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ABSTRACT

The presence of fractures in a reservoir can have a significant impact on its effective me-

chanical and hydraulic properties. Many researchers have explored the seismic response of

fluid-saturated porous rocks containing aligned planar fractures through the use of analyt-

ical models. However, these approaches are limited to the extreme cases of regular and

uniform random distributions of fractures. The purpose of this work is to consider more

realistic distributions of fractures and to analyze whether and how the frequency-dependent

anisotropic seismic properties of the medium can provide information on the characteristics

of the fracture network. Particular focus is given to fracture clustering effects resulting from

commonly observed fracture distributions. To do so, we propose a novel hybrid methodology

combining the advantages of 1D numerical oscillatory tests, which allows us to consider ar-

bitrary distributions of fractures, and an analytical solution, which permits to extend these

results to account for the effective anisotropy of the medium. A corresponding numerical
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analysis shows that the presence of clusters of fractures produces an additional attenuation

and velocity dispersion regime compared to that predicted by analytical models. The rea-

son for this is that a fracture cluster behaves as an effective layer and the contrast with

respect to the unfractured background produces an additional fluid pressure diffusion length

scale. The characteristic frequency of these effects depends on the size and spacing between

clusters, the latter being much larger than the typical spacing between individual fractures.

Moreover, we find that the effects of fracture clustering are more pronounced in attenuation

anisotropy than velocity anisotropy data. Our results show that fracture clustering effects

on fluid pressure diffusion can be described by two-layer models. This, in turn, provides

the basis for extending current analytical models to account for these effects in inversion

schemes designed to characterize fractured reservoirs from seismic data.
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INTRODUCTION

Most reservoirs are assumed to contain a set of sub-vertical fractures (Liu and Martinez,

2013) because open fractures tend to be oriented normal to the direction of minimum

in-situ compressive stress (Schoenberg and Sayers, 1995), which in the considered depth

range is usually quasi-horizontal. Thus, understanding the impact of the presence of sub-

vertical fractures on the seismic properties of a reservoir is a topic of great interest in

the field of Exploration Geophysics. Probably the most remarkable seismic manifestation

of the presence of a set of aligned vertical fractures in an otherwise isotropic background

rock is the effective transverse isotropy with a horizontal axis of symmetry (HTI). Bakulin

et al. (2000) provide a detailed review of the two classical approaches to the study of such

media, that is, elastic effective models based on parallel infinite fractures represented as

linear slip boundary conditions (Schoenberg, 1980) and penny-shaped crack models (e.g.,

Hudson, 1980; Thomsen, 1995). Based on these models, it is possible to retrieve some key

parameters of fractured formations from seismic recordings such as, for example, fracture

density, azimuthal fracture orientation, and type of saturating pore fluid. In all these

works, the effective medium is represented by an elastic solid, which in turn implies that

the effective stiffness tensor of the medium is frequency-independent and real-valued.

However, the presence of fluids in the pore space of rocks causes seismic attenuation and

velocity dispersion due to a mechanism broadly known as wave-induced fluid flow (WIFF).

In particular, mesoscopic WIFF, which occurs due to spatial variations in rock compliance

on a scale much larger than the pore size but much smaller than the wavelength, is consid-

ered to be a significant source of seismic energy dissipation and velocity dispersion in the

seismic frequency band (Müller et al., 2010; Krzikalla and Müller, 2011). In rocks contain-
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ing mesoscopic fractures, the large mechanical contrast between compliant fractures and

the stiff background favours the development of particularly strong fluid pressure gradients

between these regions in response to the propagation of a seismic wave. Consequently,

fluid flows accompanied with internal friction until fluid pressure equilibrates. This phe-

nomenon results in frequency-dependent and complex-valued effective stiffness components

representing the anisotropic medium (e.g., Rubino et al., 2016).

White et al. (1975) studied mesoscopic WIFF effects on the propagation of normally

incident P-waves in fluid-saturated periodically layered porous media. Brajanovski et al.

(2005) used the results from White et al. (1975) to explore the case of a regular distribution

of parallel fractures, which are represented as a limiting case of very thin and highly porous

layers in a less porous background. Furthermore, this model assumes that fractures have

infinite extent and that the spacing between fractures is much larger than the fracture aper-

ture. The latter represents a strong limitation of these types of models as they are strictly

valid only for low fracture densities. Using numerical simulations, Lambert et al. (2006)

demonstrated the validity of this analytical model for periodic distributions of fractures

with constant aperture. Recently, Kong et al. (2013) and Guo et al. (2017) generalized the

model of Brajanovski et al. (2005) to account for different fluids saturating the fractures

and the background and to the case of finite fracture thickness, respectively.

In the case of thinly layered porous media, Krzikalla and Müller (2011) showed that the

full effective stiffness tensor can be computed from the effective P-wave modulus normal to

the fractures. This is due to the fact that, as the slow P-wave velocity is much lower than

that of classic elastic waves, the fluid pressure diffusion between the thin layers and the

background is mainly normal to the surface of the layers for any direction of propagation

of the incident wave. Hence, the frequency dependence of the five independent complex-

4



valued stiffness elements can be represented by a single relaxation function connecting their

relaxed and unrelaxed regimes. Several authors have used this idea to study the frequency-

dependent anisotropy of transversely isotropic media. For example, Carcione et al. (2013)

used the effective P-wave moduli given by the models of White et al. (1975) and Brajanovski

et al. (2005), whereas Galvin and Gurevich (2015) used the penny-shaped crack model of

Gurevich et al. (2009). However, these works are based on analytical solutions which have

limitations with regard to the distribution, thickness and/or density of fractures or assume

extremely high contrasts of the elastic and hydraulic properties between the fractures and

the background. A methodology that has proven to be useful to overcome these issues

to compute the effective properties of arbitrarily heterogeneous porous rocks is numerical

upscaling (Masson and Pride, 2007; Rubino et al., 2009; Wenzlau et al., 2010).

In real reservoirs, fractures often exhibit complex distributions and, hence, quantitative

characterizations of realistic spatial distributions of fractures are needed for a correct in-

terpretation of seismic measurements. Several authors have measured and studied fracture

spacing distributions, ranging from non-fractal to fractal, from 1D fracture distributions

(e.g., Huang and Angelier, 1989; Gillespie et al., 1993). Fang et al. (2016) showed that

in the presence of irregularly distributed fractures, clusters of fractures can occur, that is,

groups of closely spaced fractures separated by relatively unfractured rock. Although this

is a rather common scenario in fractured rocks (Liu and Martinez, 2013), the analysis of the

impact of fracture clustering on the WIFF effects with regard to seismic wave anisotropy

remains largely unexplored. This is likely to be a consequence of the limitations of analyt-

ical models, on the one hand, and the high computational cost of the currently available

numerical methodologies for complex fracture distributions, on the other hand.

In this work, we analyze the seismic properties of fluid-saturated rocks containing ran-
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dom distributions of aligned planar fractures, with particular emphasis on fracture cluster-

ing effects. To do so, we propose a novel hybrid methodology to determine the effective

anisotropic behavior of the elastic wave modes propagating through a fluid-saturated porous

rock containing an arbitrary distribution of aligned fractures. We compute the effective P-

wave modulus normal to the fractures through the application of a numerical upscaling

procedure based on a 1D oscillatory relaxation test. Once the effective P-wave modulus is

obtained, we make use of the uni-dimensional nature of fluid pressure diffusion processes in

layered media (Krzikalla and Müller, 2011) to obtain the full stiffness tensor of the effective

TI medium representing the fractured rock. The stiffness tensor allows us to study the

frequency-dependent anisotropic seismic signatures of the probed fractured reservoir. By

doing so, we significantly reduce the computational cost with respect to performing several

3D numerical relaxation tests such as those presented by Wenzlau et al. (2010). For the

analysis of fracture clustering effects on the effective seismic properties of the medium, we

estimate the effective physical properties as well as the apertures of the considered planar

fractures from the ultrasonic velocities measured in a synthetic sample containing penny-

shaped cracks by Rathore et al. (1995). We start the analysis of fracture clustering effects

with the effective P-wave modulus at normal incidence to understand the general charac-

teristics of the fluid pressure relaxation process. Then, we continue by analyzing the effects

on the effective seismic anisotropy of the medium.

METHODOLOGY

In this section, we present the methodology to determine the complex-valued frequency-

dependent effective stiffness tensor of poroelastic rocks containing aligned planar fractures.

It has been shown that when an otherwise isotropic rock contains a distribution of fluid-
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saturated fractures that have preferred orientations, the resulting material will exhibit an

effective frequency-dependent seismic anisotropy (Liu and Martinez, 2013). Indeed, the

effective seismic response of such a medium is transversely isotropic. To compute the

phase velocity and inverse quality factor as functions of frequency and direction of wave

propagation, it is necessary to determine the effective stiffness tensor of the medium. To do

so, we propose a hybrid approach, which consists of (i) computing the effective frequency-

dependent P-wave modulus in the direction normal to the fractures through the application

of a 1D numerical upscaling procedure (Figure 1) and (ii) analytically obtaining all the

frequency-dependent stiffness elements from their corresponding low- and high-frequency

limits and the relaxation behavior of the effective P-wave modulus at normal-to-fracture

incidence (Krzikalla and Müller, 2011).

In analogy to previous works on fluid-saturated fractured media (e.g., Brajanovski et al.,

2005; Gurevich et al., 2009; Carcione et al., 2013; Rubino et al., 2013), we model the response

of fractured rocks in the framework of Biot’s (1962) theory of poroelasticity by representing

the fractures as highly compliant and permeable thin layers embedded in a stiffer and less

permeable matrix. As planar fractures are assumed to have infinite lateral extension, this

fracture model is strictly valid when the fractures radii are much larger than the prevailing

wavelengths and the spacing between consecutive fractures (Gurevich et al., 2009).

Effective P-wave modulus at normal-to-fracture incidence

The effective P-wave modulus in the direction normal to the fractures is obtained by ap-

plying time-harmonic solid displacements to the boundaries of a representative elementary

volume (REV) of the fractured medium of interest (Figure 1). The resulting stress and
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strain fields in the sample are computed based on a numerical solution of the quasi-static

approximation of Biot’s (1962) isotropic equations. The reasoning behind this is that, for

frequencies much smaller than Biot’s critical frequency, the physical process is controlled by

fluid-pressure diffusion and thus inertial effects can be neglected. Hence, the stress equilib-

rium and Darcy’s law are to be fulfilled simultaneously. Moreover, for the considered case

of a deformation applied normally to a set of planar fractures, plane-strain conditions are

satisfied. Hence, in the space-frequency domain and assuming that the fractures are normal

to the x−axis, the problem reduces to solving the 1D equations

dτxx
dx

= 0,

−
dpf
dx

= iω
η

κ
wx,

(1)

where τxx, wx, and pf are the 1D total stress, the average relative fluid displacement and

the fluid pressure, respectively, η is the fluid viscosity, κ the permeability and ω the angular

frequency. These equations are coupled through the 1D constitutive relations for τxx and

pf , which for an isotropic porous medium are given by

τxx = (2µ+ λ)εxx − αMζ,

pf = −αMεxx +Mζ,

(2)

where ux and εxx = dux
dx are the 1D displacement and strain of the solid phase, respectively,

and ζ = −dwx
dx is a measure of local change in the fluid content. The material parameters

as well as the displacements ux and wx are functions of a single coordinate x. In Equation

2, µ is the shear modulus of the saturated material, which is equal to that of the dry frame

µm. The so-called Biot-Willis effective stress coefficient α, the Biot’s fluid-storage modulus
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M , and the undrained Lamé constant λ are defined as

α = 1−Km/Ks,

M =

(
α− φ
Ks

+
φ

Kf

)−1

,

λ = Km −
2

3
µ+ α2M,

(3)

with φ being the porosity and Kf , Ks, and Km the bulk moduli of the fluid phase, the solid

grains, and the dry matrix, respectively.

Figure 1: Schematic illustration of the oscillatory relaxation test employed for determining

the effective P-wave modulus in the direction normal to the fractures. Grey and white

regions represent background and fractures, respectively.

Let Ω = (−H
2 ,

H
2 ) be a domain that represents the probed sample. We thus impose a

homogeneous time-harmonic solid displacement at the hydraulically sealed boundaries of

the sample, that is,

ux = ∆u, at x = −H
2
,

ux = −∆u, at x =
H

2
,

wx = 0, at x = −H
2
,
H

2
.

(4)
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By employing a finite-element procedure to solve Equations 1 and 2 under the imposed

boundary conditions (Equation 4), we obtain the solid and relative fluid displacement fields

in the sample as functions of frequency. From these fields, we compute the stress field using

Equation 2 and the strain field as the spatial derivative of the solid displacement. Under the

dynamic-equivalent viscoelastic medium assumption (e.g. Solazzi et al., 2016), the effective

P-wave modulus in the direction normal to the fractures is thus obtained from

C11(ω) =
〈τxx(ω)〉
〈εxx(ω)〉

, (5)

where the spatial averages of the local stress and strain fields over the total length H of the

sample are

〈τxx(ω)〉 =
1

H

∫
Ω
τxx(ω, x′) dx′,

〈εxx(ω)〉 =
1

H

∫
Ω
εxx(ω, x′) dx′ =

−2∆u

H
,

(6)

respectively. The effective modulus computed in Equation 5 quantifies the response of the

fractured porous rock of interest to a P-wave propagating normal to the fractures. It is

important to remark that the concept of an effective medium assumes that the prevailing

wavelengths are much larger than the correlation length of the considered random distribu-

tion of fractures.

Effective stiffness tensor

Since most reservoirs are assumed to contain a set of sub-vertical fractures (Maultzsch et al.,

2003; Liu and Martinez, 2013; Gale et al., 2014), we study the case of a horizontal symmetry

axis and, thus, the medium has effective horizontal transverse isotropy. Following Figure 1,

the symmetry axis, normal to the fracture planes, is parallel to the x−axis and, hence, the
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effective constitutive relations can be written as

τxx

τyy

τzz

τyz

τxz

τxy



=



C11 C12 C12 0 0 0

C12 C33 C23 0 0 0

C12 C23 C33 0 0 0

0 0 0 (C33 − C23)/2 0 0

0 0 0 0 C66 0

0 0 0 0 0 C66



·



εxx

εyy

εzz

2εyz

2εxz

2εxy



, (7)

where the Cij stiffness coefficients can be complex-valued and frequency-dependent. Using

that, in this kind of scenario, the fluid pressure diffusion is approximately normal to the

surface of the fractures, Krzikalla and Müller (2011) found that the frequency dependence

of the Cij coefficients is given by a single scalar relaxation function R(ω), such that the

effective stiffness tensor has the form

Cij(ω) = Cuij −R(ω) · [Cuij − Crij ]. (8)

That is, the anisotropy of the effective stiffness is determined by the unrelaxed and relaxed

limits of the stiffness coefficients, Cuij and Crij , respectively, and a complex-valued function

R(ω) describing the transition between both regimes. Gelinsky and Shapiro (1997) obtained

the effective stiffness tensor for layered media for the unrelaxed and relaxed limits in a

Backus-type formulation. In Appendix A, we provide the expressions for the relaxed and

unrelaxed limits of the stiffness elements for this kind of medium. In order to obtain the

relaxation function of an arbitrary distribution of aligned fractures, we use Equation 8, the

numerically computed effective P-wave modulus of the medium C11(ω) (Equation 5), and

its low- and high-frequency limits as follows

R(ω) =
C11(ω)− Cu11

Cr11 − Cu11

. (9)
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Using Equations 8, 9, and Appendix A, the Cij(ω) coefficients representing the medium

of interest are determined. We then compute the phase velocity and seismic attenuation of

the compressional and shear waves as functions of frequency and direction of wave propa-

gation (Appendix B).

Krzikalla and Müller (2011) demonstrated the uni-dimensionality of the fluid pressure

diffusion between the background and aligned layers, and hence, the validity of Equation 8

considering two- and three-layer models. To do so, they computed the relaxation functions

of the effective stiffness elements following the numerical methodology presented in Wenzlau

et al. (2010). By comparing the relaxation functions, they found that they were the same

for all the stiffness elements, which confirms the validity of Equation 8. Given that our

methodology allows to consider more complex scenarios, we further generalize the validity

of Equation 8 for the case of a medium containing clusters of fractures (Appendix C). In that

case, four characteristic lengths are present, namely the fracture thickness, the separation

between adjacent fractures, the effective thickness of the cluster, and the distance between

consecutive clusters of fractures. The validation is carried out by comparison with the

effective stiffness tensor elements obtained from 3D relaxation tests.

It is important to remark that, the main advantage of this hybrid approach with respect

to available analytical models is that it allows to handle arbitrary fracture sets without the

limitations commonly associated with analytical solutions, such as, for example, low fracture

density. Furthermore, it is valid for generic horizontally stratified poroelastic systems which,

in turn, allows to consider hydraulically and elastically heterogeneous backgrounds as well

as arbitrary property contrasts between the fractures and the background.
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FRACTURE PHYSICAL PROPERTIES IN A POROELASTIC

CONTEXT

As mentioned before, we conceptualize fractures as very thin fluid-saturated porous layers.

Given that the fluid pressure diffusion process between the fractures and the background

strongly depends on their mechanical contrast, the elastic properties of the fractures’ dry

frame are key parameters for the numerical analysis. For simplicity, many authors (e.g.,

Rubino et al., 2013; Quintal et al., 2014; Guo et al., 2017) have used the values published

by Nakagawa and Schoenberg (2007) for the shear and dry normal fracture compliances

as a reference to determine the fractures’ elastic properties. In this work, we chose frac-

ture and background properties based on velocities experimentally measured by Rathore

et al. (1995) for a synthetic sandstone containing aligned penny-shaped cracks. Given that

a model of aligned infinite fractures and a model of aligned penny-shaped cracks yield

the same structure for the effective stiffness tensor (Wenzlau et al., 2010), we can define

medium parameters to obtain identical phase velocities under dry conditions for both mod-

els (Schoenberg and Douma, 1988). However, the frequency dependence of attenuation and

velocity under fluid-saturated conditions will be different for a penny-shaped crack model

and a planar fracture model. This is due to the fact that for planar fractures the pattern

of conversion to diffusive waves is 1D, whereas finite fractures act essentially as 3D features

and, hence, fluid pressure can diffuse in all directions (Wenzlau et al., 2010).

The samples used by Rathore et al. (1995) were manufactured by embedding thin metal

discs into a sand-epoxy matrix, which were chemically leached out later on, thus leaving

penny-shaped voids. These voids have thicknesses of 0.02 mm and are aligned and regularly

spaced every 2 mm. P- and S-wave velocities were measured as a function of angle from
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the direction normal to the cracks at a frequency of 100 kHz.

First, we determine the background properties from the P- and S-waves velocities for

the unfractured dry rock given by Rathore et al. (1995), Vp = 2.529 km/s, Vs = 1.558

km/s at f = 100 kHz. Some parameters of interest were measured for the water-saturated

sample, such as, ρb=1.712 kg/m3, φ=0.346, Kf (water)=2.16 GPa. Assuming that, under

dry conditions, we can approximate Kf (air)=0.0001 GPa and ρf (air)=0.01 kg/m3, and

using the definitions of the elastic velocities

Vp =

√
L

ρb
,

Vs =

√
µ

ρb
,

(10)

where L = Km + 4µ
3 is the dry P-wave modulus and

ρb = ρfφ+ ρs(1− φ), (11)

is the bulk density of the rock, we obtained background parameters. The corresponding dry

elastic moduli for the unfractured background turned out to be Km=4.324 GPa, µm=3.326

GPa and from Equation 11 the effective solid grain density of the quartz-epoxy matrix is

ρs=2.088 kg/m3.

Next, the fracture parameters are computed from the measured P- and S-wave velocities

at incidence angles of 11.25◦ and 101.25◦ with respect to the normal to the crack planes.

The velocities are V dry
p (11.25◦)= 1.78 km/s, V dry

p (101.25◦)= 2.472 km/s, V dry
sh (11.25◦)=1.26

km/s, and V dry
sh (101.25◦)=1.5 km/s. For the fractures, we assume a very high porosity

(φf=0.9) and the same properties at the grain-scale, that is, ρs and Ks, as the background.

Following the estimations of Brown and Gurevich (2004), the bulk modulus of the grain

material is fixed to 30 GPa, as it is reasonable for a sand-epoxy matrix. The planar fractures

are separated by 2 mm, which is equal to the separation between crack planes considered
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by Rathore et al. (1995). However, due to the differences in the geometry of the fractures

between the synthetic sample and the model, we allow the aperture of the planar fractures

Hf of the model to be different to that of the penny-shaped cracks of the synthetic sample.

Using these parameters, we follow a minimization process to obtain the rest of the

fracture properties, that is, µm, Km, and Hf . To do so, we compute the effective Cij

coefficients in dry conditions using the Backus averaging technique. It is important to note

that, without loss of generality and since the measurements were made in a way that the

medium has effective vertical TI (VTI), we have to rotate the coordinates system to get a

correct interpretation of the determined velocities and stiffness components. Finally, the

phase velocity curves as functions of angles of incidence that need to be compared with the

measurements can be computed using Equations B-3 to B-5 (Appendix B).

By performing the optimization procedure using the package fminsearchcon developed

for Matlab (D’Errico, 2006), the elastic moduli for the planar fractures turned out to be

µm=0.0617 GPa and Km=0.00548 GPa, and the fractures aperture Hf=0.022 mm. We

have verified the convergence of the optimization procedure by considering multiple initial

estimates. Notice that the obtained aperture is remarkably similar to the aperture of the

penny-shaped cracks in the synthetic sample (Rathore et al., 1995). Given that fracture

apertures tend to vary from very thin (0.001-0.01 mm) to relatively wide (0.1-0.5 mm)

(Bakulin et al., 2000), this aperture can be thought as a representative value.

The experimental and numerical phase velocities as functions of incidence angle under

dry conditions are shown in Figure 2a. The agreement between the numerical velocities and

the experimental data is very good, which implies that the dry fracture and background

parameters obtained are reasonable and that, as expected, the two models are comparable
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(a)

(b)

Figure 2: Comparison of the data from Rathore et al. (1995) (symbols) for (a) dry and (b)

water-saturated fractured sandstone with the corresponding best-fitting planar fractures

model (dashed lines).
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for dry conditions. These results further validate the conjecture that a plane distribution

of small cracks can be replaced by an equivalent planar fracture of constant aperture with

appropriate infill material (Hudson and Liu, 1999). In the case of fluid-saturated samples,

it is necessary to define the permeabilities of the fractures and of the background. For the

fractures, we assume a high permeability (100 D) whereas the background permeability

is known and equal to 11.4 D (Brown and Gurevich, 2004), which is representative of a

synthetic high-porosity sandstone composed of clean, coarse-grained and well-sorted sand.

Moreover, the relatively high permeability reported by Brown and Gurevich (2004) is in

qualitative agreement with Maultzsch et al. (2003), who found that the frequency of the

measurements is in the low-frequency regime with respect to the characteristic frequency

of the effects of WIFF between the cracks and the background. Figure 2b shows the P-

and S-wave velocities for the water-saturated sample. The overall agreement between the

numerical and the experimental velocities is reasonably good. However, there are some

differences in the magnitude of the anisotropy. These are expected for several reasons,

such as, (i) the fact that we compute the model parameters from the measurements under

dry conditions without any input from the velocities in the saturated sample; (ii) the fluid

pressure diffusion patterns of a fluid-saturated rock containing infinite fractures and finite-

size cracks are different (Wenzlau et al., 2010; Guo et al., 2017); (iii) we assume that the

frequency of the measurements is lower than the frequency at which scattering and Biot’s

global flow effects arise; (iv) low intrinsic background anisotropy as a consequence of the

manufacturing process (Tillotson et al., 2011) is neglected.

Lastly, from the set of parameters obtained, it is possible to compute the dry normal ZN

and tangential ZT compliances of the sample. The compliances are defined as (Schoenberg
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and Sayers, 1995)

ZN =
1

H

Nf∑
i=1

H i
f

Lif
,

ZT =
1

H

Nf∑
i=1

H i
f

µif
,

(12)

where Lif and µif are the dry P-wave modulus and shear modulus of the ith fracture, and Nf

is the number of fractures in the sample. As fractures are assumed to have the same filling

material and aperture, the corresponding normal and tangential compliances of the sample

are ZN =
Hf

HLf
=1.25 ×10−10 1/Pa and ZT =

Hf

Hµf
=1.78 ×10−10 1/Pa, respectively. In terms

of the individual compliances of the fractures, the dry normal (ηN =
Hf

Lf
) and tangential

(ηT =
Hf

µf
) compliances are 2.5 ×10−13 m/Pa and 3.56 ×10−13 m/Pa, respectively, which

fall into the range of realistic values compiled from laboratory and field data estimations

by Worthington and Lubbe (2007).

FRACTURE CLUSTERING EFFECTS ON WIFF

The frequency dependence of the anisotropic seismic response in the limiting cases of regular

and randomly distributed fractures in an infinite medium has been exhaustively studied

(e.g. Brajanovski et al., 2005; Gurevich et al., 2009). However, current analytical models

cannot account for the seismic effects of the clustering of fractures as a result of non-

uniform fracture distributions. In this section, we numerically analyze how the presence of

an effective additional length scale given by the clustering of fractures affects the effective

frequency-dependent seismic anisotropy of the medium. We initially focus on the P-wave

modulus normal to the fractures as it presents the largest variability of the seismic response

due to the presence of fractures and associated WIFF effects.

It is well known that the frequency range at which the effects of WIFF between the
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fractures and background (FB-WIFF) are maximal is related to the background perme-

ability (Brajanovski et al., 2006). Given that reservoirs typically have permeabilities much

lower than that of the synthetic sample of Rathore et al. (1995), we chose a relatively low

background permeability of 2×10−5 D for the numerical analysis. This in turn shifts the

FB-WIFF characteristic frequency to the seismic frequency range (∼ 100 Hz). Unless indi-

cated otherwise, we use in the following the elastic and hydraulic parameters given in Table

1 for the analysis of WIFF effects on the anisotropic seismic properties of a rock containing

vertically aligned fractures.

Property Background Fracture

Porosity φ 0.346 0.9

Permeability κ 20 µD 100 D

Solid grain bulk modulus Ks 30 GPa 30 GPa

Frame bulk modulus Km 4.324 GPa 0.00548 GPa

Frame shear modulus µm 3.326 GPa 0.0617 GPa

Solid grain density ρs 2088 kg/m3 2088 kg/m3

Fluid density ρf 1090 kg/m3 1090 kg/m3

Fluid shear viscosity ηf 0.01 Poise 0.01 Poise

Fluid bulk modulus Kf 2.16 GPa 2.16 GPa

Table 1: Physical properties of the materials employed in the numerical analysis.
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General characteristics of the seismic signatures of fracture clusters

In order to analyze the most general aspects of the effects of fracture clustering on seismic

wave propagation, we first consider the arguably simplest representation of a cluster of

fractures given by a periodic alternation of regions characterized by a large number of

parallel fractures and unfractured background material. The total thickness of such a cluster

is typically much larger than that of the individual fractures. For simplicity, we assume

that the fractures have a constant aperture and compliance, and that they are regularly

distributed inside the cluster.

Figure 3: (a) Real part and (b) ratio between imaginary and real parts of C11(ω) as functions

of frequency for a medium containing regularly distributed clusters of fractures (solid line).

For comparison, we include the cases of regularly distributed fractures (dashdot line), and

regularly distributed layers with effective properties similar to those of the clusters (dashed

line).
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The elastic and hydraulic material properties are those given in Table 1 and we assume

that each cluster contains 10 regularly distributed fractures with a distance of Hb = 2 mm

between consecutive fractures. The distance between consecutive clusters of fractures is

chosen to be 10×Hb = 2 cm. Figure 3 shows C11(ω) and the corresponding attenuation as

functions of frequency. This corresponds to the case of a P-wave propagating normal to the

fractures. We observe the presence of three regimes for which the real component of C11(ω)

is virtually constant separated by two regimes of maximal dispersion. Correspondingly, the

attenuation, which can be quantified by =[C11(ω)]/<[C11(ω)], exhibits two peaks.

In order to better understand the frequency dependence of C11(ω), we include in Figure

3 the effective P-wave modulus of two other media. First, we consider a medium with the

same background material and the same number of fractures per unit length but assuming

a regular distribution of fractures. In Figure 3, we refer to this model as FB-WIFF, that

is, fracture to background WIFF. The second model that we consider is composed by an

alternation of two relatively thick layers. A background layer whose thickness is equal to

the distance between fracture clusters and another layer whose properties are equivalent

to those of the cluster. The effective poroelastic properties of the layer representing the

cluster of aligned fractures are computed following Milani et al. (2016), who give general

expressions for layered media. In Figure 3, we refer to this model as CB-WIFF, that is,

cluster to background WIFF. For the two above mentioned models, the effective P-wave

modulus can be computed using the two-layer model of White et al. (1975)

1

C11(ω)
=

〈
1

Lu

〉
+

2√
iωηH

(
α1M1
Lu
1
− α2M2

Lu
2

)2√
L1M1
Lu
1κ1

cot

(√
iωηLu

1
κ1M1L1

H1
2

)
+
√

L2M2
Lu
2κ2

cot

(√
iωηLu

2
κ2M2L2

H2
2

) ,
(13)

where Lu = λ+ 2µ is the undrained P-wave modulus, H = H1 +H2, and the subscripts 1
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and 2 refer to the different layers.

Let us start by comparing the response of the numerical model with the model containing

regularly distributed fractures. In Figure 3, we observe that the FB-WIFF model perfectly

explains the intermediate- and high-frequency regimes of the numerically computed C11(ω).

This implies that the attenuation peak observed at higher frequencies is related to WIFF

between the fractures and the background inside the clusters. It is important to mention

that in order to have the same magnitude and frequency dependence as the FB-WIFF

model, we have used H1 = 2 mm in Equation 13. This corresponds to the separation of

the fractures inside the cluster, while H was given by the inverse of the fracture intensity

in the whole sample. The agreement between the low-frequency limit of the FB-WIFF

model and the intermediate regime of the numerical model implies that defining H1 in

Equation 13 as the distance between fractures in the cluster is equivalent to allowing the

fluid pressure of the fractures to equilibrate inside the cluster but not with respect to the

rest of the background. This comparison suggests that both fracture density and fracture

spacing variations affect the effective properties in this regime.

The modulus dispersion and attenuation observed at low frequencies can be perfectly

described by the CB-WIFF model (Figure 3). This, in turn, implies that the modulus

dispersion and attenuation in this regime mainly depend on the contrast between the un-

fractured background and the effective layer representing the cluster of fractures. We have

named this regime the CB-WIFF regime, as it is related to the fluid pressure diffusion be-

tween the clusters of fractures and the background. Figure 3 shows that the low-frequency

limit of the fractured medium coincide with that of the CB-WIFF model. At these frequen-

cies, regardless of the fracture distributions, the whole rock is in fluid pressure equilibrium

and its response can be described by the poroelastic Backus average under relaxed con-

22



ditions. The high-frequency limit of the CB-WIFF model, on the other hand, coincides

with the intermediate regime of the model with clusters of fractures. At these intermediate

frequencies, there is no time for fluid pressure equilibration between the cluster as a whole

and the background but the fractures remain in pressure equilibrium inside the cluster.

Correspondingly, this limit coincides with the low-frequency limit of the FB-WIFF model.

Notice that the second dispersion regime cannot be accounted for by the CB-WIFF model

as the stiffening effect of the fracture fluid with frequency is missing when representing a

cluster of fractures with an effective poroelastic layer.

It is possible to further explore the regions where FB- and CB-WIFF are occurring

through the plot of the local contribution to the inverse quality factor per unit area (Solazzi

et al., 2016). Following Rubino et al. (2016), we refer to this characteristic as the inverse

quality factor density. Figure 4 shows the inverse quality factor density along the sample

for frequencies between 1 × 10−4 Hz and 1 × 106 Hz. For a given frequency, the regions

where energy dissipation due to WIFF takes place are characterized by a larger inverse

quality factor density. We observe that at low frequencies the attenuation is negligible. The

same scenario prevails in the high-frequency limit, where the fluid has no time to move

between pores in the background and the fractures during a half-wave cycle and, hence,

fluid flow effects become negligible. This is illustrated by the decreasing distance of fluid

diffusion into the background towards higher frequencies. The quality factor density shows

that the energy dissipation in the background is maximal at the two frequencies where the

attenuation in Figure 3 reaches its maximum values. At fCB = ωCB/2π ∼ 0.3 Hz, fluid

flow occurs mainly from the cluster of fractures to the unfractured region between clusters.

Conversely, at fFB = ωFB/2π ∼ 100 Hz, fluid flow prevails in the vicinity of the fractures

inside the clusters.
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Figure 4: Inverse quality factor density along the sample for frequencies between 1× 10−4

Hz and 1× 106 Hz. Left and right panels correspond to the frequency ranges at which (a)

CB-and (b) FB-WIFF dominate. The two red vertical lines correspond to the frequencies

where the attenuation of P-waves propagating normal to the fractures has a local maximum.

Lastly, in Figure 5 we illustrate the impact of the geometry and distribution of the

clusters on the WIFF effects observed in the effective P-wave modulus of the sample. We

consider different sizes of clusters (10 and 100 fractures) and different distances between

clusters (Hc = 10 × Hb and Hc = 100 × Hb). In all cases, the distance between fractures

inside the cluster is equal to Hb=2 mm (Table 2).

We observe that the FB-WIFF characteristic frequency coincides for the three scenarios,

that is, regardless of the intensity of fractures. This is an unexpected result, as analyti-

cal models predict a direct dependence of this frequency with the intensity of fractures.

Gurevich et al. (2009) shows that the characteristic frequency ωFB is the inverse of the
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Figure 5: (a) Real part and (b) ratio between imaginary and real parts of C11(ω) for clusters

of 100 fractures separated 2 cm (red lines), clusters of 10 fractures separated 2 cm (blue

lines), and clusters of 10 fractures separated 20 cm (green lines). In all cases, the distance

between adjacent fractures is 2 mm.

characteristic time of the fluid pressure diffusion process between the fractures and the

background. The model of Guo et al. (2017), which accounts for the finite thickness of

fractures, allows to estimate this characteristic time τFB for the case of aligned fractures

τFB =

(
Cu11 − Cr11

Cr11G

)2

, (14)

with Cr11 and Cu11 being the low- and high- frequency limits of C11(ω) and

G =

2
HC

u
11

(
α1M1
Lu
1
− α2M2

Lu
2

)2

√
M1L1η
Lu
1κ1

+
√

M2L2η
Lu
2κ2

. (15)

In Equation 15 the subscripts 1 and 2 refer to the background and fracture properties,

respectively. Notice that, according to Equation 15, the only information regarding the
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Parameters Case 1 Case 2 Case 3

Nf 10 100 10

Hb 2 mm 2 mm 2 mm

Hc 2 cm 2 cm 20 cm

H 3.8 mm 2.2 mm 21.8 mm

Table 2: Geometrical characteristics of the fracture clusters.

fracture distribution involved in the computation of ωFB is the mean spacing between

fractures which, in turn, defines H. This is a consequence of the assumption of low fracture

density in the model of Guo et al. (2017), which implies that Hb � Hf . According to

Equations 14 and 15, the characteristic frequency fFB = ωFB/2π for the three scenarios are

f1
FB ∼ 90Hz, f2

FB ∼ 117Hz and f3
FB ∼ 63Hz. The discrepancies of the analytical prediction

with the numerical results imply that the FB-WIFF frequency is mainly controlled by the

spacing of the fractures inside the cluster, which in the three cases remains unchanged.

The fracture intensity, that is 1/H (Bakulin et al., 2000), controls the magnitude of the

FB-WIFF effects, which decrease with lower fracture densities.

Furthermore, we observe that the geometric characteristics of the fracture clusters

strongly affect the amount of attenuation and dispersion as well as the characteristic fre-

quency due to CB-WIFF. For clusters containing the same intensity of fractures, the cor-

responding characteristic frequency shifts towards lower values when the distance between

clusters increases (blue and green lines in Figure 5). As mentioned before, at these rela-
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tively low frequencies, a cluster of fractures effectively behaves as a layer. Given that in

both models the thickness of the effective layer is the same, the CB-WIFF characteristic

frequency depends on the distance between consecutive layers. As this distance increases,

the interference of the fluid pressure diffusion in the unfractured background occurs at lower

frequencies (Brajanovski et al., 2006). In addition, as the density of clusters per unit length

decreases, the level of attenuation decreases as well. Lastly, when the number of fractures

in the cluster increases, while keeping the distance between clusters constant, the size of the

cluster of fractures gets much larger than the distance between consecutive clusters and the

model approaches the limiting case of a regular distribution of fractures. Correspondingly,

the effects related to the fracture cluster become negligible, as illustrated by the comparison

between blue and red curves in Figure 5.

Fracture clustering effects as a consequence of realistic spacing distribu-

tions

Given that the previous analysis was based on a simplistic representation of fracture cluster-

ing, in this section, we aim at analyzing the corresponding impact of CB-WIFF effects when

dealing with realistic fracture distributions. In agreement with previous findings (Gillespie

et al., 1993; Bonnet et al., 2001), Fang et al. (2016) argue that natural fractures often ex-

hibit a distribution of fracture spacings following a power-law function and that this kind

of distribution leads to the formation of clusters of fractures.

Hence, in order to explore the effects of clusters in the case of realistic distributions of

fracture spacing, we generate random fracture models following a power-law function. That
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is, we assume that the variable fracture spacing Hb is given by (Fang et al., 2016)

Hb = [Hn
min +m · (Hn

max −Hn
min)]1/n, (16)

where n is the power-law exponent governing the distribution, m is a random number

between 0 and 1, and Hmin and Hmax are the minimum and maximum values for fracture

spacing, respectively.

Figure 6: (a) Real part and (b) ratio between imaginary and real parts of C11(ω) as functions

of frequency for 100 samples containing randomly distributed fractures according to case

1 in Table 3 (grey lines). Red curves correspond to the mean values of the realizations.

For comparison, we include the analytical solution for a uniform random distribution of

fractures with the same fracture intensity (black line).

Figure 6 shows the effective P-wave modulus dispersion and attenuation normal to the

fractures for 100 samples containing a random distribution of fractures whose parameters

correspond to case 1 in Table 3. For comparison, we include the analytical model of Guo
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et al. (2017) for the P-wave modulus normal to a uniform random distribution of planar

fractures. We observe that for samples containing fractures distributed according to Equa-

tion 16, the effective P-wave modulus presents two attenuation and dispersion regimes. As

expected, the real component of the effective P-wave modulus shows that, at the low- and

high-frequency limits, the fracture distribution does not play any role and, hence, both the

numerical and analytical models coincide in these limits. However, its frequency dependence

is affected by the presence of fracture clustering, producing a deviation from the analytical

solution. Regarding the CB-WIFF manifestation in the seismic attenuation, we can identify

different low-frequency asymptotes for the numerical and analytical solutions. The former

presents an asymptote that is proportional to f , while for the latter it is proportional to

√
f .

Parameters Case 1 Case 2 Case 3

Hmin 0.001 m 0.001 m 0.005 m

Hmax 0.1 m 0.1 m 0.05 m

n -1 -2 -1

Total length 0.5 m 0.3 m 0.5 m

Nf 50 100 50

Table 3: Power-law function parameters for the numerical analysis.

Figure 7 shows the effective properties of 100 samples considering cases 2 and 3 of Table

3. In the case of a higher exponent n (case 2), the number of small spacings between fractures

compared to large ones increases. This produces a steeper dispersion and, correspondingly, a
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Figure 7: (a, c) Real part and (b, d) ratio between imaginary and real parts of C11(ω)

as functions of frequency for 100 samples containing randomly distributed fractures (grey

lines). Top and bottom panels correspond to cases 2 and 3 of Table 3, respectively. Red

curves correspond to the mean values of the realizations. For comparison, we include the

analytical solution for a uniform random distribution of fractures with the same fracture

intensity (black lines).

narrower seismic attenuation related to FB-WIFF effects compared to the random analytical

solution. As shown in the analysis of Figure 5, when a given fracture spacing dominates

the distribution, the effective properties in the FB-WIFF regime tend to those of a regular

distribution of fractures. Correspondingly, the magnitude of the CB-WIFF effects become
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less significant than those associated with FB-WIFF.

Regarding case 3, the effective response is closer to that of a two-layer model. As

mentioned before, the manifestation of the CB-WIFF and its amplitude is related to the

thickness of the sections of the sample with closely packed fractures and to the thickness

of the adjacent unfractured background. As, in this case, we decrease the range of possi-

ble values for the power-law, the spacing between fractures is more homogeneous and the

manifestation of CB-WIFF less significant. Hence, although there are some discrepancies

at low frequencies, the effective P-wave modulus is well described by the analytical model.

For the analysis of each of the scenarios shown in Figures 6 and 7, we have fixed the

number of fractures as well as the total length of the samples. By doing so, we have

minimized the dispersion of the realizations with respect to the mean response and focused

on the variations due to clustering effects. Although not shown here for brevity, we have

performed numerical simulations without restrictions on the total length of the samples,

thus allowing for different fracture densities in each realization. The results show that the

changes in CB- and FB-WIFF effects coincide with those shown in this section.

Seismic anisotropy analysis

As mentioned before, our methodology does not only allow us to compute the effective P-

wave modulus normal to an arbitrary distribution of aligned fractures but it also provides

the effective anisotropic stiffness matrix of the medium. Since the current consensus is that

the orientation, density, scale, and spacing of fractures as well as the fluid properties can

be extracted from frequency-dependent seismic anisotropy (Bakulin et al., 2000; Tillotson

et al., 2011; Liu and Martinez, 2013), we proceed to explore the WIFF effects on seismic
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anisotropy. Although there exist several seismic attributes quantifying seismic anisotropy,

for brevity, we focus the analysis on Thomsen’s (1986) parameters to quantify the velocity

anisotropy and on the formulas of Collet and Gurevich (2016) to quantify the corresponding

attenuation parameters. In the particular case of an HTI medium whose effective stiffness

matrix is given by Equation 7, the set of anisotropic parameters quantifying the velocity

anisotropy are (Bakulin et al., 2000)

ε =
(C11 − C33)

2C33
,

δ =
(C13 + C66)2 − (C33 − C66)2

2C33(C33 − C66)
,

γ =
(C66 − C44)

2C44
.

(17)

The parameters ε and γ are often called the P- and S-wave velocity anisotropy as in the

elastic case they are close to the fractional difference between the horizontal and vertical

P- and S‖-wave velocities. The subscript ‖ indicates that we refer to the S-wave polarized

parallel to the fractures plane. The parameter δ, on the other hand, quantifies the second

derivative of the P-wave phase velocity at vertical incidence. Bakulin et al. (2000) showed

that, in the case of a rock containing vertical fractures, the parameters in Equation 17 are

negative.

In the case of weak attenuation, the attenuation anisotropy parameters are given by

(Collet and Gurevich, 2016)

εQ =
1 + 2ε

2

(
1

Q11
− 1

Q33

)
,

δQ =
(1 + δ)

Q13
+ 2

C66

C11

(
1

Q66
− 1

Q13

)
− 1

Q11
,

(18)

whereQij(ω) =
<[Cij(ω)]
=[Cij(ω)] . The parameters εQ and δQ reduce to zero for non-dissipative media

or if the attenuation is isotropic. Given that the stiffness coefficients Cij(ω) are complex-

valued, the attenuation anisotropy parameters are complex-valued as well. In the limit of
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weak attenuation, we can compute the real part of the complex anisotropy parameters given

in Equation 18 to obtain a measure of the attenuation anisotropy as a function of frequency

(Collet and Gurevich, 2016). For brevity and given that the behavior of the velocity and

attenuation anisotropy parameters for randomly and regularly distributed aligned fractures

or cracks has been thoroughly described before (e. g., Collet and Gurevich, 2016; Guo et al.,

2017), we focus on the sensitivity of such parameters to fracture clustering.

Figure 8: Real components of (a) the Thomsen parameters for velocity and (b) the pa-

rameters after Collet and Gurevich (2016) for the attenuation as functions of frequency for

100 samples containing randomly distributed fractures according to case 1 in Table 3 (grey

lines). Heavy lines correspond to the mean values of the realizations. For comparison, we

also include the analytical solution for a uniform random distribution of fractures with the

same fracture intensity (black lines).

Figure 8 shows the velocity and attenuation anisotropy parameters as functions of fre-
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quency for case 1 in Table 3. We include the solution for the analytical model of a random

distribution of aligned planar fractures. First, we observe in Figure 8 that γ does not

change with frequency. The reason for this is that the difference between the velocity of

an S‖-wave propagating in the direction normal or parallel to the fractures is controlled by

the tangential compliance, which in this case is frequency independent. Hence, there is no

evidence of the distribution of the fractures in this parameter.

The parameters ε and δ are frequency-dependent but only the former reflects the frac-

ture clustering effects. From the definition of ε in Equation 17 it is clear that the behavior

of this parameter is controlled by the behavior of C11(ω), which is strongly affected by

CB-WIFF effects. The parameter δ, on the other hand, is almost unaffected by the frac-

tures distribution, which means that the latter has little impact on the shape of the angle

dependence of P- and S-waves.

Regarding the attenuation anisotropy parameters, we observe that they follow the same

behavior as the attenuation shown in the previous section. They tend to zero in the low- and

high-frequency limits and reach their local maxima at both the CB- and FB-WIFF charac-

teristic frequencies. The strong frequency-dependence of εQ and δQ as well as the difference

with respect to the random analytical solution indicate that attenuation anisotropy data

may be more useful than velocity anisotropy data for characterizing fracture distributions.

CONCLUSIONS

We have investigated the effects of fracture clustering on the effective seismic properties

of porous rocks containing aligned planar fractures. To this end, we developed an hybrid

methodology that permits to circumvent the computational challenges associated with per-
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forming 3D numerical relaxation tests and allows us to consider arbitrary distributions of

aligned planar fractures. This means that, in addition to variable fracture spacing, which

was the main attribute investigated in this work, it also allows to consider arbitrary fracture

apertures and elastic and hydraulic contrasts between fractures and background as well as

varying fluid properties.

In order to determine the mechanical properties of fractures represented as part of the

poroelastic continuum, we used experimental velocities measured on a dry synthetic sand-

stone containing penny-shaped cracks of known geometry and orientation. We showed that

the estimated parameters allow us to reasonably approximate the corresponding velocity

anisotropy measurements under fluid-saturated conditions. Using the estimated fracture

mechanical characteristics, a corresponding numerical analysis demonstrated that the pres-

ence of fracture clustering results in two frequency regimes of seismic attenuation and veloc-

ity dispersion. The regime at low frequencies is related to WIFF between the clusters and

the background and its characteristic frequency depends on the size and spacing between

clusters. The second dispersion and attenuation regime is associated with WIFF between

fractures and background inside clusters. Its characteristic frequency is mainly controlled

by the fracture intensity inside the cluster rather than by the total fracture intensity. More-

over, we showed that it is possible to quantify both the FB- and CB-WIFF effects using

pertinent two-layer poroelastic models. This suggests that it is possible to extend current

analytical models to account for fracture clustering by allowing for an additional length

scale in the sample.

Analyses of anisotropic parameters allowed us to verify that the velocity anisotropy pa-

rameters show little sensitivity to fracture clustering effects. In this case, analytical models

of random distributions of planar fractures managed to reproduce most of the frequency-
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dependent effects on the velocity anisotropy parameters. Attenuation anisotropy, on the

other hand, turned out to be much more sensitive to fractures distributions.
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APPENDIX A: RELAXED AND UNRELAXED LIMITS OF THE

STIFFNESS TENSOR

In analogy with the expressions given by Krzikalla and Müller (2011) for the relaxed and

unrelaxed limits of the stiffness tensor for VTI media, we give the corresponding expressions

for an HTI medium. The Backus formulas for the relaxed limit are

Cr11 =

〈
1

L

〉−1

+
Y 2

Z
,

Cr12 =

〈
1

L

〉−1〈λd
L

〉
+
XY

Z
,

Cr22 =

〈
4µ(λd + µ)

L
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+
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1

L
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+
X2

Z
,

Cr55 =
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1
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,

(A-1)
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where 〈ψ〉 = 1
H

∫
ψ(x)dx is the poroelastic Backus average, λd = Km − 2µ/3 is the Lamé

constant in dry conditions and the expressions X, Y and Z are given by

X = −Z
(〈

2αµ
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〉
+

〈
α

L
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(A-2)

On the other hand, the Backus formulas for the unrelaxed limit are

Cu11 =
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1
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(A-3)

where λu = Km − 2µ/3 + α2M is the Lamé constant in undrained conditions.

APPENDIX B: PHASE VELOCITY AND INVERSE QUALITY

FACTOR

We consider a plane-wave propagating through a homogeneous anisotropic viscoelastic

medium. The general plane-wave solution for the displacement vector u = (ux, uy, uz)

has the form

u = Ae−ik·r, (B-1)

with k = (k1, k2, k3) being the wave vector, A = [A,B,C] the amplitudes of the components

of the displacement and r = (x, y, z) the position vector. Substituting the plane-wave
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solution into the equations of motion in the space-frequency domain

−ω2ρu−∇ · τ = 0, (B-2)

where ρ is the density of the rock and τ the stress tensor, and considering the relations

between the stress and strain tensors given in Equation 7, we obtain the Kelvin-Christoffel

equation (e.g., Carcione, 2007)

(Γ− ω2ρ

k2
I3) · uT = 0. (B-3)

In this equation, Γ = K ·C ·KT is the symmetric Kelvin-Christoffel matrix with C given

in Equation 7, k the wavenumber, and

K =


k1 0 0 0 k3 k2

0 k2 0 k3 0 k1

0 0 k3 k2 k1 0

 . (B-4)

For homogeneous waves, we can write k1 = k sin(θ) cos(φ), k2 = k sin(θ) sin(φ), and k3 =

k cos(θ) with θ and φ being the incidence angle with respect to the x3 direction and the

azimuth angle of the seismic wave, respectively. The solution of the eigenvalue problem

of Equation B-3, whose characteristic equation is det(Γ− ω2ρ
k2

I3)=0, provides the complex

wavenumbers for all the possible wave modes.

In an anisotropic medium, three distinct body waves propagate and form an orthogonal

polarized set. A P-wave that travels quasi-parallel to the propagation direction and two

S-waves that are mutually orthogonal and polarized in the plane perpendicular to the P-

wave polarization direction. For practical applications, the S-waves are often distinguished

by referring to the faster and slower shear-waves, which are denoted by S1 and S2.

The three physically meaningful solutions having negative imaginary parts, kP (ω, θ, φ),

kS1(ω, θ, φ) and kS2(ω, θ, φ) correspond to the wavenumbers of the P-, S1- and S2-waves,
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respectively. The corresponding phase velocities and inverse quality factors can be then

evaluated as

Vj(ω, θ, φ) =
ω

<(kj(ω, θ, φ))
,

Q−1
j (ω, θ, φ) = −

=(k2
j (ω, θ, φ))

<(k2
j (ω, θ, φ))

for j = P, S1, S2.

(B-5)

APPENDIX C: SINGLE RELAXATION FUNCTION FOR

FRACTURE CLUSTERS

Krzikalla and Müller (2011) demonstrated the correctness of the relation given in Equation

8 for a medium containing regularly distributed fractures. In addition, they considered two

rather simple cases, (i) a homogeneous background and (ii) a background composed by two

layers with different permeabilities. With our methodology, we can further generalize the

validation of the single relaxation function assumption that leads to Equation 8 by consid-

ering a rock containing clusters of fractures. As shown in Section “Numerical Analysis”,

when a rock contains clusters of fractures, there is an additional characteristic length in

the sample that, in turn, produces an additional characteristic frequency of the relaxation

function. That is, in addition to the relaxed and unrelaxed regimes, there is an intermediate

regime for which the medium essentially behaves as a two layer medium composed by the

background and an effective layer representing the cluster of fractures.

For the validation, we implement 3D relaxation tests extending the methodology devel-

oped by Rubino et al. (2016) and originally proposed for 2D samples. We refer the reader

to this work for details on the methodology to obtain the effective stiffness tensor of a

poroelastic heterogeneous sample. For the numerical comparison, we use the fracture and

background properties in Table 1. Each cluster of fractures contains three fractures of 0.02

mm thickness, separated by 2 mm. The distance between clusters is 20 mm.
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Figure C.1: (a and b) Real and (c) imaginary parts of the effective stiffness coefficients

as functions of frequency computed using the hybrid methodology (solid lines) and 3D

numerical relaxation tests (dots).

Once the Cij coefficients are computed for the 3D sample, we can compare them with

those obtained by following the approach presented in this work (Equations 5 to 8). Figure

C.1 shows the comparison between the stiffness coefficients as functions of frequency. The

agreement between the two approaches is excellent. Interestingly, this means that the

presence of an intermediate regime does not change the relation given in Equation 8 and

we only need to know the relaxed and unrelaxed limits and the scalar function R(ω) to

describe the frequency-dependent Cij coefficients.
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