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A B S T R A C T   

The simultaneous prediction of the subsurface distribution of facies and acoustic impedance (IP) from fullstack 
seismic data requires solving an inverse problem and is fundamental in natural resources exploration, carbon 
capture and storage, and environmental risk management. In recent years, deep generative models (DGM), such 
as variational autoencoders (VAE) and generative adversarial networks (GAN), were proposed to reproduce 
complex facies patterns honoring prior geological information. Variational Bayesian inference using inverse 
autoregressive flows (IAF) can be performed to infer the solution to a geophysical inverse problem from the 
encoded latent space of such pre-trained DGM. Successful applications of such approach on crosshole ground- 
penetrating radar synthetic data inversion demonstrated that the technique’s accuracy is comparable to that 
of Markov chain Monte Carlo (MCMC) inference methods, while significantly reducing the computational cost. 
Nonetheless, these application examples did not account for the spatial uncertainty affecting the facies- 
dependent continuous physical property, from which the geophysical data are calculated. This uncertainty can 
significantly affect the inversion accuracy and its applicability to real data. In this work, specific VAE and GAN 
architectures are proposed to simultaneously predict facies and co-located IP, while accounting for their spatial 
uncertainties. The two types of generative networks are used in Bayesian inversion with IAF for the inversion of 
seismic data. The results are found to reproduce the statistics of the training images and solve the seismic 
inversion problem accurately, comparably to MCMC inversion. Furthermore, advantages and limitations of the 
two DGMs are evaluated by comparing the results obtained.   

1. Introduction 

Predicting the spatial distribution of subsurface rock types, or facies, 
and collocated rock’s acoustic impedance (IP) is a main requirement for 
the evaluation of natural resources potential, or for fluid flow simula-
tions in environmental tasks (e.g., Grana et al., 2021; Linde et al., 2015; 
Strebelle, 2021). In geophysical inverse modeling, fullstack seismic 
reflection data is often used to this purpose, with the IP distribution 
being dependent on the correlation between facies and seismic domains 
(Doyen, 2014; Grana et al., 2021; Tarantola, 2005). Seismic inversion 
problems are ill-posed and account for non-unique solutions, therefore 
assessing the uncertainty on the predictions is key for well-informed 
decisions (e.g., Grana et al., 2022). Several probabilistic inversion al-
gorithms are based, e.g., on Bayesian inference (e.g., Buland and Omre, 
2003; Connolly and Hughes, 2016; De Figueiredo et al., 2019, 2018; 
Grana et al., 2017; Grana and Della Rossa, 2010; Sen and Stoffa, 1996) 

or stochastic optimization based on geostatistical simulations (Azevedo 
and Soares, 2017; González et al., 2008; Grana et al., 2012; Miele et al., 
2022, 2023). 

Within this framework, geostatistical modeling allows to reproduce 
complex subsurface scenarios. Modeling methods based on multiple- 
points statistics (MPS) (Mariethoz et al., 2010; Strebelle, 2002, 2021) 
is particularly suitable for facies modeling, as they sample high-order 
geological patterns from a prior training image (TI). Nonetheless, their 
use in inverse modeling is computationally expensive due to the large 
number of subsurface parameters to be optimized (e.g., González et al., 
2008). 

Deep generative models (DGMs), such as generative adversarial 
networks (GANs) (Goodfellow et al., 2014) or variational autoencoders 
(VAEs) (Kingma and Welling, 2014) were proposed as valid alternatives 
for dimensionality reduction in facies modeling (Laloy et al., 2017, 
2018). Analogously to MPS, such DGMs encode complex facies patterns 
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stored in a TI, into a low-dimensional latent space (Azevedo et al., 2020; 
Dupont et al., 2018; Jordão et al., 2023; Mosser et al., 2018; Pan et al., 
2021; Zhang et al., 2021). This represents a main advantage for inverse 
modeling, as the trained networks reduce the number of unknowns of 
the inverse problem. The trained DGMs’ parametrization of the prior can 
be used in a subsequent step in a Bayesian inverse modeling framework. 
The posterior distribution conditioned on the observed data (dobs) can 
be inferred by either sampling methods, for example, using Markov 
chain Monte Carlo (MCMC) methods (Laloy et al., 2017, 2019; Levy 
et al., 2021; Mosser et al., 2020) or by optimization approaches (Chan 
and Elsheikh, 2019). The latter approach uses variational inference (VI) 
(Blei et al., 2017) to transform iteratively a surrogate density distribu-
tion by maximizing the evidence lower bound (ELBO). 

The normalizing flows method (Rezende and Mohamed, 2015) 
consists in modeling such transformation through a sequence of 
invertible parametric functions (Hoffman et al., 2019; Kingma et al., 
2017; Levy et al., 2023; Papamakarios et al., 2021). Levy et al. (2023) 
propose the use of inverse autoregressive flows (IAF) networks (Kingma 
et al., 2017) as a type of normalizing flows, to be used with pre-trained 
DGMs for geophysical inversion. They refer to this approach as neural 
transport (NT) (Hoffman et al., 2019). The method was successfully 
tested for the inference of facies patterns in synthetic crosshole 
ground-penetrating-radar (GPR) data inversion; constant 
facies-dependent velocities were used in the physics forward modeling. 
Compared to MCMC methods, the NT demonstrated comparable accu-
racy and improved efficiency, although showing expected limitations 
when handling the non-linear transformations of GANs (Laloy et al., 
2019; Lopez-Alvis et al., 2021). 

The NT method, as well as similar approaches for facies inverse 
modeling with DGMs (Laloy et al., 2017, 2019; Lopez-Alvis et al., 2021; 
Mosser et al., 2020), overlook the spatial uncertainty of 
facies-dependent continuous properties responsible for the observed 
geophysical data, i.e., spatial petrophysical and elastic properties un-
certainty (e.g., Brunetti and Linde, 2018). In complex scenarios and real 
case studies, such uncertainty can significantly impact inversion results 
and should be incorporated into the subsurface modeling (Bosch et al., 

2010; Brunetti and Linde, 2018; Doyen, 2007; Friedli and Linde, 2023; 
Grana et al., 2022). 

This work builds upon that of Levy et al. (2023) and proposes two 
specific DGMs based on VAE and GAN architectures, to model a multi-
variate prior of facies patterns and collocated IP spatial distributions, 
including the elastic property’s uncertainty patterns assumed. The 
trained DGMs are found to be comparable to geostatistical facies simu-
lation based on MPS and co-simulation based on two-point statistics 
(Nunes et al., 2017). Then, the use of NT with the proposed DGMs is 
demonstrated in cases of fullstack seismic inversion for the inference of 
facies patterns in presence of IP spatial uncertainty. The efficiency and 
accuracy of the proposed method is further compared to those of 
MCMC-based inversion. 

2. Method 

Our methodology builds upon the work of Levy et al. (2023), who 
used the NT method in combination with pre-trained VAE and GAN 
generative networks for facies modeling, to infer the distribution of 
subsurface parameters. The DGMs proposed herein are first trained 
using a training data set reproducing both facies patterns and the 
collocated IP spatial uncertainty (Section 2.1). The considered VAE and 
GAN networks (Section 2.2) are trained to simultaneously model both 
domains. The NT method (Section 2.3) is then used on the trained DGMs 
for inverse modeling using fullstack seismic data (Section 2.4). A sche-
matic representation of the DGM training and the subsequent inversion 
process is provided in Fig. 1. 

2.1. Multivariate training data set 

The training dataset used represents a multivariate prior distribution 
of facies (categorical) and collocated IP (continuous) patterns, honoring 
assumed prior data statistics obtained, e.g., from direct well-logs ob-
servations and prior knowledge on the subsurface geology. The expected 
facies distributions are represented through a set of N unconditional 
MPS realizations, honoring the spatial statistics of a geological 

Fig. 1. Schematic representation of the proposed method. (a) The DGM are first trained to reproduce facies and collocated IP distributions. (b) The seismic inversion 
solutions are found by means of IAF. 
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conceptual model used as TI (Mariethoz et al., 2010). The IP data dis-
tribution is represented for each of the N facies realizations, using geo-
statistical direct sequential co-simulation with multi-local distribution 
functions (co-DSS) (Nunes et al., 2017). At each location of the simu-
lation grid, the IP realizations honor the data histogram and variogram 
models defined for each conditioning facies class. To represent the 
spatial uncertainty in this conditioned domain, a set of M equiprobable 
IP realizations are generated for each of the N facies. Therefore, the 
resulting training data set is a nested set of facies and corresponding IP 
distributions (Fig. 1a). During the training of the DGMs, for each epoch, 
the N facies patterns are paired with a single corresponding IP realiza-
tion, randomly sampled from the M realizations. The resulting distri-
bution is used as training data set for that epoch. 

2.2. Deep generative adversarial networks 

2.2.1. VAE 
The VAE architecture introduced for facies and IP modeling is 

derived from the framework presented by Lopez-Alvis et al. (2021). 
Here, the encoder is composed of a series of convolutional layers fol-
lowed by a fully connected layer, while the discriminator shares a 
specular architecture, using a sequence of transposed convolutions. The 
proposed architecture incorporates two main modifications. First, the 
number of convolutional layers within both the encoder and decoder is 

increased from four to six. Second, two parallel branches in the last two 
layers of the decoder are used, for the independent generation of facies 
and IP data. The encoder’s input is an image with two channels, repre-
senting facies and collocated IP, respectively, which features are mapped 
into a 1D latent space of 60 variables. A schematic representation of the 
VAE architecture is given in the Supplementary material (Fig. A1). 

The optimization of the network’s parameters follows the common 
practice (e.g., Kingma and Welling 2014; Lopez-Alvis et al., 2021) of 
maximizing the ELBO 

L(θ,Θ)=Eqθ(z|X)[log(pΘ(X|z))] − DKL(qθ(z|X)‖p(z)), (1)  

where qθ(z|X) and pΘ(X|z) represent the parametrical transformations of 
the encoder and the decoder, respectively, and KL is the Kullback-Leibler 
divergence (Kullback and Leibler, 1951) between the encoded latent 
vector and a target standard normal distribution. Following Lopez-Alvis 
et al. (2021), the first term of Eq. (1) is approximated by the mean 
squared error estimator (MSE) between the generated images and the 
input data. In the multivariate case, Eq. (1) is rewritten as 

L(θ,Θ)= −
1
N
∑N

i=1

⃦
⃦gΘ(z)1 − x1

⃦
⃦

N
α1 −

1
N
∑N

i=1

⃦
⃦gΘ(z)2 − x2

⃦
⃦

N
α2

− β DKL(qθ(z|X)‖p(z)), (2)  

Fig. 2. Representation of training data set; (a) samples of pairs of facies and collocated IP; (b) sand-to-shale ratio distribution from the facies samples; (c) facies- 
dependent distribution of IP assumed and honored in each IP realization. 
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where gΘ(z) is the VAE’s decoder, x ∈ X, the labels 1 and 2 represent the 
facies and the IP data domains, respectively; α1 and α2 are rescaling 
factors used to keep the distances (for facies and IP, respectively) within 
the same orders of magnitude; and β is the regularization weight used to 
better condition the encoder mapping into the desired target distribu-
tion p(z). Following Lopez-Alvis et al. (2021), the MSE loss is used for 
the facies domain instead of the more common binary cross-entropy (see 
Lopez-Alvis et al. (2021) for further details). 

2.2.2. GAN 
The GAN used in this work is composed of an unconditional gener-

ator (G) with an architecture that is analogous to the VAE decoder 
described above, accounting for five transposed convolutional layers 
followed by two separate branches of two transposed convolutional 
layers each. Here, a latent vector (z) of 60 variables is mapped into high- 
dimensional facies and IP G(z) images. Differently from conventional 
GANs, the discriminator uses an architecture with three branches, 
designed to encode the features of facies and IP domains both separately 
and jointly. Here, two branches encode the input into two scores, one for 
the facies domain (DF), one for the IP domain (DIP ). At each layer, they 
also pass the encoded information to the middle convolutional branch 
through skip connections, where the joint features from the two domains 
are encoded together to evaluate a joint distribution score (DJ). While 
the first two external branches can be seen as conventional GAN’s dis-
criminators, the central one allows to link two domains, reinforcing the 
simultaneous learning of marginal and joint features in complex multi-
variate scenarios. A schematic representation of the GAN architecture is 
given in the Supplementary material (Fig. A2). 

The training objective of the GAN is defined as follows. First, the 

discriminator is trained to maximize its three output scores when the 
input data are the training images samples (i.e., the real samples) and to 
minimize them when the input are the generated models (i.e., fake 
samples). Moreover, the learning process is further reinforced by eval-
uating cases where fake and real samples from the two domains are 
combined (i.e., evaluate the score when the input is a combination of 
fake facies samples with real IP samples and vice-versa). In such cases, 
the D is trained to maximize only the score corresponding to the real 
input and minimize the other two. The corresponding loss function for 
the discriminator training (LD) is defined as 

LD =( − log[DF(x1)] − log[DJ(x1, x2)] − log[DS(x2)])+
(
− log

[
1

−
(
DF
(
G(z)1

))]
− log

[
1 −

(
DJ
(
G(z)1,G(z)2

))]
− log

[
1

−
(
DF
(
G(z)2

))])
+
(
− log

[
1 −

(
DF
(
G(z)1

))]
− log

[
1

−
(
DJ
(
G(z)1, x2

))]
− log[DS(x2)]

)
+
(
− log[DF(x1)] − log

[
1

−
(
DJ
(
x1,G(z)2

))]
− log

[
1 −

(
G(z)2

)])
, (3)  

where x ∈ X, the labels 1 and 2 represent the facies and the IP data 
domains, respectively. Given the training conditions of D, the score DJ 
can be maximized only if both input images are realistic and their joint 
distribution of features is the same as the one represented in the training 
data set. Therefore, the training of G aims at the maximization of the DJ 
score only. 

2.2.3. Code implementation and training 
The networks were implemented in Python 3.8.13 using PyTorch 

1.13 with CUDA 11.7. Both the VAE and the GAN were trained using a 
training data set of 1024 facies model realizations, each coupled with 16 

Fig. 3. (a) Five realizations of facies and collocated IP generated by the trained VAE and GAN; (b) comparison between the training (i.e., target) multivariate 
distribution and 100 random realizations of the VAE and GAN. 
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Fig. 4. Comparison between 250 models retrieved from the training data set and DGM realizations: (a) MDS representation of the pointwise Euclidean distances 
between facies models; (b) comparison between sand-to-shale ratio from the training data set and predicted with the DGM; (c) comparison between facies-dependent 
IP distribution from the training data set and predicted with the DGM. 
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collocated geostatistical realizations of IP. The networks were trained for 
1000 epochs, using ADAM optimizer (Kingma and Ba, 2017), consid-
ering an initial learning rate of 0.001 with a step decay of 50% every 100 
epochs. The VAE is trained using β = 0.03, α1 = 1, α2 = 5. 

The training process ran on a computer with Windows 11, with a 
CPU Intel® Core™ i7-8750H and a GPU NVIDIA® GeForce™ GTX 1060. 
Using PyTorch with CUDA parallelization, the training of the VAE took 
40 s per epoch, while the training of the GAN took 55 s. 

2.3. Neural transport with inverse autoregressive flows 

This section summarizes the neural transport (NT) method as pro-
posed by Levy et al. (2023) in the context of DGM. We refer to the 
original work for a detailed description of the methodology. 

Neural transport is a type of VI method using normalizing flows 
(Rezende and Mohamed, 2015). It considers a set of continuous, 
invertible and volume conserving transformations applied to transform 
a known probability density function, or PDF, (here chosen as the prior 
distribution) into a more complex one (i.e., the targeted posterior). This 
is possible by repeatedly transforming a random variable z from the base 
distribution q(z) into a random variable m, from q(m), by applying the 
rule for change of variables 

q(m)=q(z)
⃒
⃒
⃒
⃒det

d f(z)
d z

⃒
⃒
⃒
⃒

− 1

, (4)  

where the second term represents the relative change in volume after the 
transformation f . In NT, f is represented by a sequence of trans-
formations, known as inverse autoregressive flows (IAF) (Kingma et al., 
2017), represented by scale and shift functions having trainable pa-
rameters φ. In IAF each transformation is conditional to the previous 
instances. Given f , a sequence of K transformations using the logarithmic 
form of Eq. (4) is defined as 

log q(m)= log q
(
z(0)) −

∑K

k=1

log
⃒
⃒
⃒
⃒det

d fk
(
z(k− 1)

)

d z(k− 1)

⃒
⃒
⃒
⃒, (5)  

where z(0) is the random variable sampled from the base distribution. 
In NT, the parameters φ of the IAF are iteratively updated by means 

of gradient-based optimization using variational Bayesian inference, 
where the posterior distribution is approximated by minimizing the 
ELBO (Blei et al., 2017), defined as 

L(φ)=Em∼q

[

log
p(m,d)
qφ(m)

]

, (6)  

where p(m,d) is the joint distribution between the model parameters m 
(i.e., the target random variable of the IAF) and the observed data d. 

Maximizing the ELBO (Eq. (6)) minimizes the KL divergence between 
the surrogate distribution qφ(m) and the targeted, intractable posterior. 
The joint distribution p(m,d) is evaluated using the high-dimensional 
domain of the DGM, as described in the following section. 

2.4. Fullstack seismic data inversion with neural transport 

After training the two proposed DGMs to reproduce the prior, the 
seismic data inversion is carried out by optimizing the IAF parameters. 
First, Ns random draws (or particles) are sampled from the base distri-
bution and transformed into a first approximation of the surrogate dis-
tribution qφ(m). The transformed distribution is then mapped into Ns 

realizations of facies and collocated IP using the trained DGM (G(m)). In 
the forward modeling used for fullstack seismic data inversion, we as-
sume that dobs is the result of the normal incidence of a plane wave (or 
source wavelet) with a series of interfaces determined by IP contrasts of 
impedance in the inversion grid (Sen, 2006). Hence, the IP are trans-
formed into the corresponding seismic reflection data (g(G(m))) by 
calculating the contrasts of impedance between one location (i) and the 
subsequent one (i+ 1), 

r(i)=
IP(i+1) − IP(i)

IP(i+1) + IP(i)
, (7) 

and then convolving the resulting r(i) with a known source seismic 
wavelet (Sen, 2006). 

The parameters of the IAF are evaluated using the ELBO loss in Eq. 
(6), with the joint distribution p(m,d) being calculated using the 
transformed latent and the observed seismic data dobs (i.e., d = dobs). 
The logarithmic form of the joint distribution is expressed as log p(m,

d) = log p(d|m)+ log p(m). By assuming the measurement data errors 
to be uncorrelated and follow a normal distribution with zero mean, the 
log-likelihood function log p(d|m) can be expressed as (Tarantola, 2005) 

log p(d|m)= −
Nd

2
log(2π) − 1

2
log

(
∏Nd

i=1
σ2

i

)

−
1
2
∑Nd

i

(
gi(G(m)) − di

σi

)2

,

(8)  

where Nd is the number of samples in d and σi
2 is the assumed variance 

of the data error for the i-th datum. To represent errors in the data 
domain due to measurement errors and approximations to the physical 
system under investigation during data processing, the standard devia-
tion σi is defined as the sum of relative errors with standard deviation r 
and a given constant σC: σi = r di + σC. Since both DGMs use a standard- 
normal prior with mean μm = 0 and standard deviation σm = 1, 
log p(m,d) can be expressed as  

where Nz is the number of m parameters, equal to 60 for the proposed 
DGM. The loss function used to optimize the parameters of the IAF are 
expressed using Eq. (6), as 

L(φ)=Em∼q

⎡

⎢
⎢
⎢
⎣

log
p(m,d)

log q(z(0)) −
∑K

k=1
log

⃒
⃒
⃒
⃒det d fk(z(k− 1))

d z(k− 1)

⃒
⃒
⃒
⃒

⎤

⎥
⎥
⎥
⎦

(10) 

In this work, the architecture of the IAF is the same as the one used by 
Levy et al. (2023). The IAF parameters are optimized using the ADAM 
optimizer using βIAF1

= 0.9 and βIAF2
= 0.999 (Kingma and Ba, 2017). 

Table 1 
KL divergences between the IP density distributions in the training data set (TD) 
and reproduced by the DGM (Fig. 4c); and average SSIM values of generated IP 

and facies images compared to the geostatistical references (see section 3.1.2).   

VAE GAN 

IPshale KL(DGM‖TD) 0.038 0.024 
IPsand KL(DGM‖TD) 0.116 0.015 

SSIMF 0.87±0.03 0.73±0.03 
SSIMIP 0.68±0.03 0.54±0.03  

log p(m,d)= −
1
2

(

Nd log(2π)+ log

(
∏N

i=1
σ2

i

)

+
∑N

i

(
gi(G(m)) − di

σi

)2

+Nm log(2π)+ 2 Nm log(σm)+ σ− 2
m

∑NZ

i=1
m2

i

)

, (9)   
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Fig. 5. Comparison between the IP variance and spatial uncertainty in the prior distribution and that reproduced by the (a) VAE and (b) GAN; (c) comparison of the 
sampled z vectors for each IP realization, projected in MDS space. 
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Further information on the inversion performance is provided in Section 
3.2. The fullstack seismic inversion and IAF parameters update algo-
rithm is summarized in Fig. 1b. 

2.5. Performance evaluation metrics 

2.5.1. Deep generative models 
The similarity and variability of facies patterns generated by the 

DGMs are assessed by computing the pairwise Euclidean distances be-
tween all the facies samples in the training data set and a set of DGM 
realizations. The data points are projected into a 2-D metric space using 
multi-dimensional scaling (MDS) (Cox and Cox, 2000); data points 
clustering in the same region identify similar manifolds of facies pat-
terns. The quality of collocated IP realizations is assessed by measuring 
the KL divergence between simulated and training IP distributions. 

The ability of the DGMs to reproduce multiple IP distributions 
conditioned on the same facies pattern, hence simulate the geostatistical 
co-simulations, is further assessed. Given a set of IP co-DSS realizations 
conditioned on a given facies pattern (targets), the latent space of the 
trained DGMs is explored to find all the possible IP realizations fitting the 
targets. The NT method is employed for this purpose, where the fit can 
be determined by evaluating the IP data misfit within the objective 
function (Eq. (10)). The resulting facies and IP simulations are compared 
to the targets by measuring the root mean squared error (RMSE) dis-
tance and as the structural similarity index (SSIM) (Wang et al., 2004). 
The SSIM parameters are set to M = 7, C1 = 0.01, and C2 = 0.03, 
values which are commonly adopted, and were used in Levy et al. (2023) 
and Wang et al. (2004). The search for a best-fitting solution is done 
iteratively using the NT method considering the geostatistical re-
alizations of IP as the observed data dobs (see Eq. (9)). Many particles 
(30) and a relatively low learning rate (0.005) are adopted to minimize 
the risk of convergence towards local minima (see e.g., Levy et al., 
2023). 

2.5.2. Seismic data inversion 
The RMSE between the predicted and observed data dobs (RMSEd), 

models (RMSEF and RMSEIP for facies and IP, respectively), and latent 
vector in the DGM latent space (RMSEz) are evaluated to assess the 
quality of the predicted posterior distribution. The convergence of the 
inversion is defined when: i) the average RMSEd from all the NT particles 
is equal to the average in the last 10% iterations of the algorithm; and ii) 
the average data misfit weighted by the standard deviation of the data 

noise, WRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nd

∑
[

di − gi(G(z))
σi

]2
√

, is lower than 1.1 (Levy et al., 

2023). The SSIM distance of the average predicted facies and IP is further 
assessed. 

The results of the NT-based seismic inversion were also compared to 
those obtained by exploring the latent space of the DGM through MCMC, 
using differential evolution adaptive Metropolis algorithm (DREAM(ZS)) 
(Laloy and Vrugt, 2012; Ter Braak and Vrugt, 2008; Vrugt et al., 2009). 
The algorithm uses several chains in parallel where, at each step, the 
model proposal distribution, sampled from an archive of past states, is 
updated based on differential evolution. The acceptance of the proposed 
distributions is based on the Metropolis acceptance probability. The 
predictive power of both MCMC and NT methods are compared based on 
the logarithmic scoring rule (LogS) (Good, 1952). The latter is measured 
as the negative logarithm of the probability of the true latent (z), 
calculated using the predicted posterior distribution (p̂), that is, logS(p̂,
z) = − logp̂(z). Lower values of logS(p̂, z) indicate a better approxi-
mation of the considered test model. 

3. Results 

The geological setting assumed for the test represents an environ-
ment with lenticular channels deposited in a shale background. Training 
images and inversion grid share the same size of 100 × 80 cells, which in 
our study correspond to 100 common mid points (CMP) and 80ms Two- 

Fig. 6. Comparison between geostatistical co-simulations of IP and corresponding reproduction of the IP distributions using the pre-trained (a) VAE and (b) GAN; the 
realizations are obtained with the NT method. 
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way time (TWT). The facies models from the training data set were 
generated through MPS using a binary geological model as training 
image (Fig. 2a); depending on the DGM output activation functions, 
shales and sands were classified respectively as 0 and 1 for the VAE, or as 
− 1 and 1 for the GAN. The average sand-to-shale ratio in each facies 
model is 0.269 ± 0.06 (Fig. 2b). The collocated IP (Fig. 2a) was simu-
lated through Co-DSS conditioning to facies-dependent distributions 
(Fig. 2c), sampled from two normal distributions having mean μshale =

8500 ± 600 m
s

g
cm3 and μsand = 6500 ± 600 m

s
g

cm3. The IP spatial uncer-
tainty is modeled per facies, through two spherical variogram models, 
with no nugget effect, and a range of 80m in the horizontal direction for 
both sand and shale. Along the vertical direction, the variograms’ ranges 
are 30 ms two-way time (TWT) for the shale and 50 ms TWT for the 
sand. 

3.1. Multivariate modeling with deep generative networks 

Fig. 3a shows five realizations generated by the trained VAE and 
GAN. Geologically realistic facies models can be generated by both 
DGM, with no evident artifacts (Fig. 3a). The joint distributions of facies 

and collocated IP values from 100 training images are compared to those 
generated by the DGMs (Fig. 3b). Here, the VAE’s simulated facies show 
a distribution of intermediate values simulated between one facies class 
and the other. Contrarily, this effect is negligible for the GAN (Fig. 3b). 
To approximate the following calculations for the VAE, facies classes 
below 0.5 were considered shales, and those above this threshold were 
considered sands. 

In the 2-D MDS space (Fig. 4a), the data points corresponding to 250 
training facies patterns and DGM realizations lie in the same regions of 
the MDS space, identifying a good similarity and comparable variability. 
The distribution of points for the VAE’s realizations, however, are 
significantly skewed towards the center of the MDS space, suggesting an 
under-exploration of the facies model parameter space. This difference is 
expected, as it is influenced by the continuous transition between facies 
classes in the VAE facies realizations. The sand-to-shale ratio distribu-
tions calculated from each facies model generated by the DGM are in 
close agreement with the training data (Fig. 4b). 

The facies-dependent IP distributions and their spatial correlation 
patterns are reproduced by both DGM (Figs. 3 and 4c). Nonetheless, the 
IP realizations generated by the VAE result smoother (Fig. 3a), lacking 
the small-scale spatial variability present in GAN’s realization and 
training data. Comparing the distribution of facies-dependent IP from 

250 random realizations (Fig. 4c), the training data (μshale = 8460 ±

610
[

m
s

g
cm3

]
and μsand = 6630 ±580

[
m
s

g
cm3

]
) are better reproduced by 

the GAN (μshale = 8460 ± 608
[

m
s

g
cm3

]
and μsand = 6650 ± 630

[
m
s

g
cm3

]
) 

than by the VAE (μshale = 8350 ± 650
[

m
s

g
cm3

]
and μsand =

6800 ± 570
[

m
s

g
cm3

]
). The KL divergence computed between the distri-

butions in Fig. 4c are summarized in Table 1 and confirm the better 
performance of the GAN in reproducing the IP marginal distribution. 

The ability of the DGM to reproduce the geostatistical uncertainty 
represented in the training dataset was assessed using the conditional 
facies patterns in Fig. 5a and b. 30 co-DSS realizations of IP are generated 
for each facies distribution. The pointwise average and standard devi-
ation of these realizations are shown in Fig. 5a and b as Target IP. An 
example of five realizations is shown in Fig. 6a and b as Target. Using the 
NT to explore the latent space (see Section 2.5.1) the results obtained for 
the trained VAE show that the network can fit the average IP realizations 

with high accuracy, with a RMSEIP = 235 ± 15
[

m
s

g
cm3

]
(Fig. 5a and 6a). 

Areas of lower standard deviation in the geostatistical simulations, 
mostly corresponding to the facies boundaries, and those of higher 
standard deviation are generally approximated well by the VAE, 
although smoothed. The variance reproduced by this DGM is approxi-
mately 72% of the variance of the geostatistical realizations. At the same 
time, the facies realizations generated simultaneously to the IP distri-
bution match the conditioning facies with an RMSEF = 0.13 ± 0.01, 
reproducing well the local co-dependency of the two variables (Fig. 5a). 
In the same test, the facies and co-simulated IP realizations obtained 
with the GAN reproduce the target with generally poorer accuracy 
compared to the VAE (Fig. 5b). On average, the resulting IP realizations 

match the geostatistical targets with an RMSEIP = 343 ± 19
[

m
s

g
cm3

]
. The 

pointwise IP mean model of the GAN realizations present small-scale 
patterns mismatching with the corresponding mean calculated from 
the geostatistical realizations (Fig. 5b). The IP realizations reproduce the 

spatial patterns of the corresponding targets with an RMSEIP = 364 ±

20
[

m
s

g
cm3

]
(Fig. 6b). The variance reproduced by the GAN is approxi-

mately 83% of that of the target IP spatial distributions. The facies 
patterns, co-generated with IP, have a relatively larger variability and an 
RMSEF = 0.22 ± 0.02, compared to the VAE. The differences in per-
formance observed between VAE and GAN are also reflected in the SSIM 
values calculated for both properties and shown in Table 1. A qualitative 

Fig. 7. Test scenarios used for the seismic data inversion with NT with VAE (a) 
and GAN (b). The facies and IP images are generated by the DGM using a 
random, known, latent vector. The corresponding seismic reflection data is 
obtained using a Ricker wavelet (see Section 3.2 for further details). 
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Fig. 8. Results of the seismic data inversion using NT with VAE and progression of data misfit and loss per inversion epoch. The data misfit for seismic data inversion 
with MCMC is also shown for mv3 (c). The retrieved subsurface spatial models are shown as pointwise mean facies, IP and seismic data predicted at the last iteration, 
together with the corresponding seismic residuals and variance. 
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Fig. 9. Results of the seismic data inversion using NT with GAN and progression of data misfit and loss per inversion epoch. The data misfit for seismic data inversion 
with MCMC is also shown for mg3 (c). The retrieved subsurface spatial models are shown as pointwise mean facies, IP and seismic data predicted at the last iteration, 
together with the corresponding seismic residuals and variance. 
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representation of the areas of the latent space where the NT converged 
for each IP realization target is given in Fig. 5c, in MDS space, for both 
VAE and GAN. 

3.2. Seismic data inversion 

The NT-based seismic inversion was evaluated for both VAE and 
GAN using different test scenarios (Fig. 7a and b, respectively). The test 
spatial distributions of facies and IP were generated randomly by sam-
pling the latent space of the trained DGM, so their representation in the 
latent space of the DGMs is known. The IP distributions were used to 
compute the reflectivity coefficients (Eq. (7)); then, a Ricker wavelet 
with a central frequency of 25 Hz, length of 120 ms and sampling rate of 
2 ms was used to calculate dobs. The seismic data were contaminated 
with random noise normally distributied as, N (0, σ), with σ =

0.03 dobs + 5 [Amplitude] (see Section 2.4.2). The test models are 
named using the label ‘mv’, for the VAE, and ‘mg’ for those of the GAN. 

To compare the performances of the NT inversions with the two 
DGM, the inversion process ran for 2000 epochs in both cases. The 

calibration of the hyperparameters involved testing different learning 
rates and number of particles. For both the VAE and GAN cases, a 
learning rate of 0.01 provided the fastest inversion at the highest ac-
curacy. For the NT with VAE, one particle per epoch was sufficient to 
obtain accurate predictions. Comparable performances for the NT with 

Table 2 
Summary of the statistical metrics used to evaluate the seismic inversion though 
NT with both VAE and GAN.  

Model VAE GAN 

mv1 mv2 mv3 mg1 mg2 mg3 

RMSEz 0.04 0.04 0.06 2.33 2.34 2.15 
RMSEd [Ampl.] 10.94 9.61 10.23 13.43 10.49 11.92 

RMSEF 0.05 0.05 0.05 0.02 0.01 0.01 

RMSEIP 

[m
s

g
cm3

]
10.46 13.02 12.91 7.55 7.15 9.73 

Convergence step 1646 1748 1645 874 1334 930 
SSIMF 0.95 0.92 0.97 0.99 1.00 0.99 
SSIMIP 1.00 1.00 1.00 1.00 1.00 1.00  

Fig. 10. Comparison of the posterior approximation through NT for the mv1 (a) 
and mg1 (b) test cases. The figure shows a subset of 6 of the 60 samples of the 
latent vectors. 

Fig. 11. Comparison of the posterior distributions in the latent space as pre-
dicted by the NT and MCMC, for both mv3 (a) and mg3 (b) test cases. The figure 
shows a subset of 6 of the 60 samples of the latent vectors. 

Table 3 
Comparison of the PDFs in the latent space z for test models mv3 and mg3: logS of 
the posterior distributions predicted by NT and McMC, and the Prior distribu-
tion; and the KL divergence between the predicted distributions and the prior.   

mv3 mg3 

NT MCMC Prior NT MCMC Prior 

logS − 2.62 − 2.45 1.38 427.39 129.39 1.38   

NT||Prior MCMC||Prior NT||Prior MCMC||Prior 

DKL(Q‖P) 3.66 4.42 9.25 4.05  
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GAN were found when using five particles per epoch. The MCMC 
method was applied for the seismic inversions in scenarios mv3 and mg3 
to enable comparison of the results with a reference solution. Here, eight 
parallel chains were used per test model and the number of samples per 
chain was set to 30000. The NT and MCMC inversion algorithms for 
seismic inversion are implemented in Python 3.18. The inversions ran on 
a machine with Windows 11, with a CPU Intel® Core™ i7-8750H, on the 
sole CPU. Approximately, each epoch (or inversion iteration) of the NT 
took 0.05 s for the IAF in combination with the VAE (using one particle), 
and 0.4 s for the IAF with GAN (using five particles). The inversion with 
MCMC took approximately 0.17 s per iteration when combined with 
VAE and 0.19 s per iteration when combined with GAN (using eight 
chains in both cases). The actual inversion time depends on each specific 
case study. 

Figs. 8 and 9 summarize the results of the NT inversion for VAE and 
GAN, respectively, while Table 2 gives the performance metrics (Section 
2.5) applied to the last iteration of the NT inversion. The NT inversion 
with VAE converged in all the three considered scenarios (Fig. 8). The 
seismic data misfit between the average seismic data and dobs (RMSEd), 
is in statistical agreement with the assumed σd (Table 2) and the 
resulting 2-D residual images are mostly populated by the relative data 
noise (Fig. 8). In all three scenarios, the facies and IP models agree well 
with the true test scenarios, showing low values of misfit to the target 
models and posterior’s variance. The least good performance is found 
for mv2. In this case, the NT inversion converged after 1748 iterations, 
against the 1646 and 1645 for mv1 and mv3, respectively; the predicted 
average models of facies and IP also show relatively higher RMSEd and 
RMSEIP values compared to the other two test models. Overall, the facies 
and IP patterns are well reproduced in all scenarios with values of SSIM 
above 0.92 (Table 2). The NT inversion results obtained with the GAN 
are of comparable quality to those of the VAE in terms of high- 
dimensional model reconstruction. As for the previous case, the 
RMSEd agrees with the assumed data errors at the last iteration (Fig. 8 
and Table 2). In all the cases, the predicted facies and IP match the 
spatial distributions of the target (Fig. 8) with a higher accuracy than for 
the VAE cases (Table 2). This is further confirmed by the SSIM values for 
facies and IP, that are between 0.99 and 1. 

In agreement with Levy et al. (2023), the VAE outperforms the GAN 
in approximating the posterior distribution in the latent space: the 
average RMSEZ between the true latent vector and the predicted dis-
tributions is two orders of magnitude lower for the VAE case (Table 2). 
Fig. 10 compares the distributions of the posterior as predicted by the NT 
with VAE and GAN, for mv1 and mg1, in a subset of 6 variables of the 
latent space. Here, the distribution predicted by the NT with VAE always 
includes the true values of the target latent vector, contrarily to the GAN 
case, where the predicted distributions converge towards different 
values. 

In the MCMC inversion, the time required to reach the burn-in for 
mv3 (Fig. 8c) (495 iterations) is considerably lower than for mg3 
(Fig. 9c) (1490 iterations). After convergence, the RMSEd of the pre-
dicted data is comparable to that of the NT methods (Fig. 8c and 9c) and 
equals the assumed data uncertainty σd. The facies and IP predicted by 
the MCMC with VAE have RMSEF = 0.05298 ± 4e − 5 and RMSEIP =

7.55 ± 0.35
[

m
s

g
cm3

]
; and those predicted by the MCMC with GAN have an 

average RMSEF = 0.0534 ± 6 × 10− 4 and RMSEIP = 23.05±

0.21
[

m
s

g
cm3

]
. The latent vector is predicted accurately for mv3 by both NT 

and MCMC, while both methods fail at converging towards the correct 
latent vector for mg3 (Fig. 11). As shown in Table 3, the smaller logS 
value of the posterior predicted by NT for mv3, compared to that of 
MCMC, indicates larger accuracy. On the other hand, the larger logS 
values for mg3 are a consequence of the large discrepancy between the 
predicted and true distributions. While both methods converge to a 
specific solution (see KL divergence in Table 3), the relative difference 
between NT and MCMC can be explained by the smaller variance of the 

posterior inferred by the MCMC method and its distance to the true 
value of the known latent vector. 

4. Discussion 

The evaluations of the proposed VAE and GAN show that these DGM 
can be considered as alternative approaches to multivariate geo-
statistical modeling of facies and collocated IP. The two DGMs can be 
further used as priors in variational Bayesian inversion of seismic 
reflection data, through the NT method. As the encoded parameters have 
a well-defined prior probability density function, it is possible to 
calculate the gradient of a misfit function with respect to each param-
eter, making it possible to generate conditional simulations efficiently. 

Prior modeling and, consequently, inverse modeling performance 
with these networks are characterized by specific advantages and 
drawbacks, mostly due to the types of architectures and training (i.e., 
variational and adversarial for VAE and GAN, respectively). While both 
networks encode the given prior distribution with a satisfactory degree 
of approximation, the GAN generates sharper and more accurate spatial 
distributions of facies and IP, compared to the VAE (Figs. 3 and 4). The 
lower spatial resolution of the VAE realizations and the modeling of 
intermediate facies values are both characteristics typical of this 
network. Similar results were found, for example, in Bao et al. (2022) 
and Levy et al. (2023). 

The generative models considered are deterministic, that is, to each 
point in the latent space corresponds a unique realization of facies and 
IP. The use of two independent convolutional branches at the end of the 
generative networks favors the modeling of several manifolds of IP 
spatial patterns, while modeling the same facies pattern (with good 
approximation), within the assumed uncertainty. The VAE out-
performed the GAN when testing their ability to reproduce IP facies- 
dependent spatial uncertainty (Section 3.1.2), generating IP re-
alizations that better matched the targets, while honoring the facies 
patterns (Figs. 5 and 6). Nonetheless, the better performances of the VAE 
are, in fact, partially due to the characteristic smoothing of the original 
spatial patterns, averaging out the small-scale spatial variability of the 
features. Consequently, the differences between one IP realizations 
predicted for each target are relatively smaller; this is also reflected in 
corresponding smaller regions sampled in the latent space (Fig. 5c). In 
this test, the GAN was able to match the targets with sufficiently good 
approximation. Nonetheless, the overestimation of small-scale vari-
ability visible in the realizations’ mean (Fig. 5b) suggests an underes-
timation of the spatial variance of the modeled IP. According to the 
assumed physics governing the propagation of the source seismic 
wavelet, the recorded seismic data are entirely dependent on the spatial 
distribution of IP. Therefore, the results of this test allow to assess the 
reliability of facies predictions using the NT with the proposed DGM, 
when considering facies-dependent IP data uncertainty. A possible 
improvement to the modeling ability of the proposed networks would be 
to use probabilistic generative networks (e.g., Feng et al., 2022), to 
quantify the uncertainty in the parameters modeling. Nonetheless, the 
adoption of these networks in inverse problems may require complex 
inference framework, due to the significantly larger number of unknown 
parameters. 

The NT inversion results demonstrate that it is possible to combine 
IAF with the proposed DGM and solve a seismic inverse problem effi-
ciently. The smaller number of iterations required for the convergence of 
the inversion results, compared to the VAE case, can be imputable to the 
use of a larger number of particles. While both networks provide com-
parable results in the approximation of the high-dimensional spatial 
patterns of facies and IP (Figs. 8 and 9, and Table 2), the two networks 
differ in their ability to approximate the posterior distribution in the 
latent space. In fact, the posterior distributions predicted by the GAN 
converge towards different values than the true one (Fig. 10). The test 
conducted with MCMC confirms these results (Fig. 11), suggesting that 
the issue is related to the generative model rather than to the inference 
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method used. These results are consistent with those obtained by Levy 
et al. (2023) on GPR data inversion and agree with the findings of Laloy 
et al. (2019) and Lopez-Alvis et al. (2021). This is also explains the need 
of a larger number of particles, as demonstrated by Levy et al. (2023). 
The authors conclude, through different analyses, that the adversarial 
training favors highly non-linear transformations, resulting in a model 
parameter space characterized by a rough surface with several local 
minima. A further indication of this observation can be interpreted by 
the pseudo-inversion analysis provided in Section 3.1.2: compared to the 
VAE, similar IP realizations are sampled from a wider range of points in 
the latent space (Fig. 5c). Overall, the NT demonstrated to be faster than 
the MCMC for the inversion of the tested models, requiring less itera-
tions. For the VAE case, the NT is significantly less computational 
demanding (the inversion is possible with just one particle) and provides 
more accurate predictions. 

The accurate training of the DGMs proposed is a fundamental aspect, 
as their modeling ability directly influences the accuracy of subsurface 
parameters predictions. Further research on this topic should aim at 
studying the applicability of the proposed framework in real case sce-
narios, for the prediction of both IP and facies spatial patterns. 

5. Conclusions 

The aim of the proposed research is to improve the prediction of 
subsurface facies distributions through the neural transport (NT) 
method by accounting for experimental uncertainty in facies-dependent 
properties on forward modeling. Two deep generative models based on 
variational autoencoder (VAE) and generative adversarial network 
(GAN) architectures are proposed to simultaneously learn the spatial 
arrangement of facies and the corresponding collocated acoustic 
impedance (IP). The training is based on a dataset of geostatistical re-
alizations of both facies and collocated IP. Both networks reproduce the 
prior data joint distribution and spatial patterns of facies and IP spatial 
uncertainty, mapping a latent vector into multivariate realizations. Both 
VAE and GAN have characteristic limitations and advantages in agree-
ment with previous studies when used for subsurface modeling. The VAE 
can encode similar manifolds of facies and collocated IP spatial distri-
butions into close regions of the latent space, although with limited 
capabilities in modeling the small-scale spatial features in the training 
images. The GAN can better reproduce the desired spatial statistics of 
the training images, but shows poorer encoding capabilities, scattering 
similar IP manifolds into larger regions of its latent space. The proposed 
applications of NT with the two generative models demonstrate that this 
method can indeed be used for multivariate parameter inversion of 
seismic reflection data. The posterior distribution, parametrically 
defined, and provides a quantification of the actual uncertainty on the 
subsurface spatial models. As in the baseline studies, the NT combined 
with the GAN required a relatively larger number of parallel predictions 
to update its parameters: the non-linear mapping of the GAN affects the 
accurate prediction of the posterior in its latent space. However, the 
inference of the subsurface facies and IP distribution is accurate using NT 
with both generative models. The results of the NT are comparable to 
those obtained through Markov chain Monte Carlo sampling, with the 
advantage of needing a significantly lower number of iterations. 

Computed code availability 

The python codes for the GAN, VAE training and IAF inversion al-
gorithms are available together with training and test models, at htt 
ps://github.com/romiele/DGM-for-multivariate-modeling-and-inversio 
n. 
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