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ABSTRACT 25 

1. Aim – Concerns over how global change will influence species distributions, in 26 

conjunction with increased emphasis on understanding niche dynamics in evolutionary 27 

and community contexts, highlight the growing need for robust methods to quantify niche 28 

differences between or within taxa. We propose a statistical framework to describe and 29 

compare environmental niches from occurrence and spatial environmental data. 30 

2. Location – Europe, North America, South America 31 

3. Methods – The framework applies kernel smoothers to densities of species occurrence in 32 

gridded environmental space to calculate metrics of niche overlap and test hypotheses 33 

regarding niche conservatism. We use this framework and simulated species with 34 

predefined distributions and amounts of niche overlap to evaluate several ordination and 35 

species distribution modeling techniques for quantifying niche overlap. We illustrate the 36 

approach with data on two well-studied invasive species. 37 

4. Results – We show that niche overlap can be accurately detected with the framework 38 

when variables driving the distributions are known. The method is robust to known and 39 

previously undocumented biases related to the dependence of species occurrences on the 40 

frequency of environmental conditions that occur across geographic space. The use of a 41 

kernel smoother makes the process of moving from geographical space to multivariate 42 

environmental space independent of both sampling effort and arbitrary choice of 43 

resolution in environmental space. However, the use of ordination and species distribution 44 

model techniques for selecting, combining and weighting variables on which niche 45 

overlap is calculated provide contrasting results.  46 

5. Main conclusions – The framework meets the increasing need for robust methods to 47 

quantify niche differences. It is appropriate to study niche differences between species, 48 

subspecies or intraspecific lineages that differ in their geographical distributions. 49 

Alternatively, it can be used to measure the degree to which the environmental niche of a 50 

species or intraspecific lineage has changed over time.  51 

52 
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 64 

INTRODUCTION 65 

 66 

“It is, of course, axiomatic that no two species regularly established in a single fauna have 67 

precisely the same niche relationships” Grinnell (1917) 68 

 69 

An ongoing challenge for ecologists is quantifying species distributions and determining which 70 

factors influence species range limits (Guisan & Thuiller, 2005; Colwell & Rangel, 2009). 71 

Factors that can constrain species distributions include abiotic gradients, such as climate, 72 

sunlight, topography and soils, and biotic interactions, such as the identity and abundance of 73 

facilitators (e.g. pollinators, seed dispersers), predators, parasites and competitors (Gaston, 2003). 74 

The study of how species vary in their requirements for and tolerance of these factors has 75 

advanced, in part due to the continued conceptual development and quantification of the 76 

ecological niche of species (Chase & Leibold, 2003; Soberón, 2007). The complementary 77 

concepts of the environmental niche (sensu Grinnell, 1917) and the trophic niche (sensu Elton, 78 

1927) serve as a basis for assessing ecological and biogeographical similarities and differences 79 

among species. Toward this end, a variety of measures have been used to quantify niche 80 

characteristics. Historically, such assessments have focused primarily on differences in local 81 

trophic and reproductive habits (reviewed in Chase & Leibold, 2003) and have asked: How much 82 

does resource use by species A overlap with that of species B?  Recent concern over the effects 83 
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of global change on species distributions has emphasized the need to quantify differences among 84 

species in their environmental requirements in a geographical context and at an extent 85 

comparable to that of species ranges. Consistent with aspects of the Grinnellian niche, such 86 

assessments pursue questions regarding similarities and differences in the environmental 87 

conditions associated with species geographical distributions and how they change over time 88 

(Devictor et al., 2010). Despite improvements in our ability to model species distributions 89 

(Guisan & Thuiller, 2005), development of techniques to quantify overlap of different 90 

environmental niches has received relatively little attention (but see Warren et al., 2008). 91 

 92 

A variety of approaches and metrics have been used to measure niche overlap (e.g., Horn, 1966; 93 

MacArthur & Levins, 1967; Schoener, 1970; Colwell & Futuyma, 1971; May & Arthur, 1972; 94 

Pianka, 1980). Generally, these methods date to the period in which competition was widely 95 

believed to be the primary mechanism structuring ecological communities and measures of niche 96 

overlap were developed to quantify differences due to competition (Chase & Leibold, 2003). 97 

More recently, research has elucidated how changing environmental conditions could affect 98 

future distributions of native species (e.g. Etterson & Shaw, 2001; Jump & Penuelas, 2005) and 99 

invasive exotic species (e.g. Broennimann et al., 2007; Fitzpatrick et al., 2007; Steiner et al., 100 

2008; Medley, 2010).  Further, changes in climatic tolerances and requirements of species 101 

accompany the diversification of lineages in a variety of taxa (e.g., Silvertown et al., 2001; Losos 102 

et al., 2003; Graham et al., 2004b; Yesson & Culham, 2006; Fitzpatrick et al., 2007; Evans et al., 103 

2009). A common theme among these studies is the quantification of environmental niches, how 104 

they change over time and differ among species. Yet the inadequacy of methods for comparing 105 

species environmental niches has fueled debate over the validity of conclusions derived from 106 

comparative studies of niche dynamics (Fitzpatrick et al., 2008; Peterson & Nakazawa, 2008). 107 

 108 

Assessing differences in the environmental niches of species requires identification and 109 

consideration of the factors that influence species distributions. In practice, distributions of 110 

species are often characterized using occurrence records (Graham et al., 2004a). Differences in 111 

niches that are quantified using observed occurrences of species reflect an unknown conjunction 112 

of the environmental niches of the species, the biotic interactions they experience, and the 113 

habitats available to species and colonized by them (Soberón, 2007; Colwell & Rangel, 2009). 114 



 5

Although it has often been assumed that these effects are negligible at broad spatial scales, recent 115 

studies indicate that biotic interactions may play an important role in defining the lower thermal 116 

boundaries of species’ distributions (e.g. Gotelli et al., 2010; Sunday et al., 2011).  This subset of 117 

the environmental niche that is actually occupied by the species corresponds to the realized niche 118 

(Hutchinson, 1957). The environmental conditions comprising the realized niche are described 119 

using a set of geographically referenced environmental variables. These variables come from 120 

widely used, on-line collections such as WorldClim (Hijmans et al., 2005), a wealth of other 121 

variables of some physiological and demographic importance (e.g. Zimmermann et al., 2009), 122 

and physical habitat variation as represented by country and regional land cover as well as land 123 

use classifications (e.g. Lutolf et al., 2009). Hereafter, the use of geographically referenced 124 

variables is often implicit when we refer to niche comparison, but the approaches and metrics we 125 

present can be applied to any quantitative niche dimension. 126 

 127 

Methods for quantifying the environmental niche and estimating niche differences typically rely 128 

on either ordination techniques (e.g. Thuiller et al.; 2005a; Hof et al., 2010) or species 129 

distribution models (SDMs; Guisan & Thuiller, 2005) Ordination techniques allow for direct 130 

comparisons of species-environment relationships in environmental space, and employ various 131 

maximization criteria to construct synthetic axes from associated environmental variables 132 

(Jongman et al., 1995). In contrast, assessment of niche differences with SDMs involves 133 

calibration (for each species) of statistical or machine-learning functions that relate 134 

environmental variables to georeferenced data on species occurrence (Guisan & Thuiller, 2005).  135 

SDMs can select and emphasize, via weighting, certain variables associated with processes that 136 

determine the distribution of the species (through their environmental niches) while down-137 

weighting or excluding variables that do not help to discriminate between species presence and 138 

absence (Wintle et al., 2003; Guisan & Thuiller, 2005). Niche overlap is then estimated through 139 

the projection of those functions across a landscape (i.e. the overlap is calculated in geographic 140 

space). Recently, Warren et al. (2008) developed such an SDM-based method that uses cell-by-141 

cell comparisons of geographic predictions of occurrences and randomization tests to quantify 142 

niche differences and assess their statistical significance. However, niche overlap analyses using 143 

geographic projections of niches derived from SDMs could prove problematic because the 144 

measured niche overlap is likely to vary depending on the extent and distribution of 145 
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environmental gradients in the study area and potentially because of unquantified statistical 146 

artifacts related to model fitting.  147 

 148 

Here, we present a new statistical framework to describe and compare niches in a gridded 149 

environmental space (i.e. where each cell corresponds to a unique set of environmental 150 

conditions). Within this framework, we quantify niche overlap using several ordination and SDM 151 

techniques and evaluate their performances. The framework overcomes some of the shortcomings 152 

of current approaches to quantifying niche differences. It (i) accounts for biases introduced by 153 

spatial resolution (grid size), (ii) makes optimal use of both geographic and environmental 154 

spaces, and (iii) corrects observed occurrence densities for each region in light of the availability 155 

of environmental space. Case studies from nature are unlikely to provide an unbiased assessment 156 

of methods used to quantify niche overlap because of sampling errors and unknown biases. To 157 

overcome these issues, we test the methods using simulated species distributions for which niche 158 

overlap and the constraining environmental gradients are known without error. Finally, we 159 

illustrate our approach using two invasive species that have native and invaded ranges on 160 

different continents and which have been subjects of recent studies of niche dynamics 161 

(Broennimann et al., 2007; Fitzpatrick et al., 2007). 162 

 163 

METHODS 164 

A FRAMEWORK TO COMPARE ENVIRONMENTAL NICHES 165 

We present a framework to quantify niche overlap between two species (e.g. sister taxa, 166 

subspecies, etc.) or two distinct sets of populations of a same species (e.g. native and invasive 167 

populations of an invasive species, geographically disjunct populations of the same species, etc.). 168 

The framework also applies to comparisons among the same species but at different times (e.g. 169 

before and after climate change).  More broadly, the framework can be applied to compare any 170 

taxonomical, geographical or temporal groups of occurrences (hereafter called “entities”). The 171 

framework involves three steps: (1) calculation of the density of occurrences and of 172 

environmental factors along the environmental axes of a multivariate analysis, (2) measurement 173 

of niche overlap along the gradients of this multivariate analysis and (3) statistical tests of niche 174 

equivalency and similarity (cf. Warren et al., 2008). All the analyses are done in R (R 175 

Development Core Team 2010) and scripts are available online as Supplementary Material.  176 
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 177 

1) Calibration of the niche and occurrence density 178 

The environmental space is defined by the axes of the chosen analysis and is bounded by the 179 

minimum and maximum environmental values found across the entire study region. In this 180 

application, we consider the first two axes for ordinations such as PCA and one axis for SDMs 181 

(i.e. the output of an SDM is comprised of a single vector of predicted probabilities of occurrence 182 

derived from complex combinations of functions of original environmental variables; the overlap 183 

of the two species is analyzed along this gradient of predictions). We recognize that in principle 184 

niche overlap analyses can consider greater dimensionality than we do here. However, in practice 185 

increased dimensionality brings greater challenges in terms of interpretation, visualization, and 186 

additional technical aspects. Nonetheless, a greater number of dimensions should be considered 187 

in further development of the present approach. The environmental space is divided into a grid of 188 

r × r cells (or a vector of r values when the analysis considers only one axis). For our analyses we 189 

set the resolution r to 100. Each cell corresponds to a unique vector of environmental conditions 190 

vij present at one or more sites in geographical space, where “i” and “j” refer to the cell 191 

corresponding respectively to ith and jth bin of the environmental variables. The bins are defined 192 

by the chosen resolution r, and the minimum and maximum values present in the study area 193 

along these variables. 194 

  195 

Since the number of occurrences is dependent on sampling strategy, sampled occurrences may 196 

not represent the entire distribution of the species or other taxon nor the entire range of suitable 197 

environmental conditions, resulting in underestimated densities in some cells and potentially 198 

large bias in measured niche overlap (Supplementary Material, Fig. S1a). Interestingly, this 199 

problem is similar to the delimitation of the utilization distribution of species in geographical 200 

space. Traditionally, methods such as minimum convex polygons have been used to delimitate 201 

utilization distributions (e.g. Blair, 1940).  But, newer developments have shown that kernel 202 

methods provide more informative estimations (Worton, 1989) and such methods have seen 203 

recent application in modeling species distributions (Ferrier et al., 2007; Hengl et al., 2009). We 204 

thus apply a kernel density function to determine the “smoothed” density of occurrences in each 205 

cell in the environmental space for each dataset. We use the standard smoothing parameters used 206 

in most density estimation studies (Gaussian kernel with a standard bandwidth, which 207 
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corresponds to 0.9 times the minimum of the standard deviation and the interquartile range of the 208 

data divided by 1.34 times the sample size to the negative one-fifth power; Silverman, 1986). The 209 

smoothed density of occurrence oij for each cell is thus calculated as 210 

oij 
(nij )

max(nij )
,  (1)  211 

where (nij ) is the kernel density estimation of the number of occurrences of the entity at sites 212 

with environment vij, max(nij) is the maximum number of occurrences in any one cell, and oij is a 213 

relative abundance index that ranges from 0, for environmental conditions in which the entity has 214 

not been observed, to 1 for environmental conditions in which the entity was most commonly 215 

observed. In a similar manner, the smoothed density of available environments eij is calculated as 216 

eij 
(Nij )

max(Nij )
, (2)  217 

where (Nij ) is the number of sites with environment vij and max(Nij) is the number of cells with 218 

the most common environment in the study area. Finally, we calculate zij , the occupancy of the 219 

environment vij by the entity, as 220 

zij 

oij

eij

max
o

e








 if eij ≠ 0,  zij = 0 if eij = 0, (3) 221 

where zij ranges between 0 and 1 and ensures a direct and unbiased comparison of occurrence 222 

densities between different entities occurring in ranges where environments are not equally 223 

available.  224 

 225 

2) Measurement of niche overlap  226 

The comparison of zij between two entities can be used to calculate niche overlap using the D 227 

metric (Schoener 1970; reviewed in Warren et al., 2008) as 228 

D 1
1

2
z1ij  z2ij

ij










,  229 
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where z1ij is entity 1 occupancy, z2ij is entity 2 occupancy.  This metric varies between 0 (no 230 

overlap) and 1 (complete overlap). Note that regions of the environmental space that do not exist 231 

in geography have zij set to 0. These regions thus do not contribute to the measure of the D metric 232 

and niche overlap is measured among real habitats only (see discussion in Warren et al., 2008, 233 

Appendix S2). Note also that the use of a kernel density function when calculating the density is 234 

critical for an unbiased estimate of D. When no kernel density function is applied, the calculated 235 

overlap depends on the resolution r chosen for the gridded environmental space (Supplementary 236 

Material, Fig. S1a). Using smoothed densities from a kernel density function ensures that the 237 

measured overlap is independent of the resolution of the grid (Supplementary Material, Fig. S1b).  238 

 239 

3) Statistical tests of niche equivalency and similarity 240 

We build from the methodology described in Warren et al. (2008) to perform niche equivalency 241 

and similarity tests. The niche equivalency test determines whether niches of two entities in two 242 

geographical ranges are equivalent (i.e. whether the niche overlap is constant when randomly 243 

reallocating the occurrences of both entities among the two ranges). All occurrences are pooled 244 

and randomly split into two datasets, maintaining the number of occurrences as in the original 245 

datasets, and the niche overlap statistic D is calculated. This process is repeated 100 times (to 246 

ensure that the null hypothesis can be rejected with high confidence) and a histogram of 247 

simulated values is constructed. If the observed value of D falls within the density of 95% of the 248 

simulated values, the null hypothesis of niche equivalency cannot be rejected. 249 

  250 

The niche similarity test differs from the equivalency test because the former examines whether 251 

the overlap between observed niches in two ranges is different from the overlap between the 252 

observed niche in one range and niches selected at random from the other range. In other words, 253 

the niche similarity test addresses whether the environmental niche occupied in one range is more 254 

similar to the one occupied in the other range than would be expected by chance? For this test, we 255 

randomly shift the entire observed density of occurrences in one range (the center of the 256 

simulated density of occurrence is randomly picked among available environments) and calculate 257 

the overlap of the simulated niche with the observed niche in the other range. The test of niche 258 

similarity is also based on 100 repetitions. If the observed overlap is greater than 95% of the 259 
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simulated values, the entity occupies environments in both of its ranges that are more similar to 260 

each other than expected by chance. Note that in some instances, it may be difficult to define the 261 

extent of the study areas to be compared. When species occur on different continents, the choice 262 

cab be straightforward and should consider the complete gradient of environmental space that the 263 

study species could reasonably encounter, including consideration of dispersal ability and major 264 

biogeographical barriers or transitions. When species occur in the same region or on an island, 265 

the environment can be the same for all species and therefore correcting for differences in the 266 

densities of environment is not necessary. 267 

 268 

TESTING THE FRAMEWORK WITH VIRTUAL ENTITIES 269 

A robust test of the framework described above requires entities that have distributions 270 

determined by known environmental parameters and that exhibit known levels of niche overlap. 271 

To achieve this, we simulated pairs of virtual entities with varying amounts of niche overlap (see 272 

Supplementary Material, Appendix S1), in a study region comprised of all temperate climates in 273 

Europe (EU) and North America (NA) and defined by 8 bioclimatic variables at 10' resolution 274 

that were derived from raw climatic data from the CRU CL 2.0 dataset (New et al., 2002).  These 275 

variables included: ratio of actual and potential evapotranspiration (aetpet), number of growing 276 

degree days above 5°C (gdd), annual precipitation (p), potential evapotranspiration (pet), number 277 

of months with drought (ppi), seasonality in precipitation (stdp), annual mean temperature (t), 278 

annual maximum temperature (tmax), and annual minimum temperature (tmin). Procedures to 279 

calculate aetpet, pet and gdd from the raw CRU CL 2.0 data are detailed in Thuiller et al. 280 

(2005b).  281 

We first apply the framework to 100 pairs of virtual entities that differ in niche position and that 282 

exhibit decreasing amounts of niche overlap, from perfect overlap (D=1, all areas in common 283 

under the normal density curves) to no overlap (D=0, no area in common under the normal 284 

density curves). We compare these simulated levels of niche overlap to that measured along the p 285 

and t gradients (instead of the two first axes of a multivariate analysis). Since the normal density 286 

curves defining the niches of the virtual entities (Supplementary Material, Appendix S1) are built 287 

along these two gradients, we postulate that the overlap detected by the application of the 288 
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framework should be the same as the simulated level of niche overlap across the full range of 289 

possible overlap (0:1). 290 

 291 

Next, we apply the framework to matched pairs of virtual entities but compare the simulated level 292 

of niche overlap to the niche overlap detected along axes calibrated using several ordination 293 

(Table 1) and SDM techniques (Table 2). For methods with maximization criteria that do not 294 

depend on an a priori grouping (here EU vs. NA, Table 1), we run two sets of simulations, using 295 

information from either EU alone or both EU and NA to calibrate the method (‘Areas of 296 

Calibration’, Tables 1, 2). To compare the outcomes of the methods quantitatively, for each 297 

analysis we first calculate the average absolute difference between the simulated and measured 298 

overlap (∆abs). This difference indicates the magnitude of the errors (deviation from the 299 

simulated=measured diagonal). To test for biases in the method (i.e. whether or not scores are 300 

centered on the diagonal), we then perform a Wilcoxon signed-rank test on these differences. A 301 

method that reliably measures simulated levels of niche overlap should both show small errors 302 

(small ∆abs) and low bias (non-significant Wilcoxon test). 303 

 304 

CASE STUDIES OF REAL SPECIES 305 

We also test the framework using two invasive species that have native and invaded ranges on 306 

different continents and which have been subjects of recent analyses of niche dynamics. The first 307 

case study concerns spotted knapweed (Centaurea stoebe, Asteraceae), native to Europe, and 308 

highly invasive in North America (see Broennimann et al., 2007; Broennimann & Guisan, 2008 309 

for details). The second case study addresses the fire ant (Solenopsis invicta), native to South 310 

America and invasive in the USA (see Fitzpatrick et al., 2007; Fitzpatrick et al., 2008 for details). 311 

 312 

RESULTS 313 

EVALUATION OF THE FRAMEWORK 314 

Before applying ordination and SDM methods to our datasets, we examine whether we could 315 

accurately measure simulated levels of niche overlap along known gradients. We use 100 pairs of 316 

virtual entities with known levels of niche overlap along p and t climate gradients. The overlap 317 
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we detect between each pair of virtual entities is almost identical to the simulated overlap (i.e. the 318 

shared volume between the two simulated bivariate normal curves; filled circles, Fig. 2). This is 319 

the case for all levels of overlap except for highly overlapping distributions (>0.8) where the 320 

actual overlap is slightly underestimated, and where the effects of sampling are likely to be most 321 

evident. Because detected overlap cannot be larger than 100 percent, any error in the 322 

measurement of highly overlapping distribution necessarily must result in underestimation. This 323 

underestimation is, however, very small (∆abs:μ = 0.024) and does not alter interpretation. Note 324 

that when overlap is measured using virtual entities that follow a univariate normal distribution 325 

along a precipitation gradient, no underestimation was observed (Supplementary material, Fig. 326 

S2). When we leave differences in environmental availability uncorrected, niche overlap is 327 

consistently underestimated (open circles, Fig. 2), except for niches with low overlap (<0.3). This 328 

bias is on average five times larger than that of the corrected measure.   329 

 330 

NICHE OVERLAP DETECTED BY ORDINATION AND SDM METHODS 331 

Simulated entities 332 

Ordination and SDM techniques vary in their ability to measure simulated niche overlap (Figs. 3-333 

5). Among methods with maximization criteria that do not depend on a priori grouping (Fig. 3), 334 

PCA-env calibrated on both EU and NA ranges most accurately measures simulated niche 335 

overlap (∆abs:μ = 0.054, W: ns; Fig. 3b). Note, however, that highly overlapping distributions are 336 

somewhat underestimated but significance of the Wilcoxon test is unaffected. The only other 337 

predominantly unbiased method in this category is ENFA, also calibrated on environmental data 338 

from both ranges. However, errors generated by ENFA are comparatively high (∆abs:μ = 0.156, 339 

W: ns; Fig. 3d). Scores of PCA-occ and MDS are significantly biased, with measured overlap 340 

consistently lower than simulated (Fig. 3a, b), especially in ordination of data combined from 341 

both EU and NA ranges. 342 

 343 

Among methods with maximization criteria based on a priori grouping (Fig. 4), WITHIN-env 344 

provides the lowest errors of measured overlap. However, WITHIN-env significantly 345 

underestimates the simulated overlap (∆abs:μ = 0.084, W:*** Fig. 4b), though the amount of 346 

underestimation is small.  By contrast, WITHIN-occ overestimates simulated overlap (∆abs:μ = 347 
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0.195, W:***; Fig. 4a). Predictably, techniques that maximize discrimination between groups 348 

(BETWEEN-occ and LDA; Fig. 4c, d) fail to measure simulated levels of niche overlap 349 

adequately. Both methods provide similar results in which overlap is underestimated across all 350 

simulated levels. 351 

 352 

Compared to ordinations, SDM methods show different patterns when measuring overlap (Fig. 353 

5). When calibrated on both ranges, all SDM methods report high levels of overlap (0.6-1), 354 

regardless of simulated overlap. SDMs apparently calibrate bimodal curves that tightly fit the two 355 

distributions as a whole. However, when calibrated on the EU range only, all SDM methods 356 

report increasing levels of overlap along the gradient of simulated overlap. MaxEnt achieves the 357 

best results (∆abs:μ = 0.111, W:ns; Fig. 5b), followed by GBM (∆abs:μ = 0.134, W:*; Fig. 5c). 358 

MaxEnt is the only SDM method providing non-significant bias. GLM exhibits a similar amount 359 

of error as GBM, but with lower reported overlap (∆abs:μ = 0.147, W:***; Fig. 5a). RF provides 360 

very poor results in term of both error and bias (∆abs:μ = 0.393, W:***; Fig. 5d). 361 

 362 

Case studies 363 

Analyses of spotted knapweed and fire ant occurrences using PCA-env, the most accurate method 364 

in terms of niche overlap detection, show that for both species the niche in the native and invaded 365 

ranges overlap little (0.25 and 0.28 respectively, Figs. 6, 7). For spotted knapweed, the invaded 366 

niche exhibits both shift and expansion (Fig. 6a-b) relative to its native range. Interestingly, two 367 

regions of dense occurrence in NA indicate two known areas of invasion in Western and Eastern 368 

NA. In contrast, the fire ant exhibits a shift from high density in warm and wet environments in 369 

South America towards occupying cooler and drier environments in NA (Fig. 7a-b). For both 370 

species, niche equivalency is rejected, indicating that the two species have undergone significant 371 

alteration of their environmental niche during the invasion process (Figs. 6d, 7d). However, for 372 

both species, niche overlap falls within the 95% confidence limits of the null distributions, 373 

leading to non-rejection of the hypothesis of retained niche similarity (Figs. 6e and 7e).  374 

 375 

 376 
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DISCUSSION 377 

The framework we have presented helps meet the increasing need for robust methods to quantify 378 

niche differences between or within taxa (Wiens & Graham, 2005; Pearman et al., 2008a). By 379 

using simulated entities with known amounts of niche overlap, our results show that niche 380 

overlap can be accurately detected within this framework (Fig. 2). Our method is appropriate to 381 

study between-species differences of niches (e.g. Thuiller et al., 2005a; Hof et al., 2010), as well 382 

as to compare subspecies or distinct populations of the same species that differ in their 383 

geographical distributions and which are therefore likely to experience different climatic 384 

conditions (e.g. Broennimann et al., 2007; Fitzpatrick et al., 2007; Steiner et al., 2008; Medley, 385 

2010). Alternatively, when a record of the distribution of the taxa (and corresponding 386 

environment) through time exists, our approach can be used to answer the question of whether 387 

and to what degree environmental niches have changed through time (e.g. Pearman et al., 2008b; 388 

Varela et al., 2010).  389 

 390 

This framework presents two main advantages over methods developed previously. First, it 391 

disentangles the dependence of species occurrences from the frequency of different climatic 392 

conditions that occur across a region. This is accomplished by dividing the number of times a 393 

species occurs in a given environment by the frequency of locations in the region that have those 394 

environmental conditions, thereby correcting for differences in the relative availability of 395 

environments. Without this correction, the measured amount of niche overlap between two 396 

entities is systematically underestimated (Fig. 2). For example, in the approach of Warren et al. 397 

(2008), an SDM-based method using comparisons of geographic predictions of occurrences, 398 

projections depend on a given study area. Measured differences between niches could represent 399 

differences in the environmental characteristics of the study area rather than real differences 400 

between species. Second, application of a kernel smoother to standardized species’ densities 401 

makes moving from geographical space, where the species occur, to the multivariate 402 

environmental space, where analyses are performed, independent of both sampling effort and of 403 

the resolution in environmental space (Supplementary Material, Fig. S1). This is a critical 404 

consideration, because it is unlikely that species occurrences and environmental datasets from 405 

different geographic regions or times always present the same spatial resolution. Without 406 
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accounting for these differences, measured niche overlap will partially be a function of data 407 

resolution.  408 

Although niche overlap can be detected accurately when variables driving the distribution are 409 

known (e.g. with niches defined along precipitation and temperature, Fig. 2), the use of 410 

ordination and SDM techniques for selecting, combining and weighting variables on which the 411 

overlap is calculated provide contrasting results. The causes of the differences in the performance 412 

among techniques remain unclear, but several factors might be responsible. Among the important 413 

factors are (i) how the environment varies in relation to species occurrences versus the study 414 

region (or time period) as a whole, (ii) how techniques select variables based on this variation, 415 

and (iii) the level of collinearity that exists between variables within each area/time and whether 416 

it remains constant among areas/times. Hereafter we discuss the performance of the techniques 417 

we tested in the light of these factors. 418 

 419 

ORDINATIONS VERSUS SDMS 420 

Ordinations and SDMs use contrasting approaches to reduce the dimension of an environmental 421 

dataset. While ordinations find orthogonal and linear combinations of original predictors that 422 

maximize a particular ratio of environmental variance in the dataset, SDMs fit non-linear 423 

response curves, attributing different weights to variables according to their capacity to 424 

discriminate presences from absences (or pseudo-absences). When using both study regions for 425 

the calibration, SDMs consistently overestimate the simulated level of niche overlap (Fig. 5, 426 

black circles). Likely, SDMs fit bimodal response curves that tightly match the data and 427 

artificially predict occurrences in both ranges (i.e. SDMs model the range of each entity as a 428 

single complex, albeit overfitted, niche). As a result, prediction values for occurrences are high 429 

for both ranges. Since the overlap is measured on the gradient of predicted values, measured 430 

overlap is inevitably high. In contrast, ordinations calibrated on both areas provide a simpler 431 

environmental space (i.e. linear combination of original predictors), in which niche differences 432 

are conserved. As a result, ordinations usually show a monotonic relationship between detected 433 

and simulated overlap (Figs. 3 and 4, black circles).  434 

When calibrating SDMs using only one study area and subsequently projecting the model to 435 

another area, estimated overlap increases with simulated overlap (Fig. 5, crosses). However, the 436 
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pattern of detected overlap using SDMs is irregular (i.e., ∆abs:μ is high), again likely because of 437 

overfitting. Bias in detected overlap may also arise from differing spatial structure of 438 

environments between study areas. Unlike ordinations, which remove collinearity between 439 

variables by finding orthogonal axes, the variable selection procedure of SDMs is sensitive to 440 

collinearity. A variable that is not important for the biology of the species, but correlated to one 441 

that is, might be given a high weight in the model (e.g. as in the case of microclimatic decoupling 442 

of macroclimatic conditions; Scherrer & Korner, 2010). Projection of the model to another area 443 

(or continent in the present case) could then be inconsistent with the actual requirements of the 444 

species and lead to spurious patterns of detected overlap. In contrast, ordination techniques 445 

calibrated on only one study area show a more stable pattern of detected overlap (i.e. monotonic 446 

increase, low ∆abs:μ). In general, no SDM method exceeded the performance of the best 447 

ordination method. 448 

Based on our results, ordinations seem to be more appropriate than SDMs for investigating niche 449 

overlap. However, unlike ordination techniques, SDMs are able to select and rank variables 450 

according to their importance in delimiting the niche. SDMs thus could be used to identify 451 

variables that are closely related to the processes driving the distribution of the species, while 452 

excluding variables that do not discriminate presence and absence. It remains to be tested whether 453 

the use of simpler SDM models with more proximal variables (i.e. thus reducing the potential 454 

influence of model overfitting and variable collinearity, Guisan & Thuiller, 2005) would improve 455 

accuracy of estimated niche overlap. The best practice is to use variables thought to be crucial 456 

(i.e. eco-physiologically meaningful) for the biology of the species (Guisan & Thuiller, 2005). 457 

Often, uncertainties surrounding the biology of focal species leave us to select variables relevant 458 

to the eco-physiology of the higher taxonomic group to which it belongs (e.g. all vascular plants).  459 

 460 

DIFFERENCES IN OVERLAP DETECTION AMONG ORDINATIONS 461 

Of the ordination techniques we considered, PCA-env most accurately quantified the simulated 462 

level of niche overlap and did so without substantial bias. Unlike PCA-occ, PCA-env summarizes 463 

the entire range of climatic variability found in the study area and it is in this multivariate space 464 

that occurrences of the species are then projected. Thus, PCA-env is less prone to artificial 465 

maximization of ecologically irrelevant differences between distributions of the species. 466 
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However, the possibility remains that superior performance of PCA-env might be partly 467 

attributable to the fact that our study areas (i.e. Europe and North America) have relatively 468 

similar precipitation and temperature gradients that explain most of the environmental variation. 469 

The highest performance of PCA-env is likely in situations where species respond to gradients 470 

that also account for most of the environmental variation throughout the study region as a whole 471 

(i.e. the maximization of the variation of the environment in the study area also maximizes the 472 

variation in the niche of the species). Moreover, if this environmental setting prevails in both 473 

study areas, issues regarding changes in the correlation structure of variables may be minimal. 474 

PCA-occ, in contrast, uses environmental values at species occurrences only and selects variables 475 

that vary most among occurrences. The resulting principal components are calibrated to 476 

discriminate even the slightest differences in the correlation of variables at each occurrence. A 477 

variable that differs little among locations where the species occurs, but exhibits substantial 478 

variation across the study region, likely represents meaningful ecological constraint. Therefore, 479 

depending on the environment of the study region (which PCA-occ does not consider), these 480 

variables may have undetected ecological relevance (Calenge et al., 2008). If the noise (e.g., 481 

climatic variation between regions) is large relative to the signal to measure (i.e. differences in 482 

niches between species), the degree of niche overlap could be underestimated (Fig. 3a).  483 

LDA and BETWEEN-occ analyses calibrated using occurrences alone tend to underestimate the 484 

simulated level of niche overlap. Both of these methods attempt to discriminate a priori chosen 485 

groups along environmental gradients. Therefore, these methods will give a higher weight to 486 

variables that discriminate the two niches in terms of average positions. For example, in the case 487 

of a perfect overlap between the niches on temperature (t) and precipitation (p) variables, these 488 

methods will ignore environmental variables most correlated with t and p, and will instead select 489 

variables that discriminate the niches, no matter their ecological relevance. Therefore, these 490 

methods will tend to erroneously suggest that niches differ more than they actually do. If such 491 

group discriminant analyses show high overlap, there is no difference in the average position of 492 

the niches along any variable. However, if they show low overlap, one should be aware of the 493 

ecological relevance of the components along which the niche average positions differ.   494 

WITHIN-env was the second most reliable method for quantifying niche overlap. This method 495 

aims at first remove differences between the two environments and subsequently focuses on 496 
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differences between the niches in a common multivariate environmental space. All information 497 

that is not shared by the two environments is not retained. This approach is more conservative 498 

and therefore may be more robust in analyses where two areas (or times) widely differ regarding 499 

some variables. A niche shift detected after removing the effect of the different environments is 500 

unlikely a statistical artifact and therefore probably represents a true difference or change in the 501 

ecology of the species. That said, the superior performance of WITHIN-env in our study is likely 502 

related to the manner in which distributions were simulated (equal variance, but different means) 503 

and this approach may not perform well if the excluded variables (i.e. the gradients showing 504 

largest differences between the two areas) are relevant with respect to niche quantification and, 505 

thus, niche overlap between the two distributions. In such cases, only limited conclusions 506 

regarding niche differences are possible, although the retained variables may actually be 507 

important determinants of the species’ niche. In contrast, the WITHIN-occ method (i.e. calibrated 508 

on occurrences only) significantly overestimated the simulated degree of overlap. This was 509 

expected since the method removes most of the environmental differences found between the two 510 

sets of occurrences before comparing the niches. For this reason, we anticipated even greater 511 

overestimation of niche overlap.  512 

In the case of ENFA, information is also lost because the two selected axes do not maximize the 513 

explained variation. Instead, ENFA constructs the niche using a model with a priori ecological 514 

hypotheses that are based on the concepts of marginality and specificity (Hirzel et al., 2002). 515 

Therefore, ENFA tends to suggest niches are more similar than they actually are. 516 

Despite differences between ordination methods, all were consistent in one aspect. When 517 

calibrated on both the EU and NA ranges, the measured niche overlap (filled circles, Fig. 3) was 518 

generally lower than the simulated level and also lower than the measured values when calibrated 519 

on EU alone (crosses, Fig. 3). When only one range is used in the calibration process, less 520 

climatic variation is depicted in the environmental space, thus increasing the overlap between 521 

distributions. 522 

 523 

REANALYSIS OF CASE STUDIES 524 

In the cases of spotted knapweed, Centaurea stoebe (Broennimann et al., 2007) and the fire ant, 525 

Solenopsis invicta (Fitzpatrick, 2007; Fitzpatrick et al., 2008) niche overlap was originally 526 
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assessed through the use of a BETWEEN-occ analysis and the calculation of the between-class 527 

ratio of inertia that does not correct for environmental availability (spotted knapweed: 0.32; fire 528 

ant: 0.40). Although our framework produced different values of niche overlap with PCA-env 529 

(spotted knapweed and fire ant 0.25 and 0.28, respectively; Figs. 6 and 7), the conclusions in the 530 

original papers do not change. Namely, this reanalysis confirms earlier findings that both spotted 531 

knapweed and the fire ant experienced measurable changes in environmental niche occupancy as 532 

they invaded North America. The application of our framework to these species results in 533 

rejection of the niche equivalency hypothesis. Despite claims to the contrary (e.g. Peterson & 534 

Nakazawa, 2008), our analyses confirm that any attempt to predict the niche characteristics from 535 

one range to another is inadequate for these species. The results also show that, as would be 536 

expected, the invasive niches tend to be more similar to the native niche than random and, thus, 537 

niche similarity could not be rejected. In the perspective of niche conservatism, we thus conclude 538 

that, as invasive species, spotted knapweed and the fire ant did not significantly retain their 539 

environmental niche characteristics from their native ranges. 540 

 541 

PERSPECTIVES 542 

We developed and tested our framework using only one set of study areas comprised of all 543 

environments present in EU and NA. Virtual entities were created with varying niche positions 544 

along environmental gradients but constant niche breadths. We used this setting, which obviously 545 

is a subset of situations encountered in nature, because of computational limitations and to 546 

simplify the interpretation of the results. Though we believe that this setting provides robust 547 

insights to develop best practices for quantification of niche overlap, other situations should be 548 

investigated. To explore differences between ordination and SDM techniques more fully, one 549 

would need to simulate species distributions with low to high variance of the environment in the 550 

study region as a factor that is crossed with low/high variance of the environmental conditions at 551 

species occurrences. We cannot exclude that some modeling technique (i.e. such as MaxEnt, the 552 

only SDM method which provided irregular, but non-significantly biased results) could be more 553 

robust when differences between environments are important. 554 

The framework we illustrate here measures niche overlap using the metric D (Schoener, 1970). 555 

Different metrics exist to measure niche overlap (e.g. MacArthur & Levins, 1967; Colwell & 556 
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Futuyma, 1971; Warren et al., 2008) and since we provide a description of the niche in a gridded 557 

environmental space, these additional measures or metrics could be easily implemented. However 558 

we feel that the metric D is the easiest to interpret. This measure indicates an overall match 559 

between two niches over the whole climatic space and determines whether we can infer the niche 560 

characteristics of one species (subspecies, population) from the other. We argue that SDMs can 561 

be reasonably projected outside the calibration area only if the niche overlap is high (D ≈ 1) and 562 

if the test of niche equivalency could not be rejected.  563 

The metric D (as most overlap metrics) does not indicate directionality or type of niche difference 564 

and alone cannot tell us whether the niche has expanded, shrunk, or remained unchanged. In a 565 

similar vein, because D is symmetrical, the amount of overlap is the same for both entities being 566 

compared, even though it is unlikely that the niches of two entities are of the same size. 567 

Moreover, D provides no quantitative indication concerning the position and the breadth of the 568 

niches (but does provide a visual indication). These additional measures of the directionality of 569 

niche change could be easily implemented in our framework in the future. 570 

 571 

CONCLUSIONS 572 

How the environmental niches of taxa change across space and time is fundamental to our 573 

understanding of many issues in ecology and evolution. We anticipate that such knowledge will 574 

have practical importance as ecologists are increasingly asked to forecast biological invasions, 575 

changes in species distributions under climatic change, or extinction risks. To date, our ability to 576 

rigorously investigate intra- or inter-specific niche overlap has been plagued by methodological 577 

limitations coupled with a lack of clarity in the hypotheses being tested. The result has been 578 

ambiguity in interpretation and inability to decipher biological signals from statistical artifacts. 579 

The framework we present allows niche quantification through ordination and SDM techniques 580 

while taking into account the availability of environments in the study area. As in Warren et al. 581 

(2008), our framework allows statistical tests of niche hypotheses (i.e. niche similarity and 582 

equivalency), but under our framework these tests are performed directly in environmental space, 583 

thereby allowing correction of bias associated with geographical dimension. Our comparative 584 

analysis of virtual entities with known amounts of niche overlap shows that such ordination 585 

techniques quantify niche overlap more accurately than SDMs. However, we show that the 586 
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choice of technique, depending on the structure of the data and the hypotheses to test, remains 587 

critical for an accurate assessment of niche overlap. Focusing on rates of change of species niches 588 

and a search for consistent patterns of niche lability and/or stability across many taxa will most 589 

readily compliment the synthesis of ecological and evolutionary analyses already firmly 590 

underway.  591 
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FIGURES AND TABLES 758 

Table 1 – Ordination techniques for quantifying niche overlap. In addition to a general 759 

description of the technique, an explanation of its application to the comparison of simulated 760 

niches between the European (EU) and North American (NA) continents is provided. Depending 761 

on the type of analysis and whether a priori groups are used or not, the different areas of 762 

calibration we tested are specified. 763 

 Name Description Areas of 

Calibration 

PCA-occ Principal component analysis (Pearson, 1901) transforms a number of correlated variables 

into a small number of uncorrelated linear combinations of the original variables (principal 

components). These components are the best predictors – in terms of R2 – of the original 

variables. In other terms, the first principal component accounts for as much of the 

variability in the data as possible, and each following component accounts for as much of 

the remaining variability as possible. For the study of niche overlap, the data used to 

calibrate the PCA is the climate values associated with the occurrences of the species. 

Additional occurrence data can be projected in the same environmental space. When 

calibrating the PCA with EU and NA occurrences, differences in position along the 

principal components discriminate environmental differences between the two 

distributions. When calibrating with EU occurrences only, differences in position along the 

principal components maximize the discrimination of differences among the EU 

distribution. 

1. Occ. in EU 

2. Occ. in 

EU+NA 

 

PCA-env 

 

Same as PCA-occ but calibrated on the entire environmental space of the two study areas, 

including species occurrences. When calibrating PCA-env on EU and NA ranges, 

differences in position along the principal components discriminate differences between the 

EU and NA environmental spaces whereas a calibration on the EU full environmental 

space maximizes the discrimination among this range only. 

1. EU range 

2. EU&NA 

ranges 

BETWEEN-occ 

& 

WITHIN-occ 

Between-group and Within-group Analyses (Doledec & Chessel, 1987) are two ordination 

techniques that rely on a primary analysis (here PCA, but could be CA or MCA) but use a 

priori groups to optimize the combination of variable in the principal components. Here the 

a priori groups correspond to EU and NA. BETWEEN-occ and WITHIN-occ are 

calibrated with EU&NA occurrences, and respectively maximizes or minimizes the 

discrimination of niche differences between EU and NA occurrences. 

1. Occ. in 

EU+NA 

 

WITHIN-env Same as WITHIN but calibrated on the entire environmental spaces of the two continents. 

WITHIN-env minimizes the discrimination of environmental differences between EU and 

1. EU&NA 
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NA ranges. ranges 

LDA Linear Discriminant Analysis (LDA; Fisher, 1936) finds linear combinations of variables 

which discriminate the differences between two or more groups. The objective is thus 

similar to BETWEEN but uses a different algorithm. Distances between occurrences are 

calculated with Mahalanobis distance.  

1. Occ. in 

EU+NA 

 

MDS Multidimensional Scaling (MDS; Gower, 1966) is a non-parametric generalization of PCA 

that allows various choices of measures of associations (not limited to correlation and 

covariance as in PCA). Here we use the distance in the Euclidean space. The degree of 

correspondence between the distances among points implied by MDS plot and the input 

distance structure is measured (inversely) by a stress function. Scores are juggled to reduce 

the stress until stress is stabilized. 

1. Occ. In EU 

2. Occ. in 

EU+NA 

ENFA Ecological Niche Factor Analysis (ENFA; Hirzel et al., 2002). ENFA is an ordination 

technique that compares environmental variation in the species distribution to the entire 

area. This method differs from other ordination techniques in that the principal components 

have a direct ecological interpretation. The first component corresponds to a marginality 

factor: the axis on which the species niche differs at most from the available conditions in 

the entire area. The next components correspond to specialization factors: axes that 

maximize the ratio of the variance of the global distribution to that of the species 

distribution.  

1. Occ. in EU 

+ EU range 

2. Occ. in 

EU&NA  + 

EU&NA 

ranges 

 764 

765 
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Table 2 – SDM techniques for quantifying niche overlap. GLM, GBM and RF were fitted 766 

with species presence-absence as the response variable and environmental variables as predictors 767 

(i.e. explanatory variables) using the BIOMOD package in R (Thuiller et al., 2009, R-Forge.R-768 

project.org) and default settings. MaxEnt was fitted using the dismo package in R with default 769 

settings. For all techniques, we use pseudo-absences that were generated randomly throughout 770 

the area of calibration. Two sets of models were created using two areas of calibration: one using 771 

presence-absence data in EU only and a second using presence-absence data in both EU and NA. 772 

The resulting predictions of occurrence of the species (ranging between 0 and 1) are used as 773 

environmental axes in the niche overlap framework. 774 

Name Description 

GLM Generalized linear models (GLM; McCullagh & Nelder, 1989) constitute a flexible family of regression 

models, which allow several distributions for the response variable and non-constant variance functions to be 

modeled. Here we use binomial (presence-absence) response variables with a logistic link function (logistic 

regression) and allow linear and quadratic relationship between the response and explanatory variables. A 

stepwise procedure in both directions was used for predictor selection, based on the Akaike information 

criterion (AIC; Akaike, 1974).  

MaxEnt MaxEnt (Phillips et al., 2006) is a machine learning algorithm that estimate the probability of occurrence of a 

species in contrast to the background environmental conditions. MaxEnt estimates species' distributions by 

finding the distribution of maximum entropy (i.e. that is most spread out, or closest to uniform) subject to the 

constraint that the expected value for each environmental variable under this estimated distribution matches its 

empirical average. MaxEnt begins with a uniform distribution then uses an iterative approach to increase the 

probability value over locations with conditions similar to samples. The probability increases iteration by 

iteration, until the change from one iteration to the next falls below the convergence threshold. MaxEnt uses L-1 

regularization as an alternative to stepwise model selection to find parsimonious models. 

GBM The gradient boosting machines (GBM; Friedman, 2001) is an iterative computer learning algorithm. In GBMs, 

model fitting occurs not in parameter space but instead in function space. The GBM iteratively fits shallow 

regression trees, updating a base function with additional regression tree models. A randomly chosen part of the 

training data is used for function fitting, leaving the other part for estimating the optimal number of trees to use 

during prediction with the model (out-of-bag estimate). 

RF Random Forests (RF; Breiman, 2001 ). Random Forests grows many classification trees. To classify the species 

observations (i.e. presences and absences) from the environmental variables, RFs puts the variables down each 

of the trees in the forest. Each tree gives a classification, and the tree "votes" for that class. The forest chooses 

the classification having the most votes (over all the trees in the forest). Random forests is designed to avoid 

overfitting. 
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Figure 1 - Example of virtual species following a bivariate normal density along 775 

precipitation and temperature gradients with 50% overlap between the European and 776 

North American niche in environmental space. Red to blue color scale shows the projection of 777 

the normal densities in the geographic space from low to high probabilities. Black dots show 778 

random occurrences. 779 

 780 

 781 

782 
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Figure 2 - Agreement between simulated and detected niche overlap. Each dot corresponds to 783 

a pair of simulated entities. Simulated overlap corresponds to the volume in common between the 784 

two bivariate normal distributions with different means on p and t gradients (see Fig. 1). Filled 785 

circles represent the detected overlap with correction for climate availability (density of 786 

occurrences divided by the density of climate across the entire climate space). Open circles show 787 

the detected overlap when no correction for climate availability is applied. The average absolute 788 

difference between the simulated and measured overlap (abs(∆): ) is indicated for both corrected 789 

and uncorrected measures. 790 

791 
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Figure 3 - Sensitivity analysis of simulated versus detected niche overlap for ordinations not 792 

using a grouping factor. The axes of the analyses on which the overlap is measured correspond 793 

to a) PCA-occ, b) PCA-env, c) MDS and d) ENFA. Crosses refer to models calibrated on the EU 794 

range only. Black dots indicate models calibrated on both EU and NA ranges. Results for ENFA 795 

calibrated on the EU range only could not be provided because of computational limitations. 796 

Abs(∆):  indicate the average absolute difference between simulated and detected overlaps. The 797 

significance of the Wilcoxon signed-rank test, W, is shown (ns: non-significant, *: 0.05<p-798 

value<0.01, **: 0.01<p-value<0.001, ***: p-value<0.001) 799 

800 
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Figure 4 - Sensitivity analysis of simulated versus detected niche overlap for ordinations 801 

using a priori grouping factor. The axes of the analyses on which the overlap is measured 802 

correspond to a) WITHIN-occ, b) WITHIN-env, c) BETWEEN-occ and d) LDA. Black dots 803 

indicate models calibrated on both EU and NA ranges. Abs(∆):  indicates the average absolute 804 

difference between simulated and detected overlaps. The significance of the Wilcoxon signed-805 

rank test, W, is shown (ns: non-significant, *: 0.05<p-value<0.01, **: 0.01<p-value<0.001, ***: 806 

p-value<0.001) 807 

 808 

809 
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Figure 5 - Sensitivity analysis of simulated versus detected niche overlap for different SDM 810 

algorithms. The axes of the analyses on which the overlap is measured correspond to a) GLM, b) 811 

MaxEnt, c) GBM and d) RF. Crosses refer to models calibrated on the EU range only. Black dots 812 

indicate models calibrated on both EU and NA ranges. Abs(∆):  indicates the average absolute 813 

difference between simulated and detected overlaps. The significance of the Wilcoxon signed-814 

rank test, W, is shown (ns: non-significant, *: 0.05<p-value<0.01, **: 0.01<p-value<0.001, ***: 815 

p-value<0.001). 816 

817 
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Figure 6. Niche of spotted knapweed in climatic space - example of a Principal Component 818 

Analysis (PCA-env). a) and b) represent the niche of the species along the two first axes of the 819 

PCA in the European native (EU) and North American invaded range (NA) respectively. Grey 820 

shading shows the density of the occurrences of the species by cell. The solid and dashed contour 821 

lines illustrate respectively 100% and 50% of the available (background) environment. The 822 

arrows represent how the center of the niche has changed between EU and NA. c) shows the 823 

contribution of the climatic variables on the two axes of the PCA and the percentage of inertia 824 

explained by the two axes. Histograms (d-f) show the observed niche overlap D between the two 825 

ranges (bar with a diamond) and simulated niche overlaps (gray bars) on which tests of niche 826 

equivalency (d), niche similarity of NA to EU (e), and niche similarity of EU to NA (f) are 827 

calculated from 100 iterations. The significance of the tests are shown (ns: non-significant, *: 828 

0.05<p-value<0.01, **: 0.01<p-value<0.001, ***: p-value<0.001). 829 

830 
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Figure 7. Niche of the imported fire ant in climatic space - example of a Principal 831 

Component Analysis (PCA-env). a) and b) represent the niche of the species along the two first 832 

axes of the PCA in the European native (EU) and North American invaded range (NA) 833 

respectively. Grey shading shows the density of the occurrences of the species by cell. The solid 834 

and dashed contour lines illustrate respectively 100% and 50% of the available (background) 835 

environment. The arrows represent how the center of the niche has changed between EU and NA. 836 

c) shows the contribution of the climatic variables on the two axes of the PCA and the percentage 837 

of inertia explained by the two axes. Histograms (d-f) show the observed niche overlap D 838 

between the two ranges (bars with a diamond) and simulated niche overlaps (gray bars) on which 839 

tests of niche equivalency (d), niche similarity of NA to EU (e), and niche similarity of EU to NA 840 

(f) are calculated from 100 iterations. The significance of the tests are shown (ns: non-significant, 841 

*: 0.05<p-value<0.01, **: 0.01<p-value<0.001, ***: p-value<0.001). 842 

  843 


