 87.9

VLV Precentral gyrus
Red nucleus (left) and superior
cerebellar peduncle (right)

97

Pu Inferior angular gyrus Calcarine sulcus 100
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FIGURE 2.8 – Reconstruction of thalamic long connections. Sagittal A and coronal B 3D views
of the motor fiber tracts passing through the cluster VLV (in red). Probabilistic tracts (in white)
were reconstructed using the whole thalamus mask and the following seed regions (in yellow) :
left precentral gyrus, left red nucleus, and right superior cerebellar peduncle

group, according to the Morel’s atlas (see figures 2.7, A.9 and A.10). We further noticed that the
clusters distribution obtained from Dataset 2, characterized by a diffusion acquisition at high
b value, had less smooth boundaries, noisy contours, and isolated voxels.

In the scan–rescan framework, we observed lower intra-subject reproducibility of the AD-
based segmentation compared to the ODF-based one. These observations were then confir-
med with the quantitative measures showed in figure 2.9. More precisely, the average Dice
coefficients per cluster from the AD-based segmentation were between 0.5 and 0.8, while the
average distance between the corresponding centroids reached 4 mm.

2.4 Discussion

We presented a novel segmentation framework based on local diffusion properties and spatial
features for thalamic nuclei clustering in diffusion MRI. Unlike most of the existing methods,
which are limited by the low angular resolution of DWI [4–11], ours provides a robust and ac-
curate diffusion-based segmentation by the inclusion of the orientation distribution functions
(ODFs) from MR images at 3 T. Our major contribution is the use of spherical harmonics for
the ODFs representation that provide full angular characterization of the diffusion processes
in each voxel, and, therefore, a better differentiation of the complex intra-thalamic micro-
structure [29]. We proved the robustness of our approach across sequences, scanners and
acquisitions at different time points. We further demonstrated its outperformance compared
to AD-based clustering.

The segmentation was performed using the k-means algorithm. Unlike the state-of-the-art
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FIGURE 2.9 – Quantitative measures of overlap between the corresponding clusters in
scan–rescan analysis : ODF- versus AD-based segmentation

methods published so far, the initialization made in a data-driven fashion (primer centroids
extracted from 5000 initial randomly-initialized k-means runs) adds another strong point to
our framework since it is a user-independent procedure. Moreover, such initialization might
be a contributing factor to the high reproducibility of the final clustering results.

We segmented the thalamus in seven independent groups of nuclei with a success rate of
97.1% of the tested 35 cases. Six clusters are characterized with unique anatomical distribution,
while the importance of the seventh cluster, the CL–LP–PuM, comes from the nuclei grouped
within. More precisely, CL is part of the intralaminar nuclei, which are characterized by various
connections to frontal and parietal cortices, and potentially involved in arousal mechanisms
[31], while LP together with the pulvinar take part in attention processes to visual stimuli [32].
The choice of the number of nuclei was based on a preliminary analysis aiming at identifying
the number of clusters that provide a robust segmentation pattern and was further suppor-
ted by the existing approaches used in the literature. Thalamic nuclei segmentation using
thalamo-cortical projections [13] used seven cortical targets to draw probability distribution
of connections from voxels within the thalamus to those regions that have been shown to
correspond to known connection areas of major thalamic nuclear groups. On the other hand,
the myelo- [33] and cytoarchitectonical [17] atlases, which, instead, provide histological infor-
mation about the structural organization of the thalamus, give a more complete and detailed
picture of the thalamic nuclei even though they are built on very limited number of specimens,
and therefore, they do not account for any anatomical variability. Nevertheless, as in the Morel
atlas [17], all nuclei can be spatially grouped into seven main groups. In addition, the number
of clusters used in our study seemed to be a good trade-off between spatial resolution of the
ordinary DWI acquisition and anatomical accuracy of the clustering. For instance, a recent
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work [12] attempted to segment the thalamus in 21 different clusters but only five of them
appeared to be consistent across subjects. Collectively, these considerations suggest that the
robustness of the segmentation method is preserved solely for a small number of clusters
when utilizing classical diffusion sequences.

The developed framework was tested in a main dataset of 35 healthy volunteers, which is
a relatively large dataset compared to the data used for testing the majority of the existing
methods. Validation also remains a challenge for all previously published methods. By em-
ploying four different evaluation approaches to assess the results (qualitative comparison of
the segmented clusters to the cytoarchitectonic atlas, quantitative analysis of cluster spatial
extent and volume across hemispheres, as well as intra-subject reproducibility and corres-
pondence of the thalamic clusters distribution to thalamic long connections), we ensured
thorough validation of our algorithm.

A high degree of symmetry of nuclei volume and spatial distribution is in accordance with pre-
vious studies using fiber-tracking connectivity-based clustering [13], functional information
derived from resting-state BOLD signal [34–36], and histological reports [37]. In fact, the repor-
ted cerebral asymmetries in the brain are mainly related to its functional activity. For instance,
language functions are historically known to be left-lateralized, while those involved in spatial
orientation and emotional control are predominantly associated with the right hemisphere
[38, 39]. In our study, since we recruited only right-handed subjects, we could expect possible
inter-hemispheric differences between the groups of nuclei involved in motor control (i.e. the
VLV) because of the largely known motor-related lateralization of the brain [40]. To the best of
our knowledge, there is no evidence of strong structural left–right asymmetries in the spatial
organization of the thalamic nuclei, and our findings are in line with that. Another reason for
the absence of hemispheric asymmetries can be attributed to the low spatial resolution of the
DWI acquisition in comparison to the small size of the thalamus. This represents a limitation
of our study that is shared with all the previous published research on the same topic.

The findings from the core data (Dataset 1) were also observed in the analyses of the additional
two datasets, proving the reproducibility of the outcome over different diffusion sequences
and different scanner machines. Moreover, in a scan–rescan scenario, with very high Dice
values considering the relative small size of the clusters, we show strong reproducibility of the
results over different time points, and therefore, we reinforce the validation of our findings.
The reproducibility of the test-retest analysis is also proven by both centroids and borders
distances, which are always smaller than the original spatial resolution of the used diffusion
data.

We also performed a long-connection tractography-based analysis to further evaluate the
robustness of our clustering algorithm and the ability to identify appropriate anatomical
pathways described in the literature [29]. We observed a high frequency of success (FS) for
the expected overlaps, 92.4% in average, which further supports the anatomical accuracy of
the spatial distribution of the segmented clusters. We want to emphasize the fact that such
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evaluation has no intent of comparing fiber-tracking-based clustering with our local diffusion
property-based clustering. Instead, to provide additional anatomical value to our results, we
tested the hypothesis that the main thalamo-cortical fibers characteristic of a nucleus should
pass through it.

Our clustering method, which is based on local diffusion properties, is a robust tool for
thalamic nuclei segmentation that closely matches histological atlases. We showed that our
method outperforms recent state-of-the-art methods based on local diffusion properties,
or more precisely, the angular difference (AD), in terms of reproducibility and parcellation
matching closely with the known anatomical architecture of the thalamus. Moreover, the
AD-based segmentation outcome presented less smooth cluster boundaries for diffusion data
acquired with b values of 2000 s/mm2. We assume this is due to the limitations of the tensor
modeling that fails to represent properly the additional diffusion information, presumably
coming from the intra-voxel compartments [41] that such data provide.

Our results differ from cortical connectivity-based approaches results [13, 14], which generally
found overlapping connections to multiple cortical areas as well as great inter-subject variabi-
lity. Several factors may have contributed to this result. First, the cortical target ROIs used for
tractography were large and characterized by fuzzy borders, which favored the existence of
multiple cortical connections from each connectivity-defined thalamic region. Second, the
diffusion tractography is sensitive to major pathways, and therefore, smaller pathways, espe-
cially if crossing other tracts, are not always detected. Third, the thalamus is a very complex
structure, characterized by different cell types and specific cortical connections (matrix and
core neurons ; [42]) which can bias the results of long-connection fiber tractography. It should
also be considered that the thalamus segmentation by fiber-tracking does not necessarily
correspond to an anatomical subdivision of the thalamus [13, 14, 43, 44]. This is particularly
true for nuclei connected to the sensorimotor cortex, whereas good correspondence was
found for the pulvinar, the thalamic nucleus mainly projecting to the occipital cortex [45]. This
scenario has also been replicated in functional-based connectivity studies [34]. They revealed
distinct features of thalamo-cortical connectivity [36] when compared to structural-based
ones, showing that these two methodologies provide complementary information. As with
tractography-based approaches, they share the same problems of overlapping of connectivity
and inter-subject variability.

With the aim of providing a tool of a potential interest in everyday clinical practice, we estima-
ted the ODFs using a DWI sequence typically acquired in a clinical setting. As a drawback, we
share the limitation of all the other published studies so far that are related to the low spatial
resolution of the DWI sequences. With a voxel size of approximately 2 x 2 x 2 mm3, we were not
be able to distinguish smaller nuclei or nuclear groups. Complementary techniques should be
additionally considered to drive the segmentation towards smaller anatomical subdivisions.
These include high angular acquisition schemes, such as diffusion spectrum imaging (DSI),
which has been demonstrated to better characterize crossing fibers [46], and/or the use of
high-field MRI scanner. For instance, it has been shown that susceptibility-weighted imaging
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acquired at 7 T [47], is able to provide complementary information to those extracted from
DWI about thalamic microstructure, which can help in delineating the different groups of
thalamic nuclei. Future studies may also include the acquisition of diffusion images at higher
b values (>2000 s/mm2), and/or the use of scanner with higher gradient systems.

With our approach, we were able to show robust and anatomically consistent segmentation
of the main groups of thalamic nuclei. Thus, our framework can be of potential use in many
clinical applications. We would like to emphasize that unlike the cortical connectivity-based
algorithms, relying on local diffusion properties may be an important asset when studying
patients that have moderate or severe lesions in WM or GM (such as tumors, stroke or vascular
lesions), for whom long-distance fiber-tracking may fail. Other examples of possible applica-
tions can be related to movement disorders. Our recent findings [48] in young asymptomatic
FMR1 premutation carriers at risk of developing a late-onset movement disorder called fragile
X tremor–ataxia Syndrome (FXTAS), encourage further evaluation of the motor-control pa-
thway and in particular, the thalamic ventral intermediate nucleus (Vim) that is part of this
network (included in the VLV group in this study). Similarly, the VLV delineation is of potential
interest to clinical studies and treatment planning for other movement-related disorders,
such as essential tremor, where the central element is again the Vim [49]. The automatic
delineation of all seven groups of nuclei also represent a useful tool for studies related to brain
development [50] or to better interpret functional studies.

2.5 Conclusion

We propose a novel automated framework for segmenting the thalamic subparts, which
explores the orientation distribution functions represented in spherical harmonics basis from
diffusion MR images at 3 T. The ability to fully characterize the crossing fibers, in addition to a
data-driven initialization of the clustering algorithm, provides a robust, reproducible and an
accurate segmentation of seven groups of thalamic nuclei that outperforms the current state-
of-art based on local diffusion properties. Each segmented nuclei group has a characteristic
spatial distribution, which closely matches histological atlases, and identifies a major cortico-
thalamic pathway.
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3
Evaluation of Thalamic Parcellation

in Clinical Data

The work in this chapter represents a synthesis of three conference contributions presented as
first author : 1. 23r d Annual Meeting and Exhibition of the International Society for Magnetic
Resonance in Medicine (ISMRM) in 2015 as : ”Novel Robust Segmentation of the Thalamic
Nuclei – Validation on Healthy Subjects and Patiens” with co-authors : E. Najdenovska, G.
Battistella, C. Tuleasca, P. Maeder, A. Daducci, J.-P. Thiran, M. Levivier and M. Bach Cuadra
(poster) ; 2. 22nd Annual Meeting of the Organization for Human Brain Mapping (OHBM) in
2016 as : ”Localization of the Ventro-Intermediate Thalamic Nucleus Using Local Diffusion
Properties” with co-authors : E. Najdenovska, C. Tuleasca, X. Bresson, P. Maeder, G. Battistella,
E. Formari, J. Regis, J.-P. Thiran, M. Levivier and M. Bach Cuadra (poster) ; 3. 13th International
Stereotactic Radiosurgery Society (ISRS) congress in 2017 as ”Exploring Local Diffusion MRI
Properties for Vim Localization : Evaluation in Clinical Cases” with co-authors : E. Najde-
novska, C. Tuleasca, J. Bloch, P. Maeder, N. Girard, T. Witjas, J. Regis, J.-P. Thiran, M. Bach
Cuadra and M. Levivier (oral communication).

3.1 Introduction

The previous chapter presented the framework I propose for a robust and reproducible seg-
mentation of thalamus in seven group of nuclei based on the Spherical Harmonic (SH) re-
presentation of the Orientation Distribution Function (ODF). This feature gives a full angular
characterisation of the diffusion process in a voxel. The method is tested on a large HARDI
datasets from 114 healthy subjects in total. It produced an equivalent outcome for both data
obtained with different acquisition schemes and different 3 T scanners.

In this chapter, I extend the evaluation of the segmentation framework behaviour for 63 drug-
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resistant tremor patients that were treated with GKS. The treatment target for all of them was
the Vim determined by employing the quadrilateral of Guiot [8] (refer also to section 1.1.2 and
figure 1.4(b)). For one-third of them, the follow-up data was also available allowing a validation
of the motor-nuclei group against the observable contrast enhancement corresponding to
the therapeutic target. Furthermore, to provide a more confined localization of the Vim in an
automated manner, the group of motor nuclei was further subdivided.

3.2 Thalamic Parcellation in Drug-resistant Tremor Patients

The dataset included pre-operational images acquired several days before the GKS from 63
tremor patients (mean age : 71.7±8.2) where 59 were treated at Marseille University Hospital
(CHU Timone, France) and four at Lausanne University Hospital (CHUV, Switzerland). At
CHUV, the data can be divided in two subsets with two patients each. The first included
T1w (MPRAGE) images acquired at 1.5 T Aera Siemens (TR/TE=1910/3.01 ms, 176 slices,
isotropic voxel of 1 mm3) and DWI at 3T TimTrio Siemens scanner (72 gradient directions,
TR/TE=6300/84 ms, b-value=1000s/mm2, 52 slices and voxel-size : 2.24x2.24x2.2mm3). The
second subset was acquired at 3T Prisma Siemens enclosing T1w (MPRAGE) images (TR/TE=
2300/2.01 ms, TI=900 ms, 192 slices and isotropic voxel of 1 mm3) and DWI (64 gradient direc-
tions, TR/TE=7100/84 ms, b-value=1000s/mm2, 62 slices and voxel-size : 2.24x2.24x2.2mm3).
The remaining data from CHU Timone was acquired with 3T Skyra Siemens using similar
acquisition parameter as for the second CHUV dataset.

Following to the procedure described in the previous chapter, the DWI data underwent several
preprocessing steps including : de-noising, motion and eddy-current correction. Furthermore
the thalamic mask obtained initially from the FreeSurfer parcellation was also refined by
excluding voxels from the CSF and the internal capsule. The ODF coefficient in the SH basis
were obtained from the Qboot FSL function and finally the proposed modified k-means
algorithm, subdividing the thalamus from the trade-off between the spatial position and the
diffusion similarity distance, was applied. Please refer to Chapter 2 for more details.

The robust parcellation pattern previously observed in the healthy population was found
again in 62 out of the 63 tested patient cases. The last case, for reasons that should be further

FIGURE 3.1 – Individual results of the thalamic nuclei segmentation in tremor patients showed
in axial view and superposed on each respective pre-operational MPRAGE image
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explored, failed to provide the same spatial distribution of the resulting clusters. Figure 3.1
gives examples of the clustering outcome for several cases among the 62.

3.3 Validation of the Segmented Motor Group of Nuclei

For 18 out of the 63 patients, a follow-up data was available : for one patient at 3, for 12 at 6,
for two at 9, and for four at 12 months after the surgery. The data included T1w (MPRAGE)
images with enhanced contrast with injection of gadolinium. One of the CHUV patient was
scanned on 3T Skyra Siemens (T1w acquisition parameters : TR/TE=1900/2.43 ms, TI=900
ms, voxel-size : 0.47x0.47.0.9 mm3), while the other on 3T Prisma Siemens (TR/TE=2300/2.01
ms, TI=900 ms and isotropic voxel of 1 mm). At CHU Timoine all 16 post-operative T1w were
acquired with 3T Skyra Siemens (with TR/TE=1900/2.49 ms, TI=993 ms and isotropic voxels of
0.9 mm).

Although acquired at different stages, a contrast enhancement (CE) corresponding to the
targeted area was observable for each patient and was further considered as a reference for
evaluating the spatial distribution of the motor-related group of nuclei or here referred as the
ventral latero-ventral cluster (VLV).

The correspondence between the DWI, where the thalamic subdivision was done, and the res-
pective post-operative T1w was realised with a linear rigid transform [9]. This transformation
was later used to propagate the delineated VLV into the post-operative T1w space.

For all 18 cases, the VLV contour always included inside the observable CE contrast (see
figure 3.2) additionally confirming the spatial distribution of the proposed segmentation of
the motor-related group of nuclei (the VLV cluster). Nevertheless, the size of the VLV was
relatively bigger compared to the size of the observed CE, which was an expected outcome
since the cluster encloses several other motor-related nuclei besides the Vim. Consequently,
the next aim was to learn the localisation of the CE within the VLV by a further subdivision of
that cluster. Exceptionally, in one patient the observable CE was exceeding the size of the VLV,
therefore it was excluded from the following analysis.

FIGURE 3.2 – Examples of the contrast enhancement (yellow fleshes) observed on the post-
operative T1w images. Each panel show a different individual case in axial view. The white
contour represents the thalamus, while the red one corresponds to the automatically segmen-
ted Ventral Latero-Ventral (VLV) nuclei group.
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3.4 Graph-cut Partition of the Motor Group of Nuclei

3.4.1 Graph notions

A finite unidirectional graph G = (V ,E) is defined as a set of N vertices (V ) also called nodes
and set of edges (E ) connecting respectively pair of vertices. An edge is characterised by a non-
negative weight w(i,j) reflecting the similarity between the linked nodes i and j . Subsequently,
the N xN adjacency matrix A of a graph G is given as :

Ai j =
(

w(i,j), if (i,j) 2 E

0, otherwise
(3.1)

The degree of a vertex represents the sum of all weights of the edges incident to that vertex.
If D is a N xN matrix containing the edges degree in its diagonal and zeros elsewhere, i.e.
Di i =

P
j Ai j , the Laplacian of the graph is given by L = D ° A representing a real, symmetric,

positive semi-definite matrix. In other words, the Laplacian eigenvalues ∏l are non-negative
and the corresponding eigenvectors ≤l form an orthonormal basis. Consequently, for all
l = 0, ..., N °1 :

L≤l = (D ° A)≤l =∏l≤l (3.2)

3.4.2 Graph partition

In the case of dividing the graph in two subsets A and B such as A[B =V and A\B =;, the
degree of dissimilarity between these sets is defined as the sum of the weights of the edges
that have been removed to form the subgraphs. In graph theory it is also known as the cut :

cut(A,B) =
X

u2A,v2B
w(u, v) (3.3)

Therefore, a minimisation of the cut value should give an optimal subdivision. Wu and
Leahy [10] proposed to minimise the maximum inter-subgraphs cut thereby assuring mi-
nimisation of the similarity between clusters. This method is searching for a global optimal
minimum, however is prone to fail in case of isolated vertices where its tendency is to segregate
them in small subsets. Addressing this limitation, Shi and Malik [11] redefined the measure
of disassociation as normalized cut (Ncut), which is the sum of ratios between the cut of the
graph and the association of the subgraphs, the former representing the total connection
from the subgraph nodes to all the nodes of the graph. Hence, for two partitions A and B the
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normalized cut is given as :

Ncut(A,B) = cut (A,B)
assoc(A,V )

+ cut (A,B)
assoc(B ,V )

(3.4)

which is no longer biased by isolated nodes.

The minimisation of the Ncut can be transformed to minimization of the Rayleigh quotient [12]

r (y) = yT (D ° A)y

yT D y
(3.5)

which is solved by its second smallest eigenvector and therefore, the corresponding eigenvalue
is its minimum [11, 12]. In other words, for a bipartition of a graph the solution minimizing
the Ncut is the second smallest eigenvalue solving the generalised eigenvalue problem :

(D ° A)y =∏D y (3.6)

Accordingly, in the case of k partitions, where V =[k
l=1Vl and Vm\Vn =;, 8m 6=n, the NCut

disassociation criterium can be written as :

NCutk = cut (V1,V °V1)
assoc(V1,V )

+ cut (V2,V °V2)
assoc(V2,V )

+ ...+ cut (Vk ,V °Vk )
assoc(Vk ,V )

(3.7)

The top k eigenvalues could be then used to simultaneously solve such multi-partition [11].
The Multiclass Spectral Clustering [13] propose a discrete solution close to the continuous
optima which is one of the first k leading eigenvectors. The outcome provided by this approach
remains robust for any random initialisation [13].

3.4.3 VLV subdivision

Taking advantage of the graph partition, the VLV cluster was further divided in NCut segmen-
tation framework. The aim was to explore only the diffusion information, therefore only the
ODF coefficients in the SH basis were used as a feature for the subdivision.

The graph was build in k-nearest-neighbour (k-nn) mode. Its nodes were represented by the
VLV voxels, while the edges by the respective Gaussian weighted function of the Euclidean
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distance between the corresponding ODFs coefficients :

w(i , j ) = e°
kODF (i )°ODF ( j )k2

2
æ2 (3.8)

where æ2 is the variance of the ODF distances. The adjacency matrix was build in a way that
each node was connected to its 10 nearest neighbour. An illustration of the graph is given in
figure 3.3.

FIGURE 3.3 – Schematic representation of the build graph. With red is depicted the VLV cluster.
On the left panel the VLV is superimposed on the ODF representation of the data illustrating
the graph nodes (in yellow). The edges are depicted in blue in the right panel.

FIGURE 3.4 – Illustration of the VLV sub-partition. The white and the red contours represent
the thalamus and the automatically segmented VLV nuclei group, respectively. The NCut sub-
partitions are given in pink, yellow and green. The contrast enhancement (CE) corresponding
to the GKS targeted area inside the yellow sub-cluster with an exception for Patient 5, which is
an example where CE appears on the sub-partitions interface.

For each VLV of the 17 cases, the cluster was partitioned in three sub-clusters. The number
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3 was empirically determined as the maximum number of clusters that gave a consistent
subdivision pattern among the subjects.

The obtained subdivision was again with robust tendency overall the subjects. Moreover, it
was qualitatively compared against the respective CE, which led to observe that for 12 out of
17 patients, one exclusive sub-cluster entirely covered the CE. In the remaining cases the CE
was found either in the clusters interface or in another subdivision. Figure 3.4 gives a visual
overview of the described results.

3.5 Study Extension on DBS data

The described VLV partition was also tested in additional data from drug-resistant tremor
patients treated with bilateral DBS at CHUV. For both of them the pre-operative imaging
protocol included T1w (MPRAGE) image (TR/TE=1900/2.43, TI=900 ms, isotropic voxels of 1
mm) and DWI (64 gradient directions, TR/TE=10300/84 ms, b-value=1000s/mm2, voxel-size :
2.24x2.24x2.2mm3). All those sequences were acquired at 3T Skyra Siemens. Additionally, a
post-operative Computer Tomography (CT) scan showing the implemented electrodes was
available for both patients.

FIGURE 3.5 – Illustration of the VLV sub-partition in two drug-resistant tremor patients treated
with DBS. One could observe that the final position of the implemented electrodes (in white)
is always enclosed in the expected (yellow) VLV sub-cluster.

The treatment planning for both of the patients was done by employing the Medtronic DBS
software for Vim targeting that rely also on landmarks information such as the AC-PC length
and the width of the third ventricles. It should be however stated that while the Vim coordinates
for the first patient were determined blindly i.e. as routinely done for this treatment, the lateral
planning coordinates in the second case were adapted in accordance to the centroid of the
anticipated VLV sub-cluster. Nevertheless, following the patients response during the surgery,
in both cases the final electrodes position differed in 1 to 1.5 mm from the planning points.
This is conforming the results from the previous studies showing that the difference between
the “radiologically” obtained Vim and the “electrophysiologically” confirmed one could reach
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up to 2 mm in approximately 35% and 1 mm in 65% of the treated cases [14]. Nevertheless, to
unify and reinforce the stated conclusion, a bigger cohort should be explored.

The processing of the data was done following the described method in Chapter 2 and in
section 3.4. The resulting partition of the thalamus and the sub-partition of the VLV cluster
conformed the expected segmentation pattern respectively. Moreover, the VLV sub-cluster
enclosing the CE in the tested GKS data contained the final electrodes position in these two
cases (see figure 3.5).

3.6 Discussion

The work presented in this chapter extends the study of the proposed thalamic parcellation
method to a large dataset of tremor patients. Although such data is prone to movement arte-
facts that could degrade the used imaging information, the clustering outcome demonstrated
the method robustness in 98% of these cases.

One of the main drawbacks for the problematic of thalamic parcellation in the imaging field is
the absence of an absolute reference for validation of the results. As previously mentioned, the
standard MRI sequences lack in sufficient intrinsic contrast for distinguishing the anatomic
thalamic subparts [15, 16]. In consequence, the validation of the state-of-the-art approaches,
in general, is limited to a visual comparison with the available histological atlases [1, 7, 17, 18].
However, build upon a few species only, the atlases are restricted in enclosing the inter-subject
variability [19] which weakness their reliability.

As the contrast enhancement (CE) appearing on the available follow-up data, was always
inside VLV cluster, the presented study also showed an extended evaluation of the spatial
allocation of the segmented group of motor nuclei. To the best of my knowledge, this analysis
is a pioneer in validating an automatically delineated thalamic subpart with respect a clinical
target.

From the proposed VLV subdivision, one exclusive sub-cluster was enclosing the CE in 71% of
the tested cases giving the potential of this approach to outline a narrower spatial localisation
of the Vim. These findings were further confirmed in two additional cases treated bilaterally
with DBS where, differently from GKS, the treatment response and thereby, the confirmation
of the targeting position, is immediate. Hence, an extension towards bigger tremor patient
data could provide a possibility to predict the localisation of the target before the surgery.

The persistent VLV parcellisation pattern among the subject show that even at that size-level
the segmentation is mainly driven by the diffusion information and not by the eventual noise
in the data which, in general, behaves inconsistently. Nevertheless, the method limitations
principally come from the relatively low spatial resolution of the explored DWI. An improved
spatial resolution could lead to a finer subdivision not only of the VLV but the other thalamic
subparts as well. Furthermore, as the diffusion signal not necessarily explain the underlying
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histology of the tissue, but rather gives a complementary information, there is a need to
include additional anatomical features for a better and more precise discrimination of the
thalamic subparts.

3.7 Conclusion

The proposed method for thalamic nuclei segmentation remains robust even in clinical
cases of patients with tremor that are likely to engender more motion artefacts. Moreover,
with the target-related contrast enhancement appearing on the follow-up images always
included inside the VLV cluster, this analysis gave also an extension towards a clinical validation
regarding the spatial distribution of the segmented group of motor nuclei. The additional VLV
subdivision showed tendency to restrain the localization of the targeted Vim area used for
the treatment of drug-resistant tremor. The extension of this study on a bigger patient cohort
could possibly lead to an automated prediction of the targeting position.
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4
Comparison with 7 T Data

The work presented in this chapter is submitted for publication in Journal of Neurosurgery
as ”Advanced Imaging of the Ventral Intermediate Thalamic Nucleus : A Proof of Concept”
with co-authors E. Najdenovska, C. Tuleasca, J. Jorge, P. Maeder, J. P. Marques, T. Roine, D.
Gallichan, J.-P. Thiran, M. Levivier and M. Bach Cuadra. E. Najdenovska and C. Tuleasca
have equally contributed to the present study. Preliminary results in the scope of this study
were presented in an oral communication at the 13th International Stereotactic Radiosurgery
Society (ISRS) congress in 2017 as ”Vim’s Anatomical Landmarks : Indirect Targeting vs.
Direct Visualization at 7T MRI” with co-authors : E. Najdenovska, C. Tuleasca, J. P. Marques,
J. Jorge, D. Gallichan, P. Maeder, J.-P. Thiran, M. Levivier and M. Bach Cuadra.

4.1 Introduction

The ventro-intermediate (Vim) nucleus is a part of the motor group of thalamic nuclei that,
among with the anterio-lateral subdivisions, acts as a relay between the basal ganglia, the
cerebellum and the motor cortex [1]. It was initially defined by Guiot from electrophysiological
recordings [2] and it’s organized in a somatotopic manner, with the leg-area lying laterally and
the face-area medially, measuring 2-4 mm in anterio-posterior, 7-10 mm dorso-ventral and
4-6 mm medio-lateral [3].

The Vim is typically used as a target for treatment of drug-resistant tremor in functional-
neurosurgery framework, such as deep brain stimulation (DBS), radiofrequency thalamotomy
[4–7] or recently, the alternative minimally invasive techniques, Radiosurgery (RS) [8–10] and
High Intensity Focused Ultrasound (HIFU) [11, 12].
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The Vim cannot be directly visualized on current magnetic resonance (MR) sequences used
routinely in clinical practice. The targeting methods are therefore indirect, employing atlases,
stereotactic coordinates, or the quadrilateral of Guiot [8, 10, 13–15]. There is no consensus
for a “gold standard” targeting method, thus providing variability among centers. This be-
comes particularly crucial for Vim RS and HIFU, which cannot rely on intraoperative target
confirmation. Hence, there is a need of standardizing the targeting procedure.

Advanced MRI techniques can help in addressing Vim-targeting limitations. For instance,
diffusion MRI (dMRI), describes more exquisite microstructure details, like the orientation
of the fibres, which is different for each thalamic nucleus. Additionally, an emergent field is
the study of thalamic subparts on ultra high-field MRI. Recently, Abosch et al. [16] suggested
the possibility of a direct Vim visualization by using susceptibility weighted imaging (SWI)
acquired at 7T that show an enhanced image contrast inside the thalamic area [16, 17].

In this study we aim to step forward in better identifying and localizing the Vim by comparing
four different methods that define this nuclei : 1) The quadrilateral of Guiot as a routinely used
clinical targeting method ; 2) The automated dMRI-based thalamic subdivision ; 3) the direct
7T-based visualization ; and 4) the atlas-based Vim outline. The first method is defining the
Vim in a statistical manner based upon previous electrophysiological recordings, while the
remaining reveals its anatomical structure. Being part of computer-assisted image-analysis
techniques, the second and the forth methods differ from the third one which underlies only
on direct human-eye examination. Figure 4.1 shows an overview of these approaches.

FIGURE 4.1 – Schematic overview of the methods used for defining the Vim
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TABLE 4.1 – MRI protocol

Sequence
3 T

T2-w
3 T

T2-w CISS
3 T

MPARGE
3 T

DWI
7 T

MP2RAGE
7 T

SWI

Resolution
[mm3]

0.5x0.5
x1.0

0.44x0.44
x0.44

1.0x1.0
x1.0

2.24x2.24
x2.2

0.6x0.6
x0.6

0.375x0.375
x1.0

Matrix size 512x512 320x320 256x256 98x98 256x320 512x512
Slices/
Partitions

160 80 160 52 320 72

Acquisition
Time

4 min 43 s 8 min 08 s 4 min 1 s 9 min 10 s 10 min 38 s 7 min 30 s

TR [ms] 3200 6.18 2300 6300 6000 28
TE [ms] 402 2.75 2.98 84 2.64 20
TI [ms] / / 900 / 800/ 2700 /
Flip angles
[degrees]

120 49 9 / 7/5 10

Target Whole brain Thalamus Whole brain Whole brain Whole brain Thalamus

4.2 Materials and Methods

4.2.1 Participants

Five healthy subjects (25±2 years, two females, all right handed and with no particular brain
disease and/or deformation caused by intracranial lesions) were scanned at both 3 T and 7 T.
Local institutional review board approved the study and all participants gave written informed
consent.

4.2.2 Image acquisitions

The acquisitions at 3 T (3T TIM-Trio SIEMENS scanner, 32-channel head coil) included the
standard clinical Vim RS protocol : coronal T2-weighted (T2w), T2-weighted Constructive
Interference Steady State (CISS)/Fiesta, T1-weighted (T1w, MPRAGE) and diffusion weighted
images (DWI) acquired with 72 gradient directions and b=1000 s/mm2. At 7 T (68 cm-wide
bore MRI system (SIEMENS Medical Solutions), 32-channel head coil (Nova Medical)) we
acquired T1w MP2RAGE [18] and axial SWI. Acquisition parameters are given in table 4.1.

4.2.3 Common image space

The analyses, for each subject respectively, were preformed in the individual anterior com-
missure - posterior commissure (AC-PC) image space. We first transformed the T2w into the
AC-PC space by employing 3D Slicer [19] and choosing manually 30 brain mid-plane points.
The resulting image was then used as a reference for the AC-PC alignment of the remaining
sequences. More precisely, for each 3 T contrast, with the exception of the DWI, we performed
a rigid-body transformation (six degrees of freedom, DOF). To correct the DWI Echo Planar

65



Chapitre 4. Comparison with 7 T Data

Imaging (EPI) distortion, we registered the fractional anisotropy map (FA) to the MPRAGE
with a non-linear transform using FSL FNIRT [20, 21] (Analysis Group, FMRIB, Oxford, UK).

To overcome observed distortions in the frontal and the parietal cortex of the 7T data, we
performed a 12-DOF linear transform between both skull-stripped 7T MP2RAGE and 3T
MPRAGE. This transform was applied to the SWI rigidly (6-DOF) aligned beforehand to the
corresponding MP2RAGE.

All registrations [22] were preformed with 100000 voxel samples and Mattes Mutual Informa-
tion as cost function. The outcome quality was assessed by visual inspection of the matching
between the ventricles.

Figure 4.2 summarizes the registration process. After being transformed to the AC-PC space,
all images were resampled to the T2 CISS spatial resolution (0.44x0.44x0.44 mm3) using linear
interpolation.

FIGURE 4.2 – Schematic overview of the registrations applied for transforming into the com-
mon image space

4.2.4 Targeting methods

Quadrilateral of Guiot

The quadrilatere of Guiot [2, 13] is defined upon anatomical landmarks, including AC, PC,
thalamus height and third-ventricle lateral wall, all easily recognizable on T2 CISS. The final
position is the Vim’s anterio-inferior part, at 11 mm from the third-ventricle lateral border.
An experienced neurosurgeon (CT) performed this targeting in MITK 3M3 (German Cancer
Research Center, Heilderberg, Germany).
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To test the reproducibility, Guiot targeting was performed six times for each subject, bilaterally
and blindly. A sphere with 2 mm radius was drawn around each Guiot point to simulate both
the 90 Gy isodose line and the contrast-enhanced area [23] visualized on follow-up MRI if a
radiosurgical thalamotomy [24] would have been applied in the presented cases.

Automated 3T dMRI-based segmentation

Several research groups explored the dMRI advantages for automated thalamic subdivision
[25–33]. The initial approaches are mainly based on diffusion tensor images i.e. a coarse
diffusion representation. Recently, our group developed an approach [25] that relies on more
detailed diffusion feature - the Spherical Harmonic (SH) representation of the Orientation
Distribution Functions (ODFs) and outperforms the state-of-the-art methods by providing
robust and reproducible segmentation pattern for a large dataset and different diffusion
sequences. Our approach subdivides the thalamus in seven groups of nuclei corresponding to
Morel’s atlas [34] anatomy. One of the segmented groups of nuclei is the ventral latero-ventral
cluster (VLV) enclosing the motor-related nuclei including the Vim (figure 4.3).

The DWI pre-processing included data denoising [35–37], bias field [20, 38], motion [39] and
eddy current correction [40]. The SH coefficients of the constant solid angle ODFs of maximum
order 6 were calculated using the FSL’s qboot function [25].

The thalamic masks were initially obtained from the Freesurfer parcellation [41, 42] on each
MPRAGE and redefined, as described by Battistella et al. [25], by eliminating the voxels having
FA value grater than 0.55 or exceeding 5% probability to belong to the cerebrospinal fluid.
The refined masks were further compared to the thalamic borders appearing more evident in
SWI and consequently, for providing even more precise thalamic outline, several voxels were
manually refined.

The thalamic subdivision was completed in the diffusion space of each subject and the resul-
ting clusters were brought in the AC-PC space.

Additionally, as presented in section 3.4, the VLV cluster was further subdivided with NCut
clustering [43] in three parts using only the ODF coefficients as a feature.

Manual Vim delineation on 7T SWI

SWI combines contrast from differences in effective transverse signal relaxation (T2*) and in
MR signal phase, both strongly affected by the magnetic susceptibility and the underlying
tissue geometry [44, 45]. Accordingly, SWI has shown increased sensitivity, in respect to stan-
dard T1- or T2*w imaging, for visualizing deoxygenated blood vessels, vascular and axonal
lesions, as well as calcium and iron depositions [46] and it allows better visualization of certain
deep brain structures, including the thalamic subparts. Particularly, the Vim appears as a well-
distinguishable hyper-intensity structure surrounded by darker regions [16] (figure 4.3A). This
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is especially evident at higher magnetic field strengths, such as 7T, where the susceptibility-
dependent contrast is more accentuated, and moreover, sub-millimeter spatial resolution can
be easily achieved.

The manual delineation of the Vim on 7T SWI was primarily based upon the previous observa-
tions of Abosch et al. [16] and the Schaltenbrand and Wahren atlas [47] also used as reference
in the mentioned study.

The thalamic lateral border and the internal capsule are well distinguishable on the 7T SWI.
Referring to the Shaltenbrand’s atlas, the Pulvinar as well is directly recognizable in the axial
SWI plan (in green, figure 4.3A). Superior to it, again in axial plan, is the ventro-caudalus
nucleus (Vc) appearing as a dark region (figure 4.3A, bright-violet) immediately posterior to a
narrower zone with brighter image intensity that is considered as Vim (figure 4.3A, yellow).
Above it, ventro-odalis (Vo) appears (figure 4.3A, bright-blue) as another dark area defining the
superior border of the Vim. Additionally, the visualization of the medio-dorsal group allows
the identification of the mesial Vim border.

FIGURE 4.3 – Illustration of the visible structures corresponding to the thalamic area in axial
view on the SWI acquired at 7T, based upon the illustration from the pioneering work of
Abosch et al. [16]. In panel A the SWI features are compared with the Schalterbrand atlas [47]
(plate 53 Hd +3.5) superimposed on the right thalamus. The arrows and the respective color
contours indicate the nuclei : Vim, Pulvinar (Pu), ventro-caudalus (Vc), ventro-odalis (Vo),
the medio-dorsal group (MD) and the internal capsule (ic). The shown SWI image is part of
the dataset used in this study. Panel B gives a corresponding axial plate of the Morel’s atlas
where the (same) color (shade) matches appropriate regions of the Shalternbrand’s atlas, while
keeping the same nomenclature used in each one of them. In fact, considering the Morel’s
atlas [34] nomenclature, Vim is part of the Ventro-Lateral-posterior nuclei, which furthermore,
together with ventro-lateral anterior and ventro-posterior nuclei form the VLV cluster.
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Multi-atlas segmentation

One widely used state-of-the-art segmentation technique is the atlas-based registration, if an
atlas is available. Having achieved the manual Vim outline, we considered each one of them
as an atlas within a multi-atlas segmentation framework.

The framework was built in leave-one-out scenario, meaning that for each subject-target
its own Vim outlines were not considered as atlases, but only those from the remaining
subjects. The atlas registration was done in 2 steps. First, with an affine transform [22] we
matched the respective MPRAGEs and we applied it to the corresponding SWI. Second, we
perform a non-linear registration for a local correspondence using only the SWI as it gives
more distinguishable thalamic features than the T1w, thus potentially allowing more accurate
matching between the thalamic nuclei. To this end, we defined a volume of interest (VOI)
surrounding the thalamus in which, in order to standardize the SWI intensities among all
the subjects, we performed a histogram matching proposed by Nyúl et al. [48]. Non-rigid
BSpline transform using maximum displacement of 1 mm [22] was computed in the VOI.
The combination of both linear and non-linear transform was applied to the Vim outlines
respectively and the final multi-atlas segmentation outcome was obtained by employing the
Joint Label Fusion method with corrective learning [49].

4.2.5 Quantitative analyses

The intra-subject reproducibility of the Guiot targeting was estimated with the Euclidean
distance between the six target points for each individual hemisphere, by taking as reference
the first targeted point.

The volumes of the manual Vim and automatic VLV delineation were computed and norma-
lized by the corresponding thalamic volume to ensure a relevant comparison across hemis-
pheres and subjects.

The accuracy of the multi-atlas segmentation against the manual delineation was evaluated
with Dice Coefficient [50] measuring their overlap. Overlap greater than 70% is considered as
good match.

4.2.6 Qualitative analyses

The four investigated approaches provide outcomes at different size : from a single point to a
group of nuclei. To better assess their spatial distribution, we further divided the VLV and the
manually delineated Vim in eight geometrical sub-regions (figure 4.4). More specifically, for
each region of interest (ROI), VLV or manual outline, we calculated the smallest rectangular
cuboid containing all non-zero voxels whose mid-plane isolated the superior from the inferior
part, while the in-plane diagonals the anterior, the lateral, the posterior and the ventral ROI
part.
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FIGURE 4.4 – Schematic representation of the ROIs separation in 8 regions in 2D and 3D view
(middle). The labeling of the subparts is done according to the hemispheres to which the ROI
belongs.

4.3 Results

4.3.1 Quadrilateral of Guiot

The obtained Guiot points were either overlapping or differing by one voxel. The maximum
intra-subject difference was less than 1.3 mm, confirming to the targeting expectations of
reproducibility (see the boxplots in figure 4.5).
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FIGURE 4.5 – Boxplot showing the difference between the six targeting points obtained by the
quadrilatere of Guiot for each subject respectively

4.3.2 Automated 3T dMRI-based segmentation

For all subjects, we found similar segmentation pattern as previously reported for a larger
cohort of 35 healthy subjects [25] (figure 4.6). Moreover, the VLV cluster represented the
expected spatial extent and its volume was in the interval [0.92, 1.27] cm3 or 15-19% of the
corresponding thalamic volume. Detailed values are reported in table 4.2.
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TABLE 4.2 – The calculated volume of the manually delineated Vim and the VLV cluster. The
presence of a blood vessel made impossible the manual delineation of the Subject 1’s right
Vim (*).

Volume Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Manually
delineated

Vim
Left mm3 /(§) 76.3 83.3 82.8 67.2

normalized /(§) 1% 1.5% 1.1% 1%
Right mm3 77.6 82 82.9 73 78.7

normalized 1% 1.1% 1.2% 1.1% 1%
Automatically

segmented
VLV

Left cm3 1.1 1.3 1.1 1 1.2

normalized 15% 17% 18% 14% 19%
Right cm3 1 1.3 1.1 0.9 1

normalized 14% 18% 16% 15% 15%

4.3.3 Manual Vim delineation on 7 T SWI

Both Vims were identified in four out of five subjects. In the fifth case, only the right Vim area
was distinguishable, while on the left side, a blood vessel made difficult to discriminate any
contrast difference that could have corresponded to the Vim (figures 4.6 and 4.7). Hence, in
total, we had nine manually delineated Vims.

The manual delineation was nonetheless challenging and time-consuming, as the borders of
the Vim were not unquestionably discernable due either to the lack of image intensity contrast
or the presence of small blood vessels that sometimes could have been confounded with the
surrounding nuclei. Moreover, the image intensity and its contrast variations differed between
subjects (figure 4.7).

The manually delineated volumes were in the range [67.2, 83.3] mm3 and occupying 1-1.5% of
the total thalamic volume (table 4.2).

4.3.4 Multi-atlas segmentation

To consider an equal contribution from both hemispheres, the subject with no manual left
Vim outline was not considered for building the multi-atlas framework. Therefore, we used
three Vim atlases per hemisphere.

The multi-atlas segmentation outlines were fairly comparable to the manual delineation
(figure 4.8). The calculated Dice overlap was 35-64% for the left and 63-75% for the right
hemisphere (table 4.3).
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FIGURE 4.6 – Visual representation of the overall results. Panel A give the results in axial view
of each subject respectively, while panel B shows a 3D view of the Subject 2 outlined Vim,
as well as its localization inside the VLV cluster and within the thalamus. Among the shown
findings, the Guiot points are given in magenta, the manual Vim delineation in yellow and the
automatically segmented VLV cluster in red. The remaining automatically delineated clusters
shown in panel A are : Pulvinar (Pu), medio-dorsal (MD) and the anterior (A) group of nuclei
as well as the cluster enclosing the centro-lateral and the lateral posterior nuclei along with
the medial part of the Pulvinar (CL-LP-PuM). It can be seen that for all the subjects the Guiot
points are always inside and/or on the border of the manual delineation, which furthermore
is observed in the anterior-lateral part of the VLV cluster close to its lateral border.

FIGURE 4.7 – Illustration of the difficulties encountered for the manual delineation of the Vim
regarding the image contrast on SWI acquired at 7 T and the presence of blood vessels in
the targeted area. We can observe that subjects in panel B and panel C do not present the
same discriminative contrast variation around the expected Vim area in comparison with the
subject shown in panel A. The arrow in panel D, corresponding to Subject 1, illustrates the
relatively big blood vessel passing through the left targeted thalamic region that prevented
manual discrimination of the Vim. The presence of small vessels surrounding the Vim can be
observed in each panel.

TABLE 4.3 – The Dice Coefficient (DC) estimating the overlap between the multi-atlas Vim
outline and the manual delineation

Subject Subject 2 Subject 3 Subject 4 Subject 5

Left Right Left Right Left Right Left Right

DC 64% 75% 42% 72% 35% 68% 35% 63%
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FIGURE 4.8 – Visual comparison between the manual delineation and the multi-atlas outline
of the Vim

4.3.5 Subdivision of the VLV cluster

The Ncut dMRI-based subdivision of the VLV cluster provided again, for all five subjects,
the same sub-partition pattern as the one presented in the previous chapter (section 3.4).
Considering the sub-cluster covering the contrast enhancement in the patients data, in this
study for nine out of 10 thalami was enclosing the Giout points and the simulated 90 Gy
isodose lines. In the last thalamus the Guiot points were close to its border (see the right
thalamus of Subject 1 in figure 4.9). However, the same sub-cluster does not enclose the entire
manual Vim outline, but predominantly its anterior portion. All of these findings are illustrated
in figure 4.9.

FIGURE 4.9 – Visual comparison between the VLV subcluster, the simulated clinical targeting
and the manual Vim delineation

4.3.6 Qualitative comparison

The Guiot points were always inside or on the border of the manual delineation. The dMRI-
based VLV cluster included always the manual Vim outline and therefore, the Guiot points
as well. In average, the size of the VLV was 15-19 times bigger than the manual outline (see
figure 4.6).
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Considering the geometrical subdivision (figure 4.4), for seven out of nine cases the Guiot
points were in the ventral part of the manual delineation. Additionally, these points were
always in the inferior VLV partition, and with 80% rate in its anterior segment. For eight out
of nine cases the manual Vim outline was found in the inferior VLV, in the ninth case being
around the mid-plane. Furthermore, the manual outline was always next to the lateral VLV
border and for eight out of nine cases lied in this cluster anterior/anterior-lateral part.

4.4 Discussion

With an aim of stepping forward to an improved targeting procedure, the presented study com-
pares four different strategies for defining the Vim - a routinely used functional-neurosurgery
target for treatment of drug-resistant tremor.

We observed that the clinical targeting points, defined by the quadrilateral of Guiot, are very
likely to be found in a restrained area i.e. the ventral part of the manual Vim outline based on 7
T SWI. Representing only a point, Guiot targeting is however unable to define a full structural
discrimination of the Vim. Nevertheless, the illustrative 90 Gy isodose lines were always inside
the dMRI-based VLV cluster (figure 4.6).

The manual delineation is mainly confined within the VLV’s inferior anterior-lateral division,
which has anatomical relevance [34]. Moreover, this reveals a constrained area that most
likely corresponds to the Vim within a region automatically delineated by computer-assisted
image-analysis techniques, which has not been demonstrated previously.

The sub-cluster resulting from the proposed dMRI-based VLV subdivision conformed the
expectations of encompassing the Guiot targeting and the simulated isodose of 90 Gy. However,
this study showed that the sub-cluster is not including the entire outlined Vim. Hence, we could
presume that further studies of this VLV subdivision, including bigger cohort and improved
spatial resolution of the explored data, could potentially lead to narrower localization of the
treatment target, but not necessarily to the Vim as a whole.

The manual delineation on the 7 T SWI data is however a time-consuming task as the Vim
borders are not always obvious, mainly because of the presence of blood vessels, a low local
image contrasts or contrast variability across subjects inside the thalamic area. In consequence,
we assume having contour erring towards underestimation of the Vim extent. This is shown
from the calculated volumes (table 4.2), which are near the lower limits of the known range [3].
Nevertheless, we provide more extensive Vim-focused analysis on 7 T data.

One limitation of the study comes from the studied population in terms of size and age. We are
currently extending this study on data acquired from an elderly population, including healthy
volunteers and patients with essential tremor. Preliminary analysis showed that the direct
visualization of the Vim is more difficult comparing to the distinguishability in the healthy
young population presented in this study.
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Additional SWI analysis indicated that the image intensity contrast could also depend on the
head orientation inside the scanner. This could be caused by anisotropic contributions to
the local tissue susceptibility. For instance, white matter fibers have significantly anisotropic
susceptibility [51]. Depending on the head orientation relative to the static MR field, the local
susceptibility-based perturbations of the field may differ, and the resulting effects may thereby
show significant changes in contrast. Anisotropic voxels may also add different partial volume
effects depending on the head orientation. Thereupon, we would like to emphasize that even
though 7 T SWI presents promising potential to improve the direct visualization [16], it cannot
however be seen, with the current available technology, as a robust tool for easy and accurate
Vim outline.

The proposed multi-atlas segmentation framework shows promising potential of delineating
the Vim in automated manner. We assume that this segmentation quality is closely related to
the use of SWI-features instead of T1w or T2w lacking in thalamic contrast variation. Conse-
quently, when the 7 T SWI is available, it could be used as an alternative or as an initialization
of a subject-related Vim segmentation, either manual or automated one. However, only three
atlases were used, which limits the enclosed inter-subject variability. We expect improvement
of the presented findings with an extension of the number of atlases to its optimum [52].

Although our main aim focuses on the Vim, this study also provides validation of the automated
dMRI-based clustering against the directly visible SWI features. For example, in SWI the
Pulvinar appears as the most-posterior distinguishable thalamic feature very dark laterally
and brighter next to the ventricles (figure 4.3). Accordingly to previously reported findings
[25], in figure 4.7 we see that the green Pu-cluster contour delineates mainly the darker nuclei
part and a portion of medial Pulvinar (the brighter part) is enclosed in the CL-LP-PuM cluster.
Furthermore, the spatial extent of the MD cluster coincides in general to the equivalent group
of nuclei. All these findings support, above all, the spatial distribution of the VLV cluster.

The main limitation of the used dMRI-based subdivision method, as well as the other related
state-of-the-art approaches, resides in the relatively low spatial resolution of the DWI data im-
peding both segmentation of finer thalamic subparts and accurate clusters borders regarding
the SWI observable features.

Further studies on a larger dataset from subjects of broader age-scale should confirm the
reported findings. However, given the potential of the automated dMRI-based segmentation
and the direct visualization on 7 T SWI, both directly based on the individual anatomy, we
suggest that their combination would further help to precisely and automatically define the
exact Vim delineation.

4.5 Conclusion

The present study compares four different approaches for defining the Vim in healthy subjects.
Although it was performed on a limited number of cases, we provide extensive analysis of the
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directly distinguishable Vim-area on 7 T SWI and observe a restrained area corresponding
to the Vim within a region automatically delineated in computer-assisted image-analysis
techniques. Additionally, we propose a multi-atlas segmentation framework built in a multi-
modal manner for an automated alternative of Vim delineation.
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5
Multi-modal segmentation of the Vim

This chapter represents an extension of the work peer-reviewed and presented as an oral
communication in the CLIP workshop of the 20th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI) in September 2017. The corres-
ponding 10-pages paper is published in the journal Lecture Notes in Computer Science, as
part of the proceedings of MICCAI 2017, entitled as ”Towards an Automated Segmentation
of the Ventro-intermediate Thalamic Nucleus” with co-authors E. Najdenovska, C. Tuleasca,
J. Jorge, P. Maeder, J.-P. Thiran, M. Levivier and M. Bach Cuadra.

5.1 Introduction

As shown in chapter 2, in the field of an automated thalamic parcellation, I proposed a
robust and reproducible method that subdivides the thalamus in seven groups of nuclei using
local diffusion properties expressed by the Orientation Distribution Functions (ODFs) in the
Spherical Harmonic (SH) basis, which is outperforming the most advanced diffusion features
so far [1]. One of the segmented clusters represents the ventral latero-ventral (VLV) thalamic
part, i.e. the motor-related group of nuclei including the ventro-intermediate nucleus (Vim).
The Vim cannot, however, be accurately depicted with diffusion MRI, for instance as a separate
component of VLV, mainly due to the relatively low spatial resolution of the standard DWI (in
general ª 2x2x2mm3).

On the other hand, as discussed in chapter 4, the susceptibility mapping approaches at ultra-
high field (7 T) provide an improved intensity-contrast variation inside the thalamus. Moreover,
Abosch et al. have indicated the correspondence of the observed features on susceptibility-
weighted imaging (SWI) acquired at 7 T with the thalamic anatomy [2] and subsequently they
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suggested the possibility of a direct visualization of the Vim on those images. Chapter 4 give
more extensive analysis focused on the visually distinguishable Vim on 7 T SWI and show a
tendency of the Vim to be found in the anterio-lateral part of the automatically delineated VLV
cluster.

Hence, the aim of this chapter is to automatically segment the Vim by combining SWI informa-
tion at ultra-high field and the prior knowledge of the Vim localization inside the VLV group
of nuclei. More specifically, the designed method combines NCut graph segmentation based
on SWI intensity with a high-probability map of Vim localization derived from diffusion MRI
thalamic clustering. Figure 5.1 shows a workflow of the proposed framework.

FIGURE 5.1 – Schematic overview of the proposed framework

5.2 Materials and Methods

5.2.1 Dataset

The study is performed in a dataset acquired at both 3 and 7 T from four healthy elderly
subjects (mean ± std : 67.2 ± 9.5 years, 3 males) and four healthy young subjects (28.5 ±
2.6 years, 2 males). None of the subjects had any particular neurological disease nor a brain
deformation caused by intracranial lesions. The study was approved by the local institutional
review board and an informed consent was obtained from all the participants.

In the further text, the elderly subjects will be also referred as ES1, ES2, ES3 and ES4, while
the young cohort, representing Subject 2 - Subject 5 presented in chapter 4, all with manual
delineation of both Vims, as YS2, YS3, YS4 and YS5.

Image Acquisitions

The data from elderly subjects at 3 T was acquired with a Prisma Siemens scanner and it
included a T1-weighted (T1w, MPRAGE) sequence (TR/TE=2300/2.03 ms, TI=900 ms, voxel
size : 1 mm3) and DWI (64 gradient directions, b=1000 s/mm2, TR/TE=7100/84 ms, voxel-
size : 2.24x2.24x2.2 mm3). T1w images from the healthy young population were acquired with
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3T TIM Trio Siemens scanner with similar acquisition parameters as those for the elderly
population (also described in section 4.2.2).

For all eight subjects, the ultra-high field data was acquired with a 7 T, 68 cm-wide bore
MRI system from SIEMENS Medical Solutions, equipped with a single-channel transmit
/ 32-channel receive head RF array (Nova Medical). This data included axial SWI (with a
restrained field of view, FoV, surrounding the thalamus, TR/TE=28/20 ms, flip-angle 10±, voxel-
size : 0.375x0.375x1 mm3, 72 slices) and T1w (MP2RAGE) sequence (TR/TE=6000/2.05 ms,
TI1/TI2=800/2700 ms, flip-angles : 7/5±, voxel-size : 0.6x0.6x0.6 mm3).

5.2.2 Common Image Space

We choose to work in the individual anterior commissure-posterior commissure (AC-PC)
image space of each subject. For the elderly cohort, the image space was defined by the T1
template in MNI space of voxel size 0.5x0.5x0.5 mm3 [3] whose AC-PC plane was aligned
horizontally. Each 3T MPRAGE was transformed into this AC-PC space by a rigid transform,
and the individual resulting image, T1w_acpc, was considered as reference for the successive
image transformations described in the following sections.

For the young cohort, as reference was taken the corresponding T2w image brought into
AC-PC with 3D Slicer [4] space by using 30 manually selected mid-brain points. The procedure
is described in details in section 4.2.3.

5.2.3 Thalamic Parcellation

The preprocessing of the DWI included several steps : data denoising [5–7], bias field [8, 9],
motion [10] and eddy current corrections [11]. Furthermore, with a non-linear registration,
using FSL’s FNIRT [8], between the T1w_acpc and the respective fractional anisotropy (FA)
map, we compensated the EPI distortions presented in the DWI data. On the preprocessed data
we performed the QBI fitting of the Constant Solid Angle ODFs (FSL qboot) with maximum
SH order of 6, accordingly to [1].

The thalamus masks were obtained from the FreeSurfer’s subcortical parcellation, performed
for each 3 T MPRAGE, and further refined, as described in [1], by automatically removing
voxels with FA value greater than 0.55 and celebro-spinal fluid’s probability exceeding 5%.
Subsequently to a qualitative comparison between the re-fined masks and the SWI where the
thalamic borders appear more discernible, missing voxels were manually added mainly in the
anterior and the lateral part of the inferior thalamic slices.

Following the framework description in [1], the thalamus was subdivided in seven clusters
by applying a modified k-means using as features the spatial position of the thalamic voxels
and the corresponding ODF coefficients in the SH basis. The obtained results, including the
VLV cluster were then brought in the AC-PC space by applying the non-linear transform, as
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described earlier, matching the FA and T1w_acpc image.

5.2.4 The Proposed Framework

The VLV cluster, other than Vim, includes several motor-related nuclei. However, in corres-
pondence to the findings described in [2] and the previous chapter (section 4.2.4), in SWI,
the ventral nuclei surrounding the Vim, such as ventro-caudalis (Vc) and ventro-odalis (Vo),
appear as darker regions in comparison with our area of interest (see figure 5.2). Relating to
the observed contrast differences inside the VLV, the aim was to explore the SWI-intensity for
a further VLV subdivision aiming towards an automated delineation of the Vim.

FIGURE 5.2 – Illsutration of the SWI visible structures surrounding the Vim in axial view. On
the right side we have manually in-plane draw of the visible ventral nuclei in correspondence
with the Schaltenbrand and Wahren atlas [12], while on the left they are indicated with arrows.
The yellow represents the Vim, while the bright green and the bright orange ventro-caudalis
(Vc) and ventro-odalis (Vo), which are surrounding the Vim as darker areas.

SWI Preprocessing

The SWI were corrected for intensity inhomogeneities using the N4ITK bias field correction
algorithm [13]. Accordingly to the procedure described in section 4.2.3, the obtained images
were first registered to the corresponding 7T MP2RAGE with a rigid transform and then brought
to the AC-PC space by applying the analogous affine transform that matched the 7T MP2RAGE
and T1w_acpc.

Primary analysis of the SWI data showed high intensity variability among the subjects, notably
related to their age and different head position in the scanner. Therefore, to standardize the
image intensity appearing on these images, a histogram equalization algorithm proposed by
Nyul et al. [14] was applied. It represents an one-to-one image transformation and therefore,
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does not affect the image visual appearance. The histogram matching was done in a volume of
interest (VOI) surrounding both thalami for each subject respectively. Figure 5.2 is representing
an axial slice of the used VOI in one case. All four SWI images from the elderly population were
used in the training step and the standard scale was build upon the deciles extracted from
each image histogram. The results from this histogram matching are shown in figure 5.3.

To further enhance the edges and observable features on the SWI, the ITK gradient anisotropic
diffusion filtering of conductance 0.3 was applied.

FIGURE 5.3 – Histogram equalization of the SWI intensity inside the thalamic area

Graph Representation and Parcellation

The preprocessed SWI-intensity information inside the VLV was transformed in a graph repre-
sentation of the data. More precisely, a k-nn graph with 50 nearest neighbors was constructed
with the edges’ weights expressing the Gaussian weighting of the linear combination between
the intensity distance (Di nt ) and the Euclidean distance (Dpos) among the i th and the j th VLV
voxels :

D(i , j ) = Di nt (i , j )+∞Dpos(i , j ) (5.1)

where ∞ represents the ratio between max(Di nt ) and max(Dpos) and therefore, it acts as a
scaling factor that brings the Dpos in the same range of values as Di nt .

The parcellation of the graph was performed with Normalized Cut (NCut) partition [15] (for
more details refer to section 3.4). We subdivided the VLV in 3 sub-clusters. The number 3
was chosen empirically since it gives a consistent parcellation pattern among the subjects.
Moreover, the obtained clusters corresponded to the visually distingusihable VLV structure
including a region with bright SWI intensity as the expected one in the Vim area, a region with
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darker SWI intensity and an auxiliary part (see figure 5.5).

Geometry Quadrants

To isolate the inferior anterio-lateral part of the VLV cluster obtained from diffusion MRI
(section 5.2.3), VLV_ial, where the Vim is most likely to be found, VLV was divided using the
geometry of the smallest rectangular cuboid that contains all of its non-zero voxels. More
precisely, with the cuboid’s mid-plane, the inferior part was separated from the superior
one and with the in-plane diagonals the anterio-lateral from the ventral-posterior part (see
figure 5.4).

The separated VLV_ial portion was used to confine the NCut parcellation to the expected
localization of the Vim (figure 5.5).

FIGURE 5.4 – Schematic illustration of the VLV-cluster separation in 8 geometrical quadrants

(a) Subdivided VLV (b) Localisation prior (c) Delineated Vim

FIGURE 5.5 – Isolation of the inferior anterio-lateral part of the left VLV cluster. In panel (a)
the diffusion-based VLV outline is given with the magenta contour and additionally we can
observe the three parcels obtained from SWI intensity-based NCut partition. The VLV_ial part
for the given case is shown with the white contour in panel (b), while the final Vim outline,
again in white, in panel (c)
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5.2.5 Manual delineation of the Vim

Manual delineation of the Vim was done in all eight subjects by an experienced neurosurgeon
(CT). As described in section 4.2.4, the delineation was mainly based upon the visible contrast
variation together with the observation shown in [2] and the Schaltenbrand and Wahren
atlas [12] and it was further used for evaluating the results of the proposed framework.

5.2.6 Multi-atlas segmentation

As the state-of-the-art lacks in automated Vim-delineation approaches, the aim of this chapter
is to provide a direct segmentation of the Vim by using subject-specific information from
both 3T DWI and 7T SWI. However, in case of available atlas, an alternative method would be
applying atlas-based segmentation techniques.

In the previous chapter in section 4.2.4, I proposed a multi-atlas segmentation method enclo-
sing two step for the matching between the images : first global correspondence achieved with
affine transform between the corresponding T1w images and then local non-linear one bet-
ween the respective SWI inside the thalamic area (the introduced VOI). The segmentation was
done in leave-one-out scenario where the final multi-atlas outline was obtained by applying
Joint Label Fusion method with corrective learning [16].

Having the Vim outlines for all eight subjects, the proposed atlas-based method was applyied
in this extended cohort in order to compare its outcome with the two other outlines, the
manual and the multi-modal one introduced in this chapter.

5.2.7 Quantitative comparison

The obtained outlines were quantitatively compared with Dice coefficient of overlap [17].
Moreover, the true positive and true negative rate were also evaluated via the sensitivity and
specificity respectively [18].

5.3 Results

The proposed multi-modal framework was tested for the group of 8 healthy subjects of dif-
ferent age scale or, more precisely, in 16 thalami in total. The intersection between the NCut
parcellation and the VLV_ial portion mainly resulted in two subdivisions. Among the two, we
choose as Vim outline the region showing brighter intensity (see figure 5.5).

The obtained findings are shown in figure 5.6 and figure 5.7, each of them representing one
of the tested cohort. In some of the studied cases, a blood vessel was crossing the targeted
area disintegrating its intensity homogeneity (see the right thalamus of ES1, ES2 and ES4 in
figure 5.6, and the YS5’s left thalamus in figure 5.7). However, an overlap with the manual
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delineation was always observed. Moreover, for eight thalami the manual delineation was
confined in the multi-modal outline.

In figure 5.6 and figure 5.7, notably for subjects ES3, ES4, YS2, YS4 and YS5, one can also notice
that the automatically obtained outlines enclose minor parts of the surrounding structures or
the internal capsule, which are mainly due to the irregular borders of the initial VLV region.

TABLE 5.1 – Volumes of the resulting Vim outlines

Volume [mm3] Multi-modal segmentation Manual delineation Multi-atlas segmentation

Left Right Left Right Left Right

Subject ES1 122.5 149.2 93.0 94.5 42.7 23.7
Subject ES2 196.0 54.7 58.0 56.5 19.4 44.9
Subject ES3 198.4 187.2 81.5 65.5 32.4 9.7
Subject ES4 176.1 129.2 71.4 69.1 20.2 6.1
Subject YS2 156.9 160.2 76.3 82 66.9 71.6
Subject YS3 195.1 186.5 83.3 82.9 28.5 44.4
Subject YS4 189.8 113.5 82.8 73 42.4 42.4
Subject YS5 213.2 263.9 67.2 78.7 43.0 41.5

TABLE 5.2 – Overlap measures between the automated multi-modal segmentation and the
manual delineation

Subject ES1 ES2 ES3 ES4 YS2 YS3 YS4 YS5

Dice
Coefficient

Left 56% 32% 51% 32% 51% 51% 30% 41%
Right 35% 30% 32% 17% 41% 42% 42% 35%

Sensitivity
Left 64.52% 70.26% 88.19% 55.95% 77.81% 85.54% 49.03% 84.84%
Right 44.84% 29.65% 60.88% 24.23% 60.27% 68.70% 53.17% 76.66%

Specificity
Left 99.93% 99.97% 99.99% 99.94% 99.97% 99.98% 99.93% 99.98%
Right 99.89% 99.93% 99.96% 99.90% 99.95% 99.95% 99.95% 99.97%

TABLE 5.3 – Overlap measures the automated multi-atlas segmentation and the manual deli-
neation

Subject ES1 ES2 ES3 ES4 YS2 YS3 YS4 YS5

Dice
Coefficient

Left 59% 32% 47% 31% 67% 35% 48% 42%
Right 33% 63% 0% 13% 70% 63% 61% 57%

Sensitivity
Left 43.01% 21.55% 34.05% 20.25% 62.80% 23.46% 35.91% 34.21%
Right 20.90% 56.42% 0% 7.05% 64.78% 48.68% 48.21% 43.79%

Specificity
Left 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%
Right 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%

In terms of size, as reported in table 5.1, the multi-modal outline always delimitates bigger
volume than the manual delineation. Since the expected size of the Vim is between 60 to 150
mm3 [19], the volumes of the proposed multi-modal delimitation are marginally exceeding
the expected range. In contrast to this, the manual outlines are closer to the lower boundary of
the anticipated size of the Vim.
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5.3. Results

FIGURE 5.6 – Visual overview of the obtained findings for each elderly subject respectively. Left
column gives a SWI-VOI slice, while the right the corresponding segmented contours.
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The Dice coefficient measuring the overlap between the multi-modal and the manual outline
was 38.6% in average with best score of 56%. For four out of 16 cases, the sensitivity was higher
than 50% with maximum of 88.19%, while the specificity was always almost 100%. All overlap
measures for each subject specifically are given in table 5.2.

The multi-atlas based approach provided, in general, slightly smaller in volume outlines than
the manual delineation (see table 5.1). However, an overlap between them was again observed
for each subject with exception of ES3 in the right hemisphere. Please refer to figures 5.6
and 5.7 for a visual overview of these results. The Dice coefficient showed better matching
between the manual and the multi-atlas outline, than the multi-modal approach, with best
score of 70%. Nevertheless, the sensitivity was higher than 50% for only three subjects while
the specificity remain as high as for the multi-modal outline. Table 5.3 show these results for
each subject respectively.

5.4 Discussion

Although performed on a limited number of subjects, the present study represents an impor-
tant step towards an automated segmentation of the Vim area. We used local diffusion MR
properties inside the thalamus for delimitation of an initial region of interest, the VLV cluster
enclosing the motor-related thalamic nuclei, which was further subdivided using the 7T SWI
intensity and a prior knowledge of the Vim localisation within the VLV.

In a lack of a ground truth for validation, the obtained multi-modal segmentation results were
compared against the manual delineation of the Vim done based upon the 7T SWI visible
features. The results show that, even though the resulting outlines are slightly overestimating
the size of the Vim, they are however able to depict well the spatial localization of the targeted
structure. The differences in size between the manual and the multi-modal delineation are
leading to the obtained low to moderate Dice coefficients. Nonetheless, the calculated high
true positive and true negative rate confirm a good matching between these two outlines.

As discussed in the previous chapter (section 4.4), due to the SWI inconsistency in contrast
variation and random presence of blood vessels, the borders of the Vim are not always dis-
cernable and therefore, the manual delineation was done in an optic of including only the
region that is undoubtedly corresponding to the Vim. Analogue to this, from the calculated
volumes one can observe that the manual delineation tends to underestimate the Vim’s extent.
In consequence, the explored manual delineation does not represents the Vim in an absolute
manner.

Since the multi-atlas approach was build upon the available manual delineation, it was
expected that its outcome is close in volume to those manually depicted. However, in terms of
overlap evaluation, the multi-atlas outcome showed lower sensitivity than the proposed multi-
modal approach. Such finding demonstrates the potential of an imaging method based on
individual subject’s anatomy to outperform approaches build from statistical average among
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a chosen population, such as the atlases. Nonetheless, the atlas-segmentation techniques
remain the most pertinent alternative.

The multi-modal approach presents however several limitations. For instance, an affinity
towards marginally inaccurate borders regarding the surrounding structures was observed
in the resulting outline. This is mainly due to the DWI used for the VLV delineation which
has approximately five times lower spatial resolution than the image reference space where
the analysis were performed (ª 2x2x2mm3 versus ª 0.5x0.5x0.5mm3). Subsequently, the
proposed method is prone to imprecise delineation of the initial region of interest i.e. the VLV
thalamic part.

Another limitation, as well for the manual delineation, comes from the non-robust contrast
variation observed on the SWI together with the presence of the blood vessels in an indiscrimi-
nate mode, inside the VLV and the thalamus in general, increasing the potential of delineated
Vim’s border inaccuracy. Moreover, the difference in contrast variation is even more enhanced
between the dataset acquired from volunteers of different age scales, i.e. young and elderly
population [20, 21]. More precisely, the Vim is not always as clearly distinguishable in the SWI
from elderly subjects in comparison with the young population. Such drawback is of particular
importance since the tremor patients are mainly part of the elderly population.

Recent developments in our group addressed current limitation of 7T SWI and achieved an
improvement with incorporation of both contrast enhancement resulting from modified
phase-magnitude combination and suppression of venous vessels [22]. Figure 5.8 give an
example of the outcome. One can observe that the observable regions are more pronounced
and therefore, more distinguishable, which leads to clearer discrimination of the Vim borders.
Such findings are beneficial for both direct visualization and automated segmentation of
the target, making this imaging method even more powerful tool for the direct targeting in
functional neurosurgery applied for treatment of drug-resistant tremor.

Further studies on a bigger datasets should be done to explore more profoundly newly de-
veloped SWI advancements. Additionally, merging such information simultaneously with
improved spatial-resolution DWI could potentially lead to even more precise Vim outline.

5.5 Conclusion

This chapter presents an automated approach for outlining the Vim area while exploring
the 7T SWI intensity-based features inside the motor-related thalamic cluster obtained from
previously introduced segmentation framework based on local diffusion properties. Although
limited in exact border segmentation, the proposed method is able to discriminate the spatial
localisation of the targeted area and therefore, represents a novel advancement in the field of
automated subject-specific segmentation of the Vim.
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FIGURE 5.7 – Visual overview of the obtained findings for each young subject respectively. Left
column gives a SWI-VOI slice, while the right the corresponding segmented contours.
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(a) original SWI (b) SWI with improved contrast

FIGURE 5.8 – Illustration of the improved SWI contrast developed in our group. Acknowledging
Dr. João Jorge.
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6
Conclusion and Perspectives

The first main contribution of this thesis was a novel MRI-based approach for automated
segmentation of the thalamic subparts [1, 2]. In a modified k-means clustering framework,
it explores local diffusion properties from DWI acquired at 3 T that are represented by the
orientation distribution function (ODF) projected in spherical harmonics basis. The ODF
ability to fully characterise the diffusion process in each voxel surpass the performance of
the state-of-art features used for the thalamic parcellation. Therefore, in combination with a
data-driven initialisation based on the spatial position, it provides a robust and a highly repro-
ducible segmentation of seven groups of thalamic nuclei where each one of them presents a
characteristic spatial distribution that is closely matching the thalamic anatomy presented
in Morel’s atlas [3].

Additional contribution of this thesis is the extensive evaluation on data acquired from both
healthy volunteers and patients.The developed segmentation framework was primarily tested
on a cohort of 35 healthy subject for which the diffusion data was acquired with traditional
spatial resolution of ª 2x2x2mm3 [1, 2]. The evaluation was further extended for a relatively
bigger healthy population enclosing 73 subject from the Human Connectome Project (HCP)
database [4, 5] for which the available diffusion data was with improved voxel-size of 1.25mm

isotropically. With a segmentation success rate of 92%, the obtained outcome from 67 HCP
subjects classified as good parcellation was further used to build a spatial probabilistic atlas
maps (SPAM) for each cluster in MNI space [6]. This population atlas could be used as a tool
for subsegmenting the thalamus in subjects for which the diffusion data is not available.

Another extension of the segmentation-framework evaluation was done on a dataset acquired
from 65 drug-resistant tremor patients treated with Gamma Knife surgery (GKS, 63 of them)
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and Deep Brain Stimulation (DBS, 2) at Marseille University Hospital (CHU Timone, France)
and Lausanne University Hospital (CHUV). This analysis showed that the proposed thalamic
parcellation approach remains robust even in cases where the tested subject is prone to
engender stronger motion artefacts [2, 7, 8].

One of the segmented cluster is the ventral latero-ventral (VLV) group that includes the
motor-related thalamic nuclei. Among them is the ventro-intermediate nucleus (Vim) that is
the most commonly used target for treatment of tremor in functional neurosurgery. The follow-
up data available from 18 tremor patients treated with GKS allowed a clinical validation of the
VLV spatial distribution since the target-related contrast enhancement appearing on those
images was always included in this cluster [2, 7, 8].

The additional subdivision of the VLV cluster, based again on the ODF information, but this
time in initialisation-independent graph-partition framework, led to a narrower localization
of the targeted Vim area in 70% of the tested cases [7, 8]. This findings were further confirmed
with the final electrode position in two tremor patients treated with DBS [8].

Another major contribution of this thesis refers the image analysis developed for exploring the
advantages provided from a recent implementation done at 7T MRI. In a pilot study enclosing
five healthy young subjects, aside from 3T DWI, susceptibility-weighted images (SWI) at 7
T were also acquired. Accordingly to the enhanced intensity contrast-variation provided by
SWI inside the thalamic region, a manual delineation of the visually distinguishable Vim was
realized. The comparison with the points of the Guiot’s quadrilateral, used in both CHU Ti-
mone and CHUV for GKS treatment of tremor, showed confined localisation of the targeting
position inside the manual outline [9, 10].

The improved in-vivo visualisation of several thalamic nuclei provided by 7T SWI validated fur-
ther the spatial localisation of all the seven segmented group of nuclei. Moreover, the directly
detectable Vim was always found in a restricted area inside the automatically delineated
VLV cluster. However, the comparison between the diffusion-based VLV subdivision and the
manual Vim outline showed that the anticipated subcluster is not including the entire Vim,
but only the Guiot targeting points and the area corresponding to the 90 Gy isodose [9].

The distinguishable thalamic regions on 7T SWI were further used for improving the thalamic
matching between the images for atlas-based segmentation purposes. Consequently, the
proposed multi-atlas segmentation framework built in a multi-modal manner could be consi-
dered as an alternative for an automated delineation or as initialisation of a subject-related
segmentation of the targeted nucleus [9].

Finally, with combing both the spatial localisation of the Vim inside the VLV cluster and the
7T SWI intensity-based feature, I proposed a method for an automated discrimination of
the Vim spatial localisation [11]. It was developed and evaluated for a dataset including four
healthy young and additional four healthy elderly subject matching the age of the tremor
patients. The introduced method, based only on the individual anatomy, showed better
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segmentation sensitivity than the previously proposed multi-atlas segmentation.

In summary the contributions of these thesis can be categorized as :

1. Methodological developments

• Automated, robust and reproducible framework for segmenting seven thalamic
subparts : anterior, ventral anterior, medio-dorsal, ventral latero-ventral, ventral
latero-dorsal, pulvinar and a cluster enclosing the central lateral, the lateral poste-
rior and portion of medial pulvinar.

• Delineation of a narrower region corresponding to the targeted Vim area via a
subdivision of the automatically segmented motor thalamic part

• Multi-atlas segmentation approach based on matching thalamic features

• Automated subject-based delineation of the region representing the Vim

2. Outcome evaluation

• The proposed thalamic parcellation approach was tested in a large cohort inclu-
ding 123 healthy volunteers and 65 drug-resistant tremor patients. The explored
DWI are from different acquisition schemes, including different scanners.

• The delineated group of motor nuclei was validated in 18 tremor patients treated
with GKS having follow-up data that show target-related contrast-enhancement

3. Built tools

• Spatial probabilistic atlas maps for each segmented thalamic subpart in MNI space

4. Available data

• 5 healthy young subjects : T1w (MPRAGE), T2w, T2w CISS and dMRI acquired at
3T and T1w (MP2RAGE) and SWI acquired at 7T

• 4 healthy elderly subjects : T1w (MPRAGE), T2w, T2w CISS, dMRI and functio-
nal MRI acquired at 3T and T1w (MP2RAGE) and SWI acquired at 7T (ongoing
acquisitions)

• Manual delineation of the Vim for all 9 subjects

Perspectives

The main limitation of the work presented in this thesis is related to the relatively coarse
spatial resolution of the explored DWI, which is however representing the current standard
diffusion MRI. Such drawback is due to the limited scan time while maintaining a good signal
to noise ratio [12]. In relation to the presented findings, an improved spatial resolution could
lead to more accurate borders discrimination of the segmented thalamic groups of nuclei as
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well as more precise delineation while propagating them in other image space with superior
resolution, such as the 7T SWI. Additionally, DWI data with finer voxels could potentially allow
a robust segmentation of more than seven thalamic subparts. In the same context, the VLV
subdivision could also be extended in number of clusters and therefore will possible provide
more accurate localisation of the targeted area. All of these hypothesis could be tested in the
currently available DWI data with better resolution, as the HCP data for instance. However, for
overcoming the limitation in the standard datasets, one alternative would be to take advantage
of the interpolation method proposed by Dyrby et al. [12] for upsampling the voxel-size up to
its double that furthermore provides outcome able to capture anatomical features observable
only with higher resolution.

In terms of diffusion MRI information, new advanced modellings such as the neurite orienta-
tion dispersion and density imaging (NODDI) [13], the spherical mean technique [14] and the
mean apparent propagator (MAP MRI) [15] are tending to represent the diffusion process at a
microstructural level and as such could be further explored for gaining new insights of the
underlying characteristics discriminating the thalamic nuclei.

Other limitations come from the unstandardised contrast variation of the 7T SWI among
different subjects, especially noticeable between young and elderly population [16, 17]. In
addition, random appearance of blood vessels inside the thalamic region could also alter
the provided information. As discussed in section 5.4, recent developments in our group
succeeded at optimizing the SWI contrast (see figure 5.8) and, in consequence, provided
clearer discrimination between the directly visible thalamic nuclei. Hence, the value of SWI
has grown in terms of source for accurate and reliable features for delineation of not only the
Vim but the other parts of the thalamus as well. Such advantage could possibly extend the
accuracy performance of the already proposed methods for parcellating the thalamus based
on manually labelled features [18, 19] which is mainly beneficial for data lacking in SWI. Or,
when the individual SWI is available, it could be further employed in automated segmentation
approaches such as the coupled level set functions as already used for exploring the diffusion
information [20].

The DWI is representing the histology of the tissue in terms of the water molecules’ dis-
placement, while SWI give insights of the anatomical structures based on their sensitivity
to magnetic susceptibility effects. Hence, as both imaging techniques are complementary
between each other, a framework embodying simultaneously the two modalities has strong
potential of providing a finer and more accurate delineation of the thalamic nuclei. This could
be potentially achieved by employing the joint variational segmentation method proposed by
Wojak et al. [21] that was build for segmenting tumour lesions for radiotherapy purposes. This
approach is regularized with a Total Variation norm and allows simultaneous use of images
with different spatial resolution (Computer Tomography and Positron Emission Tomography
scans) while assuring a robust behaviour to eventual mis-registration between the images.
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A.1 Assessment of Frameless versus Frame-based Registration of Com-
puted Tomography and Magnetic Resonance Imaging in Gamma
Knife Surgery Planning

The work in this section was presented as first author oral communication at the 17th Inter-
national Meeting of Leksell Gamma Knife Society in 2014. The list of co-authors includes : E.
Najdenovska, C. Tuleasca, F. Vingerhoets, J.-P. Thiran, M. Levivier and M. Bach Cuadra.

Introduction

Gamma Knife surgery (GKS) is a neurosurgical, minimally invasive, stereotactic procedure,
combining image guidance with high-precision convergence of multiple gamma rays emit-
ted by 192 sources of Cobalt-60 (Leksell Gamma Knife Perfexionr, Elekta Instruments, AB,
Sweden) [1]. It is currently used in many neurosurgical conditions, as an alternative to open
microsurgery. As an image-guided therapeutic approach, exploring multimodal information
from both Computer Tomography (CT) and magnetic resonance (MR) sequences is of crucial
importance for optimal treatment planning.

The imaging protocols used for treatment planning may vary among hospital centres and de-
pend on the pathological condition. As an example, in the case of brain metastases, both native
and injected T1-weighted contrast (T1w) are used [2, 3] ; for trigeminal neuralgia, T2 construc-
tive interference in steady state (T2 CISS) / Fast Imaging Employing Steady-state Acquisition
(Fiesta, Siemens) is additionally used to have a good visualization of the trigeminal nerve
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and surrounding cistern [4] ; in vestibular schwannomas, the use T2 CISS/Fiesta (Siemens)
native (if the tumor is of small size) and/or injected if the tumor is of bigger size, entering in
contact with the brainstem is recommended [5] ; additionally, for the ventro-intermediate
(Vim) thalamotomy, the information provided by diffusion weighted imaging (DWI) is essen-
tial for ensuring a steep gradient towards the internal capsule [6]. Furthermore, CT is used to
check for, and correct if necessary, any distortions that might appear on the MRI [7–10].

To adequately exploit the multi-modal information, a precise voxel-to-voxel correspondence
must be ensured between the different therapeutic images prior to starting the treatment
planning. Hence, accurate and robust image-registration techniques are needed.

Currently, within Leksell GammaPlanr (LGP, Elekta Instruments, AB, Sweden) planning soft-
ware, the “gold standard” for achieving the image matching is the Indicator Box (a piece of the
fiducial-based system attached to the sterotactic frame, figure A.1 ), which is a compulsory ele-
ment during the acquisition of the planning images. The stereotactic frame itself is considered
of major importance for several reasons : firstly, it provides the reference system for the so-
called “stereotactic coordinates” allowing a high precision, while making the correspondence
between the patient and device coordinate system ; secondly, it is an immobilizing device
that has a high accuracy, ensuring successful targeting of small to medium-size intracranial
conditions ; thirdly, due to its design, LGP can determine the error of this registration.

FIGURE A.1 – The Indicator Boxes used for acquiring the therapeutic images (Leksell Gamma
Knife Perfexionr, Elekta Instruments, AB, Sweden) : CT (left) MRI (right).

In other surgical and most radiosurgical therapeutic approaches, MR images are indeed
acquired in a frameless mode. This is often the case in Linear Accelerator (LINAC)-based
radiosurgery where matching between the different planning images is achieved by a voxel-
based image transform. A similar approach could be used in LGP, where non-stereotactic MR
can be co-registered with stereotactic CT and/or MR. However, in the absence of the fiducials,

106



A.1. Assessment of Frameless versus Frame-based Registration of Computed Tomography
and Magnetic Resonance Imaging in Gamma Knife Surgery Planning

LGP currently can not display the respective registration error. Furthermore, beyond treatment
planning precision, the error estimation in the absence of fiducials would be of high practical
value in measuring the accuracy of pre-operative and follow-up MR images.

Few studies attempted to estimate the quality of the voxel-based registration for GKS purposes,
either by working with image phantoms [11–13] or by comparing the target contours on real
clinical cases [13]. All of them used the LGP software for matching the images.

Watanabe et al. used a TOWER phantom [11, 14] and estimated a mean error of the CT-T1w
merging as the difference between the coordinate positions of the 9 phantom landmarks (tips
of thin cylindrical acrylic rods). The calculated registration error was, on average, 1.18±0.36
mm. However, the analysed images had highly different slice thickness (1mm for the T1w and
2 or even 3 mm for the CT), while their spatial resolution was quite comparable (0.43 mm2

vs. 0.53 mm2 for T1w and CT respectively). Other two studies worked on phantom images
with more similar voxel-size as they are currently used in everyday clinical practice. Sajeev
et al. [12] explored a Perspex phantom with 5 volume chambers serving as landmarks for
the error estimation. The reported error values for the CT-T1 fusion were 0.38 mm, 0.62 mm
and 0.93 mm along x, y and z axis respectively. Recently, similar results for images acquired
from phantoms were reported by [13]. Among other analyses, they have evaluated the error
between the stereotactic CT and the MRI co-registered with it. A grid-patterned phantom and
an acrylic plate with 9 small cylinder-shaped baths were employed. The measured error along
each direction (x, y and z) was less than 1 mm.

Additionally to the landmark-based error calculated for phantom images, Nakazawa et al. [13]
have also estimated the voxel-based registration quality for real clinical cases, by geometrically
comparing the targets delineated on the stereotactic MR with frame and the diagnostic frame-
less MR, co-registered to the stereotactic CT. The explored MR modality was the 3-dimensional
spoiled gradient recalled acquisition in the steady state (3D-SPGR) of patients with big vesti-
bular schwannomas lesions injected with Gadolinium. The error was expressed either by the
volume difference between the outlined targets (0.05 ml in average) or by the root mean square
(RMS) error between the centre-of-gravity coordinates (1.06±0.60 mm). It is the only study
that investigates real clinical images. Still, along with the fact that their dataset enclosed only
11 cases, the error estimation relies on the target delineation that is a subjected-dependent
task and therefore, not a highly reliable reference.

The purpose of our work is to assess the accuracy of the voxel-based registration between
the CT and MR images with an aim of overcoming the limitations of the previous studies.
Our main contribution is to quantitatively estimate the voxel-based registration error for real
clinical cases (not phantoms) while considering the most reliable reference for the GKS users
- the stereotactic frame (see figure A.1). Additionally, we perform the analysis on a big data
set form 30 patients containing three different MR contrasts. Moreover, we also aim to find a
value expressing the difference between the outcomes provided by the voxel-based and the
landmark-based transform seen as the gold standard for GKS treatment planning.
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Materials and Methods

Dataset

Our study involved CT and MR therapeutic stereotactic images from 30 patients, treated with
GKS at the Lausanne Univeristy Hospital during the period from July 2010 to June 2014. The
dataset is composed of two mains groups :

1. Twenty patients (mean age : 62.6±15.4 years) without parenchyma deformation. The
treated conditions were idiopathic trigeminal neuralgia (14 patients) and small vestibu-
lar schwannomas (corresponding to Koos grades I and II [15], 6 patients). For all those
patients we had several therapeutic image acquisitions : individual native (non-injected)
and injected T1w images and the CT scan. Moreover, for 10 among the 14 trigeminal
neuralgia patients the corresponding T2 CISS were also included in the dataset.

2. Ten patients (mean age 64.6±8.7 years) treated for brain metastasis, therefore with
significant deformation of the brain parenchyma. This dataset involved their native T1w
MR and the CT scan.

All CT images were acquired with LightSpeed V CT, GE Medical Systems considering the
following protocol : 2 rad exposure, 200 mA X-Ray-Tube-Current, 120 kV KVP, voxel-size :
0.5x0.5x0.625 mm3, in-plane dimension : 512x512, number of slices varying between 241 and
295. The T1w images for the 6 patients treated form small vestibular schwannomas were
obtained from a 1.5T Symphony SIEMENS Scanner, having TR/ TE = 2160/ 4.88 ms, voxel-
size : 1x1x1.5 mm3, dimension : 256x256x144, while the remaining 24 (form the first and the
second data set) with a 1.5T SIEMENS Aera Scanner using TR/ TE = 1910/ 3.01 ms, voxel-size :
1x1x1 mm3, dimension : 256x256x176. The T2 CISS images were also obtained with 1.5T
SIEMENS Aera Scanner having TR/ TE = 5.99/2.75, flip angle 62±, voxel-size : 0.5x0.5x0.5mm33,
dimensions : 512x512x88.

Frameless Registration

We have first simulated “frameless” images by cropping the fiducials part from each thera-
peutic MR image (figure A.2(b)). The obtained frameless images were registered afterwards
to their corresponding CT (figure A.2(c)) by a rigid transform (six degrees of freedom) and
Mutual Information as similarity metric within 3D Slicer BRAINSFit module [16]. Our choice of
similarity metric is supported with the findings of Skrel et al.[17], which classifies the Mutual
Information as the most appropriate measure for CT-MR rigid registration. Moreover, the
Image MergeT M module from the LGP software is also based on the Mutual Information
between the images.

This process allowed the estimation of the transform that should be applied to one MR image
in order to transform it into the corresponding CT space, without taking into account the
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FIGURE A.2 – Schematic overview of the employed validation framework

prior knowledge of the stereotactic fiducials. Hence, the estimated registration transforms
were applied on each respective original MR image (the therapeutic MR image with frame,
figure A.2(d)) and consequently we have brought both fiducials (from CT and from MR) in the
same image space without considering them as a registration reference (figure A.2(e)). Figure
2 gives a schematic overview of the explained methodology.

This procedure was applied for both non-injected and the injected T1w images. For T2 CISS,
the process of rigid-registration estimation was slightly different. Due to the challenge of
matching images with very different fields of view (the T2 CISS of our dataset have a very small
FOV), we first estimated the transform that brings the CT image to the T2 CISS space (without
fiducials) and then we applied its inverse to the T2 CISS.

Error Estimation

The estimation of the registration error was obtained by calculating the mismatch between the
CT and the MR fiducials. In other words, we want to express the error as a distance between
the points that should ideally be aligned.

There are certain differences between the CT and MR fiducials that should be considered. In
fact, to accommodate the requirements for the imaging process, both CT and the MR images
are acquired with physically different Indicator Boxes (figure A.1). The fiducials for the CT
scans are made of high contrast copper material rods, while those for MRI, of tubing filled
with copper sulphate. There is also a dissemblance between the shapes in the top and the
bottom part of the fiducials (see figures A.1, A.3 and A.4). Additionally, as it is very well known
by the GKS users, in the MRI sequences, geometrical distortion are observed near the top
and the right part of the fiducials. For these reasons, the comparison between the CT and MR
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fiducials was done in a volume of interest (VOI) i.e. a volume enclosing the middle part of the
indicators, starting 5 mm bellow the top extreme and ending 5 mm above the lowest fiducials’
point (figures A.3(a) and A.3(b)).

Similarly to CT, T1w MR fiducials were also extracted from the VOI by applying a threshold that
was empirically set to 200 for all T1w-dataset. Isolated voxels were again eliminated by keeping
only regions with more than 1000 connected voxels. For T2 CISS images, the considered VOI
was smaller due to their limited field of view (see figures A.3(c) and A.3(d)). The threshold
for extracting their fiducials was empirically set to 400, while the one for removing isolated
regions to 500 voxels. The MR fiducials were then superimposed to the corresponding CT
distance-map. Therefore the error was calculated as the mean value of the distances between
each corresponding fiducial point.

FIGURE A.3 – The fiducials and the volume of interest (VOI, the yellow zone) in which the
registration error is calculated. In (a) and (c) are shown the CT fiducials, in (b) those form the
T1w images and in (d) from the T2 CISS. The ROI for the T1w images is represented in (a) and
(b), while (c) and (d) show the ROI for T2 CISS.

FIGURE A.4 – The chosen landmarks for the frame-based registration shown on the right side
of the fiducials. The selected points for the landmark registration between CT and T1w are
presented in (a) and (b), and in (c) and (d) those for the CT-T2 CISS matching along with the
measurements done for this purpose.

Frame-based Registration

Similarly to the LGP procedure, we additionally perform a landmark-based registration. For
this aim we use the Fiducial Registration module from the 3D Slicer software estimating again
a six-parameter transform (http://slicer.org).

We explored this frame-based matching for the following set of images :
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• Between the non-injected T1w and the CT of all 30 patients, where for each image the
extreme fiducials points were chosen as landmarks (4 from the left and 4 from the right
frame, see figures A.4(a) and A.4(b)).

• Between the T2 CISS and the CT, where 6 landmarks were considered (3 from each side
taken from the top T2 CISS slice). To ensure a precise selection of the landmarks on both
modalities, we first measured the distances between the chosen T2 CISS points and
then we have selected the corresponding CT landmarks (see figures A.4(c) and A.4(d)).

Finally, the registration error was calculated as described above, in section Error Estimation.

Frameless vs. Frame-based Registration

A Wilcoxon Signed-Rank test was performed in order to evaluate the statistical difference
between the calculated errors committed with the frame-less and the frame-based registration
techniques.

Results

Subjects with no significant deformation of the brain’s parenchyma

T1w images. The voxel-based registration errors are in the range between 0.41 mm and 0.70
mm among all 20 patients with a maximal variance of 0.46 mm. Moreover, there were no
significant differences between the outcomes of the two registration methods (p=0.44, applying
Wilcoxon Signed-Rank test). In fact, the observed error values for the frame-based registration
were between 0.39 mm and 0.69 mm with a maximal variance of 0.41 mm. A boxplot of the
error statistics is shown in figure A.5. As a reference level, the T1w spatial resolution of 1mm is
shown with a black line.

Injected T1w images. The errors estimated for the frameless registration of the injected T1w
images were very similar to those of the non-injected considering the same MI-based regis-
tration technique. In this case the values were in the interval between 0.39 mm and 0.62 mm
with maximal variance of 0.33 mm (see figure A.6). The Wilcoxon Signed-Rank test’s score of
p=0.98 showed that there is high correlation between the voxel-based registration outcomes
of these two T1w modalities.

T2 CISS images. Three subjects were excluded from T2 CISS set of analysis since the voxel-
based registration failed to match the respective images. In fact, in the physical image space,
the T2 CISS images of those 3 cases were considerably more distant from their corresponding
CT. Consequently to this, for a small FOV as the one of the used T2 CISS, the registration
method was unable to estimate the correct transform. We assume that an initial manual
approaching of the images could overcome this limitation but, since here we are aiming to
present only the results coming from a fully automatic image registration method, we did not

111



Annexe A. Appendixes

FIGURE A.5 – Statistical boxplot describing our findings considering the T1w images acquired
from patients with no significant deformation of the brain. In pink are shown the results of
the voxel-based registration and in blue those from the landmark-based. The black horizontal
line gives a reference for the smallest spatial resolution of the images that we are transforming
during the registration (T1w).

further extent the study.

For the final set of 7 images, the calculated error for the voxel-based registration was between
0.35 mm and 0.57 mm with maximum variance of 0.3 mm, while for the landmarks-based
registration between 0.32 mm and 0.60 mm with maximum variance of 0.34 mm (see figure A.7).
The statistical comparison with a score of p=0.7 showed that there is no significant difference
between the outcomes of both registration techniques even for this modality.

Subjects with significant deformation of the brain’s parenchyma

Error lower than 1mm for the CT-T1w registration was calculated even for those cases where,
due to the pathology, there is an important shifting of the brain’s parenchyma. More precisely,
the estimated error for all 10 subjects with brain metastasis was in the range between 0.46
mm and 0.63 mm with a maximum variance of 0.35 mm. The landmarks-based registration
gave similar errors : between 0.46 mm and 0.60 mm with a maximum variance of 0.33 mm (see
figure A.8). Furthermore, the corresponding errors from both registration techniques were
again non-statistically different (p=0.38).

Discussion

Our study has shown a confidently high precision of the voxel-based registration transform
between CT and several MR modalities.

In the case of T1w images, we estimated an error lower than its spatial resolution with a small
variance. Moreover, Wilcoxon Signed-Rank test showed no statistical difference between this
error with the one committed while applying a landmark-based registration, the gold standard
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FIGURE A.6 – Statistical boxplot comparing visually the errors estimated for the frameless
registration between T1w and CT (blue) and injected T1w and CT (green). The black horizontal
line gives a reference for the smallest spatial resolution of the images being transformed (the
non-injected and the injected T1w).

for GKS treatment planning.

Furthermore, the high correlation between the outcomes of the frameless CT-non-injected
T1w and CT-injected T1w matching affirms that the registration result will not be affected by
our choice to work with the injected T1w image instead of the non-injected one and vice-versa.

The results of the dataset coming from patients with metastases were in the same range as the
estimated error for the dataset of subjects without brain deformation. Consequently to this,
we showed that even in the case of images presenting brain abnormalities and therefore, no
regular levels of intensity, we can still be confident in the frameless registration outcome.

For the T2 CISS images the obtained error (<0.6mm) was comparable to its spatial resolution.
The Wilcoxon Signed-Rank test demonstrated a high correlation between the frameless and
the frame-based registration, which again, affirms equivalency between both registration
techniques. However, these results should be taken with caution because here, we worked
with a relatively low number of cases (10) and for 30% of them the voxel-registration failed to
match the images. Therefore, further studies on extended T2 CISS dataset should be realized
in order to conclude this behaviour.

The voxel-based transform inside LGP is provided by the Image MergeT M module, which
performs a transform with six degrees of freedom using mutual information between the
images and a global optimizer. We performed our study outside LGP ; however, since we used
the same standard 3D image registration techniques as within the station, our findings remain
relevant.

As we already mentioned, around the top and the bottom part of the MR Indicator Box there
are geometrical distortion in the images that deforms the fiducials corners. Knowing this, our
T1w landmarks were chosen in the exact crossing point between the corresponding vertical
and horizontal line of the fiducials, regardless of this distortion. Still, in order to evaluate
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FIGURE A.7 – Statistical boxplot comparing visually the errors estimated for the frameless
(blue) and the frame-based (pink) registration between T2 CISS and CT. The black horizontal
line gives a reference for the spatial resolution of the image being transformed (T2 CISS).

the influence of landmark selection on the error estimation, we have performed additional
frame-based registration for 4 cases of T1w images, where the landmarks were chosen in
the middle part of the frame (2 cm above the bottom and 2 cm below the top fiducial line,
respectively). The obtained errors were then compared with the corresponding ones of the
landmark-based transform shown in this study. The difference between the estimated errors
was in the order of 0.01 mm, which was the reason for remaining confident in our choice of
landmarks.

Since CT and MR images are acquired with different Indicator Boxes, there is a probability of
slight dissemblance between the thicknesses of the respective fiducials, which could induce
an additional systematic error contributing to the error we evaluate. A systematic error might
also be present as a consequence of an imperfect extraction of the frame from the images or
the linear interpolation applied to the transformed image. Therefore, our reported error values
might be slightly overestimated, but they remain valid nevertheless. Eventually, they would
even become lower by overcoming the above limitations.

Our study strongly surpasses the limitation of the previously reported ones. Our advantages
with respect to the previous reported studies are : 1) we are using a big dataset of real clinical
images enclosing 3 different MRI contrasts from 30 patients either with non-significant or big
brain deformation ; 2) we rely on the most reliable reference of comparison - the fiducials of
the Indicator Box, for estimation of the voxel-based registration quality ; and 3) we compare
statistically with the outcome of the landmark-based registration, which is currently conside-
red as a gold standard for defining the therapeutic images with the stereotactic frame inside
the LGP reference space.
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FIGURE A.8 – Statistical boxplot comparing visually the errors estimated for the frameless
(blue) and the frame-based (pink) registration between T1w and CT acquired from patients
with brain metastasis. The black horizontal line gives a reference for the spatial resolution of
the image being transformed (T1w).

Conclusions

Our study has demonstrated a high accuracy of the linear voxel-based registration between
the CT and different MR modalities used for stereotactic radiosurgery planning. Furthermore,
we have also shown that this frameless registration method is statistically equivalent to the
fiducials-based matching, which is seen as the gold standard in everyday practice of Gamma
Knife surgery treatment planning.
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A.2 Thalamic parcellation

A.2.1 Suppelementary material

The following figures were presented as supplementary material for the paper “Robust thala-
mic nuclei segmentation method based on local diffusion magnetic resonance properties“
with co-authors : E. Najdenovska, G. Battistella, P. Maeder, N. Ghazaleh, A. Daducci, J.-P. Thiran,
S. Jacquemont, C. Tuleasca, M. Levivier, E. Fornari and M. Bach Cuadra published in Brain
Structure and Function 2017, Volume 222, Issue 5, pp 2203–2216.

FIGURE A.9 – Single-subject comparison with the axial slice D 4.5 of Morel’s atlas
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FIGURE A.10 – Single-subject comparison with the axial slice D 10.8 of Morel’s atlas

FIGURE A.11 – Reconstruction of thalamic long connections. 3D views of the reconstructed
fiber tracts (in white) for the Medio-Dorsal group (panel A) and the Pulvinar (panel B). Pro-
babilistic tracts were reconstructed using the whole thalamus mask and the following seed
regions (in yellow) : left middle frontal sulcus and amygdala for the MD group, and left inferior
angular gyrus and left calcarine sulcus for the Pulvinar.

A.2.2 Study extension

To further test the robustness of the proposed method for thalamic parcellation for other
diffusion sequences, the evaluation of the framework was extended for a cohort of 73 healthy
subjects coming from the Human Connectome Project (HCP) database [18, 19].
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The dataset included T1w sequences (MPRAGE contrast, TR 2400 ms, TE 2.14 ms, TI 1000 ms,
FOV 224x224 mm, voxel size 0.7 mm isotropic) and and a multi-shell DWI sequence (spin-echo
EPI acquisition, 270 diffusion weighted volumes over 3 shells i.e. for 3 b-values :1000, 2000
and 3000 s/mm2 and 18 b0 volumes, TR 5520 ms, TE 89.5 ms, FOV 210x180 mm, voxel size
1.25 mm isotropic). The acquisition was done with Siemens 3T Skyra scanner in Washington
University or University of Minnesota.

The thalamus masks were again initially obtained from the FreeSurfer (v 5.3.0) parcellation on
each T1w and then refined accordingly to the proposed method. To calculate the FA map, the
tensor fitting was estimated on the diffusion images acquired with b=1000s/mm2. The rest of
the processing was following the steps described beforehand (in chapter 2)

The parcellation of the thalamus showed the same segmentation pattern for 67 out of the
73 subjects. In the remaining six subjects, for reasons that should be further explored, the
outcome did not correspond to the expected spatial distribution of the clusters, therefore
there were considered as a failure. Nevertheless, with success rate of approximately 92% we
demonstrated the robustness of our algorithm for diffusion data acquired in multi-shell setting
and furthermore, with improved spatial resolution.

FIGURE A.12 – Illustration of the build atlas in an axial view

These results were used for building spatial probabilistic atlas maps (SPAM) for each cluster
in MNI space (see figure A.12). Such a tool could further provide an atlas-based thalamic
subsegmentation for subjects where the diffusion data is not available. This work is currently
under preparation for submitting it to the journal Scientific Data in Nature entitled as "A
probabilistic atlas of the human thalamic nuclei based on diffusion Magnetic Resonance
Image segmentation” with co-authors Elena Najdenovska, Yasser Alemán-Gómez, Giovanni
Battistella, Allesandra Griffa, Maxime Descoteaux, Patric Hagmann, Sebastien Jacquemont,
Philippe Maeder, Jean-Philippe Thiran, Eleonora Fornari and Meritxell Bach Cuadra.
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