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A prevalent and culturable microbiota links ecological balance to clinical stability of the 
human lung after transplantation. 
 
S. Das, E. Bernasconi, A. Koutsokera, D.-A. Wurlod, V. Tripathi, G. Bonilla-Rosso, J.-D. Aubert, M.-F. Derkenne,     
L. Mercier, C. Pattaroni, A. Rapin, C. von Garnier, B.J. Marsland, P. Engel, L.P. Nicod. 
 
Introduction : Il est graduellement accepté que le microbiote des voies aériennes pulmonaires basses a un impact 
sur la santé du poumon. Le lien qui unit la composition bactérienne et l’homéostase pulmonaire est encore peu 
compris. L’étude du microbiote pulmonaire chez le patient transplanté est propice car elle permet l’observation 
du microbiote dans différentes situations cliniques distinctes, à travers l’analyse transversale et longitudinale des 
lavages bronchoalvéolaires (LBA), obtenus tant lors d’examens de routine que lors d’événements cliniques 
particuliers. 
 
Méthode : Pour cette étude prospective longitudinale nous avons analysé des séquencages d’amplicons (16s 
ARN ou marqueurs géniques spécifiques) et des cultures de bactéries de 234 LBA (n = 1-12 par patient transplanté, 
moyenne 3.7) de 64 patients transplantés pulmonaires, collectés entre 2 semaines et 49 mois post 
transplantation, entre octobre 2012 et mai 2018, durant des check-up de routine ou lors de bronchoscopies sur 
indication clinique, afin de caractériser des communautés de bactéries et d’établir des liens à des charges virales 
de 3 genres d’Anellovirus, à l’expression génique de 31 gènes de l’hôte impliqués dans plusieurs mécanismes 
(inflammation, immunorégulation, remodeling tissulaire et détection de bactéries et de virus), aux fonctions 
pulmonaires et à l’état de santé du patient lui-même. L’abondance des bactéries a été mesurée par qPCR, et 
normalisée par chaque unité taxonomique opérationnelle (OTU). Nous avons utilisé un algorithme de « machine 
learning » basé sur l’indice de dissimilarité de Bray-Curtis pour identifier quatre pneumotypes de composition 
distincte basée sur des variables écologiques. Enfin nous avons établi une biobanque open access appelée « Lung 
Microbiota culture Collection (LuMiCol) », basée sur les cultures de 21 LBA de 18 patients randomisés dans 26 
conditions in vitro différentes. 
 
Résultats : Nous avons identifié 7164 OTU et montré que les phyla les plus abondants après une transplantation 
pulmonaire sont les Bacteroidetes, les Firmicutes, les Proteobacteries et les Acinetobactéries. Les communautés 
bactériennes étaient très variables, avec seulement 22 OTU prédominantes et retrouvées dans plus de 50% des 
échantillons, et faisant parties des genres de bactéries retrouvés également dans le poumon sain du patient non 
transplanté. L’algorithme par machine learning nous a permis de décrire quatre compositions ou états distincts 
du microbiote pulmonaire, les « pneumotypes ». Le pneumotype prédominant et « équilibré », caractérisé par 
une communauté bactrienne diverse, avec des charges d’Anellovirus modérées et une expression génétique de 
l’hôte suggérant une tolérance immunitaire. Les trois autres pneumotypes sont caractérisés par un 
apauvrissement du microbiote ou une domination part des pathogènes potentiels, et liés à une activité immunité 
réduite, des fonctions pulmonaires diminuées, et un risque augmenté de rejet ou d’infection. 
 
Discussion : Nos résultats ont montré que le microbiote pulmonaire post-transplantation est très variable tant 
en termes de charge bactérienne que de composition bactérienne, avec de nombreux taxa bactériens 
transitoires et peu abondants. Quelques membres des communautés bactériennes ont montré une haute 
prévalence et/ou une abondance suggérant qu’ils font partie d’importants colonisants pulmonaires chez 
l’humain. Nous avons pu démontrer que le microbiote pulmonaire post-transplantation évolue de manière très 
dynamique mais comptant un nombre réduit de communauté bactérienne prédominante, pouvant être cultivées. 
Nous avons pu décrire quatre « pneumotypes », mettant en évidence un lien entre l’écosystème pulmonaire 
microbien, les profils d’expression des gènes de l’hôte, les charges virales d’Anellovirus, les fonctions 
pulmonaires et la stabilité clinique du patient transplanté. 
 
Conclusion : Cette étude permet d’établir une base à la compréhension de la nécessité d’un microbiote équilibré 
notamment entre les communautés bactériennes, l’hôte et les virus environnants pour préserver les fonctions 
et la santé des poumons. Les quatre pneumotypes définis semblent suivre le principe d’Anna Karenina, où les 
communautés saines varient peu autour d’un état d’équilibre, et où les communautés perturbées varient 
beaucoup lors d’états de déséquilibre. Nos résultats permettent d’établir un lien entre l’écosystème pulmonaire 
bactérien, les fonctions pulmonaires et la stabilité clinique post-transplantation. Enfin nous espérons que notre 
collection LuMiCol pourra servir de fondation pour de futures études expérimentales à modèles cellulaires ou 
animaux. 
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There is accumulating evidence that the lower airway microbiota impacts lung health.

However, the link between microbial community composition and lung homeostasis remains

elusive. We combine amplicon sequencing and bacterial culturing to characterize the viable

bacterial community in 234 longitudinal bronchoalveolar lavage samples from 64 lung

transplant recipients and establish links to viral loads, host gene expression, lung function,

and transplant health. We find that the lung microbiota post-transplant can be categorized

into four distinct compositional states, ‘pneumotypes’. The predominant ‘balanced’ pneu-

motype is characterized by a diverse bacterial community with moderate viral loads, and host

gene expression profiles suggesting immune tolerance. The other three pneumotypes are

characterized by being either microbiota-depleted, or dominated by potential pathogens, and

are linked to increased immune activity, lower respiratory function, and increased risks of

infection and rejection. Collectively, our findings establish a link between the lung microbial

ecosystem, human lung function, and clinical stability post-transplant.
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Recent studies have shown that diverse bacterial commu-
nities are present in the lower respiratory tract of healthy
humans1–6. These communities are predominated by the

same phyla as the oral and gastrointestinal microbiota (Bacter-
oidetes, Firmicutes, Actinobacteria, Proteobacteria). However,
their phylogenetic composition, total bacterial load, and
temporal-spatial dynamics are distinct owing to the characteristic
physicochemical, anatomical, and immunological conditions of
the lung, which makes this organ a distinct microbial habitat with
specific host-microbe interactions7,8.

Several independent studies have shown that supraglottic taxa
(i.e., bacteria found in the human oropharyngeal area) such as
Streptococcus, Prevotella, and Veillonella are major constituents of
the healthy lower respiratory tract microbiota. These bacteria
have been proposed to contribute to the immunological devel-
opment and homeostasis of the human lung, as their presence
correlates with an increased pro-inflammatory response during
postnatal immune maturation as well and lung function in
adulthood4,9. Shifts in microbial community composition, toge-
ther with a decrease in bacterial diversity10,11, have been asso-
ciated with various respiratory diseases such as Chronic
Obstructive Pulmonary Disease (COPD), Idiopathic Pumonary
Fibrosis and asthma. Together, these findings suggest that the
lower respiratory microbiota is linked to the health state of the
human lung and hence may play important roles for maintaining
lung homeostasis.

Formidable challenges are associated with studying the lower
respiratory tract microbiota. Firstly, the sampling of the human
lung, which is best achieved by collecting bronchoalveolar lavage
fluid (BALF) during bronchoscopy12, is an invasive procedure
which implies that it is rarely performed in healthy individuals.
Consequently, large datasets from healthy individuals—including
longitudinal studies that would inform about the dynamics of the
human lung microbiota—are scarce. Secondly, the relatively low
bacterial biomass in the human lung increases the risk of
describing contaminants as being part of the respiratory tract
microbiota. This can skew diversity measures of the lower
respiratory tract microbiota, in particular when solely relying on
relative abundance data5. Thirdly, while several studies have
isolated viable bacteria from lung samples6,13,14, a bacterial col-
lection that can serve as a public resource has not been estab-
lished, and little is known about the physiology and growth
characteristics of lung isolates. Therefore, our current under-
standing of the ecological properties of different lung microbiota
members and how these are linked to the environmental condi-
tions in the lung ecosystem (such as immune state) remains
limited.

Studying the microbiota in the context of lung transplantation
can provide important insights about the crosstalk between the
respiratory tract microbiota and the host15. Lung transplant
recipients undergo post-transplant follow-up, in which BALF is
collected to monitor the health state of the transplanted organ.
This offers unique opportunities for longitudinal studies on the
lung microbiota composition and allows establishing links to the
host’s immune state and to clinical metadata. Due to different
types of clinical complications such as infection16, acute cellular
or humoral rejection17 and Chronic Lung Allograft Dysfunction
(CLAD)18, the transplanted lung also offers the opportunity to
study the respiratory microbiota19–22 under a wide range of
ecological conditions. A better understanding of the dynamics of
the lung ecosystem in this context can ultimately help limit the
burden of morbidity and mortality associated with post-
transplant complications and promote graft survival.

Recent studies on lung transplants have provided insights
about the distribution of the microbiota along the conducting
and respiratory airways23, or the adaptation of opportunistic

pathogens to the lung environment24. Moreover, there is accu-
mulating evidence that the immune state of the transplanted lung
correlates with changes in the composition of the lung
microbiota20,25. High abundance of opportunistic pathogens such
as members of the genera Staphylococcus and Pseudomonas have
been linked to pro-inflammatory responses in the transplanted
lung25,26, and were also found in respiratory diseases such as
COPD and asthma27,28. These bacteria activate macrophages and
induce a strong inflammatory response after transplantation,
reflected by high levels of tumor necrosis factor-α and
cyclooxygenase-225. This is in contrast to certain strains of non-
pathogenic Streptococcus pneumoniae, whose abundance has been
linked to low inflammation and tissue repair and remodeling25.
Sustained inflammatory reactions and uncontrolled tissue remo-
deling can eventually lead to irreversible decline in lung
function29,30. Collectively, these previous data suggest that the
lung microbiota post-transplant can constitute different compo-
sitional states that may be linked to allograft function. However,
quantitative analyses of these microbiota profiles are currently
lacking, including the phylogenetic and physiological character-
ization of viable community members, and the links to the lung
ecological environment and the clinical outcome post-transplant.

In this study, we characterized the airway microbiota in 234
longitudinal BALF samples from 64 lung transplant recipients.
We combined culture-independent and culture-dependent ana-
lyses to identify the most prevalent lung bacteria post-transplant
and to establish a collection of primary lung bacterial isolates. We
linked the identified compositional changes in lung microbiota to
host gene expression profiles, anellovirus loads and patient
metadata to understand the importance of the ecological envir-
onment of the transplanted lung on clinical outcomes. Our
findings show that BALF samples can be classified into four
distinct compositional states (i.e., pneumotypes) similar to the
enterotypes identified in the human gut31. These pneumotypes
are distinguished by different community characteristics and
distinct physiological properties of their predominant members.
We show that pneumotypes are differentially associated with
anellovirus loads, respiratory function, and both local and per-
ipheral host immune responses, including those linked to allo-
graft rejection. Taken together, our findings not only illustrate the
strong links between lung health and local microbiota composi-
tion, but pinpoint underlying community characteristics and lung
environmental conditions as well as provide a large resource of
cultured isolates for future experimental approaches.

Results
Combined culture-dependent and culture-independent
approach identifies the prevalent and viable bacterial com-
munity members of the human lung post-transplant. To
characterize the bacterial community composition of the lung
microbiota post-transplant, we performed 16S rRNA gene
amplicon sequencing of 234 longitudinal BALF samples from 64
lung transplant recipients collected over a 49-month period
(Fig. 1a, Supplementary Table 1). A total of 7164 operational
taxonomic units (OTUs) were identified, excluding OTUs con-
tributing to reads in 11 negative control samples32 (see “Meth-
ods”, Supplementary Fig. 1a, Supplementary Data 1 and 2). In
accordance with previous studies on BALF samples from healthy
non-transplant individuals4–6,26, we found that Bacteroidetes and
Firmicutes followed by Proteobacteria and Actinobacteria are the
most abundant phyla in the post-transplant lung (Fig. 1b). Pre-
valence analysis across all BALF samples showed that the com-
munity composition is highly variable with only 22 OTUs shared
by ≥50% of the samples (Supplementary Fig. 1b, Supplementary
Data 3). However, these 22 OTUs constituted 42% of the total
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number of rarefied reads, indicating that they are predominant
members of the post-transplant lung microbiota (Fig. 1c, Sup-
plementary Fig. 1c, Supplementary Table 2, Supplementary
Data 3). They belonged to the genera Prevotella 7, Streptococcus,
Veillonella, Neisseria, Alloprevotella, Pseudomonas, Gemella,
Granulicatella, Campylobacter, Porphyromonas and Rothia, the
majority of which are also prevailing community members in the
healthy human lung3,5,7,26, suggesting a considerable overlap in
the overall composition of the lung microbiota between the
healthy and the transplanted lung.

Differences in bacterial loads between samples can skew
community analyses when based on relative abundance profiling

alone. Therefore, we used qPCR to determine the total copies of
the 16S rRNA gene as an estimate for bacterial counts, and
normalized the abundances of each OTU across the 234 samples
(absolute abundance). We found that the bacterial counts vastly
differed between samples, ranging between 101 and 106 gene
copies per ml of BALF (Supplementary Fig. 1d). The number of
observed OTUs increased with decreasing counts (Fig. 1d)
suggesting that a large fraction of the OTUs were detected in
samples of low bacterial biomass and hence represent either
transient or extremely low-abundant community members, or
sequencing artefacts and contaminations. In turn, 19 of the 7164
OTUs constituted >75% of the total bacterial biomass detected

Fig. 1 Combining BALF amplicon sequencing and bacterial culturing to deduce the microbial ecology of deep lung microbiota. a Schematic of the
sampling of Bronchoalveolar lavage fluid (BALF) from lung transplant recipients over time (months post-transplant). b Relative abundances (%) of most
abundant phyla across BALF samples. Box plots show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as
outliers (single points). c Prevalence (% samples) vs contribution to total reads across samples for most abundant phyla. Dot color shows different genera
and size show total rarefied reads. Gray dashed horizontal line shows prevalence ≥50%. d Scatter plot shows correlation between number of observed
OTUs and bacterial counts per BALF sample obtained by quantifying 16S rRNA gene copies with qPCR. Linear regression is shown by the blue line with gray
shaded area showing 95% confidence interval (n= 234, two-sided, F(1, 232)= 91.04, P= 2.2 × 10−16), Coefficient of correlation; R2= 0.28. e Bar chart
shows lung taxa (genera; OTU IDs) that contributed ≥75% of total bacterial biomass across samples (n= 234). Venn diagram inset shows overlap
(yellow) between the most prevalent (≥50% incidence, light blue) and the most abundant (≥75% total count, red) taxa in the transplanted lung. Bar colors
also show the same.
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across the 234 BALF samples (Fig. 1e). This included 11 of the 22
most prevalent OTUs (see above) plus eight OTUs that were
detected in only a few samples but at very high abundance
(Staphylococcus; OTU_2, Corynebacterium 1; OTU_16 and
OTU_24, Anaerococcus; OTU_49 and OTU_234, Haemophilus;
OTU_78, Streptococcus; OTU_6768, Peptoniphilus; OTU_63,
Supplementary Table 2). It is important to differentiate these
opportunistic colonizers from other community members with
low incidence, as they reached very high bacterial counts in some
samples with potential implications for lung health.

To demonstrate the viability of prevalent lung microbiota
members and to establish a reference catalogue of bacterial
isolates from the human lung for experimental studies, we
complemented the amplicon sequencing with a bacterial cultur-
ing approach (Supplementary Fig. 2). We cultivated 21 random
BALF samples from 18 individuals, on 15 different semi-solid
media (both general and selective) in combination with 3 oxygen
concentrations; aerobic, 5% CO2, and anaerobic (See “Methods”
and Supplementary Table 3), representing 26 different conditions.
We cultured fresh BALF immediately upon extraction (within 2
h), as we observed loss in bacterial diversity upon cultivating frozen
samples. This resulted in a total of 300 bacterial isolates,
representing 5 phyla, 7 classes, 13 orders, and 17 families from
which we built an open-access biobank called the Lung Microbiota
culture Collection (LuMiCol, Supplementary Data 4, https://github.
com/sudu87/Microbial-ecology-of-the-transplanted-human-lung).

To examine the extent of overlap between bacteria in LuMiCol
and the diversity obtained by amplicon sequencing, we included
16S rRNA gene sequences from 215 isolates that passed our
quality filter into the community analysis, which allowed for the

retrieval of OTU-isolate matching pairs32 (Methods). We found
that 213 isolates matched to 47 OTUs (Fig. 2a, c, Supplementary
Data 5), including 17 of the most prevalent and abundant bacteria
(Fig. 1e, Supplementary Table 2). As expected, bacteria with high
abundance in the amplicon sequencing-based community
analysis were isolated more frequently, with Firmicutes revealing
the highest isolate diversity (Fig. 2a–c, Supplementary Data 4, 5)
and being recovered under the most diverse culturing conditions.

In summary, our results from the combined culture-dependent
and culture-independent approach show that the lung microbiota
post-transplant is highly variable in terms of both bacterial load
and community composition with many transient and low-
abundant bacterial taxa. However, a few community members
display relatively high prevalence and/or abundance suggesting
that they represent important colonizers of the human lung.

LuMiCol informs on the diversity and metabolic preferences of
culturable human lung bacteria. We characterized the culturable
community members of the lower respiratory tract contained in
LuMiCol by testing a wide range of growth conditions and
phenotypic properties (see “Methods”). The majority of the cul-
tured isolates could taxonomically be assigned at the species level
based on genotyping of the 16S rRNA gene V1-V5 region.
However, the limited taxonomic resolution offered by this
method does not allow to discriminate between closely related
strains, which can include both pathogenic and non-pathogenic
bacteria. Hence for Streptococcus, we additionally tested for type
of hemolysis (alpha, beta, or gamma) and resistance to optochin,
which differentiates the pathogenic pneumococcus and the non-

Fig. 2 A lung microbiota culture collection (LuMiCol) reveals extended diversity and phenotypic characteristics of the lower airway bacterial
community. a Phylogenetic tree of the 47 OTU-isolate matching pairs inferred with FastTree. Branch bootstrap support values (size of dark gray circles)
≥80% are displayed. b Growth characteristics of each OTU-isolate matching pair in three different oxygen conditions (Anaerobic - light brown, 5% CO2-
yellow, aerobic-light blue, n= 3). Column with pie charts shows growth on semi-solid agar. Heatmap shows median change in Optical Density (OD) at
600 nm growth in three different liquid media (THY, RPMI, RPMI without glucose) over 3 days. c Cumulative counts of each OTU-isolate matching pair
across all BALF samples (gray). d Number of isolates in Lumicol (black) per OTU-isolate matching pair. Taxa are labeled as genus; OTU ID, with an
indication of whether they are prevalent (gray rectangle) or opportunistic (magenta rectangle) in the lower airway community. The names of the closest hit
in databases: eHOMD and SILVA are used as species descriptor.
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pathogenic viridans groups (Fig. 2a, Supplementary Fig. 2b, c).
This demonstrated that the 16 Streptococcus OTU-isolate pairs
belong to the viridans group of streptococci (VS)33. Interestingly,
these isolates exhibited the highest genotypic and phenotypic
diversity throughout our collection and belonged to five OTUs
among the 22 most prevalent community members, with Strep-
tococcus mitis (OTU_11) present in 93.6% of all samples.

BALF from healthy individuals contains amino acids, citrate,
urate, fatty acids, and antioxidants such as glutathione but no
detectable glucose34, which is associated with increased bacterial
load and infection35–37. To get insights into basic bacterial
metabolism, we assessed the growth of all 47 isolates matching an
OTU under different oxygen concentrations. We used undefined
rich media (Todd-Hewitt Yeast extract) and defined low-
complexity liquid media (RPMI 1640), including a glucose-free
version to mimic the deep lung environment (see “Methods”).
Despite the presence of oxygen in the human lung, the majority
of the isolates were either obligate or facultative anaerobes
(Fig. 2a), including some of the most prevalent members
(Prevotella melaninogenica (OTU_3), Streptococcus mitis
(OTU_11), Veillonella atypica (OTU_6) and Granulicatella
adiacens (OTU_17). A similar trend was also observed in liquid
media under anaerobic conditions, with the exception of the
genera Prevotella, Veillonella and Granulicatella. Most strepto-
cocci from the human lung grew best in complex liquid media
containing glucose under anaerobic conditions, including the
most prevalent species in our cohort, S. mitis (OTU_11) (Fig. 2b).
However, noticeable exceptions were S. vestibularis (OTU_34),
S. oralis (OTU_3427 and OTU_1567), and S. gordonii
(OTU_10031), which grew equally well in the presence of oxygen
and in low-complexity liquid medium (Fig. 2b). Most Actino-
bacteria grew best on rich medium in the presence of 5% CO2,
with an exception of Actinomyces odontolyticus (OTU_39), which
required anaerobic conditions. Some Actinobacteria grew equally
well in anaerobic conditions as in the presence of 5% CO2, i.e.,
Corynebacterium durum (OTU_501), Actinobacteria sp. oral
taxon (OTU_328 and OTU_228).

The two most predominant opportunistic pathogens in our
lung cohort, P. aeruginosa (OTU_1) and S. aureus (OTU_2),
grew best in rich liquid medium in the presence of oxygen
(Fig. 2c), although these also grew to lower degree under
anaerobic conditions. These results indicate that changes in the
physicochemical conditions in the lung may favor the growth of
these two opportunistic pathogens. In summary, our observations
from the bacterial culture collection provide first insights into the
phenotypic properties of human lung bacteria and will serve as a
basis for future experimental work.

Identification of four compositionally distinct pneumotypes
post-transplant using machine learning based on ecological
metrics. To detect and characterize differences in bacterial
community composition between BALF samples from transplant
patients, we clustered the samples using an unsupervised machine
learning algorithm based on pairwise Bray–Curtis dissimilarity32

(beta diversity, See “Methods”, Supplementary Data 6). This
segregated the samples into four partitions around medoids
(PAMs) at both phylum and OTU level (Fig. 3a, b, Supplemen-
tary Fig. 3a, b). We refer to these clusters as “pneumotypes”
PAM1, PAM2, PAM3, and PAM4 (Supplementary Table 4).
PAM1 formed the largest cluster consisting of the majority of
samples (n= 115) followed by PAM3 (n= 76), PAM2 (n= 19),
and PAM4 (n= 24) (Supplementary Data 7). Examination of
various diversity measures (Species occurrence, OTU diversity,
OTU richness, Fig. 3c–e), distribution of the dominant commu-
nity members (Fig. 3f), and bacterial counts (16S rRNA gene

copies, Fig. 3g) revealed distinctive characteristics between the
four pneumotypes.

PAM1 showed the highest similarity in community composi-
tion between samples (Species occurrence/Sorenson’s Index,
Fig. 3c), and had intermediate levels of diversity and bacterial
load (Fig. 3d, e and g, Supplementary Fig. 3c). Twenty of the 22
most prevalent community members were enriched in incidence
and abundance in PAM1 when compared to the other PAMs
(ART-ANOVA, FDR, abundance P < 0.01, Fig. 3h, Supplemen-
tary Table 5) with five OTUs occurring in >90% of the samples
(incidence); P. melaninogenica (OTU_3, 97.4%), S. mitis (OTU
11, 99.1%), V. atypica (OTU_6, 93.9%), V. dispar (OTU_30, 93%)
and G. adiacens (OTU_17, 93%). Contrastingly, two OTUs
(P. aeruginosa; OTU_1 and P. fluorescens; OTU_15) had neither a
higher incidence nor a higher abundance in PAM1 (Fig. 3h,
Supplementary Table 5). Thus, PAM1 samples harbor balanced
bacterial communities of relatively high similarity composed
of the most prevalent bacteria across our data set. Henceforth,
we refer to this PAM as the ‘balanced pneumotype’
(PneumotypeBalanced).

In contrast to PneumotypeBalanced, PAM2 and PAM4 harbored
lower bacterial diversity (Fig. 3d) and OTU richness (Fig. 3e),
were dominated by a single community member (Fig. 3f), and
had higher bacterial loads (Fig. 3g). In these two PAMs, the
taxa associated with PneumotypeBalanced had a low sample
incidence and absolute abundance compared to the other PAMs
(Supplementary Fig. 4a, b). S. aureus (OTU_2), Corynebacterium
(OTU_24) and Anaerococcus (OTU_49) were enriched in PAM2
(ART-ANOVA, FDR, P < 0.001, Supplementary Fig. 4a), while
Haemophilus (OTU_78) and P. aeruginosa (OTU_1 & OTU_15)
dominated PAM4 (ART-ANOVA, FDR, P < 0.001, Supplemen-
tary Fig. 4b). We refer to these as ‘PneumotypeStaphylococcus’
(PAM2) and ‘PneumotypePseudomonas’ (PAM4), with the major
species known to be potential pathogens that proliferate
rapidly in lung, under a variety of pathological respiratory
conditions38,39, in line with the high loads observed in our setting
(Fig. 3g).

The fourth cluster identified, PAM3, exhibited the lowest
between-sample similarity in species composition (Fig. 3c), the
highest OTU diversity and richness (Fig. 3d, e), and lowest
dominance (Fig. 3f). The samples in this PAM were characterized
by remarkably low bacterial loads, up to two orders of magnitude
below samples in other PAMs (Fig. 3g, Supplementary Fig. 3c),
suggesting a depauperated microbiota that has been associated
with dysbiotic physiological states of the gut microbiota40.
Consequently, the high OTU richness detected in
PAM3 samples is likely due to over-sequencing of rare or
transient species, or sequencing artefacts. This is also supported
by the fact that the 30 predominant microbiota members in
PAM3 were significantly reduced in their incidence and
abundance compared to the other PAMs (ART-ANOVA, FDR,
P < 0.001, Fig. 3i). We refer to this PAM as the ‘microbiota-
depleted’ pneumotype (PneumotypeMD).

Qualitative culture results obtained from matched BALF and
bronchial aspirate (BA) on selective media further reinforced the
genuine existence of the four pneumotypes (Fig. 3j, Supplemen-
tary Fig. 5). BALF samples from PneumotypeBalanced had the
highest percentage of matches to the oropharyngeal microbiota,
which consists of many of the bacteria predominant in this
pneumotype (e.g., Streptococcus or Veillonella). Similarly, culture
results of BALF samples with PneumotypeStaphylococcus and
PneumotypePseudomonas were most frequently positive for
S. aureus/Corynebacterium spp. and P. aeruginosa, respectively,
while those obtained for BALF samples with PneumotypeMD were
often culture negative (Fig. 3j, Supplementary Fig. 5a). A similar
picture was observed for BA (Fig. 3j, Supplementary Fig. 5b),
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where however a higher percentage of positive cultures for
oropharyngeal flora was observed compared to BALF, especially
for PneumotypeMD. This suggests differences in the microbiota
between the two sample types, despite the known topographic
continuity of microbial communities in the airways1,3,7. This is
supported by the fact that for PneumotypeStaphylococcus and
PneumotypePseudomonas, there was no association between pre-
and post-transplant colonization by S. aureus (χ2= 0.047, P=
0.82) and P. aeruginosa (χ2= 0.2, p= 0.65) (Supplementary
Fig 5c, d), respectively, in the upper respiratory tract.

Many of the OTUs of PneumotypeMD could not be cultured in
our bacterial culturing approach (Supplementary Table 3, 5,
Supplementary Fig. 5), which together with the low bacterial
abundance in corresponding samples, questions their relevance/
existence as lung microbiota members. In contrast, most of the
major community members characteristic of the other three
pneumotypes were represented by isolates in LuMiCol, including

the two opportunistic pathogens, P. aeruginosa (OTU_1) and
S. aureus (OTU_2), providing the basis for future experimental
work on the predominant species of these pneumotypes. Taken
together, we identified four distinct bacterial communities in
transplanted lung, which we refer to as pneumotypes, and
validated them by culturing of BALF samples.

Bacterial pneumotypes are linked to distinct host gene
expression patterns. The existence of bacterial pneumotypes with
distinctive community composition suggests differences in the
microenvironmental conditions of the human lung post-trans-
plant, which could be echoed in other constituents of the lung
ecosystem. We compared the median expression levels of 31 host
genes belonging to seven functional categories across the four
pneumotypes. These genes are involved in inflammation,
immunoregulation, tissue remodeling and detection of bacteria

Fig. 3 Bacterial communities of the lung post-transplant fall into four ‘pneumotypes’ with distinct community characteristics. a, b Principal component
analysis shows Partition around medoids (PAMs) at phylum and OTU level respectively generated by k-medoid-based unsupervised machine learning
using Bray–Curtis dissimilarity (occurrence and abundance). Pneumotypes are color coded: Balanced (red, n= 115), Staphylococcus (green, n= 19),
Microbiota-depleted (MD, blue, n= 76), and Pseudomonas (orange, n= 24). c–g Violin plots show distributions of pairwise species occurrence (Sorenson’s
index, PERMANOVA, two-sided, F(3, 229)= 8.49, P= 9.9 × 10−5), OTU diversity (Kruskal–Wallis test, χ2= 89.2, df= 3, two-sided, P= 2.2 × 10−16), OTU
richness (ANOVA, F(3, 229)= 43.9, two-sided, P= 2.2 × 10−16), proportion of most dominant OTUs (Kruskal–Wallis test, χ2= 94.45, df= 3, two-sided,
P= 2.2 × 10−16), and total bacterial counts (ANOVA, F(3, 229)= 43.9, two-sided, P= 2.2 × 10−16), respectively, across the four pneumotypes. h, i
Enrichment analysis of prevalence (green dotted line ≥50%) and absolute abundance across all samples of the 30 most dominant taxa (i.e., OTUs) in
PneumotypeBalanced and PneumotypeMD respectively, when each was compared to the other three combined pneumotypes (gray boxes). Differential
abundances after enrichment analysis was calculated between each PAM and the other three PAMs combined, using ART-ANOVA. j Heatmap shows
relative percentage of taxa (right colored panel) cultured from paired samples of Bronchial aspiration (BA) and Bronchoalveolar lavage fluid (BALF) from
each pneumotype (left colored panel). Oropharyngeal flora mainly corresponds to PneumotypeBalanced (i.e., Streptococcus, Prevotella, Veillonella). All box
plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points).
Multiple comparison of beta diversity indices was done by pairwise PERMANOVA (adonis) with False Discovery rate (FDR). Post hoc analyses (95%
Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test (Kruskal test) with False Discovery Rate (FDR) or least-squares means
(ART-ANOVA) with False Discovery Rate (FDR). * P < 0.05, ** P < 0.01, *** P < 0.001, NS= not significant.
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and viruses (See “Methods”, Fig. 4a), and their expression pat-
terns differed across the four pneumotypes, with particularly high
transcriptional activity in PneumotypeStaphylococcus (Fig. 4a). To
identify the genes with the greatest power to discriminate between
the four pneumotypes and between samples differing by bacterial
counts, we applied a machine learning approach (Random Forest,
See “Methods”) based on the host gene expression in 234 BALF

samples. The PneumotypeBalanced was predicted with highest
accuracy (92%), followed by PneumotypePseudomonas (83.4%) and
PneumotypeMD (81.4 %), while no accuracy was achieved for
PneumotypeStaphylococcus (Supplementary Table 5). We identified 6
of the 31 genes to have a particularly high predictive power
IFNLR1, MRC1, IL10, IL1RN, LY96, IDO (Importance score >10;
99% Confidence Interval, Fig. 4b). IFNLR1 encodes interferon
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lambda receptor 1, which is involved in antiviral defence and
epithelial barrier integrity41. This gene was up-regulated in
samples with PneumotypeBalanced compared to the other three
pneumotypes (Fig. 4c). MRC1 (Mannose Receptor C-Type 1)42

and LY96 (Lymphocyte Antigen 96)43 encode microbial poly-
saccharide and lipopolysaccharide recognition proteins43,
respectively. Compared to samples with PneumotypeBalanced,
these two genes were up-regulated in PneumotypeStaphylococcus and
PneumotypeMD, and down-regulated in samples with Pneumo-
typePseudomonas (Fig. 4d, e). Samples with PneumotypeBalanced
further differed from those linked to the other three pneumotypes
by higher expression of genes involved in immune modulation
and peripheral immune tolerance (IL-10/Interleukin 10 and
IDO1/Indoleamine 2,3-Dioxygenase 1, Fig. 4f, Supplementary
Fig. 6), and a lower expression of IL1RN (Interleukin 1 Receptor
Antagonist, Fig. 4g), produced as part of the inflammatory
response to control the potentially deleterious effects of
Interleukin-1 beta (IL-1β)44.

Similarly, we found five genes with high discriminating power
(Fig. 4i, importance score >10) for bacterial counts, of which two
were particularly good predictors: PDGFD and IFNLR1. PDGFD
encodes the D isoform of platelet-derived growth factor, which
promotes the proliferation of cells of mesenchymal origin such as
fibroblasts45. Expression of this gene was negatively correlated
(Fig. 4j, AIC 62.4, p < 0.001) with bacterial abundance. In
contrast, IFNLR1 expression positively correlated with bacterial
abundance (Fig. 4k, AIC 35.7, p < 0.05). Accordingly, PDGFD
expression was higher while IFNLR1 expression was lower in
PneumotypeMD (Fig. 4c, h) as compared to the other pneumo-
types, suggesting a link between the normal presence of bacteria
in the lower respiratory tract and homeostatic levels of tissue
remodeling, epithelial barrier integrity and host response to
viruses. In summary, these results show that host-specific gene
expression markers align with distinct bacterial states, high-
lighting the existence of complex associations between different
lung ecosystem characteristics.

Anellovirus dynamics is associated with bacterial community
and host physiology in lung. The observed links between pneu-
motypes and antiviral defence prompted us to look into the tri-
partite interactions between lung bacteria, viruses, and host. To this
end, we quantified the load of the three genera of anelloviruses
identified in humans (Alphatorquevirus, Betatorquevirus, and
Gammatorquevirus) across the 234 BALF samples. In accordance
with a previous study46, we found that the transplanted lung con-
tains high levels of anelloviruses, with Gammatorquevirus pre-
dominating. Viral loads of the three genera peaked between 1.5 and
6 months after transplantation and decreased at later time points
(Fig. 5a). Anellovirus load varied substantially between pneumo-
types (Fig. 5b–d). All three viral genera were lowest in samples with
PneumotypeMD and Alphatorquevirus showed particularly high
levels in samples with PneumotypePseudomonas (Fig. 5b). Intra-
individual pairwise analysis revealed a particularly strong decrease
in load for longitudinal transitions from PneumotypeBalanced to
PneumotypeMD and a corresponding increase for the inverse
(Fig. 5e, Supplementary Fig. 7). We further identified four
human genes: TLR3, IGF1, RSAD2, IFITM2, as important pre-
dictors of anellovirus loads in BALF (Fig. 5f, See “Methods”).
Of these, Toll-like Receptor 3 (TLR3) was positively correlated
with total viral load (Fig. 5g, AIC 73.9, p < 0.001). This is consistent
with the low viral load observed with PneumotypeMD, where TLR3
was down-regulated (Fig. 5h). These findings link changes in the
lung microbiota composition to changes in viral loads and host
gene expression indicating possible implications for allograft
outcome.

Pneumotypes are linked to differential risk of post-transplant
clinical complication. A large set of clinical data (Supplementary
Data 7) enabled us to associate differences in bacterial community
composition, host gene expression, and anellovirus load to allo-
graft and patient health status. Immunosuppression as well as
prophylactic and therapeutic antibiotic usage were anticipated as
major confounding factors. However, we found no association
between the different pneumotypes and the main immunosup-
pressive drugs (ANOVA, prednisone; P= 7.68 × 10−1, tacroli-
mus; P= 9.1 × 10−1) used in our cohort, at the time of BALF
sampling (Supplementary Fig. 8a, b). In contrast to what has been
reported for blood plasma after transplantation47, we also did not
observe a correlation between anellovirus load and immunosup-
pressive drug levels (Lm, prednisone; P= 8.0 × 10−1, tacrolimus;
P= 9.1 × 10−1, Supplementary Fig. 8c, d, See “Methods”). How-
ever, we observed a negative relationship between the number of
antibiotics administered at the time of BALF sampling and the
fraction of samples in PneumotypeBalanced, and a positive rela-
tionship with the fraction of PneumotypeMD samples (Fisher’s
test, P= 2.0 × 10−3, Fig. 6a). These observations thus suggest a
link between intensive antibiotic use and a disturbance of the
most balanced and compositionally stable lung microbiota profile.

We observed that a clinical diagnosis of infection was rare in
the presence of PneumotypeBalanced and PneumotypeMD, com-
pared to PneumotypeStaphylococcus and PneumotypePseudomonas

(Binomial linear model, Yes or No, P < 0.001 and P= 0.016,
respectively; Fig. 6b). This confirms the results of our 16S rRNA
gene analysis, which showed that PneumotypeStaphylococcus and
PneumotypePseudomonas are dominated by opportunistic patho-
gens, S. aureus and P. aeruginosa, respectively. It is also consistent
with the finding of lower numbers of neutrophils (Fig. 6c), but
not macrophages (Fig. 6d), in PneumotypeBalanced and Pneumo-
typeMD as compared to PneumotypeStaphylococcus and, to a lesser
extent, PneumotypePseudomonas, emphasizing that pneumotypes
are associated with local conditions that differ in terms of
recruitment of pro-inflammatory cells.

Lung transplant recipients face risks of allogeneic responses
against the graft, notably promoted by clinical infection. Our study
did not have the statistical power to dissect the links between
pneumotypes and different types of rejection, limited by the
number of samples per rejection category in our dataset. Therefore,
we grouped 29 samples from 17 patients with either CLAD, acute
cellular rejection grade ≥2, or the presence of donor-specific
antibodies (mean fluorescence intensity >1000), as these all indicate
a suboptimal control of host immune competence and thus an
increased probability of allograft injury (Fig. 6e, See “Methods” for
clinical definitions). The majority of these samples were associated
with PneumotypeStaphylococcus (41.7%) and PneumotypeMD (26.2%),
followed by PneumotypePseudomonas (15.4%) and PneumotypeBalanced
(13.1%), suggesting that this latter microbiota profile is associated
with a lower risk of clinical complications. This was further
corroborated by the count of circulating B lymphocytes in
peripheral blood, suggesting more active humoral immunity in
the presence of PneumotypeStaphylococcus, PneumotypePseudomonas and
PneumotypeMD, compared to PneumotypeBalanced (Tukeys test, P=
2.7 × 10−2, P= 2.6 × 10−1 and P= 1.2 × 10−1 respectively; Fig. 6f).
In addition to bacterial composition, anelloviruses were also
linked to CLAD through a lower load of Gammatorquevirus
(Wilcoxon test, P= 7.0 × 10−3, Fig. 6g), while no significant
association was observed with Alphatorquevirus or Betatorquevirus
(Wilcoxon test, P= 1.5 × 10−1 and P= 9.0 × 10−2 respectively,
Fig. 6g).

Finally, we used the measurement of ‘Forced Expiratory
Volume in 1 s’ (FEV1) to search associations between lung
ecology and pulmonary function testing. This assessment was
made irrespective of the diagnosis of CLAD, which requires an
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irreversible drop in FEV1 below 80% of the baseline value, with
prior exclusion of alternative confounding diagnosis (See
“Methods”). PneumotypeStaphylococcus and PneumotypePseudomonas

were associated with lower FEV1 values overall, with a frequent
substantial decline below 80% predicted (Dunn’s test, P= 3.0 ×
10−2, Fig. 6h), while PneumotypeBalanced, along with Pneumoty-
peMD, was linked to preserved lung function.

PneumotypeBalanced shows the highest temporal stability and
resilience in the transplanted lung. Taking advantage of the
longitudinal sampling, we explored the dynamics of the pneu-
motypes after transplantation. We analyzed transitions between
pneumotypes in up to eight BALF samples per transplant, col-
lected within five consecutive time windows (Fig. 7a). There was
no significant difference in the distribution of pneumotypes
across the different time windows (χ2 test, P= 6.0 × 10−1).
Although most BALF samples were associated with Pneumoty-
peBalanced, transitions between two different microbiota pneu-
motypes occurred for about half of all consecutive sample pairs

(Supplementary Fig. 9). The transition dynamics were explained
by Markov chain properties, i.e., the pneumotype of a given
sample only depends on the state of the previous sample in the
chain (χ2 test, P= 3.3 × 10−1, Fig. 7b). The transitions were
irreducible, aperiodic and recurrent, and none of the pneumo-
types behaved as an absorbing state (See “Methods”). Pneumo-
typeBalanced exhibited the greatest stability, with the highest
probability of recurrence (63%), fitting the Markov probabilities,
followed by PneumotypeMD (42%; Fig. 7b). In addition, the large
fraction of transitions toward PneumotypeBalanced between the
first four time windows indicated a substantial resilience capacity
for this profile. Accordingly, the transitions between Pneumoty-
peStaphylococcus, PneumotypePseudomonas and PneumotypeBalanced
occurred mainly in the direction of this latter profile (Fig. 7b),
while in contrast to model prediction, PneumotypeStaphylococcus
and PneumotypePseudomonas appeared to be virtually disconnected.

Finally, we illustrate the relationship between the temporal
dynamics of pneumotypes and clinical outcomes using a case
study (Fig. 7c). Patient 35 diagnosed with pulmonary fibrosis

Fig. 5 Anellovirus loads differ according to pneumotype and correlate with host physiology in the transplanted lung. a Longitudinal progression of
Anellovirus load (log10 pan-Anelloviridae genome copies, pink) and its three major genera: Alphatorquevirus (green), Betatorquevirus (turquoise) and
Gammatorquevirus (violet) over five time windows after transplantation. Data presented here as mean viral load (points) with error bars showing ±SD.
Statistical significance is shown for total Anellovirus loads against time windows (n= 225, ANOVA, F(5, 219)= 13.57, two-sided, P= 6.7 × 10−10). b–d
Violin plots show distribution of Alphatorquevirus (n= 217, Kruskal test, χ2= 17.04, df= 3, two-sided, P= 6.9 × 10−4), Betatorquevirus (n= 215, ANOVA, F
(3, 211)= 4.57, two-sided, P= 3.97 × 10−3) and Gammatorquevirus (n= 216, Kruskal test, χ2= 8.94, df= 3, two-sided, P= 3.0 × 10−2) load across
pneumotypes (plot colors). e Intra-individual analysis of Gammatorquevirus loads upon transition from PneumotypeBalanced (Red) to PneumotypeMD (Blue)
(Wilcoxon test, two-sided, paired, P= 1.7 × 10−3) and vice-versa (Wilcoxon test, two-sided, paired, P= 1.72 × 10−2). Paired data (joined by black lines)
presented here are viral genome copies (log10, points). f Importance scores (99% Confidence Interval) of host genes in predicting anellovirus load analyzed
by Random Forest regression model and Boruta feature selection. Predictor genes are categorized into Confirmed (Green), Tentative (Yellow) and Rejected
(Orange), ntrees= number of decision trees, splits per try= number of random predictors sub-sampled and percent variance explained. g Scatter plots
show correlation between expression (log2 fold) of TLR3 (stepwise regression AIC:73.9, ANOVA, t= 3.56, P= 4.58 × 10−4) with total anellovirus load
(log10 genome copies) across samples (n= 231). Linear regression is shown by the blue line with gray shaded area showing 95% confidence interval.
h Violin plots show distribution of TLR3 expression (log2 fold) across the four pneumotypes (n= 231, Kruskal test, χ2= 10.66, df= 3, two-sided, P= 1.3 ×
10−2),. All box plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers
(single points). Post hoc analyses (95% Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test (Kruskal test) with False Discovery
Rate (FDR). * P < 0.05, ** P < 0.01, *** P < 0.001, NS= not significant.
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received two transplants, providing 12 serial samples and
presenting each of the four pneumotypes (Fig. 7c). Disruption
of the PneumotypeBalanced occurred from month 25, followed by
transition to PneumotypeStaphylococcus at month 30. This was
accompanied by a positive culture for Corynebacterium spp. in
line with our enrichment analysis and clinical culture tests
(Supplementary Fig. 4, Fig. 3j), increased BAL neutrophilia, and a
concurrent increase in host immune gene expression (heatmap in
Fig. 7c). Thereafter, the patient was repeatedly exposed to
antibiotics, and respiratory function started declining irreversibly
leading to the diagnosis of CLAD at month 49 with Pneumo-
typeMD. Overall decrease in bacterial and anellovirus loads in the
lung, suggested an increasing selection pressure on microbes most
likely due to a combination of antibiotic treatment and poorly
controlled host immune competence. The second transplant at
month 50 was linked to a re-establishment of PneumotypeBalanced,
which aligned with preserved lung function, intermediate loads of

lung bacteria and anelloviruses, decrease in neutrophil counts and
change in host immune gene expression. However, a transition to
PneumotypePseudomonas was observed later until the end of
sampling, with increased bacterial counts but no decrease in
lung function (barplot in Fig. 7c). Taken together, these
observations highlight the potential of integrating pneumotype
with clinical and molecular data, with the primary goal of
tracking disruption of PneumotypeBalanced beneficial to clinical
stability.

Discussion
In the current study, we capitalized on the availability of 234
longitudinal BALF samples from 64 lung transplant patients. We
combined culture-dependent and -independent approaches to
characterize the composition of the human lung microbiota, to
obtain representative cultured isolates and test their growth

Fig. 6 Association of post-transplant pneumotypes with pulmonary environment, local and peripheral host immunity and clinical status. a Stacked bar
plots showing proportion of samples associated (n= 223, Fisher’s test, P= 2.0 × 10−3) with the four pneumotypes relative to the number of antibiotics
administered. b Bar plots show the proportion of infected samples across four pneumotypes. Presence of infection was categorized as yes/no and
statistical analysis was done by a generalized linear model, family= binomial, n= 234, PneumotypeStaphylococcus; P < 0.001 and PneumotypePseudomonas P=
1.6 × 10−2, respectively; Fig. 6b) c, d Violin plots show distribution of Neutrophils (n= 213, ANOVA, F(3, 209)= 11.72, two-sided, P= 3.95 × 10−7) and
Macrophages (n= 224, ANOVA, F(3, 211)= 2.35, two-sided, P= 7.57 × 10−2) counts (log10 cells per ml BALF) in lung linked to pneumotypes (plot colors).
e Risk of rejection associated with each pneumotype (bar colors) was assessed by the cumulative percentages (%) of samples associated with each of the
following conditions (See Methods): Chronic Lung Allograft Dysfunction (CLAD), presence of Donor-specific antibodies (DSA, Mean Fluorescence
Intensity > 1000) or Acute cellular rejection (Biopsy score A2). f Violin plots show distribution of B-lymphocytes counts (n= 87, ANOVA, F(3, 83)= 3.84,
two-sided, P= 1.26 × 10−2) in the blood associated with the four pneumotypes (plot colors). g Burden of three major anellovirus genera: Alphatorquevirus
(Wilcoxon test, two-sided, P= 1.5 × 10−1), Betatorquevirus (Wilcoxon test, two-sided, unpaired, P= 9.0 × 10−2) and Gammatorquevirus (Wilcoxon test, two-
sided, unpaired, P= 7.0 × 10−3) (log10 genome copies) in samples associated with CLAD (No or Yes, n= 29). h Violin plot showing distribution of lung
function (% compared to baseline) measured by Forced Expiratory Volume in 1 s (FEV1, n= 206, Kruskal test, χ2= 11.05, df= 3, two-sided, P= 1.1 × 10−2)
across four pneumotypes (plot colors). All box plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile
(whiskers) as well as outliers (single points). Post hoc analyses (95% Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test
(Kruskal test) with False Discovery Rate (FDR). * P < 0.05, ** P < 0.01, *** P < 0.001, NS= not significant.
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requirements, to assess the temporal dynamics of these commu-
nities in the lung, and ultimately to establish links with the host
health status. In summary, our results show that the lung
microbiota post-transplant is highly dynamic with a few pre-
dominant community members, many of which can be cultured,
under different physiological conditions. We find that the lung
microbiota post-transplant can be categorized into four compo-
sitional states, ‘pneumotypes’, based on distinctive bacterial
community features. These pneumotypes have different temporal
dynamics and bridge the gap between lung bacteria, anellovirus
loads, host gene expression, and the physiological and immuno-
logical state of transplant recipients. Altogether, these results
provide important advances in our understanding of lung

bacterial communities, their clinical significance, and the
experimental tractability of major lung bacteria.

Our analyses show that the human lung microbiota post-
transplant predominantly consists of oropharyngeal taxa similar
to the microbiota of healthy lungs5,6,26. Hence, the presented
results are not only relevant in the context of lung transplanta-
tion, but also provide general insights into the microbial ecology
of the lower respiratory tract. Besides the high variability in
taxonomic composition, we find that the total bacterial biomass
in the lung can considerably vary between samples. Such quan-
titative differences in lung microbiota composition have also been
found in previous studies. We find that a relatively small number
of OTUs accounted for a large part of the total bacterial biomass

Fig. 7 Longitudinal analysis of lung microbiota post-transplant and dynamics of pneumotype transitions. a Sankey diagram showing transition of paired
samples between pneumotypes (colors) across five time windows. bMarkov chain model (See Methods) fitted to the observed pneumotype transitions (n
= size of circle). Model was initiated with equal probabilities for each pneumotype (0.25, 100 bootstraps, left panel) and given transition matrix.
Pneumotypes are represented by colored arrows/boxes, and the direction of a transition is indicated by a colored arrow of a thickness denoting the
probability. c A patient case study showing transition of pneumotypes with clinical characteristics across two transplantation events. The heatmap shows
host gene expression with functional categories (see also Fig. 4a, right vertical colored bars), neutrophil counts, bacterial and anellovirus loads in BALF
across time and pneumotypes. Taxa obtained in routine clinical culture were abbreviated with letters. Samples positive for infection, ongoing antibiotic
treatment or CLAD (black boxes) are presented above bar plots showing % lung function (see also Fig. 6g), across transplantation events and time post-
transplantation (months) and pneumotypes (bar colour). d Scheme of bimodal disruption in lung ecosystem (colored arrows in a x–y plot) leading either to
(i) a microbiota-depleted pneumotype with ambigous bacterial diversity (brown), low counts of bacteria (black) and viruses (gray), high lung cellular
proliferation and chronic decline in lung function leading to rejection (purple), or (ii) pneumotypes dominated by opportunistic pathogens (Staphylococcus
and Pseudomonas) with loss in bacterial diversity, high infection rate and inflammation (red), acute decline in lung function and rejection. Best-case scenario
is defined by a middle ground with a balanced pneumotype consisting of the most prevalent bacteria in a homogenous composition with intermediate
bacterial diversity, bacterial and viral abundance, high immune-modulatory activity and best preserved lung function. Original graphical art “Created using
BioRender.com”.
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detected across all samples (19 OTUs contributing >75% of the
biomass), despite the detection of more than 7000 OTUs. These
included not only prevalent oropharyngeal taxa but also potential
pathogens that outgrew in a few samples. These findings, and the
fact that a key characteristic of PneumotypeMD is its association
with low bacterial biomass, highlight the importance of con-
sidering absolute bacterial counts instead of relying only on
proportional data in microbiome studies40,48. This is further
evidenced by the fact that bacterial biomass can be predicted by
host gene expression.

In addition to considering total bacterial biomass, demon-
strating bacterial viability provides further evidence for the bio-
logical relevance of bacteria detected by sequencing. Previous
studies have shown that bacteria from the human lung can be
cultured with the majority growing under oxic conditions6,13,14.
Our large-scale bacterial culturing approach, which included a
wide array of culturing conditions, substantially expands the
availability of bacterial isolates from the human lung and offers
new insights about their phylogenetic diversity, physiological
preferences, and metabolic potential. For instance, we show that
many isolates, including prevalent community members, pre-
ferred to grow under anaerobic or in presence of 5% CO2 con-
ditions, suggesting the presence of regions with low oxygen
concentration in the deep lung. Also, the culturing allowed us to
phenotypically describe specific isolates in more detail and
identify closely related pathogenic and non-pathogenic species of
Streptococcus, which otherwise could not have been discriminated
based on amplicon sequencing alone. Notably, the genus Strep-
tococcus had the highest genetic, metabolic, and phenotypic
diversity among all isolates, which may explain its presence
throughout the human respiratory tract including sites with very
different physicochemical properties3. We acknowledge that the
presented culture collection is not exhaustive. We believe that this
is due to the high variability of the lung microbiota and the fact
that we have cultured a relatively small number of BALF samples,
rather than the inability of some community members to grow
in vitro under the tested conditions, or their non-viability in
the lungs.

The observed differences in community composition and
bacterial load between BALF samples suggest that the human
lung microbiota is highly variable. However, our unsupervised
machine learning approach identified four distinctive composi-
tional states, PneumotypeBalanced, PneumotypeMD, PneumotypeS-
taphylococcus and PneumotypePseudomonas. In a previous study on the
lung microbiota of healthy individuals, a similar approach was
used which resulted in the identification of two pneumotypes5.
Strikingly, one of these previously identified pneumotypes was
enriched in supraglottic taxa, i.e., mainly Prevotella, Streptococcus,
and Veillonella resembling the PneumotypeBalanced from our
study. The other pneumotype described by Segal et al. had similar
characteristics as PneumotypeMD i.e., very low bacterial counts
and a highly variable taxonomic composition. As with Pneumo-
typeMD in our study, many of the taxa in this other pneumotype
were considered to represent contaminations (or so-called back-
ground taxa). In contrast, PneumotypeStaphylococcus and Pneumo-
typePseudomonas were not detected in this previous study, probably
because it was based on a smaller cohort size and exclusively
included samples from healthy individuals. Staphylococcus, the
major community member of PneumotypeStaphylococcus, is a fre-
quent colonizer of the healthy human nasal mucosa capable of
evolving on its host and switching to being infectious49. It has
also been shown to dominate in neonatal lower airways, indi-
cating potential early adaptation to human lung4. Together, these
studies provide independent evidence for the existence of distinct
compositional states of the human lung microbiota in different
contexts. Moreover, the fact that the four pneumotypes are linked

to differences in host gene expression, bacterial and anellovirus
loads, and allograft function and health state highlights their
relevance, and suggests the existence of distinct ecological con-
ditions in the lower respiratory tract, which are further discussed
in the following sections.

We propose that PneumotypeBalanced is primarily associated
with lung homeostasis (Fig. 7d), because it is characterized by a
diverse bacterial community, with a moderate bacterial and viral
load, and is linked to a human gene expression profile leaning
toward immune modulation and peripheral immune tolerance. A
particular characteristic of PneumotypeBalanced was the clear
association with a high expression of Interferon-λ receptor 1
(IFNLR1), which suggests a link between the bacterial community
and the maintenance of the epithelial barrier integrity41 and
antiviral defense50. Moreover, PneumotypeBalanced was linked to a
down-regulation of Interleukin-1 receptor antagonist (IL1RN),
produced in response to pro-inflammatory cytokines44, and up-
regulation of Interleukin-10 (IL-10), a tolerogenic cytokine51.
This along with the previously reported association with Th17
immune response9 indicates a possible role of PneumotypeBalanced
in development of regulatory T cell and the maintenance of
immune surveillance, as seen in case of gut bacteria52,53. In line
with this, individuals with PneumotypeBalanced had the lowest risk
of clinical complications at the time of sampling. Moreover,
transitions from PneumotypeBalanced to other pneumotypes were
the least frequently observed. Overall, these observations corro-
borate the steady-state associated with this pneumotype, sug-
gesting that it is indicative of lung health and clinical stability
after transplantation.

PneumotypeMD showed increased expression of the MRC1
gene, a characteristic of M2-like macrophages42, and the Platelet-
derived growth factor-D gene45, an important contributor to
airway remodeling. The low microbial load and the associated
loss of a steady-state inflammatory level could be the underlying
cause for the increased expression of these genes resulting in
unrestrained host cell proliferation and increased deposition of
extracellular matrix, as observed in CLAD54. Another striking
feature of this pneumotype was the low expression of TLR3, a
host gene involved in virus detection, which was consistent with
the low loads of anelloviruses observed in the lung in the presence
of this pneumotype. Virtually all lung transplant recipients carry
anelloviruses, mainly in the plasma but also in the lung, with viral
loads fluctuating over time46,47. Previous reports have shown that
anellovirus counts in plasma are associated with host immuno-
competence, infection and alloimmune rejection47,55–59, sug-
gesting that the PneumotypeMD is an indicator of a stronger
selective pressure imposed by the host immune system on viruses
and bacteria in the lung. This was confirmed by the low risk of
infections and substantial risk of poorly controlled immune
activity, highlighted by the high number of circulating B lym-
phocytes and either donor-specific antibodies, acute cellular
rejection or CLAD.

A strongly contrasting pattern was observed for samples with
either PneumotypeStaphylococcus or PneumotypePseudomonas, which
were both tightly linked to an inflammatory background. Here,
viral and bacterial loads were increased relative to samples with
PneumotypeBalanced and PneumotypeMD. This was accompanied
by a higher risk of infection and a consistent recruitment of
neutrophils into the lung, ultimately leading to impaired pul-
monary function (Fig. 7d). Notably, PneumotypePseudomonas was
associated with low expression of Lymphocyte antigen (LY) 96 /
Myeloid Differentiation protein (MD2), an essential component
of the human TLR4 complex43. Although it is tempting to
associate the importance of P. aeruginosa in this pneumotype
with a lack of engagement of the TLR4 pathway in the host60,61,
we cannot conclude about a causal link. In line with evidence that
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infection activates alloimmune responses62, samples with either
PneumotypeStaphylococcus or PneumotypePseudomonas were also
associated with a significant risk of poorly controlled immune
activity and rejection.

Our study lacked sufficient statistical power required to explore
the links between pneumotypes and different types of rejection
(acute cellular rejection, antibody-mediated rejection, CLAD).
However, grouping these samples allowed us to associate the
PneumotypeBalanced with the lowest risk of poorly controlled
immune activity. Furthermore, we could not assign causality to
the observed links between the different constituents of the lung
ecosystem. This was due to both the non-interventional nature of
our approach and the multiplicity of confounding factors and
their variability across the cohort. In particular, the underlying
therapeutic treatments were expected to significantly modulate
lung ecology, in addition to the effects due to infection and
alloimmune response. This was illustrated by the observed link
between PneumotypeBalanced and samples collected in the absence
of ongoing antibiotic treatment, as opposed to the association
between pneumotypes with disrupted bacterial communities and
ongoing antibiotic therapy. Finally, follow-up studies are required
to extend the knowledge gained by our single-site BAL sampling,
which would not capture potential variability in ecological con-
ditions across different regions of the lung63 or between the lung
and the upper respiratory tract7,64.

In conclusion, our work provides a foundation for under-
standing the need for a balanced lung ecosystem along the bac-
terial community-viruses-host physiology axis, to maintain
respiratory function and health. Overall, we propose that the four
pneumotypes seem to follow the “Anna Karenina principle”,
where healthy communities vary little around a stable state, while
perturbed communities are much more variable with unstable
states65. We propose that the integration of multi-omics data
analyzed using ecological principles will assist in the management
and follow-up of lung transplant recipients, particularly with
respect to CLAD prediction and supportive interventions. An
important next step will be to establish causal links between lung
ecology and allograft health by identifying the microbiota and
host-related factors underlying pneumotype transitions. To this
end, our bacteria collection LuMiCol provides a highly valuable
resource that will serve as a foundation for future experimental
studies using animal or cell culture models.

Methods
Study population, sampling and ethics statement
Study design. In this prospective longitudinal study, we used a cohort of 64 con-
secutive lung transplant recipients from the Organ Transplantation Centre of the
University Hospital of Lausanne. We collected 234 BALF samples (n= 1–12 per
recipient, mean 3.7) between 2 weeks and 49 months post-transplantation, during
routine surveillance or clinically indicated bronchoscopies, from October 2012 to
May 2018. Details on BALF collection and processing are provided below. We also
included 11 negative control samples.

Ethics statement. The study was approved by the local ethics committee (“Com-
mission cantonale (VD) d'éthique de la recherche sur l'être humain – CER-VD”,
protocol number 2018-01818), and all subjects gave written informed consent.
Samples were anonymized according to local ethics committee requirements.

Patient sample collection. Patients underwent transoral bronchoscopy. For BALF
collection, the bronchoscope was wedged either in the middle lobe or lingula of the
allograft and 100–150 ml of normal saline were instilled in 50 mL aliquots that were
pooled. BALF recovery was measured and the sample was submitted to cell dif-
ferential determination according to routine clinical procedures. Two fractions of 3
ml were stored at 4 °C and centrifuged within 3 h at either 2000 or 14,000 × g for
10 min, for future isolation of BALF cellular RNA and total DNA, respectively.
Pellets were snap frozen, either directly or after cell lysis in RLT buffer (Qiagen,
Hilden, Germany) to preserve RNA integrity, and were stored at −80 °C until
further processing. A negative control obtained upon washing a ready-to-use
endoscope with sterile saline was prepared following the same procedure.

Bacterial culturing and establishment of lung microbiota culture collection
(LuMiCol). The lung microbiota culture collection (LuMiCol) can be searched on
the GitHub page https://github.com/sudu87/Microbial-ecology-of-the-
transplanted-human-lung by following the instructions in README.md. Bacterial
strains can be requested via email to S.D. (sudip.das@unil.ch).

BALF cultivation and archiving. A volume of 100 μl of BALF was spread per plate
of 15 different media (Supplementary Table 3) within 2–3 h following endoscopy.
The plates were then immediately (within 2 h of extraction) incubated at the
desired combination of oxygen and temperature conditions; aerobic (AE), 5% CO2

(O2: 17%, CO2: 5%, Relative Humidity: 85%) and anaerobic (AN; H2: 8%, N2: 72%,
O2: 40 ppm, CO2: 20%) at a temperature range between 35 and 37 °C (Supple-
mentary Table 3). Plates were incubated between 1 and 5 days. Bacteria were
collected from plates by adding RPMI 1640 liquid medium supplemented with 15%
glycerol and scraping using a Drigalski spatula and finally transferred into 96-well
plates. Plates were made in triplicates for back up stocks. Each isolate was given a
plate identifier (plate number - Px and well number - A1-H12) and a unique isolate
code made with a combination of sample number, oxygen condition (AN/5% CO2

/AE), Media used and isolate number (Supplementary Table 3, 5).

Genotyping of bacteria. Genotyping and species determination were based on PCR
amplification of either universal 16S rRNA gene (V1-V5 region)66 or specific
marker genes, respectively. Staphylococcus aureus was identified by the amplifica-
tion of nuc gene encoding the staphylococcal thermonuclease (Supplementary
Table 7). The 16S rRNA gene sequences were aligned using two well curated
databases containing high-quality 16S rRNA sequences to resolve species: SILVA
SSU rRNA database and wherever SILVA failed to provide species identification we
used the extended Human Oral Microbiome Database; eHOMD, http://www.
homd.org. Phylogeny was performed by FastTree v 2.1.10 and visualized
using iTOL.

Bacterial growth determination by optical density. Undefined rich media was
represented by Todd-Hewitt (CM0189, Oxoid, UK) supplemented with yeast
extract (0.5 g/L, LP0021, Oxoid, UK). RPMI 1640 medium with (11875085,
ThermoScientific, USA) and without Glucose (11879020, ThermoScientific, USA)
represented low complexity defined media. RPMI1640 without glucose was chosen
as a proxy for deep lung fluids since it contains free amino acids, physiological salts,
glutathione and no glucose, which are properties similar to lung epithelial lining34.

One representative of each 47 phylotypes was revived on its individual isolation
media (Supplementary Table 3), and bacterial biomass was scraped off the plates
using 1X PBS. Bacterial suspension was diluted into 200 μL of appropriate media in
96-well flat-bottom plates (CytoOne®, CC7672-7596, Starlab, Germany). The plates
were then immediately incubated at the desired combinations of oxygen and
temperature conditions: aerobic (AE, 37 °C), 5% CO2 (O2: 17%, CO2: 5%, relative
humidity: 85%, 37 °C) and anaerobic (AN; H2: 8%, N2: 72%, O2: 40 ppm, CO2:
20%, 34 °C) (Supplementary Table 3). Optical density was measured at 600 nm
using a BioTeK Synergy H1 Hybrid Multi-Mode Reader starting from time day 0
(0 min) and every day (24 h) up to day 3 (72 h). Growth at each time point was
calculated by the change in optical density from day 0 (ΔOD). The experiment was
repeated three times and the median ΔOD for each day was used to create a
heatmap.

Species identification by phenotypic assays. To differentiate staphylococcal and
streptococcal species, primarily S. aureus from other staphylococci, and Viridans
Streptococcus from pneumococcus, bacteria were screened for multiple phenotypes.
As controls, Staphylococcous aureus ATCC 25904, Streptococcus pneumoniae strain
D39; NCTC 7466 (pneumococcus control) and Streptococcus mitis NTCC10712
(viridans Streptococcus control, provided kindly by the group of Dr. Jan-Willem
Veening, Lausanne, Switzerland) were used. For general overnight culture, strep-
tococci were grown in Todd-Hewitt (CM0189, Oxoid, UK) supplemented with
yeast extract (0.5 g/L, LP0021, Oxoid, UK) at 37 °C with 5% CO2, 85% relative
humidity and staphylococci were grown in Tryptic Soy Agar (CM0131b, Oxoid,
UK) at 37 °C.

Hemolysis detection on semi-solid agar. For detection of hemolysis, bacteria were
grown on Columbia agar (CM0331b, Oxoid, UK) supplemented with 5% defi-
brinated sheep blood (SR0051E, Oxoid, UK) and incubated at 37 °C under aerobic
conditions or with 5% CO2, 85% relative humidity and lysis of blood was observed
after 24 h, after which complete hemolysis (beta-hemolysis) can be observed. The
plates were then transferred to 4 °C for observing partial hemolysis alpha-
hemolysis.

High salt growth and mannitol fermentation test for staphylococci. The ability of
staphylococci to grow on high salt and ferment mannitol was tested by cultivation
on Mannitol Salt Agar (MSA, 7.5% Sodium Chloride and D-Mannitol, CM0085B,
Oxoid, UK) and incubation at 37 °C under aerobic conditions. This resulted in few
combinations: Growth or no growth in MSA, growth in MSA but no fermentation
of mannitol, growth in MSA and also fermentation of mannitol (designated by the
conversion pink phenol red to yellow color).
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DNase activity assay. Staphylococcal thermonuclease activity was tested by growing
staphylococci on DNase agar (CM032, Oxoid, UK)67. Bacteria were grown over-
night in Tryptic soy agar (16 h) and a single colony was picked and streaked across
a straight line on DNase agar plate using a disposable plastic inoculation. Plates
were incubated at 37 °C under aerobic conditions for 24 h, before flooding the plate
with with 1 N HCl. After a dwell time of 30 s, the acid was drained out and a halo
around the bacterial biomass indicated a positive result for DNase activity.

Optochin resistance test. For differentiating between viridans streptococci from
Streptococcus pneumoniae, an optochin resistance test was performed33. Strepto-
cocci were grown on Columbia base agar (CM0331b, Oxoid, UK) supplemented
with 5% defibrinated sheep blood for 24 h at 37 °C in presence of 5% CO2

(SR0051E, Oxoid, UK). Colonies were then spread thoroughly on fresh blood agar
plates with a cotton swab before placing optochin disks (74042, Sigma-Aldrich,
Germany) on the center of the plates and incubated at 37 °C in presence of 5% CO2

for 24 h. Inhibition zones were observed the next day for S. pneumoniae but not in
case of S. mitis.

BALF microbiota community analysis
Bacterial 16S rRNA amplicon sequencing. The total 16S rRNA gene copy number in
BALF DNA was characterized by quantitative PCR using universal bacterial pri-
mers (Supplementary Table 7, which includes references). The bacterial commu-
nity composition in BALF DNA was assessed using Illumina MiSeq sequencing
with barcoded primers targeting the V1-V2 region (Supplementary Table 7).
Amplification was performed using the Accuprime Taq DNA Polymerase High
Fidelity kit (Invitrogen). Duplicate 20 μl PCR reactions consisted of 2 μl of 10×
Accuprime buffer II, 0.44 μl of each F-27 and barcoded R-338 primers at 10 mM,
9.03 μl of ultrapure water, 0.09 μl of AccuPrime Taq DNA Polymerase and 8 μl of
DNA template with the following cycling parameters: initial denaturation 3 min at
94 °C, followed by 40 cycles of 30 s denaturation at 94 °C, 30 s annealing at 56 °C,
and 90 s elongation at 72 °C, with a final extension at 72 °C for 5 min. Amplicons
were quantified using a LabChip GX instrument with DNA 1 K kit (Perkin Elmer),
pooled at equimolar amounts and purified using AMPure XP bead cleanup system
(Beckman Coulter). Libraries were then diluted to 12 pM and spiked with 25%
phiX before loading on the Illumina MiSeq platform using paired-end chemistry,
generating 250 × 2 read lengths.

Data processing and OTU picking. Data curation and analysis was performed using
a custom pipeline32 (see “Data and code availability”). The major packages used are
described in the “Software used and statistical analysis” section. Primers were
removed and reads were joined with fastq-join with a minimum overlap of ten base
pairs, demultiplexed and quality filtered (PHRED score Q > 28 in 75% of read
length). Sequence quality was assessed using FastQC and the first 75 bases were
trimmed using fastx_trimmer. Both raw (All_BAL_samples_raw_fastqc) and pro-
cessed (All_BAL_samples_processed_fastqc) sequence quality analyses are avail-
able along with other datasets https://doi.org/10.5281/zenodo.4556025.

Singletons were removed using vsearch. Prior to OTU picking, taxa were
clustered into centroids with >98% identity, chimeras removed, and the data were
mapped to the centroids with >97% coerced into a single OTU. The sequences
obtained after OTU picking were further used for alignment and taxonomy using
the SINA aligner and the SILVA database release
SSURef_NR99_132_SILVA_13_12_17. Phylogeny was performed by FastTree v
2.1.10 and visualized using iTOL.

Before proceeding further, we removed OTUs with ambiguous taxa i.e., Phylum
= “NA” and any samples that had <104 reads and no information on bacterial
abundance. In conventional practice, samples with low biomass (detected by 16S
qPCR) are excluded but we elected to retain them if sequencing was successful
(≥104 reads). However, in these low biomass samples the risk of obtaining spurious
taxa is higher, requiring comparisons with negative controls, which included
Bronchoscope pre-wash, DNA extraction reagents and no-template PCR reaction.
We found that negative control samples contained 1015 OTUs, including those
from family Enterobacteriaceae and genera Limnohabitans, Fodinicola,
Staphylococcus, Flavobacterium, Cutibacterium, Acidovorax, Tepidimonas and
Variovorax. After quality filtering and rarefying the data to the sample with the
lowest number of reads, we ended up with 7164 OTUs at 97% identity in 16S rRNA
gene. These OTUs belong to 37 phyla with the most abundant phyla being
Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria.

Extraction of OTU-isolate match pairs. In order to assign the cultured bacteria to
OTUs (i.e., OTU-isolate matching pairs), we aligned the high quality 16S rRNA
gene sequences obtained by Sanger sequencing from 215 LuMiCol isolates (phred
score: Q30 > 90%) to the dereplicated 16S rRNA amplicons obtained from the
Illumina sequencing using MAFFT alignment tool in Geneious Prime software
(Geneious, New Zealand). The LuMiCol sequences were then trimmed to same size
as the 16S rRNA amplicons and included in the community analysis as new sample
“LuMiCol” after the dereplication step32 (–usearch global; Step 13- Das_et_a-
l_2020_analysis_pipeline_1.md; https://github.com/sudu87/Microbial-ecology-of-
the-transplanted-human-lung) for OTU and taxonomic assignment (See also “Data
processing and OTU picking”). OTUs containing Sanger sequence reads from the
sample “LumiCol” were identified and flagged as OTU-isolate matching pairs.

Prevalence and absolute abundance analysis. Prevalence was informed by the
incidence of each OTU across all samples in the cohort. This was calculated by
using the function amp_core from ampvis2 v 2.3.2. The output table (Supple-
mentary_Data_3) consists of serial number, OTU number, frequency (overall),
frequency at 1% relative abundance (freq_A), abundance (mean relative), and
taxonomy. Absolute abundance was calculated by using the phyloseq object with
the relative abundance OTU table and multiplying each OTU in each sample by the
16S rRNA gene copies detected per ml of BALF sample (see section “Bacterial 16S
rRNA amplicon sequencing”).

Alpha diversity analysis. Alpha diversity indices were obtained from Rényi diversity
and corresponding Hill numbers using the function ‘renyi’ from the vegan package
in R. The Hill numbers calculated were H0 (Number of species), H1 (exponent
of Shannon diversity), H2 (Inverse Simpson) and Hill∞ (Berger-Parker index i.e.,
1/max pi (inverse of diversity of order infinity). Proportion of dominant OTUs
(max pi) was calculated by 1/ Hill∞ (maximum proportion of species i).

Beta diversity analysis. Beta diversity was calculated by applying the ‘distance’
function on the phyloseq object. Presence/absence of OTUs was calculated by using
Sørenson’s index, which was interchangeably used with the term Bray–Curtis
distance (binary= TRUE, calls for function ‘vegdist’ from vegan package). For
species abundances, Morista-Horn distance measure (calls for function ‘vegdist’
from vegan package and uses the distance measure ‘horn’) was used. Statistical
analysis of beta diversity was peformed by PERMANOVA with the adonis function
in the vegan package in R and multiple comparison was performed by using the
wrapper function pairwise.adonis. We used 10,000 permutations as standard for all
our comparisons.

Enrichment analysis of OTUs. Similar to prevalence analysis across the entire
cohort, enrichment analysis of OTUs was repeated for individual PAMs. The
amp_vis object was split into PAM groups, and the incidence percentages were
then calculated by using the function amp_core in ampvis2 package. Prevalence of
each OTU in individual PAMs was compared to the entire cohort and the 30 most
prevalent and/or abundant microbiota members were plotted as described in
Supplementary Table 2.

For enrichment analysis of OTU abundances, each PAM was compared to a file
containing absolute abundances of the other 3 PAMs. Statistical analysis was
performed by ART-ANOVA, with a two factorial design (group= single PAM vs
other 3 PAMs, variable=OTU IDs). Marginal means were calculated by using the
emmeans R package. Pairwise differences were calculated followed by
Benjamini–Hochberg multiple testing for False Discovery Rate (FDR). Plotting was
limited to the 30 most prevalent and/or abundant microbiota members as
described in Supplementary Table 2.

Quantitative analysis of host gene expression and anellovirus load in BALF
BALF cellular RNA extraction and real-time quantitative PCR for gene expression
analysis. BALF cell lysates were transferred into a QIAshredder column (Qiagen)
for homogenization, and total RNA was extracted using RNeasy Mini Kit (Qiagen)
according to the manufacturer’s instructions. RNA concentration was determined
using a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Wal-
tham, MA, USA) and reverse transcription was performed using iScript cDNA
Synthesis Kit (Bio-Rad, Hercules, CA, USA). Characterization of BAL fluid cell
gene expression profiles was based on multiplex real-time PCR analysis using
custom oligonucleotide primers and probes (Microsynth, Balgach, Switzerland) for
a set of 31 genes (Supplementary Table 7). We used guanine nucleotide-binding
protein, beta polypeptide 2-like 1 (GNB2L1) gene as a reference gene, given its high
expression stability in BALF cells in both health and disease68. Amplification was
carried out using iQ Multiplex Powermix Master Mix and a CFX96 Real-Time
detection system.

For radar chart visualization, the samples were sorted according to their
association with one of the four pneumotypes, and the median expression values
for each gene were determined within each group. For each gene, the highest
median was then arbitrarily set to 1 and plotted as the maximum value in the
corresponding chart. The median values obtained within the other groups were
normalized accordingly.

Quantification of anellovirus load. Based on the tropism of Anelloviridae for
hematopoietic cells, we quantified the load of this virus family starting from the
DNA extracted from the BALF cellular pellet. Absolute quantification of pan-
Anelloviridae, Alpha-, Beta- and Gammatorquevirus (Supplementary Table 7) was
performed using the CFX96 Real-Time detection system (Bio-Rad) based upon
values obtained with a set of purified amplicons used as standards.

Machine learning and statistical modelling
Unsupervised learning for Pneumotype discovery. Pneumotypes were obtained by
running k-medoid-based unsupervised machine learning on a Bray–Curtis dis-
similarity matrix (binary= FALSE) using Genocrunch (see Section “Software used
and statistical analysis”). The program utilizes the pamk function of the R package
fpc version 2.1.10 to cluster samples while optimizing the number of clusters based
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on the average silhouette width69,70. Input and output parameters used in Geno-
crunch were provided in the corresponding json files, which are available on the
GitHub repository (https://github.com/sudu87/Microbial-ecology-of-the-
transplanted-human-lung). In addition, detailed input and output files from
Genocrunch are contained in Supplemetary Data.

Optimization of random forest parameters. We used Random Forest to predict (i)
the pneumotype and (ii) the bacterial and viral counts based on host gene
expression data. The median normalized expression levels of the 31 analyzed host
genes presented in Fig. 4a from all 234 subject samples were used as predictors. For
predicting pneumotypes, we used a classification model and for predicting bacterial
or viral loads, we used a regression model.

While machine learning algorithms typically use a training and a prediction set,
Random Forest allows for cross-validation, i.e., random shuffling of existing data,
allowing predictions to be made without the need for an external prediction data
set. Such cross-validation was first performed ten times and then iterated three
times. We optimized the models using the ‘caret’ package in R, by tuning the two
most important parameters: (i) the mtry (i.e., splits per try—number of randomly
selected predictor genes to be sampled at each iteration), and (ii) the ntrees (i.e.,
number of decision trees), using a specific mtry at each iteration. Full details on the
entire optimization process and the code can be found on the GitHub repository
(https://github.com/sudu87/Microbial-ecology-of-the-transplanted-human-lung/
blob/master/Das_et_al_2020_analysis_pipeline_2.md) from Steps 56–58. In short,
to optimize mtry in case of pneumotype prediction, we used the ‘grid search’
function (tenfold cross-validation, with three iterations of the whole process). For
regression models, we used the ‘random search’ function, whose ‘tuneLength’
argument randomly specifies the number of mtry values, which we set to the
maximum of 30. We found that mtry of 5, 21 and 10 gave the best accuracy results
for pneumotype, bacterial counts, and viral count prediction respectively. Using
these values, we optimized the number of decision trees (ntrees) needed for good
predictions, by running the ‘grid search’ or ‘random search’ functions within an
incremental loop to vary the ntrees from 500 to 5000 for both the classification and
regression models. For the classification model predicting pneumotypes, we found
little difference in accuracy and sensitivity percentages. Hence, we kept the
minimum number of trees i.e., 500.

For regression models predicting bacterial and viral counts, instead of accuracy
or sensitivity percentages, the results were assessed by low Root Mean Squared
Error (RMSE) and high regression value i.e., R2. Similarly, we observed little
difference in RMSE and R2 with the series of ntrees tested, and used ntree= 1000.

After every analysis, random forest provides results in terms of error rate (out-
of-box error) and table for the classification predictions (Supplementary Table 5)
and percentage of variance explained for regression predictions (Figs. 4i and 5f).
This indicates the importance of each feature, i.e., gene predictor, which is defined
by the increase in accuracy (in classification models) and variances (in regression
model) at every step in a decision tree, while using a particular feature amongst
others. ‘Boruta’ algorithm creates several copies of the data where it randomly
shuffles each feature. These permuted features (shadow features) are attached to
existing data, on which the random forest function is then applied. At every
iteration during a decision tree, the algorithm compares the original features to a
threshold, which is created by recording the highest importance within the shadow
features (i.e., shadowMax). Additional thresholds are also created, shadowMin, i.e.,
the minimum importance within the shadow features, and shadowMean, i.e., the
mean importance within the shadow features. The features that pass this threshold
i.e., having higher Z score than the shadowMax are assigned as “Confirmed” while
other features are “Rejected”. However, since a random forest algorithm runs for a
limited number of steps, features remain that pass the threshold but cannot be
confirmed and are hence assigned as “Tentative”. This can be handled by using the
function ‘TentativeRoughFix’ that fills the missing decisions by comparing the
median Z score of a feature to the median of the most important shadow feature
(i.e., shadowMax).

Correlations of gene expression with predicted features by random forest regression.
Gene predictors from random forest analysis with importance scores higher than
10 were further fitted into additive linear models with either bacterial or viral copy
numbers i.e., lm(copy number ~ gene A+ gene B). The best models were selected
with the stepAIC function of the MASS package in R, which performs a stepwise
model selection by AIC (Akaike Information Criteria).

Clinical measurements and definitions. Determination of the cell differential in
the BALF, B-cell count in peripheral blood by mass cytometry, and bacterial culture
for diagnostic purposes were performed according to in-house routine clinical
procedures.

Definition of acute bacterial infection. Acute bacterial infection was defined as
positive BALF culture with dedicated antibiotic treatment, associated with clinical
signs and symptoms, such as a decrease in FEV1, new or progressive infiltrate on
standard chest radiography or CT-scan, fever, positive pulmonary auscultation,
cough, dyspnea, hemoptysis, pleuritic pain, purulent sputum.

In contrast, a BALF culture positive for a pathogen, but not associated with the
administration of antibiotic therapy and without clinical signs and/or symptoms,
was considered as a bacterial colonization and not as an acute bacterial infection.

Definition of chronic lung allograft dysfunction (CLAD). CLAD was defined as a loss
of more than 20% of the expiratory volume in 1 s (FEV1) of the mean of the two
best values (i.e., the baseline FEV1) since transplantation, without other obvious
cause and without reversibility, in accordance with the diagnostic criteria specified
by the Pulmonary Council of the International Society for Heart and Lung
Transplantation54

Software used and statistical analysis. Various statistical approaches and tests
were used depending on the analysis, as detailed in the appropriate sections. All
analyses were performed in R version 3.5.2, python v 2.6 and bash on macOS
Mojave v 10.14.6.

Citations were included for all software used except for packages available via
CRAN Repository and tools that are available via downloads from public database.
For sequencing quality control and curation, FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and FASTX-Toolkit (http://hannonlab.cshl.edu/
fastx_toolkit/index.html) were used. A custom pipeline for 16S rRNA gene
amplicon sequence analysis was built using QIIME v1.971, vsearch v 2.3.472,
ampvis2 v 2.3.273, phyloseq 1.26.174 and vegan package version 2.5–6. Alignment
and taxonomic classification were obtained using SINA aligner (https://www.arb-
silva.de/aligner/) on the local computer. Phylogeny was performed by FastTree v
2.1.10 and visualized using iTOL (https://itol.embl.de). K-medoid-based
unsupervised machine learning was performed on Genocrunch (www.genocrunch.
epfl.ch).

Differential abundance was tested using ART-ANOVA from ARTool package
version 0.10.7. Machine learning classification and regressions were performed
with the randomForest package and its wrapper algorithm Boruta for feature
selection75. For optimization of random forest parameters, the carat package was
used in R76.

Data normality and homogeneity of variances were tested using Shapiro–Wilk
test and Levene’s test. LuMiCol isolate sequences were curated using Geneious
Software v 10.2.6., New Zealand. All graphical illustrations are original art created
using BioRender Science Suite (https://www.biorender.com) without using any
templates and exported under paid academic subscription.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing data from all samples used in the study were submitted to Short Read
Archive, National Center for Biotechnology Information under the BioProject
PRJNA632552 and BioSample accession SAMN14911405.

Quality control reports and supplementary data have been made available on zenodo
at https://doi.org/10.5281/zenodo.4556025. For searching and requesting bacterial
isolates from the lung microbiota culture collection (LuMiCol), refer to the GitHub page
https://github.com/sudu87/Microbial-ecology-of-the-transplanted-human-lung and
follow the instructions. Bacterial strains can be requested via email to S.D. (sudip.
das@unil.ch) and will be sent free of charge and shipping costs will be paid by the
receiver. This is also subject to a Materials Transfer Agreement (MTA) set by PACTT
(Powering Academia-industry Collaborations and Technology Transfer), a joint
technology transfer office of the University of Lausanne (UNIL) and the University
Hospital of Lausanne (CHUV). Website: https://www.pactt.ch.

Code availability
All the custom scripts have been made available on zenodo at https://doi.org/10.5281/
zenodo.4556025 and linked to GitHub.
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