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Abstract

Predicting the presence or absence (occurrence-state) of species in a certain area is highly

important for conservation. Occurrence-state can be assessed by network models that take

suitable habitat patches as nodes, connected by potential dispersal of species. To deter-

mine connections, a connectivity threshold is set at the species’ maximum dispersal dis-

tance. However, this requires field observations prone to underestimation, so for most

animal species there are no trustable maximum dispersal distance estimations. This limits

the development of accurate network models to predict species occurrence-state. In this

study, we performed a sensitivity analysis of the performance of network models to different

settings of maximum dispersal distance. Our approach, applied on six amphibian species in

Switzerland, used habitat suitability modelling to define habitat patches, which were linked

within a dispersal distance threshold to form habitat networks. We used network topological

measures, patch suitability, and patch size to explain species occurrence-state in habitat

patches through boosted regression trees. These modelling steps were repeated on each

species for different maximum dispersal distances, including a species-specific value from

literature. We evaluated mainly the predictive performance and predictor importance among

the network models. We found that predictive performance had a positive relation with the

distance threshold, and that almost none of the species-specific values from literature

yielded the best performance across tested thresholds. With increasing dispersal distance,

the importance of the habitat-quality-related variable decreased, whereas that of the topol-

ogy-related predictors increased. We conclude that the sensitivity of these models to the dis-

persal distance parameter stems from the very different topologies formed with different

movement assumptions. Most reported maximum dispersal distances are underestimated,

presumably due to leptokurtic dispersal distribution. Our results imply that caution should be

taken when selecting a dispersal distance threshold, considering higher values than those

derived from field reports, to account for long-distance dispersers.
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Introduction

The distance across which individuals of a species can physically move and disperse is a crucial

element to consider in biodiversity conservation, as it is an important determinant of the prob-

ability that an organism is able to reach and occupy other areas. An effective way to study pat-

terns of spatial distribution of animal (meta)populations [1] and movement across landscapes

is through the conceptual framework of habitat mosaics [2, 3], which are spatial representa-

tions of suitable habitat patches in an unsuitable (or less suitable) matrix [4]. The movement of

animals through the matrix allows them to reach new suitable patches after habitat destruction

or resource depletion (e.g. food or water). Colonization of new suitable patches is also impor-

tant for the maintenance of gene flow among populations [5, 6]. There can be multiple factors,

such as specific insurmountable landscape features (e.g. barriers), that make it difficult for a

species to reach other suitable patches [7, 8]. However, even without significant resistance to

movement from the matrix, physical, morphological or behavioral traits can also limit the dis-

persal abilities of organisms, allowing them to only cover a certain maximum distance [5, 9].

Due to intraspecific variation, the dispersal distance is generally not a fixed value, and aggre-

gated for individuals of a population it can be seen as a probability distribution (i.e. dispersal

kernel) in which the maximum dispersal distance corresponds to the distant end of the tail

[10]. The probabilities of movement and dispersal thus directly affect the probability of finding

a species in an environmentally-suitable habitat patch. Thus, the persistence of a population in

a habitat patch not only depends on factors related to habitat quality and size, but also on its

connectivity to surrounding patches [11, 12], and generally to the structure (topology) of the

habitat network it forms a part of [3, 13].

There is currently a wealth of network modelling applications in landscape ecology and

conservation. These include studies on the impact of transport infrastructure on the genetic

structure of a metapopulation [14], prioritization of areas for conservation [15, 16], demon-

strations of the relevance theoretical principles from islands biogeography [17], and assess-

ments of robustness against habitat loss [18]. In a habitat network, the nodes represent the

habitat patches, and the edges or links represent potential movement of organisms between

them [3, 19]. In networks in which not all of the patches are connected to all other patches (i.e.

the network is not fully-connected), the network can be seen as split into several “components”

[19]. Inside a network component, each patch can be reached directly or indirectly from all

other patches. Single patches that are not connected to any other are themselves also separate

network components [20]. Since several network indices that describe the position or impor-

tance of a patch in the network rely on calculating connections with an extended vicinity (e.g.

neighborhood [21]) or all the other patches in the network (e.g. probability of connectivity

[22], betweenness centrality [23]), their values are limited to the nodes that form a particular

component (but note that this depends on the algorithm settings used to calculate them).

Therefore, it is relevant to know how the network is organized and whether and how much it

is fragmented.

Determining whether two patches are connected by an edge needs to take into consider-

ation if the dispersal abilities of species allow movement between the pair of patches [24].

Given this, habitat networks need to specify a geographical distance over which no edges are

formed, which is dependent on such dispersal ability. Therefore, data on maximum dispersal

distances is needed to parametrize network models. Available data on maximum dispersal dis-

tances consists of estimates based on what has been observed in the field, but getting reliable

estimates is very difficult for two reasons. First, dispersal distance estimates from genetic anal-

yses in principle can only detect “effective dispersal”, which is when the migrant organisms

successfully reproduce [25, 26] (but see Manel, Gaggiotti [27]). Second, these techniques often
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Data_Sources-Sensitivity_of_habitat_network_

models_to_changes_in_maximum_dispersal_

distance-OrtizRodriguez_etal.docx The data from

these sources are either conservation-relevant or

property of Swiss public institutions. When not

freely available from the listed source, access to

the data must be requested directly from those

institutions hosting the data. For the species

location data, contact InfoFauna/KARCH (www.

infofauna.ch). For the data on human

infrastructure, bodies of water and terrain slope,

contact Swisstopo (https://www.swisstopo.admin.

ch/de/geodata/landscape/tlm3d.html; https://www.

swisstopo.admin.ch/en/geodata/height/alti3d.

html). For the climatic variables, contact ECOSPAT

at Unil (https://www.unil.ch/ecospat/home/

menuguid/ecospat-resources/data.html#chclim25

). For data on noise, contact the Federal Office for

the Environment FOEN (https://www.bafu.admin.

ch/dam/bafu/fr/dokumente/laerm/uw-umwelt-

wissen/strassenlaerm_berechnungsmodell_

sonroad18.pdf.download.pdf/modele_de_calcul_

du_bruit_routier_sonroad18.pdf). For data on

population density, land cover and forest coverage,

contact the Federal Statistical Office (https://www.

bfs.admin.ch/bfs/de/home/statistiken/raum-

umwelt/erhebungen/area.html). Finally, for data on

traffic, contact ARE (https://www.are.admin.ch/are/

de/home/verkehr-und-infrastruktur/grundlagen-

und-daten/verkehrsmodellierung/nationales-

personenverkehrsmodell.html).
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rely on unrealistic assumptions, such as complete genotyping of the parent pools or Hardy-

Weinberg equilibrium in the population [26, 28]. This makes the determination of the pres-

ence of migrants in a certain patch by these means often unreliable [26]. Other possible meth-

ods to determine maximum dispersal distances are radio or GPS tracking [29, 30]. However,

especially for small organisms, these methods have limitations related to the physical place-

ment of transmitters and the low battery life of small devices [31]. Harmonic direction finders

solve those problems [32, 33], but they have a very short detection range and lack signal differ-

entiation for specific individuals [31, 34], which would require other methods of field marking

and identification to measure maximum dispersal distances. For mark-recapture studies (and

indeed for all other methods), the drawback is that there are uncommon long-distance dis-

persal events which are difficult to detect [35, 36], which often causes the maximum dispersal

distances of species to be underestimated [37, 38]. In short, despite the importance of knowing

the maximum dispersal distance to construct habitat network models, there is great ambiguity

in estimating this distance in the field.

The application of advanced modelling techniques to conservation is especially relevant

and urgent in the case of amphibians, as it is globally the most endangered and sharply declin-

ing class of vertebrates [39]. Fortunately, there are already efforts relying on network model-

ling to assess the presence and distribution of amphibians in habitat patches (e.g. [40, 41]).

However, for the reasons mentioned above, also for amphibians the estimation of the maxi-

mum dispersal distance is problematic. In a comprehensive review of amphibian dispersal by

Smith and Green [42], whose findings were revisited by Covarrubias et al. [50], there is a

reported mean maximum dispersal distance for anurans of 2.02 km. Smith and Green mention

that this is double the distance (i.e. 1 km) over which, according to previous reports, “amphib-

ian populations would be isolated from dispersal” [42: 113]. In the same work, it is further

reported that 44% of the amphibian species from the studies they compiled move no farther

than 400 m, while 7% of the anurans disperse to more than 10 km. Importantly, these authors

also found that probability distribution of dispersal distances of amphibians in many cases fol-

lows an inverse power law, or more generally, a leptokurtic distribution (most individuals

moving over a relatively short distance, but with a considerable amount of individuals moving

over large distances). Smith and Green [42: 119] also concluded that “monitoring larger areas

in the future will result in the discovery of longer distance movements”. Despite the impor-

tance of knowing the maximum dispersal distance to construct habitat network models, there

is thus great uncertainty in estimating this distance in nature. This raises the question how sen-

sitive the results of network modelling approaches are to the choice of maximum dispersal

distance.

In this study, we explored the effect of maximum dispersal distance on the predictive power

of network-based species occurrence-state (presence or absence) models. We applied the origi-

nal network modelling suite presented in Ortiz-Rodrı́guez et al. [41] to six amphibian species

of conservation importance in the Swiss Plateau. In brief, this modelling suite uses Habitat

Suitability Modelling (HSM; [43]) as the basis for delineating the habitat patches that form the

nodes of a network model. As standard site-occupancy models are inadequate for non-system-

atically sampled data, the occurrence-state (i.e. the presence or absence of a species) in these

habitat patches is determined by assessing sampling intensity, and the network models are sub-

sequently used to fit the occurrence-state to predictor variables including network topology

measures [41]. In addition to fitting models with edge formation delimited by species-specific

(mean) maximum dispersal distances taken from the literature, we also generated a series of

networks with a uniform set of maximum dispersal distances. This resulted in a large number

of different habitat networks. We performed an extensive sensitivity analysis on these habitat

networks, comparing them based on their predictive performance, their structure, and the
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importance of different predictor variables. We discussed the implications of our results for

amphibian dispersal and the interpretation of habitat network models overall.

Methods

Species and study area

We used data from six amphibian species, which are either the most endangered in Switzer-

land (Alytes obstetricans, Bombina variegata, Epidalea calamita and Hyla arborea) or are prob-

lematic because they are part of a genetic complex with a history of invasion and displacement

(Pelophylax ridibundus and P. lessonae / P. esculentus, nearly indistinguishable in the field,

henceforth referred to as Pelophylax lessonae agg [44–46]). We focused on the Swiss Plateau, a

densely populated [47] European landscape with many anthropogenic pressures. We extracted

species presence data from an aggregated database of geopositioned records of 13 amphibian

species observed at water bodies between 2006 and 2015 by different monitoring projects and

observers (therefore, not systematically sampled), and provided by InfoSpecies KARCH

(www.karch.ch). As we only worked with such readily available data, and did not handle

directly any animals, no approval from any animal research ethics committee was necessary.

HSM and patch delineation

For each species, we used a selection of 20 environmental predictors (S1 Appendix) to do an

ensemble HSM (combining GLM, MaxEnt and Random Forest as modelling techniques)

within the R-package Biomod2 [48], using default package settings. We binarized the continu-

ous suitability maps by the point of the ROC curve that minimized the difference between sen-

sitivity and specificity. On the obtained binary suitability maps (suitable vs. non-suitable) we

applied an environmental mask consisting of stationary water bodies, amphibian spawning

sites and reported presences of any amphibian in the original database. Each area in the mask

that was classified as suitable was considered a habitat patch. For each of these patches, we cal-

culated the patch area as well as the Habitat Suitability Index (HSI), defined as the mean value

of habitat suitability in the continuous suitability map output by the HSM. The patch area and

HSI were then used as predictor variables in the network boosted regression trees (BRT) mod-

els (see below).

Network generation

As in Ortiz-Rodrı́guez et al. [41], we defined the edges with a least cumulative cost algorithm

that, in the present case, operated over a uniform resistance surface, which meant that the

costs equaled approximately the interpatch Euclidean distances. The algorithm drew an edge

between pairs of patches if the cost was below a certain threshold, which corresponded to a

chosen maximum dispersal distance. The conversion of cost distances to dispersal probabilities

was performed according to the p2p function of the R-package PopGenReport [49]:

cost ¼ log probð Þ=log pð Þ∗d0 ð1Þ

in which cost is the cost–value associated with a certain probability prob, prob is the probability

of dispersal between patches, and d0 is the dispersal distance of a proportion p of individuals.

We set p = 0.5 so that d0 equaled the median dispersal distance. The dispersal probability

threshold beyond which no edges were drawn was set to 0.0001. By adjusting the d0 term, we

were able to simulate a range of maximum dispersal distances (see below). This algorithm was

built to accommodate the usage of different cost surfaces, which makes these networks more

directly comparable to networks generated with different cost surface definitions.

PLOS ONE Sensitivity of habitat network models to dispersal distance

PLOS ONE | https://doi.org/10.1371/journal.pone.0293966 November 6, 2023 4 / 21

http://www.karch.ch/
https://doi.org/10.1371/journal.pone.0293966


Dispersal distances included

For every species, we developed networks with their species-specific maximum dispersal dis-

tance reported in the literature (Table 1). To be consistent with Ortiz-Rodrı́guez et al. [41], we

used for H. arborea a maximum dispersal distance value of 2658 m, which was only 258 m

higher than the reported value in Smith and Green [42]. Considering the dispersal distances

reported in Smith and Green [42] and Covarrubias et al. [50], we also built networks with maxi-

mum dispersal distances for the extremes of 300 m and 10 km, the distance previously consid-

ered as limit for dispersal events (1 km), and the reported mean maximum dispersal distance

for anurans (2 km). We also included a maximum dispersal distance of 4 km as another fixed

value considering that in the review of Cayuela et al. [51] the maximum dispersal distance of

amphibians was generally given as 3698 ± 6256 m and as 4506 ± 7269 m for anurans only. In

addition, out of our studied species, one (Bombina variegata) had exactly 4 km as species-spe-

cific reported maximum dispersal distance [52], while that of another species (Epidalea cala-
mita) was close to that value. We additionally expanded the exploration of maximum dispersal

distances for all species with fixed increasing intervals (6 km and 8 km) until reaching the

extreme value over which only 7% of amphibians have been found to disperse [i.e. 10 km; 42].

Hence, for each of the six species we ran models at 300 m, 1 km, 2 km, 4 km, 6 km, 8 km and 10

km, as well as at a previously reported species-specific maximum dispersal distances (Table 1).

Boosted regression trees modelling and evaluation

For all the 47 generated networks (Bombina variegata did not need a separated 4 km maxi-

mum dispersal distance network, as 4 km was its reported maximum dispersal distance in the

literature), we calculated the same topological variables as in Ortiz-Rodrı́guez et al. [41]. These

were the degree [55], third-order neighborhood [21], unweighted betweenness centrality [23],

strength [weighted version of degree; 56], and habitat availability [41], based on the probability

of connectivity index [22]. We used all of them, as well as the HSI and the patch area as predic-

tors of species occurrence-state in the boosted regression trees (BRT) models [57].

The response variable (occurrence-state) was defined by an approach based on sampling-

intensity presented in Ortiz-Rodrı́guez et al. [41]. The number of times a patch was visited

(sampling intensity) was determined by observations of any pond-based amphibian species. If

a patch had been visited frequently to sample this group of species but the species of interest

was not found, this species was assumed absent (also called target-group absences in [58]).

With a plot of the average number of times a focal species was observed for every number of

patch visits, we defined a sampling intensity threshold over which patches were considered

unoccupied. This produced the binary occurrence-state values of presence (1) for the patches

where the species was observed, and likely absence (0) for those where it was not found during

visits to patches above the threshold.

Table 1. Dispersal distances reported for the species in our study and d0 (Eq 1) values used to approximate them.

Species Species-specific Max. Disp. Dist. (m) Values of d0
Alytes obstetricans 1500 [53] 113

Bombina variegata 4000 [52] 301

Epidalea calamita 4411 [42] 332

Hyla arborea 2658 [41] 200

Pelophylax lessonae agg 1760 [54] 133

Pelophylax ridibundus 1760 [54] 133

https://doi.org/10.1371/journal.pone.0293966.t001
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For each network, we ran 100 BRT model iterations, with learning rate = 0.001, tree com-

plexity = 5, and a bagging fraction of 0.75, following the general guidelines of Elith et al. [57],

with the gbm.step function of the R-package dismo [59]. For all the models, we observed, sum-

marized and evaluated the area under the receiver operating characteristics curve (AUC). This

is a measure of accuracy of a model, or more specifically, a discrimination metric, which

shows numerically and graphically the sensitivity and specificity of a model [43, 60]. We used

specifically the cross-validated AUC (henceforth AUC-cv), as cross-validation is a method to

assess how generalizable is a model [61]. We also recorded the training AUC, the number of

classification trees of the BRTs, the importance of each of the predictor variables, as well as

partial dependence plots for relevant predictors and species. In these last plots, the fitted func-

tions (scores on the response variables) were automatically centered by subtracting the mean

[57]. Additionally, we measured the number of components in each of the networks.

Results

Network structure

The different species we considered for this study generated differing amounts of suitable habi-

tat patches (Table 2). Pelophylax lessonae agg had the highest amount of habitat patches, and P.

ridibundus the lowest.

When the maximum dispersal distances were increased, the number of edges between

patches also strongly increased (Table 2). Changing the dispersal distance also had an influence

on the number of connected components: For all species, there was a plethora of small compo-

nents for the shortest maximum dispersal distance (330 m), and a single giant component

(plus a few additional small components for some species) for the longest one (10 km; Table 2;

example in Fig 1). This resulted in an inverse relationship between the number of components

and maximum dispersal distance (Fig 2). For the shortest maximum dispersal distance, there

was a clear linear correlation between increasing number of components in the network and

number of patches, which became less clear with increasing distance. At the longest maximum

dispersal distances, they showed no relation whatsoever (Table 2 and S2 Appendix).

Evaluation of predictive performance

Networks with less components had in general a higher AUC-cv (Fig 3 and S3 Appendix).

There was no single maximum dispersal distance that had the best performance (in terms of

mean AUC-cv) for all the six amphibian species (Figs 4 and 5). Assessing the relationship

between maximum dispersal distance and AUC-cv generated by connecting the means, we

observed non-monotonic, wave-like patterns in AUC-cv within the tested maximum dispersal

distances for almost all species (shown for mean values of AUC-cv in Fig 4). These patterns

were not regular when compared between the species. However, the shortest maximum dis-

persal distance (300 m) produced lower AUC-cv scores for all species than did the networks

with the longest maximum dispersal distance (10 km), and AUC-cv was found to be positively

correlated to increasing maximum dispersal distance in linear models for all the species

(Table 3, shown for means in Fig 5). AUC-cv was also positively correlated to the mean number

of regression trees found in the BRT models. For some species the highest number of trees, cor-

responding to high AUC-cv values, was much lower than for others (S4 Appendix and Fig 6).

In general, the mean AUC-cv of all models was above the 0.7 acceptability threshold ([62];

Fig 5). Pelophylax lessonae agg was the only species that produced a mean value below this

threshold. It has to be noted, however, that considering the whole distribution of AUC-cv

scores along the 100 model runs per maximum dispersal distance setting (per species), for

some distances there were still many models below the threshold even though the mean was
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Table 2. Number of edges and components for each setting of maximum dispersal distances tested and each species considered, with their corresponding number

of patches and abbreviation.

Species Abbreviation Number of patches Dispersal Distance (km) Number of edges Number of components

Alytes obstetricans Alobs 2395 0.3 519 1907

1.0 2441 1014

1.5 (Species-specific) 4347 561

2.0 6617 299

4.0 19344 41

6.0 37615 8

8.0 61222 6

10.0 89911 3

Bombina variegata Bovar 2735 0.3 722 2050

1 3129 980

2 8435 257

4 (Species-specific) 23959 34

6 46006 7

8 73582 3

10 106671 1

Hyla arborea Hyarb 1900 0.3 530 1398

1 2169 706

2 5644 235

2.6 (Species-specific) 8398 134

4 15022 41

6 26886 9

8 41412 4

10 58286 2

Epidalea calamita Epcal 2010 0.3 524 1516

1 2155 831

2 5745 308

4 15814 53

4.4 (Species-specific) 18427 35

6 29425 15

8 46564 6

10 66357 1

Pelophylax lessonae agg Peagg 3074 0.3 762 2351

1 3509 1078

1.7 (Species-specific) 7982 357

2 9675 248

4 29528 21

6 56927 1

8 91299 1

10 132013 1

Pelophylax ridibundus Perid 1256 0.3 393 882

1 1563 413

1.7 (Species-specific) 3231 193

2 3782 155

4 9453 39

6 16511 18

8 25195 7

10 34627 5

https://doi.org/10.1371/journal.pone.0293966.t002
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above it. The mean AUC-cv of the models produced with the species-specific reported maxi-

mum dispersal distances were all above the aforementioned AUC acceptability threshold.

However, E. calamita was the only species for which its reported maximum dispersal distance

yielded the highest mean AUC-cv of all the tested maximum dispersal distances. For A. obste-
tricans and B. variegata the species-specific maximum dispersal distances were at the local (not

overall) maximum in AUC-cv, while for H. arborea and P. lessonae agg they were rather far

from them (Fig 4). For P. ridibundus, the species-specific dispersal distance yielded one of its

lowest AUC-cv scores across the tested maximum dispersal distances. The models with the

highest mean AUC-cv at every tested distance were those performed on A. obstetricans (Fig 5).

Predictor variable importance and partial dependence tendencies

For several of the species, habitat suitability index (HSI) was the most important variable in

the BRTs (Fig 7 and S5 Appendix). This was very clear at shorter maximum dispersal dis-

tances, but this was not always the case with larger dispersal distances. At larger maximum dis-

persal distances, habitat availability became more important for A. obstetricans, while this was

true for four different topological predictors in the case of Pelophylax lessonae agg. Habitat

availability and third-order neighborhood were among the most important predictors for

Fig 1. Example of overlaid habitat networks for the shortest (300 m), longest (10 km), and species-specific (4411 m) maximum dispersal distances for

Epidalea calamita. Note that what might seem a solid surface is actually densely intertwined edges. Grey dotted line: international borders; black line: study

area.

https://doi.org/10.1371/journal.pone.0293966.g001
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several species and maximum dispersal distance settings (S5 Appendix). When overlaying the

values of variable importance of all species for the three most consistently important predictor

variables (i.e. HSI, habitat availability and third-order neighborhood), the topological variables

did not present a discernible common pattern (Fig 7). Only for the shortest maximum dis-

persal distances, HSI had on average a much higher importance, with an overall decreasing

importance with increasing dispersal distance (Fig 7).

The partial dependence plots of the species with both the highest (A. obstetricans) and the

lowest (B. variegata) maximum AUC-cv values showed similarly marked differences between

topological and quality-related variables in how consistent their response curves were among

the different maximum dispersal distance settings. There was a strongly consistent pattern for

HSI among their networks at all the tested maximum dispersal distances. This was a positive

but noisy trend (Fig 8) for both species. The pattern was less consistent for habitat availability

(habAv). Counterintuitively, low values of habitat availability were associated with presences

and higher values were associated with absences (Fig 8). The response curves of the third-

order neighborhood predictor showed even less of a consistent pattern (Fig 8). This was a diffi-

cult comparison because the complete range of values was not present for the lowest dispersal

distances, as in these there were simply not many third order neighbors.

Fig 2. Number of components in relation to maximum dispersal distance for the networks of six amphibian species (colors). For abbreviations of species,

see Table 2.

https://doi.org/10.1371/journal.pone.0293966.g002
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Discussion

Our study shows prominently that previously reported maximum dispersal distances of

amphibians are most probably underestimated, as has been suggested for animals in general

[61]. Another main finding was that the importance of the predictor variables and the shape of

their response curves change with increasing maximum dispersal distances. The results also

notably indicated that the correlations between predictive performances and maximum dis-

persal distances fluctuated but were overall positive.

The tendency of overall higher AUC-cv with increasing maximum dispersal distances was

consistent but showed considerable variation (Fig 5). Furthermore, for most of our study spe-

cies the previously reported dispersal distances (Table 1) rarely corresponded to the highest

AUC score, or best predictive performance. The only species which had the best performance

at the reported maximum dispersal distance (Epidalea calamita) was also the one with the

highest reported distance among our studied species. These findings point to the conclusion,

supported by earlier insights [42, 63, 64], that the reported dispersal distances for most species

are notoriously underestimated. Such underestimation is expected given that existing records

are just snapshots of the process of dispersal, which as a population-wide process can have con-

siderable variation over time. Presumably, the underestimation happens in large part because

while most of the population disperse up to a limited distance, there are some rare long-

Fig 3. Scatterplot of the mean cross-validated AUC (AUC-cv) and the (log transformed) number of components of habitat networks for six amphibian

species (colors), with linear trendlines. For abbreviation of species, see Table 2.

https://doi.org/10.1371/journal.pone.0293966.g003
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distance dispersal events [65, 66]. This gives rise to a leptokurtic distribution of dispersal dis-

tances. Such dispersal distribution is ubiquitous in nature, as found in plants [26, 36], insects

[67], mammals [68], birds [69], humans [70, 71], and of course amphibians [65, 72]. It is thus

likely that the dispersal distances reported for our study species are also underestimated. Habi-

tat network studies should consider this underestimation in the construction of the habitat

networks and also experiment with longer distances than those reported in literature. In our

study, choosing longer distances led to an increasing model fit in most cases.

A further implication of the underestimation of dispersal distances in literature, and there-

fore presumably also in the construction of habitat networks, is that many species are in reality

less fragmented than the published dispersal distances make us believe. As a logical result of

the positive correlation between model fit and maximum dispersal distance, we observed an

inverse correlation of the predictive performance of our models with the number of compo-

nents in the habitat network (Fig 3). If we assume that the models with the highest fit are clos-

est to the true habitat networks of our focal species, the true habitat networks for most species

are more connected than the one based on published maximum dispersal distances. Although

well-connected habitat networks can bring disadvantages, such as an easier dispersal of infec-

tious diseases [73], in general they provide benefits for species, such as alternative routes of dis-

persal in the face of harsh conditions and better chances of survival and reproduction [74, 75].

Fig 4. Scatterplot of the mean cross-validated AUC (AUC-cv) and the maximum dispersal distance for the six amphibian species tested. Stars indicate the

species-specific maximum dispersal distances. For species abbreviations, see Table 2.

https://doi.org/10.1371/journal.pone.0293966.g004
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Given these benefits, the conservation status of our focal species in terms of habitat fragmenta-

tion may thus be more positive than what can be derived from literature. However, to substan-

tiate this hypothesis, further research is needed to determine the validity of our assumption

that the habitat network models with the highest fit best represent the true habitat networks.

Fig 5. Scatterplot of mean cross-validated AUC (AUC-cv) and the maximum dispersal distance for the six amphibian species tested, with linear

regression trendlines. For species abbreviations, see Table 2.

https://doi.org/10.1371/journal.pone.0293966.g005

Table 3. Significance (p-value), standard error, and R2 scores for the linear relation between maximum dispersal

distance and cross-validated AUC (AUC-cv) across all the network models for each study species.

Species P-value R2 Std. Error

Alytes obstetricans <2e-16 *** 0.5333 1.75E-07

Bombina variegata <2e-16 *** 0.4368 1.32E-07

Epidalea calamita <2e-16 *** 0.09503 2.33E-07

Hyla arborea <2e-16 *** 0.2791 2.10E-07

Pelophylax lessonae agg <2e-16 *** 0.5834 2.24E-07

Pelophylax ridibundus 3.36e-16 *** 0.0801 2.45E-07

lm (AUC-cv * maximum dispersal distance)

https://doi.org/10.1371/journal.pone.0293966.t003
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Habitat quality-related predictors have proven to be highly important in models to predict

species presence that also incorporate network topological variables [40, 41]. In our results,

however, the importance of HSI compared to the other variables in the model decreased with

increasing maximum dispersal distance, whereas the importance of topological predictors

increased. This seems to follow the aforementioned relation between dispersal distance and

topological integrity: network models with a short maximum dispersal distance produce a

small topological neighbourhood, in which connectivity variables are less influential and the

quality-related factors have a higher importance (Fig 7). Conversely, in scenarios where many

patches are reachable (i.e., models in in which higher maximum dispersal distance is assumed),

the influence of connectivity plays a bigger part in the likelihood of a species occurring in a

habitat patch. We can derive from this that, in the exploration of models that approach the

true topology of the habitat network, the assumed maximum dispersal distance will determine

whether connectivity or sheer availability of quality habitat is interpreted as more important

for species occurrence and hence richness [76, 77].

The sensitivity of the connectivity-related predictors to maximum dispersal distance in our

models is also apparent from the response curves. As mentioned previously, the topological

predictors showed very different response values for the same predictor values at the different

dispersal distances (high response discordance, Fig 8), and showed quite similar values among

Fig 6. Scatterplot of mean cross-validated AUC (AUC-cv) and the mean number of regression trees used in the boosted regression trees (BRT) models,

grouped by species, with trendlines. For species abbreviations, see Table 2.

https://doi.org/10.1371/journal.pone.0293966.g006
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the dispersal distances for the quality-related HSI. Meanwhile, for habitat availability, the vari-

able that incorporates the influence of both connectivity and quality [22, 41], such discordance

was intermediate. This again points towards a high sensitivity of the connectivity-related pre-

dictors to maximum dispersal distance, which follows from the completely different network

topologies that can be generated in the models with different maximum dispersal distance

assumptions.

While the variation in model performance applied to all species, for some of them the mod-

els were consistently better or worse than for other species. The species with the highest AUC-

cv for every dispersal distance was A. obstetricans, whereas the models for B. variegata were on

average the worst performing for all dispersal distances above 1 km (Fig 4). Interestingly,

unlike most pool-based amphibians, both of these species can been found in river courses [78],

which entails the possibility of passive long-distance dispersal [66]. This could explain the high

performance of A. obstetricans. While the overall better performance of models at higher dis-

persal distances also held for B. variegata, an alternative explanation remains to be found on

Fig 7. Relation of variable importance of three predictors to maximum dispersal distances in six amphibian species. (a) Habitat suitability index; (b)

Third-order neighborhood; (c) Habitat availability. For species abbreviations see Table 2.

https://doi.org/10.1371/journal.pone.0293966.g007
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the overall poorer performance for this species, whose dispersal distance and frequency has

been found to vary between managed and largely untouched environments [72].

Another pattern worth noting was the correlation between AUC-cv and the mean number

of regression trees used to build the BRT models (Fig 6). The algorithm we used for this pur-

pose (gbm.step; [79]) searches for the number of regression trees that produces the lowest

residual deviance. Since residual deviance is itself a measure of goodness of fit [80, 81], this will

Fig 8. Partial dependence plots on the occurrence-state response of the habitat availability (top), habitat suitability

index (center), and third-order neighborhood (bottom) predictor variables for all the maximum dispersal distance

settings of Alytes obstetricans (left) and Bombina variegata (right). The fitted response scale is centered by subtraction

of the mean.

https://doi.org/10.1371/journal.pone.0293966.g008
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of course translate to a good score of our model predictive performance metric of choice

(AUC-cv). However, for some species this optimum number of trees was much lower than for

others. One possible influence on the number of trees could be the number of observations in

the response variable, as adding more data points (presences and likely absences, in our case)

should increase the chance that the decision trees yield a different response value for the same

section of predictor space [57], which would potentially mean more trees are required to reach

the lowest possible residual deviance. To substantiate this idea, further research should be

done using different datasets to determine whether the number of trees and its correlation to

model fit is indeed influenced by the sample size.

Besides their maximum dispersal distance, organisms have a diversity of dispersal methods,

capabilities and behaviors, which results in a variety of dispersal kernels [10]. This variety leads

to many possibilities of further research that are worth exploring at every step of the presented

methodology. Perhaps the most obvious expansion for future research is using non-neutral

cost-surfaces [41, 82–84], which could drastically change the topology of the network consid-

ering environmental barriers other than sheer distance. Other possibilities would be to use dif-

ferent network structure metrics to test our models, and to explore distributions of dispersal in

the population by changing the proportion p of the population that reaches d0. Given the sen-

sitivity of our models to the maximum dispersal distance parameter, occurrence-state could

also be modelled with network topologies not defined by species dispersal distance such as the

ubiquitous applications of circuit theory [7, 85], as used in the CircuitScape software [86, 87].

However, using circuit theory leaves out the perspective of the intrinsic locomotion capacities

of the species. Furthermore, the application of circuit theory to predict species occurrence to

our knowledge has been demonstrated on a case using intensive systematic sampling generat-

ing presence and absence data on tagged birds [88], which makes it so far unsuitable for less

systematic databases and groups that are less easy to monitor. Another interesting possibility

would be an approach that assesses the influence of connectivity factors on occurrence-state

using continuous suitability surfaces instead of discrete habitat patches. The resistant-kernel

estimator [64] is close to this. However, this method relies very much on expert opinion, and

at larger scales ends up defining discrete limits that result on a tessellation of the continuous

landscape. Therefore, using HSM and an environmental mask to define discrete patches still

appears as the best option for analyses that aim to use habitat networks.

Overall, our findings indicate that maximum dispersal distance has a non-trivial and non-

uniform, but overall positive relation to the fit of habitat network models predicting presence

or absence of a species in habitat patches. The models are sensitive to the definition of the max-

imum dispersal distance parameter due to the vastly different network topologies that can

emerge from it, and which define the size of the neighborhood of suitable patches. Therefore,

for habitat network modelling any reported maximum dispersal distance has to be treated

carefully and it should be acknowledged that it is likely that a non-negligible amount of indi-

viduals are dispersing at much further distances than estimated from field observations.
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78. Barandun J. Geburtshelferkröten (Alytes obstetricans) und Gelbbauchunken (Bombina variegata) in
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