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Abstract

In this paper, we study the dual risk process in ruin theory (see e.g. Cramér (1955), Takacs (1967) and Avanzi
et al. (2007)) in the presence of tax payments according to a loss-carry forward system. For arbitrary inter-
innovation time distributions and exponentially distributed innovation sizes, an expression for the ruin probability
with tax is obtained in terms of the ruin probability without taxation. Furthermore, expressions for the Laplace
transform of the time to ruin and arbitrary moments of discounted tax payments in terms of passage times
of the risk process are determined. Under the assumption that the inter-innovation times are (mixtures of)
exponentials, explicit expressions are obtained. Finally, we determine the critical surplus level at which it is
optimal for the tax authority to start collecting tax payments.

1 Introduction

The classical risk model describes the surplus process fU (t) ; t � 0g of an insurance company as

U (t) = u+ ct� S (t) , (1)

where u is the initial surplus in the portfolio, c is the premium rate and fS (t) ; t � 0g represents the aggregate claim
amount process that is assumed to be a compound Poisson process (see e.g. Bühlmann (1970), Grandell (1981) or
Rolski et al. (1999)).

As pointed out by e.g. Avanzi et al. (2007), its dual process may also be relevant for companies whose inherent
business involves a constant �ow of expenses while revenues arrive occassionally due to some contingent events (e.g.
discoveries, sales). For instance, pharmaceutical or petroleum companies are prime examples of companies for which
it is reasonable to model their surplus process fR (t) ; t � 0g by

R (t) = u� ct+ S (t) , (2)

where u is the company�s initial surplus, c is now the constant rate at which expenses are paid out and fS (t) ; t � 0g
is the aggregate revenue process.

In this paper, we assume that fS (t) ; t � 0g is a pure jump process de�ned as S (t) =
PN(t)

i=1 Yi where

� the innovation number process fN (t) ; t � 0g is a renewal process with independent and identically distributed
(i.i.d.) inter-innovation times T1; T2; : : : with density function (d.f.) k.
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� the random variable (r.v.) Yj corresponds to the revenue associated to the j-th innovation (j = 1; 2; :::).
The r.v.�s fYjg1j=1 form of a sequence of i.i.d. exponentially distributed r.v.�s with d.f. p (y) = � exp f��yg
(y � 0).

We also assume that the innovation sizes fYjg1j=1 and the inter-innovation times fTjg
1
j=1 are mutually independent.

For convenience, we de�ne the sequence of innovation times fWjg1j=1 by W0 = 0 and Wj = T1+ :::+Tj for j 2 N+.

In Albrecher and Hipp (2007), the e¤ect of tax payments under a loss-carry forward system in the Cramér-Lundberg
model was studied and a remarkably simple relationship between the ruin probability of the surplus process with
and without tax has been established. In addition, the authors found a simple criterion to determine the optimal
surplus level at which taxation starts subject to the maximization of the expected discounted tax payments before
ruin. It is natural to question whether similar relations hold in the dual model (2) which is of comparable complexity
to the Cramér-Lundberg model and is in several ways closely related.

In this paper, we address the above questions by introducing a tax component of loss-carry-forward type in the dual
surplus process (2) with general inter-innovation times and exponential innovation sizes. Hence the company pays
tax at rate 
 (0 < 
 < 1) on the excess of each new record high of the surplus over the previous one. Due to the
structure of the process, a new record high can only be achieved by an innovation which implies that tax payments
only occur at the innovation times Wj (j = 1; 2; :::). In this paper, we show that whereas the relationship for the
ruin probability with and without tax is slightly more complicated in the dual model, the criterion for identifying
the optimal starting taxation level is identical to the one known from the Cramér-Lundberg risk model.

Let �0 = 0 and de�ne
�n = inf

k2N

n
k > �n�1 :

Pk
j=�n�1+1

(Yj � cTj) > 0
o
,

to be the number of innovations up to the time of the n-th record high. Let J0 = u and

Jn = Jn�1 + (1� 
)
�nX

j=�n�1+1

(Yj � cTj) , (3)

be the value of the n-th record high. The resulting surplus process in the dual model with tax is given by

R
 (t) = J�(t) �
N(t)X

j=��(t)+1

(cTj � Yj)� c
�
t�WN(t)

�

= J�(t) � c
�
t�W��(t)

�
+

N(t)X
j=��(t)+1

Yj (4)

where � (t) = sup fn 2 N :W�n � tg. For practical considerations, we assume that the net pro�t condition

c�E [T1] < 1 (5)

is satis�ed, i.e. the drift of the (before-tax) surplus process (2) is positive.

The time to ruin �
 of the surplus process (4) is de�ned as �
 = inf ft � 0; R
 (t) = 0g (with the convention �
 =1
if R
 (t) > 0 for all t � 0) and its Laplace transform is denoted by

�
;� (u) = E
�
e���
1f�
<1g jR
 (0) = u

�
, (6)

where � � 0 can also be interpreted as a discount rate and 1A denotes the indicator of the event A. An important
special case of (6) is the ruin probability  
 (u) = �
;0 (u).

We point out that the surplus process R0(t) (i.e. 
 = 0) is the dual equivalent of the Sparre Andersen risk model
in ruin theory and can also be viewed as a GI=M=1 queueing system (see e.g. Cohen (1982) and Prabhu (1998)).
Thus, the time to ruin in the surplus process (4) with 
 = 0 can be interpreted as the length of the �rst busy period
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in the GI=M=1 queue. Here, the positive security loading condition (5) translates into a tra¢ c intensity � > 1 in
the queueing system GI=M=1 (congested queue). However, it seems that most of the explicit results in queueing
theory that are relevant for the present purpose are based on the assumption � < 1, so that we will derive some
results for the congested queue in the Appendix.

For the limit 
 = 1, it is immediate that the surplus process fR1 (t) ; t � 0g corresponds to a dual model with a
horizontal barrier strategy, where the initial surplus level is at the barrier (see Avanzi et al. (2007) for a detailed
study of that case). This gives rise to an alternative interpretation of tax payments, as they can also be viewed as
dividend payments to shareholders who ask for a proportion 
 of each new pro�t.

The paper is organized as follows: in Section 2, we derive a relation between the ruin probability with and without
tax payments in this dual model and give some more explicit expressions for (mixtures of) exponential inter-
innovation times. In Section 3, the Laplace transform of the time to ruin for the surplus process R
 (t) in (4) is
studied and an explicit expression is obtained under exponential inter-innovation times. Section 4 is then devoted
to the analysis of the moments of the discounted tax payments before ruin. Finally, in Section 5, we determine the
critical surplus level at which it is optimal for a tax authority to start collecting taxes.

2 Ruin probability

First, we consider the impact of the de�ned tax system on the ruin probability of the surplus process of the
dual model (4). The analysis will be carried out by a study of its complement, namely the non-ruin probability
�
 (u) = 1�  
 (u). Indeed, starting with an initial surplus u, the surplus process fR
 (t) ; t � 0g shall (up-) cross
level u at least once in order to avoid ruin. Let

�u = inf ft > 0 : R
 (t) � ug , (7)

be the time of the �rst up-crossing of R
(t) above a level exceeding its initial value u. Clearly, �u is the �rst time
at which the surplus process (4) reaches a new record high. It is well known that (5) is su¢ cient to guarantee the
existence of such a passage time. Let L = inf fR
 (t) : 0 � t < �ug be the minimum surplus level up to this passage
time and de�ne the Laplace transform of �u, conditioned on avoiding ruin up to time �u, by

g� (u) = E
�
e���u1fL>0g jR
 (0) = u

�
. (8)

Note that none of the quantities �u; L and g�(u) depends on 
, as the �rst taxation only starts at �u. Clearly, g0(u)
is equivalent to the probability that the classical risk process (1) starting at u = 0 (with negative safety loading)
drops below level 0 prior to reach level u. We also point out that g0 (u) is a crucial quantity in the �uid �ow
literature (where often the terminology u	(0) is used, see Ahn et al. (2007)).

Lemma 2.1 Under the net pro�t condition (5), we have limu!1  
 (u) = 0 for 
 < 1.

Proof: Under (5) and with 
 < 1, the probability that R
(t) reaches a new record high (ignoring a possible
ruin event in the interim) is 1. Consequently R
(t) reaches a new record high in�nitely often which implies that
supn2N

�
W�n+1 �W�n

�
is �nite a.s. From (4), an upper bound for the ruin probability  
 (u) is given by

 
 (u) � Pr
�
inf
n2N

�
Jn � c

�
W�n+1 �W�n

�	
< 0

�
.

Also, from (3), it is clear that infn2N fJng = u from which

 
 (u) � Pr
�
sup
n2N

c
�
W�n+1 �W�n

�
> u

�
.

Finally,

lim
u!1

 
 (u) � lim
u!1

Pr

�
sup
n2N

c
�
W�n+1 �W�n

�
> u

�
= 0.

�
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Proposition 2.2 For the surplus process (4) and 
 < 1, the in�nite-time ruin probability  
 (u) (u � 0) is given
by

 
 (u) = 1� (1�  0 (u))
1

1�
 (g0 (u))
� 

1�
 . (9)

Proof: Given that the (after-tax) excess of the surplus level over u at time �u is exponentially distributed with
mean (1� 
) =�, the survival probability �
 (u) can be written as

�
 (u) = g0 (u)

Z 1

0

�
 (u+ x)
�

1� 
 e
� �
1�
 xdx

= g0 (u)

Z 1

u

�
 (x)
�

1� 
 e
� �
1�
 (x�u)dx. (10)

Di¤erentiating (10) with respect to (w.r.t.) u yields

�0
 (u) = g00 (u)

Z 1

u

�
 (x)
�

1� 
 e
� �
1�
 (x�u)dx+

�

1� 
 �
 (u) (1� g0 (u))

=

�
d

du
ln g0 (u) +

�

1� 
 (1� g0 (u))
�
�
 (u) . (11)

The solution of the di¤erential equation (11) can be expressed as

�
 (u) =
�
 (1)
g0 (1)

g0 (u) e
� 1
1�


R1
u
�(1�g0(u))du,

where �
 (1) = limu!1 �
 (u) and g0 (1) = limu!1 g0 (u). Using Lemma 2.1, �
 (1) = 1 and g0 (1) = 1 which
leads to

�
 (u) = g0 (u) e
� 1
1�


R1
u
�(1�g0(u))du. (12)

Since (12) also holds for 
 = 0 (the model without tax), we arrive at

�
 (u) = (g0 (u))
1� 1

1�
 (�0 (u))
1

1�
 :

Finally, note that �
 (u) = 0 for all u � 0 also solves the di¤erential equation (11), but can be ruled out due to
Lemma 2.1. �

In what follows, we consider two particular cases of the dual Sparre Andersen risk model with taxation (4). For
that purpose, we �rst discuss a link between g� (u) and the expected discounted dividends V� (u; b) paid before ruin
in the surplus process (2), if a dividend barrier strategy at level b is applied (see Avanzi et al. (2007)). Using a
simple sample path argument, it is immediate that for exponentially distributed innovation sizes with mean 1=�,

V� (u;u) = g� (u)

�
1

�
+ V� (u; u)

�
,

or equivalently

g� (u) =
V� (u;u)

1
� + V� (u; u)

, (13)

for u � 0.

Example 2.1 (Exponential inter-innovation times) Let Tj � Exp(�) (j = 1; 2; : : :). From Eq. (3.5) in Avanzi et
al. (2007), (13) becomes

g� (u) =
e�Ru � e�u

�
�+Re

�Ru � �
���e

�u
, u � 0; (14)

where � � 0 and �R < 0 are the two solutions to the characteristic equation s2�
�
� � �+�

c

�
s� �

c � = 0. Consequently,

g0 (u) =
1� e�(�c��)u

1� c�
� e

�(�c��)u
. (15)
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Since in the dual model with exponential inter-innovation times we have

 0 (u) = e�(
�
c��)u (16)

(see e.g. Cramér (1955) or Gerber (1979)), this together with (9) leads to

 
 (u) = 1�
�
1� e�(�c��)u

��
1� c�

�
e�(

�
c��)u

� 

1�


.

Remark 2.1 By re�ection, it is clear that g� (u) in the dual risk model (2) with exponential inter-innovation times
with mean 1=� and general innovation sizes with d.f. q is equivalent to the Laplace transform of the time to ruin
in the Cramér-Lundberg risk model (with initial surplus 0, Poisson parameter �, general claim sizes with d.f. q and
negative safety loading) avoiding level u in the interim. From Gerber (1979), it follows that

g0 (u) = 1�
f0 (0)

f0 (u)
, u � 0, (17)

where ff0 (u) ; u � 0g is the solution of the integro-di¤erential equation�
D � �

c

�
f0 (u) +

�

c

Z u

0

f0 (u� y) q (y) dy = 0, (18)

which is unique up to a constant. Here D denotes the di¤erential operator. For instance, for q (y) = �e��y, one
readily obtains (15) as the solution of the integro-di¤erential equation (18) with (17).

Example 2.2 (Mixture of exponentials inter-innovation times) Let k (t) =
Pn

i=1 pi�i exp (��it). In the Appendix,
we prove that

 0 (u) =
mX
j=0

dje
sju (19)

and

V� (u; b) =

mX
j=0

Cj (b) e
sju, (0 < u < b);

where s0; s1; :::; sn denote the solutions to the fundamental equation (63) and Cj(b); dj (j = 0; : : : ;m) are constants
(which complements results of Avanzi et al. (2007)). Thus,

g� (u) = 1�

0@1 + � mX
j=0

Cj (u) e
sju

1A�1

(20)

and �nally

 
 (u) = 1�

0@1� mX
j=0

dje
sju

1A 1
1�


0B@1�
0@1 + � mX

j=0

Cj (u) e
sju

1A�1
1CA
� 

1�


.

Remark 2.2 Exploiting the connection between �uid �ows and risk processes (see e.g. Ramaswami (2006) and
Badescu et al. (2007)), a probabilistic approach can alternatively be used to identify the components g0 (u) and
 0 (u) in (9). Indeed, for phase-type distributed PH(�;A) inter-innovation times, a re�ection of the dual risk
model (2) readily leads to

g0 (u) = � u	 (0) 1,

and
 0 (u) = � [I � u	 (0)	r (0)]

�1
f12 (0; u; 0)1,
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where u	 (�) is the Laplace transform of the busy period in a �nite bu¤er (at level u) �uid �ow, 	r (�) is the
Laplace transform of a busy period in an in�nite bu¤er re�ected �uid �ow and f12 (0; u; �) is the Laplace transform
of the �rst passage from level 0 to level u (avoiding level 0 en route) of a �uid �ow with generator

Q =

�
A �A1
�� ��

�
We refer the reader to Badescu et al. (2007) for the calculation of u	 (�), 	r (�) and f12 (�; u; 0) in more general
Markovian arrival risk processes.

3 Laplace transform of the time to ruin �


Let us now consider the Laplace transform �
;� (u) of the time to ruin �
 . Starting with an initial surplus u, the
surplus process fR
 (t) ; t � 0g can either reach a new record high at time �u avoiding ruin en route or reach level 0
before any visit to levels greater than u. For the latter, the Laplace transform h� (u) of the corresponding passage
time �u is de�ned as

h� (u) = E
�
e���u1fZ�ug jR
 (0) = u

�
, (21)

where Z = sup fR
 (t) : 0 � t < �u <1g corresponds to the maximum surplus level before ruin.

Thus, by conditioning on these two scenarios, we obtain

�
;� (u) = g� (u)

Z 1

u

�

1� 
 e
� �
1�
 (x�u)�
;� (x) dx+ h� (u) , (22)

for u � 0. Di¤erentiating (22) w.r.t. u yields

�0
;� (u) = g0� (u)

Z 1

u

�

1� 
 e
� �
1�
 (x�u)�
;� (x) dx+

�

1� 
 (1� g� (u)) �
;� (u) + h
0
� (u)�

�

1� 
 h� (u) . (23)

With (22) this can be rewritten as

�0
;� (u) =

�
d

du
ln g� (u)

�
(�
;� (u)� h� (u)) +

�

1� 
 (1� g� (u)) �
;� (u) + h
0
� (u)�

�

1� 
 h� (u) ,

and further

�0
;� (u)�
�
d

du
ln g� (u) +

�

1� 
 (1� g� (u))
�
�
;� (u)

= h0� (u)�
�
d

du
ln g� (u) +

�

1� 
 (1� g� (u))
�
h� (u)�

�

1� 
 g� (u)h� (u) . (24)

The non-homogeneous di¤erential equation (24) can be solved by applying the multiplicative factor

exp
n
� �
1�


R u
0
(1� g� (z)) dz

o.
g� (u) on both sides, leading to

d

du

�
e�

�
1�


R u
0
(1�g�(z))dz �
;� (u)

g� (u)

�
=

d

du

�
e�

�
1�


R u
0
(1�g�(z))dz h� (u)

g� (u)

�
� �

1� 
 h� (u) e
� �
1�


R u
0
(1�g�(z))dz.

(25)

Integrating from y to 1 together with limu!1 �
;� (u) = limu!1 h� (u) = 0 and limu!1 g� (u) > 0 (due to (5)),
one concludes

�
;� (y) = h� (y) +
�

1� 
 g� (y)
Z 1

y

h� (u) e
� �
1�


R u
y
(1�g�(z))dzdu. (26)
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Exponential inter-innovation times

For the case Tj � Exp(�); j = 1; 2; ::, an expression for g� (u) has been obtained in (14), which can be rewritten as

1� g� (u) =
1

�

d

du
ln

�
1

� +R
e�Ru � 1

� � �e
�u

�
=
1

�

�
�+

d

du
ln (1� �� (u))

�
(27)

with �� (u) = (� � �) e�(R+�)u= (� +R) and further

g� (u) =
� � �
�

�
1� e�(R+�)u

�
(1� �� (u))�1 . (28)

Substituting the latter expressions in (26) yields

�
;� (y) = h� (y) +
� � �
1� 


�
e�y � e�Ry

�
(1� �� (y))



1�


Z 1

y

h� (u) e
� �
1�
 u

�
1

1� �� (u)

� 1
1�


du. (29)

We now need to identify an explicit expression for h� (u). We again re�ect the surplus process (4) to relate it with
the surplus process (1) and �nd from Gerber (1979, p.147) that

h� (u) =
�+R

� +R
e�Ru (1� �� (u))�1 . (30)

Using (30), (29) turns into

�
;� (y) = h� (y) +
� � �
1� 


�+R

� +R

�
e�y � e�Ry

�
(1� �� (y))



1�


Z 1

y

e�(R+
�

1�
 )u
�

1

1� �� (u)

�1+ 1
1�


du. (31)

From Newton�s generalized binomial theorem (see Graham et al. (1994)), (31) becomes

�
;� (y) = h� (y) +
� � �
1� 


�+R

� +R

�
e�y � e�Ry

�
(1� �� (y))



1�


Z 1

y

e�(R+
�

1�
 )u
1X
j=0

C
�(1+ 1

1�
 )
j

�
� � � �
� +R

�j
e�j(R+�)udu.

(32)

where Crj =
1
j!

Qj�1
k=0 (r � k) for k 2 N. Simple modi�cations of (32) give

�
;� (y) = h� (y) +
� � �
1� 


�+R

� +R

�
e�y � e�Ry

�
(1� �� (y))



1�


1X
j=0

C
1

1�
+j

j

�
� � �
� +R

�j
e�((j+1)R+(j+

1
1�
 )�)y

(j + 1)R+
�
j + 1

1�


�
�

= h� (y) +
� � �
1� 


�+R

� +R

�
e�y � e�Ry

�
e�(R+

1
1�
 �)y (1� �� (y))



1�


1X
j=0

C
1

1�
+j

j

(�� (y))
j

j +
R+ �

1�

�+R

. (33)

Using the Gauss Hypergeometric function de�ned as

F (a; b; �;x) =
� (�)

� (a) � (b)

1X
j=0

� (a+ j) � (b+ j)

� (� + j) � (j + 1)
xj , (34)

(see e.g. Abramowitz and Stegun (1972)), (33) can be written as

�
;� (y) =
�+R

� +R
e�Ry (1� �� (y))�1

+
� � �
1� 


R+ �
1�


� +R

�
e�y � e�Ry

�
e�(R+

1
1�
 �)y (1� �� (y))



1�
 F

 
1 +

1

1� 
 ;
R+ �

1�

�+R

;
R+ �

1�

�+R

+ 1; �� (y)

!
,

for y � 0.
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4 Discounted tax payments

Let D
;� (u) denote the discounted tax payments before ruin in the surplus process (4) de�ned as

D
;� (u) := 

1X
n=1

e��W�n

0@ �nX
j=�n�1+1

(Yj � cTj)

1A 1f�
>W�ng.

In this section, we will analyze the nth moment of D
;� (u), namely

Mn (u) = E [(D
;� (u))
n
] ,

for n = 1; 2; ::: By conditioning on the �rst upper exit time �u of the surplus process (4), one �nds

Mn (u) = gn� (u)

Z 1

0

�

1� 
 e
� �
1�
 xE

��
D
;� (u+ x) +




1� 
 x
�n�

dx

= gn� (u)

Z 1

u

�

1� 
 e
� �
1�
 (x�u)E

��
D
;� (x) +




1� 
 (x� u)
�n�

dx. (35)

Di¤erentiating (35) w.r.t. to u gives

M 0
n (u) =

�
d

du
ln gn� (u) +

�

1� 
 (1� gn� (u))
�
Mn (u)

� n


1� 
 gn� (u)
Z 1

u

�

1� 
 e
� �
1�
 (x�u)E

"�
D
;� (x) +




1� 
 (x� u)
�n�1#

dx. (36)

From (35) with n replaced by n� 1, (36) can be simpli�ed to

M 0
n (u) =

�
d

du
ln gn� (u) +

�

1� 
 (1� gn� (u))
�
Mn (u)�

n


1� 

gn� (u)

g(n�1)� (u)
Mn�1 (u) . (37)

Multiplying both sides of (37) by the multiplicative factor exp
n
� �
1�


R u
0
(1� gn� (z)) dz

o
=gn� (u), it follows that

d

du

�
Mn (u)

gn� (u)
e�

�
1�


R u
0
(1�gn�(z))dz

�
= � n


1� 

Mn�1 (u)

g(n�1)� (u)
e�

�
1�


R u
0
(1�gn�(z))dz. (38)

Integrating (38) from y to 1 then yields

Mn (y) = gn� (y)

�
Mn (1)
gn� (1)

e�
�

1�

R1
y
(1�gn�(z))dz +

Z 1

y

n


1� 

Mn�1 (u)

g(n�1)� (u)
e�

�
1�


R u
y
(1�gn�(z))dzdu

�
, (39)

whereMn (1) := lim&!1Mn (&) and gn� (1) := lim&!1 gn� (&). Under (5) and � > 0, we have lim&!1 gn� (&) > 0,
lim&!1Mn (&) is �nite a.s. and

lim
&!1

exp

�
� �

1� 


Z &

y

(1� gn� (z)) dz
�
� lim

&!1
exp

�
� �

1� 
 (1� gn� (&)) (& � y)
�
= 0;

which implies that (39) becomes

Mn (y) =
n


1� 
 gn� (y)
Z 1

y

Mn�1 (u)

g(n�1)� (u)
e�

�
1�


R u
y
(1�gn�(z))dzdu. (40)

Of special interest is the case n = 1 which leads to an expression for the expected discounted tax payments until
ruin

M1 (y) =



1� 
 g� (y)
Z 1

0

e�
�

1�

R u
0
(1�g�(z+y))dzdu, (41)

using M0 (u) = g0 (u) (cf. (35)).
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Exponential inter-innovation times

Assuming exponential inter-innovation times with mean 1=�, the substitution of (27) and (28) in (41) leads to

M1 (y) =



1� 

� � �
�

�
1� e�(R+�)y

�
e

�
1�
 y (1� �� (y))



1�


Z 1

y

e�
�

1�
 u (1� �� (u))�
1

1�
 du. (42)

From Newton�s generalized binomial theorem, (42) becomes

M1 (y) =



1� 

� � �
�

�
1� e�(R+�)y

�
e

�
1�
 y (1� �� (y))



1�


Z 1

y

e�
�

1�
 u
1X
k=0

C
� 1
1�


k

�
�� �R
� + �

�k
e�k(�+R)udu

=



1� 

� � �
�

�
1� e�(R+�)y

�
e

�
1�
 y (1� �� (y))



1�


Z 1

y

1X
k=0

C
1

1�
+k�1
k

�
� �R
� + �

�k
e�((k+

1

 )�+kR)udu.

=



1� 

� � �
�

�
1� e�(R+�)y

�
(1� �� (y))



1�


1X
k=0

C
1

1�
+k�1
k

(�� (y))
k�

k + 1
1�


�
�+ kR

=



�

� � �
�

�
1� e�(R+�)y

�
(1� �� (y))



1�
 F

�
1

1� 
 ;
�

(�+R) (1� 
) ;
�

(�+R) (1� 
) + 1; �� (y)
�
,

for y � 0.

5 Delayed start of tax payments

In this section we consider a variant of the tax system where tax payments start only after the surplus is greater than
a threshold level b (b > u). Let vb (u) denote the resulting expected discounted tax payments. By a probabilistic
argument, one easily shows

vb (u) = B� (u; b)

�



�
+

Z 1

0

�

1� 
 e
� �
1�
 xM1 (b+ x) dx

�
, (43)

where B� (u; b) is the Laplace transform of the �rst passage from level u to any level above b avoiding ruin en route.
Furthermore, an expression for B� (u; b) can be obtained in terms of g� (x) for u � x � b. Indeed, by conditioning
on the ascending ladder height, one obtains

B� (u; b) = g� (u)

"Z b�u

0

�

1� 
 e
� �
1�
 xB� (u+ x; b) dx+ e

� �
1�
 (b�u)

#

= g� (u)

"Z b

u

�

1� 
 e
� �
1�
 (x�u)B� (x; b) dx+ e

� �
1�
 (b�u)

#
. (44)

Di¤erentiating (44) w.r.t. u, we obtain

B0� (u; b) =

�
g0� (u)

g� (u)
+

�

1� 
 �
�

1� 
 g� (u)
�
B� (u; b) ,

from which
B� (u; b) = g� (u) e

� �
1�


R b
u
(1�g�(x))dx. (45)

Combining (35) at n = 1, (43) and (45), one deduces

vb (u) =
B� (u; b)

g� (b)
M1 (b) =

g� (u)

g� (b)
e��

R b
u
(1�g�(x))dxM1 (b) . (46)
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Theorem 5.1 If there is an optimal level b� > 0 to start taxation at rate 0 < 
 < 1 in the dual risk model, it has
to ful�ll the condition

d

db

�
M1 (b)

g� (b)

�����
b=b�

= 1 (47)

together with
g0�(b

�) > � (1� g� (b�))2 ; (48)

and the optimal expected discounted tax payment is then given by

vb� (u) =

(
B�(u;b

�)
�(1�g�(b�)) , u < b�,
v (u), u � b�.

A su¢ cient condition for the existence of such an optimal positive level b� > 0 is limu!0
M1(u)
g�(u)

> 1
� .

On the other hand, if such a b� > 0 does not exist, then the optimal level to start taxation is b� = 0 (i.e. start
immediately), so that in this case vb� (u) = v (u).

Proof: To identify the optimal surplus level b
�
for the authority to start tax collection, we shall look for the solution

of
@

@b
vb (u) = 0. (49)

Using (46), (49) becomes �
M 0
1 (b

�)

M1 (b�)
�
�
g0� (b

�)

g� (b�)
+ � (1� g� (b�))

��
vb� (u) = 0. (50)

Since vb (u) > 0 for u; b > 0, we get

M 0
1 (b

�)

M1 (b�)
�
�
g0� (b

�)

g� (b�)
+ � (1� g� (b�))

�
= 0. (51)

On the other hand, we know from (37) at n = 1 that

M 0
1 (u)

M1 (u)
=

�
g0� (u)

g� (u)
+

�

1� 
 (1� g� (u))
�
� 


1� 

g� (u)

M1 (u)
, (52)

for any u � 0. Hence (51) can be written as

M1 (b
�)

g� (b�)
=

1

� (1� g� (b�))
. (53)

Replacing (53) in (51) eventually leads to (47).

In order to ensure that b� is indeed a maximum, we have to prove that

@2

@b2
vb (u)

����
b=b�

< 0.

From (46) we have

v00b (b)jb=b� =
 �

M 0
1 (b)

M1 (b)

�0
�
�
g0� (b)

g� (b)

�0
+ �g0� (b)

!
vb (u)

�����
b=b�

.

Di¤erentiating (52) w.r.t. b we also get�
M 0
1 (b)

M1 (b)

�0
=

�
g0� (b)

g� (b)

�0
� �

1� 
 g
0
� (b)�




1� 


�
g� (b)

M1 (b)

�0
.
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and combining the last two equations, one arrives at

v00b (b
�) = � 


1� 


 
�g0� (b

�) +

�
g� (b

�)

M1 (b�)

�0!
vb (b

�)

= � 


1� 


 
�g0� (b

�)�
�
g� (b

�)

M1 (b�)

�2!
vb (b

�) , (54)

or, by virtue of (53),

v00b (b
�) = � 


1� 


�
�g0� (b

�)� �2 (1� g� (b�))2
�
vb (b

�) .

Hence g0� (b
�)�� (1� g� (b�))2 > 0 guarantees v00b (b�) < 0, identifying b� as a (local) maximum. Note that (48) also

translates into
d

db

�
1

�

1

1� g� (b)

�����
b=b�

> 1, (55)

which means that the derivative of the right-hand side exceeds the one of the left-hand side of (53) in the intersection
point b�. From (41),

lim
u!1

M1 (u)

g� (u)
=




1� 


Z 1

0

e�
�

1�

R z
0
(1�g�(1))dydz =




� (1� g� (1))
. (56)

Note that (56) can also be obtained directly by probabilistic reasoning (in the absence of ruin):

M1(1) = g�(1)
�

�
+M1(1)

�
:

Altogether it is then clear that

lim
u!1

M1 (u)

g� (u)
< lim

u!1

1

� (1� g� (u))
, (57)

where g� (1) := limu!1 g� (u). Hence, for limu!0
M1(u)
g�(u)

> 1
� , the continuity of the functions M1 (u) =g� (u) and

1=� (1� g� (u)) guarantees the existence of an optimal b� > 0 (in case there should be several positive solutions of
(47) with (48), one would have to pick the one leading to the largest value of vb(u)).

Finally, in the absence of a positive local maximum, the fact that v1(u) = 0 then establishes b� = 0 as the optimal
taxation level. �

Remark 5.1 Using (13), criterion (47) can easily be translated into

M1(b
�) = V (b�; b�): (58)

In other words, the optimal taxation starting level can only be the initial value for which the expected discounted tax
payments M1 equals the expected discounted dividend payments under a horizontal barrier strategy with barrier at
the initial surplus level. Note that criterion (58) is identical to the one obtained for the optimal taxation level in
the Cramér-Lundberg model (cf. Albrecher and Hipp (2007)).
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Appendix

Assume that the inter-innovation times are a mixture of exponentials with density function k (t) as given in Example
2.2 and the innovation sizes are exponentially distributed with mean 1=�. By conditioning on the time and size of
the �rst innovation, the expected discounted dividends for the surplus process (2) are given by

V� (u; b) =
mX
i=1

pi

Z u

0

�i
c
e�

�i+�

c t

 Z t+b�u

0

V� (u+ y � t; b)�e��ydy +
�
1

�
+ V� (b; b)

�
e��(t+b�u)

!
dt, (59)

for 0 < u < b. Applying the operator (D � �) on both sides of (59) leads to

(D��)V� (u; b) =
mX
i=1

pi
�i
c
e�

�i+�

c u

 Z b

0

V� (y; b)�e
��ydy +

�
1

�
+ V� (b; b)

�
e��b

!

� �
mX
i=1

pi

Z u

0

�i
c
e�

�i+�

c (u�t)V� (t; b) dt, (60)
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for 0 < u < b. An application of the operator A (D) =
Qm
i=1

�
D + �i+�

c

�
on both sides of (60) yields the linear

homogeneous di¤erential equation of order m+ 1

A (D) (D��)V� (u; b) +
mX
i=1

pi
�i
c
A�i (D)�V� (u; b) = 0, (61)

for 0 < u < b where A�i (D) corresponds to the operator A (D) with the i-th term removed from the product.
Hence V� (u; b) (0 < u < b) can be expressed as

V� (u; b) =
mX
j=0

Cj (b) e
sju, (62)

where fsjgmj=0 are the m+ 1 solutions of the characteristic equation

A (s) (s��) +
mX
i=1

pi
�i
c
A�i (s)� = 0. (63)

A substitution of (62) in (25) allows the identi�cation of the constants fCj (b)gmj=0 in (62). Indeed, one �nds

mX
j=0

Cj (b) (sj � �) esju =
mX
i=1

pi
�i
c
e�

�i+�

c u�
mX
j=0

Cj (b)
1� e�(��sj)b

��sj �
mX
i=1

pi
�i
c
�

mX
j=0

Cj (b)
esju � e�

�i+�

c u

sj +
�i+�
c

+

mX
i=1

pi
�i
c
e�

�i+�

c u

0@ 1
�
+

mX
j=0

Cj (b) e
sjb

1A e��b, (64)

for 0 < u < b. For (64) to be valid for all u in (0; b), the coe¢ cients of exp (sju) on both sides of (64) must be
equal which is guaranteed from (63). Analogously, the coe¢ cients of exp (� (�+ �)u=c) on both sides of (64) have
to coincide, i.e. the constants fCjgmj=0 must satisfy

0 = �

mX
j=0

Cj (b)

 
1� e�(��sj)b

��sj +
1

sj +
�i+�
c

!
+

0@ 1
�
+

mX
j=0

Cj (b) e
sjb

1A e��b, (65)

for j = 0; 1; :::;m. Combining (65) with the initial value condition

V� (0; b) =
mX
j=0

Cj (b) = 0,

we obtain a system of m+ 1 linear equations that allows the identi�cation of the constants fCj (b)gmj=0 in (62).

Finally, we derive an expression for the Laplace transform of the time to ruin �0;� (u) under these assumptions in
dual risk model. By conditioning on the time and size of the �rst innovation, it follows that

�0;� (u) =
mX
i=1

pi

Z u

0

�i
c
e�

�i+�

c t

Z 1

u

�0;� (y � t)�e��(y�u)dydt+
mX
i=1

pie
��i+�

c u. (66)

Applying the operator (D � �) on both sides of (66) leads to

(D��) �0;� (u) =
mX
i=1

pi
�i
c
�e�

�i+�

c u

�Z 1

0

�0;� (y) e
��ydy �

Z u

0

e
�i+�

c t�0;� (t) dt

�
+

mX
i=1

pie
��i+�

c u. (67)

By an application of the operator A (D) on both sides of (67), one readily �nds that f�0;� (u) ; u � 0g satis�es the
homogeneous di¤erential equation (61) for u > 0 which implies that its general solution is given by

�0;� (u) =
mX
j=0

dje
sju, (68)
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for u > 0. A substitution of (68) in (67) allows the identi�cation of the constants fdjgmj=0 in (68). Indeed, one �nds

mX
j=0

dj (sj � �) esju =
mX
i=1

pi
�i
c
�

mX
j=0

dj

 
e�

�i+�

c u

� � sj
� esju � e�

�i+�

c u

�i+�
c + sj

!
+

mX
i=1

pi e
��i+�

c u, (69)

for u > 0. By equaling the coe¢ cients of exp (� (�i + �)u=c) on both sides of (69), the constants fdjgmj=0 have to
satisfy

0 =
�i
c
�

mX
j=0

dj

�i+�
c + ��

�i+�
c + sj

�
(� � sj)

+ 1, (70)

for i = 1; :::;m. Combining (70) with the initial value condition

�0;� (0) =
mX
j=0

dj = 1,

the constants fdjgmj=0 can be obtained by a system of m+ 1 linear equations akin to (62).

14


