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ABSTRACT  6 

Hydraulic tomography is a state-of-the-art method for inferring hydraulic conductivity fields using head 7 

data. We employed geostatistical inversion using synthetically generated head and flux data individually 8 

and jointly to better understand the relative merits of each data type. For the typical case of a small number 9 

of observation points, we find that flux data provide a better resolved hydraulic conductivity field compared 10 

to head data when considering data with similar signal-to-noise ratios. This finding is further confirmed by 11 

a resolution analysis. When considering a high number of observation points, the estimated fields are of 12 

similar quality regardless of the data type. In terms of borehole boundary conditions, the best setting for 13 

flux and head data are constant head and constant rate, respectively, while joint inversion results are 14 

insensitive to the borehole boundary type. When considering the same number of observations, the joint 15 

inversion of head and flux data does not offer advantages over individual inversions. When considering the 16 

same number of observation points and, hence, twice as many observations, the joint inversion performs 17 

better than individual inversions. The findings of this paper are useful for future planning and design of 18 

hydraulic tomography tests comprising flux and head data. 19 
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1. INTRODUCTION 23 

Knowledge of hydraulic conductivity distributions is essential for the management of water resources 24 

(Liu et al., 2020), solute transport predictions (Yeh, 1992; Jiménez, 2015) and designing remediation of 25 

contaminated sites (Fakhreddine et al., 2016). A variety of geophysical (Kowalsky et al., 2004; Revil et al., 26 

2012; Slater, 2007) and hydraulic methods (Brauchler et al., 2003; Yeh and Liu, 2000; Zhu and Yeh, 2005), 27 

including tracer-based measurements (Doro et al., 2015; Jiménez et al., 2016; Somogyvári and Bayer, 28 

2017), have been developed and employed for characterizing hydraulic properties (Lochbühler et al., 2013). 29 

In hydraulic flow methods, head data responses to hydraulic perturbations (pumping, tidal fluctuation, etc.) 30 

are measured at different locations across the aquifer. The recorded head data are then used to estimate the 31 

spatial distribution of hydraulic conductivity (K) and storativity. A distinct advantage of hydraulic methods 32 

for imaging purposes is that the hydraulic response of an aquifer is directly related to its hydraulic 33 

parameters described by flow equations (Fakhreddine et al., 2016), while in most geophysical methods, the 34 

hydraulic properties are inferred from other estimated physical properties, thereby, requiring petrophysical 35 

relationships. We define Y=log10(K) and assume that is can be described by a stationary multivariate 36 

Gaussian distribution. 37 

Hydraulic tomography has been the subject of many theoretical and numerical (Fienen et al., 2008; Luo 38 

et al., 2020; Yeh and Liu, 2000; Zha et al., 2018; Zhu and Yeh, 2005), laboratory (Illman et al., 2008, 2010; 39 

Liu et al., 2002, 2007; Yin and Illman, 2009; Zhao et al., 2016)), and field studies (Berg and Illman, 2015, 40 

2013, 2011; Bohling et al., 2007; Brauchler et al., 2013, 2011, 2010, 2003; Cardiff et al., 2009, 2013; Cardiff 41 

and Barrash, 2011; Fischer et al., 2017; Gottlieb and Dietrich, 1995; Huang et al., 2011; Klepikova et al., 42 

2013; Kuhlman et al., 2008; Paradis et al., 2016, 2015; Sun et al., 2013; Tosaka et al., 1993). However, 43 

hydraulic tomography based on head data alone has limitations. One limitation is inherent to the underlying 44 

potential-field physics as measured head data are spatially averaged due to the diffusive nature of pressure 45 

disturbances created during the test (Bohling and Butler Jr, 2010). This averaging results in tomographic 46 
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estimates displaying a high degree of smoothing compared to the actual aquifer property fields. This 47 

smearing may lead to degraded predictions for transport problems. Another limitation appears in applying 48 

hydraulic tomography in high conductivity aquifers as hydraulic tests lead to small drawdown values, 49 

implying high relative uncertainty of the measured head perturbations and correspondingly low signal-to-50 

noise ratio data. Adding other types of non-redundant data in hydraulic tomography can help to better image 51 

the subsurface (Mao et al., 2013; Yeh et al., 2015). In this regard, Zha et al. (2014) demonstrated the 52 

usefulness of flux data (specific discharge) for hydraulic tomography in a 2D synthetic fractured media 53 

mimicking a field site in Mizunami, Japan. Estimated mean, variance, and correlation length of the Y-field 54 

were applied as prior information to the inversion model. Using the cross-correlation approach (Zha et al., 55 

2014), they showed that head and flux contribute differently to the Y-field reconstruction. They claimed 56 

that inversion of head data collected with known pumping rate can result in representative Y-field estimates 57 

even if the initial guess is incorrect. For flux data, they find that the final Y-field estimate is dependent on 58 

the initial guess. Their synthetic work showed that using flux data with head data improves the estimation 59 

of Y-field values and the fracture distribution. In another study, Tso et al.( 2016) performed numerical test 60 

studies on a 3D model mimicking the aquifer at the North Campus Research site in Waterloo, Canada. They 61 

simulated pumping in this porous aquifer and measured head data and flux data at different locations. Then, 62 

head and flux data were subjected to inversion, considering different types of prior information. They 63 

showed that using flux data jointly with head data can enhance hydraulic conductivity estimates. 64 

Furthermore, they found out that the estimated hydraulic conductivity field is less affected by an inadequate 65 

prior model when non-redundant flux data are used to supplement the head data. 66 

Until recently, measurements of groundwater fluxes in the field were limited to local and time-67 

consuming measurements. The most popular technique for quantifying groundwater flux in the field was 68 

based on dilution tests (Drost et al., 1968; Jamin et al., 2015; Schneider et al., 2019), where the dilution of 69 

an injected tracer inside a screened borehole or within packers is used to estimate the horizontal 70 

groundwater flux. Nevertheless, boreholes disturb the flow field and affect the measurements; hence, the 71 
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measured values may not represent the real flux values. The recent advent of Fiber Optic Distributed 72 

Temperature Sensors (FO-DTS) has led to new possibilities for measuring groundwater discharge with 73 

unprecedented spatial and temporal resolutions (des Tombe et al., 2019; Simon et al., 2021)  74 

FO-DTS is a distributed sensor type that allows measurements of temperature all along the fiber optic 75 

cable. FO-DTS can be employed in both passive and active modes. In passive mode, the temperature of the 76 

fiber optic is measured without any external forcing, while in active mode, a heat source is added to the 77 

fiber optic cable by using a heating element located very close to the fiber optic cable or by using a heating 78 

fiber optic cable. Active-DTS have been developed, for instance, for measuring borehole flows (Read et 79 

al., 2014), wind speed (Sayde et al., 2015), and for characterizing groundwater fluxes in fractured media 80 

(Maldaner et al., 2019). Recently, it has also been used for measuring groundwater discharge in sedimentary 81 

aquifers; the FO cable typically being installed by the direct push method (Bakker et al., 2015; des Tombe 82 

et al., 2019). In this case, the buried cable is in direct contact with the ground with minimum subsurface 83 

perturbations. Simon et al. (2021) showed that active-DTS can be used for measuring both thermal 84 

conductivities and groundwater fluxes on a large range of values with excellent accuracy (with errors of 85 

less than 10% for groundwater flux in the range of 10-5 to 10-3 m/s). The principle of such an experiment 86 

(Figure 1) is to monitor the temperature evolution with time, which depends on the surrounding area's 87 

thermal properties and also groundwater fluxes that limits the temperature rise. Typically, the slope of the 88 

temperature rise in the conduction regime (with time in logarithmic scale) is inversely proportional to 89 

thermal conductivity while the greater the groundwater fluxes, the lower the temperature at stabilization. 90 

The temperature evolution with time may be easily interpreted to estimate groundwater fluxes through an 91 

analytical solution or by using a graphical analysis (Simon et al., 2021). The application of Active FO-DTS 92 

for flux measurements is currently limited to shallow and unconsolidated aquifers due to limitations in 93 

deployment by the direct push method. 94 

 95 
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 96 

Figure 1: Schematic description of how Active FO-DTS can be used to infer a groundwater flux profile with 97 
depth. (a) An Active Fiber Optic Cable is deployed vertically into the ground in close contact with the 98 
formation. (b) The cable is heated (active mode), and the cable temperature during the heating (first 20 99 
hours) and cooling periods (from 20 to 40 hours) is measured. Each curve corresponds to one-point 100 
measurement along the FO-cable. (c) In semi-logarithmic plot, the slope of the temperature profile is used 101 
to estimate the thermal conductivity while the temperature at stabilization is dependent on groundwater 102 
fluxes (Simon et al., 2021). (d) Measured temperature data along the fiber optic cable are converted to a 103 
flux profile with depth, with each "+" sign indicate one datum. 104 

 105 

New advances in distributed sensing of groundwater flux make it an appealing data source for 106 

independent inversion or joint inversion with hydraulic head. This present study assumes that groundwater 107 

fluxes can be inferred from such above-mentioned techniques at a prescribed spatial resolution and 108 

accuracy.  Here, we limit ourselves to a 2-D study assuming constant groundwater flux in depth. Using a 109 

geostatistical hydraulic tomography approach, we then address the benefits and drawbacks of using either 110 

head or flux data individually or jointly. More specifically, we address the following questions. 111 
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(1) For an equal number and locations of flux and head data, which data type leads to the best reconstruction 112 

of hydraulic conductivity? 113 

(2) How does the number of observations affect the inversion results? 114 

(3) How does inversion performance for the different data types vary with the hydraulic conductivity field 115 

variance? 116 

The paper is structured into six sections. Section 2 presents the geostatistical inversion method and the 117 

forward model employed. In section 3, we describe the hydraulic conductivity test model used for our 118 

analysis. In sections 4 and 5, we present and discuss the main results, respectively, and section 6 concludes 119 

the paper. 120 

2. METHODS 121 

The Principal Component Geostatistical Approach (PCGA) is a computationally-efficient geostatistical 122 

inversion method (Lee and Kitanidis, 2014). PCGA uses the main principal components of the prior model 123 

covariance matrix for model parameterization and corresponding estimates of the Jacobian (sensitivity 124 

matrix). The resulting model reduction from a model of many gridded elements to a lower number of 125 

retained principal components leads to smaller matrices to invert and fewer sensitivities to estimate, 126 

implying less computational costs than full inversions. This method has been employed extensively in 127 

recent years (Fakhreddine et al., 2016; Fischer et al., 2017; Kang et al., 2017; Lee et al., 2018; Soueid 128 

Ahmed et al., 2016). In this study, we use PCGA combined with the Matlab Reservoir Simulation Toolbox 129 

(MRST) that simulates fluid flow in porous media (forward model) to perform inversion of head and flux 130 

data.  131 

2.1 Inverse model 132 

Inferring properties of subsurface media (storage, hydraulic conductivity) from error-contaminated and 133 

sparse observed data (head data, flux data, etc.) is an inverse problem and can be formulated as follow: 134 
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𝐝 = 𝑓(𝐦) +ƞ,  (1) 

where d, f(-), m and ƞ refer to measured data, forward model, model parameters and errors, respectively. 135 

The forward model refers here to a non-linear operator solving a set of differential equations numerically 136 

to describe the relationship between model parameters and data. From a mathematical point of view, the 137 

inverse problem is often ill-posed and the solution is non-unique, implying that additional information (e.g., 138 

a prior model) is required to obtain unique and physically-meaningful results. Here, the subsurface is 139 

described as a multi-Gaussian stationary field with known statistical properties and a superimposed 140 

deterministic trend. In the presence of a multivariate Gaussian prior model and error distribution, it is 141 

common to formulate the inverse problem in terms of an exploration of the maximum a posteriori (MAP) 142 

estimate and its variance. In such a setting, the solution of the inverse problem is obtained by maximizing 143 

a posterior probability density function (maximizing the term in bracket) expressed by using Bayes' theorem 144 

as follow: 145 

𝜋𝑝𝑜𝑠𝑡(𝐦|𝐝)~exp[ -1
2

(𝑓(𝒎) − 𝐝)𝐂d
-1(𝑓(𝐦) − 𝐝)+ -1

2
(𝐦 − 𝐦prior)𝐂m

-1(𝐦 − 𝐦prior)] ,    (2) 

where Cm and Cd are the a priori model covariance and data covariance matrix, respectively (Kitanidis, 146 

1995). 147 

Geostatistical methods have been widely used and proven to be efficient for hydraulic tomography 148 

purposes (Illman et al., 2015). The iterative optimization process estimates the model parameters. The 149 

solution at (i+1)th iteration is calculated as:  150 

𝐦𝑖+1 = 𝐗𝛃𝑖+𝐂m𝐉𝑖Tε𝑖 , (3) 

where X is a known matrix, and β is an unknown vector used to determine linear trends that is 151 

inferred along with ε by solving the system of equations below. Here J represents the Jacobian 152 

matrix describes the sensitivity of the forward model output (at observation points) with respect to 153 

the unknown model parameters. 154 
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[
𝐉𝑖𝐂m𝐉𝒊T + 𝐂d

(𝐉𝑖𝐗)T
𝐉𝑖𝐗
0 ] [

ε𝑖
𝛃𝑖

] = [𝐝 − 𝑓(𝐦𝑖) + 𝐉𝑖𝐦𝑖
0 ] . 

            (4) 

2.1.1 Principal Component Geostatistical Approach 155 

Calculating the Jacobian matrix (J) used in equations (3) and (4) for high-dimensional problems often 156 

requires a very high computational effort. Lee and Kitandis (2014) proposed the Principal Component 157 

Geostatistical Approach (PCGA), which uses a low-rank approximation of the prior covariance via 158 

principal component analysis and avoids forming the Jacobian explicitly for products of the Jacobian matrix 159 

and eigenvalues (equations (6) and (7)) by using a finite difference approximation (equation (8)). This 160 

results in a faster inversion process of high accuracy, provided that an adequate number of principal 161 

components are retained. The terms that are used for geostatistical inversion in equation (4) are 162 

approximated through the P largest principal components as follow: 163 

𝐂m ≈ 𝐂m𝑃 = ∑ (ς𝑖𝑖)(ς𝑖𝑖)
T

𝑃

𝑖𝑖=1

 , 
(5) 

𝐉𝑖𝐂m ≈ 𝐉𝑖𝐂m𝑃 = 𝐉𝑖 ∑ (ς𝑖𝑖)(ς𝑖𝑖)
T

𝑃

𝑖𝑖=1

= ∑ (𝐉𝑖ς𝑖𝑖)(ς𝑖𝑖)
T

𝑃

𝑖𝑖=1

 , 
 

(6) 

𝐉𝑖𝐂m𝐉𝑖T ≈ 𝐉𝑖𝐂m𝑃𝐉𝑖T = ∑ (𝐉𝑖ς𝑖𝑖)(𝐉iς𝑖𝑖)
T

𝑃

𝑖𝑖=1

 , 
 

(7) 

𝐉𝑖ς𝑖𝑖 ≈
1
δ

[𝑓(𝐦𝑖+δς𝑖𝑖)-𝑓(𝐦𝑖)] . 
(8) 

Here, CmP is a rank-P approximation of the model parameter covariance matrix. The CmP and Jacobian 164 

matrix products required for the inversion (equation 4) are given by equations 6-7. How to choose the 165 

finite difference interval 𝛿 is addressed by Lee and Kitandis (2014). 166 

The diagonal entries of the posterior covariance matrix (vjj) are often presented as the estimation of 167 

the variance and can be calculated without explicit construction of v (Lee and Kitanidis, 2014) 168 
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𝐯jj = 𝐂m 𝑗𝑗 − [
(𝐉𝐗)𝑗
𝐗T

]
T

[
𝐉𝐂m𝐉T + 𝐂d

(𝐉𝐗)T
𝐉𝐗
0 ]

-1

[
(𝐉𝐗)𝑗
𝐗𝑗

T ] , 
(9) 

where Cmjj represents the jth diagonal entry of the model covariance matrix and (JX)j is the jth column of 169 

the product JX. 170 

 171 
Once the model parameters are determined, it is desirable to perform a resolution analysis by obtaining 172 

the resolution matrix (R), which can be seen as a low pass filter that maps the true model parameters to the 173 

estimated model parameters (e.g., Alumbaugh and Newman, 2000). Each model parameter during the 174 

inversion is estimated from the averaging of other model parameters adjacent to the one of interest. The 175 

components of R can be interpreted as weights (each row in the resolution matrix) of the average of true 176 

model parameters for estimating each model parameter (Day‐ Lewis et al., 2005). The ideal resolution 177 

matrix would be an identity matrix that would imply that all model parameters are resolved perfectly. The 178 

deviation of the diagonal element from the identity matrix reveals the degree of averaging and smoothness. 179 

Thus, plotting diagonal elements of the resolution matrix in their corresponding blocks is indicative of the 180 

degree of smoothness. The diagonal elements of the resolution matrix (equation 11) inform the extent to 181 

which each estimated parameter is resolved independently.  182 

The resolution matrix (R) is obtained by equation (11), which requires recovering the Jacobian matrix 183 

(𝐉r) from the previously calculated product (equation 6) and inverse of low rank-approximation of the 184 

covariance matrix (CmP) as shown in equation (12); 185 

 186 
𝐦estimate = 𝐑𝐦true , (10) 

𝐑 = (𝐉r
T(𝐂d)-1𝐉r)

-1
(𝐉r

T(𝐂d)-1𝐉r). (11) 

𝐉r=(∑ (𝐉𝑖ς𝑖𝑖)(ς𝑖𝑖)
T

𝑃

ii=1
) (∑ (ς𝑖𝑖)(ς𝑖𝑖)

T
𝑃

𝑖𝑖=1
)−1 (12) 

It should be noted that 𝐉r is the Jacobian matrix mapped from the PCA space to the grid cells, while 𝐉 is the 187 

Jacobian matrix calculated directly for every principal component. 188 

 189 
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2.2 Forward model 190 

The incompressible fluid flow module of MRST (Lie, 2019) was used to simulate steady-state 191 

groundwater flow. It is used to calculate head and flux values at different points across a confined aquifer. 192 

Starting from the mass conservation law on a control volume, introducing the Darcy law, assuming 193 

incompressible fluid flow and steady-state condition, the final form of the equation reads: 194 

 195 
−∇.[𝑲(𝐰).∇ℎ(𝐰)] = 𝐪(𝐰) , (13) 

subjected to the following constant head boundary conditions across external boundaries: 196 
 197 
ℎ=ℎD   for   �⃗⃗� ∈ Γa (14) 

Here, w= (x, y, z), K (L/T), h (L) and q [L/T] represent the hydraulic conductivity, head and fluid source 198 

or sink (inflow or outflow of fluid per volume at certain locations), respectively. Гa represents Dirichlet 199 

boundaries. The above equations are solved numerically to calculate the head values at grid points across 200 

the aquifer. The MRST uses the two-point flux approximation scheme (Lie, 2019) to calculate the Darcy 201 

flux in each grid block.  202 

 203 

3. NUMERICAL EXPERIMENTS 204 

3.1 Setup of the synthetic test case  205 

To assess the information content of hydraulic head and groundwater flux data for the reconstruction 206 

of heterogeneous aquifers, a stationary multi-Gaussian log-hydraulic conductivity field (with constant 207 

storativity) is generated, resulting in the field, shown in Figure 2. The generated aquifer is 550 m in length, 208 

550 m in width and 5 m in depth. The aquifer is discretized into 110 × 110 × 1 in x-, y-, z- directions and 209 

corresponding block sizes are 5 m × 5 m × 5 m, respectively. The aquifer is assumed to have one layer, and 210 

the log-hydraulic conductivity field has a multi-Gaussian distribution. The area of interest is chosen in the 211 

middle of the aquifer, away from the boundaries to reduce the boundaries' effect on the inversion. All 212 

boundaries are set to a constant head equal to 350 m.  213 
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The correlation length used for generating the Y-field is 75 m and 45 m for x- and y-directions, 214 

respectively. The same field (same heterogeneity structure) with different variances of 0.5, 1, 2, and 4 are 215 

generated to assess the effect of variance and number of observations on the inversion results. The mean 216 

Ymean is -3.57 for all cases, but the Y-fields variance and ranges are different for different experiments. This 217 

range of hydraulic conductivity is chosen to have measurable and realistic groundwater flux and head 218 

responses. 219 

 220 
We use a five-spot setup with a central borehole (P1) and four boreholes (P2, P3, P4 and P5) on the 221 

corners of the area of interest (bounded by white dashed lines in Figure 2). Other monitoring points are also 222 

considered between the boreholes, as shown by asterisk symbols. The aquifer is subjected to a series of 223 

pumping experiments in each borehole. Two different boundary conditions in the borehole, namely, 224 

constant rate and constant head, are considered. When simulating pumping in one borehole, the head and 225 

flux values are recorded in other boreholes and monitoring points. The acquired flux and head data are 226 

noise-contaminated before being used to estimate the Y-field.  227 
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 228 

Figure 2: Reference Y-field (variance 4), borehole (P1 to P5), and monitoring locations (asterisks). All 229 
boundaries are set to the constant head. The white dash-lines crossing the side boreholes define the area 230 
of interest. 231 

 232 

3.2 Hydraulic tomography using head and flux data  233 

Our numerical inversion experiments aim to compare the relative merits of each data type and analyze 234 

how borehole boundary conditions (constant head or constant rate), the variance of the Y-field, and the 235 

number of observations affect the inversion results. The observational data are generated using the reference 236 

hydraulic conductivity field, and a normally distributed and independent error is added to the observations. 237 

The standard deviations of these errors are different in all cases. The errors' standard deviations were chosen 238 

to be in a realistic range while ensuring the same initial signal-to-noise ratio of 38 for all cases defined by 239 
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running the code using Ymean. The resulting measurement errors range from 0.05 to 0.013 (m) for the head 240 

and 0.055 to 0.01 (m/day) for the flux. 241 

PCGA with previously mentioned geostatistical parameters are used for the inversion. The truncation 242 

order (p-rank) of the prior covariance matrix is chosen as 400 out of 12100. Based on the recommendation 243 

by Lee et al. (2016), the truncation order (P), which results in the relative Eigenvalue error below 0.01 244 

would be sufficient to capture most of the covariance matrix structure. The relative Eigenvalue error is 245 

defined as the ratio of first to (P+1)th Eigenvalue. We have chosen P more conservatively. For the Y-field 246 

with variance 4, the first Eigenvalue is 1411.47, while the 401st Eigenvalue is 0.047 giving the ratio of 247 

3.25×10-5. 248 

The inversion starts with a constant value of Ymean and continues until the root mean square error 249 

between observed and simulated measurement, normalized with the error standard deviation (weighted root 250 

mean square error), defined in equation 15 reaches a value close to one, 251 

WRMSE=√
1
N∑ (𝐝‐𝑓(𝐦estimate))2N

1
σ2  , 

(15) 

here N is the number of observations and σ is the absolute value of the error's standard deviation. If no 252 

convergence is obtained, the inversion ends after 10 iterations. 253 

 254 
3.2.1 Boundary condition at the pumping borehole 255 

Hydraulic tomography is simulated considering two different borehole boundary conditions: constant 256 

rate (the borehole is being pumped with constant flow rate) and constant head (the head in the borehole is 257 

kept constant). Note that the external boundary conditions do not change and are kept fixed. As an example, 258 

the pumping rates for the field case with variance 4 are 2400, 4000, 1750, 5000, and 3800 (m3/day) for P1, 259 

P2, P3, P4, and P5, respectively. The equivalent constant head borehole boundary conditions are 324, 340, 260 

300, 329 and 336 (m) for P1, P2, P3, P4, and P5, respectively.  261 

 262 
3.2.2 Variance of Y-field and number of observation points 263 

 264 
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The effect of the Y-field variance is investigated by considering four different variances (0.5, 1, 2 and 265 

4). Furthermore, a different number of observation points are used to assess their impact on the final 266 

inversion results. The observation points are distributed symmetrically in the aquifer. The minimum number 267 

of observation points considered is the number of boreholes (4 observation points) and the maximum are 268 

the boreholes and the observation points shown by asterisks in Figure 2 (32 observation points). We 269 

distinguish between the number of observations and the number of observation points. For head and flux 270 

data, the number of observation points and number of observations are the same. For joint inversion, the 271 

number of observations is twice the number of observation points. 272 

 273 
3.3 Performance Metrics 274 

To evaluate each data type's performance in estimating Y, we use the Frobenius norm and scatter plots 275 

of estimated versus reference Y for each case. The Frobenius norm for the vector of difference between the 276 

reference Y and estimated Y is: 277 

NormFr=√∑ |𝐘reference-𝐘estimated|
N

1

2

 , 
(16) 

Furthermore, the correlation coefficient between reference Y and estimated Y-values and their 278 

corresponding slope lines are calculated. 279 

4. RESULTS 280 

4.1 Inversion of head data  281 

First, the head data are individually inverted. The results are presented for 4 observation points (only 282 

the observations in the boreholes), 8, 16 and 32 observation points. For each case, two different borehole 283 

boundary conditions are considered: constant rate and constant head. Figure 3 shows the estimated Y-field 284 

with a variance of 4, and Table 1 represents the performance metrics.  285 
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 286 

Figure 3: Hydraulic conductivity field (variance 4) estimates from hydraulic head data: (a) inversion result 287 
for 4 observations point and constant rate B.C., (b) inversion result for 4 observations point and constant 288 
head B.C., (c) inversion result for 8 observations point and constant rate B.C., (d) inversion result for 8 289 
observations point and constant head B.C., (e) inversion result for 16 observations point and constant rate 290 
B.C., (f) inversion result for 16 observations point and constant head B.C., (g) inversion result for 32 291 
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observation points and constant rate B.C., (h) inversion result for 32 observation points and constant head 292 
B.C. (i) reference Y-field 293 

Table 1: Performance metrics (in the area of interest) from the inversion of head data for the case of a Y-294 
variance of 4. 295 

Variance Boundary 

Condition 

Number of 

observations 

Frobenius norm Correlation coefficient Slope Final 

WRMSE 

 

 

 

 

 

 

4 

 

 

Constant 

Rate 

4 68.4 0.27 0.13 1.19 

8 48.27 0.75 0.62 1.05 

16 30.4 0.9 0.76 0.97 

32 23.47 0.94 0.95 1.1 

 

 

Constant 

Head 

4 85.5 0.49 0.32 1.00 

8 75.15 0.68 0.48 0.96 

16 61.9 0.82 0.67 1.26 

32 54.90 0.9 0.93 1.23 

 296 

For all cases, we find that changing the borehole boundary condition from constant rate to constant head 297 

deteriorates the Y-field estimation. This is quantified by the fact that the Frobenius norm (Table 1) increases 298 

from 68.4 to 85.5, 48.27 to 75.15, 30.4 to 61.9 and 23.47 to 54.90 for 4, 8, 16 and 32 observation points, 299 

respectively. Comparing Figures 3(a) to 3(h) with the reference Y-field (Figure 3 (i)) also show that cases 300 

with constant rate boundary conditions is visually closer to the reference Y-field. The use of constant head 301 

borehole boundary condition results in an underestimation of Y-field values and the mean value of Y-field. 302 

For instance, in the case of 4 observation points, the mean value of the estimated Y-field is around -4 for 303 

constant head boundary condition while it is -3.45 for constant rate boundary condition. The mean value of 304 

the reference Y-field is -3.57. Adding more observations leads to better results. This is reflected in the 305 

improvement of the correlation coefficient from 0.27 to 0.94 for constant rate borehole boundary condition 306 
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and from 0.49 to 0.93 for constant head boundary condition when adding observation points. Associated 307 

increases in the slopes from 0.13 to 0.95 and from 0.32 to 0.93 for constant rate and constant head boundary 308 

conditions further underline the previous statement. 309 

4.2 Inversion of flux data 310 

We now consider the results obtained by individual inversions of flux data for a Y-field variance of 4. 311 

Figure 4(a) to (h) show the Y-field estimates for 4, 8, 16 and 32 observation points subjected to constant 312 

rate and constant head borehole boundary conditions. Table 2 provides the corresponding performance 313 

metrics. 314 
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 315 
Figure 4: Hydraulic conductivity field (variance 4) estimates from flux data: (a) inversion result for 4 316 
observations point and constant rate B.C., (b) inversion result for 4 observations point and constant head 317 
B.C., (c) inversion result for 8 observations point and constant rate B.C., (d) inversion result for 8 318 
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observations point and constant head B.C., (e) inversion result for 16 observations point and constant rate 319 
B.C., (f) inversion result for 16 observations point and constant head B.C., (g) inversion result for 32 320 
observation points and constant rate B.C., (h) inversion result for 32 observation points and constant head 321 
B.C., (i) reference Y-field 322 

Table 2: Performance metrics (in the area of interest) from the inversion of flux data for the case of a Y-323 
variance of 4. 324 

Variance Boundary 

Condition 

Number of 

observations 

Frobenius norm Correlation coefficient Slope Final 

WRMSE 

 

 

 

 

 

 

4 

 

 

Constant 

Rate 

4 81.2 0.45 0.22 1.31 

8 65.61 0.76 0.56 1.19 

16 62.2 0.79 0.77 1.34 

32 53.6 0.9 0.90 2.12 

 

 

Constant 

Head 

4 64.53 0.53 0.29 1 

8 47.7 0.77 0.61 1 

16 44.72 0.8 0.81 0.95 

32 32.03 0.92 0.91 1.45 

 325 
Contrary to head data, we find that constant head boundary conditions provide a better Y-field estimate 326 

when considering flux data. The better performance of the constant head (with respect to constant rate) 327 

boundary condition is seen, for instance, by comparing the values of the Frobenius norm given in Table 2. 328 

For the case of 4, 8, 16, and 32 observation points, the Frobenius norm decreases from 81.2 to 64.53, 65.61 329 

to 47.7, 62.2 to 44.7, and from 50.51 to 32.03, respectively. Using constant rate boundary condition for the 330 

flux data results in an underestimation of the Y-field mean. Considering the case with 4 observation points, 331 

the estimated Y-field's mean value with the constant rate boundary condition is around -4 while it is around 332 

-3.4 for the constant head boundary condition.  333 

 334 
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Comparing the values of Frobenius norm for the head and flux data given in Table 1 and Table 2 reveals 335 

that for a small number of observations (4 observation points), using flux data with constant head boundary 336 

condition gives a better Y-field estimate compared to head data with constant rate boundary condition as 337 

the Frobenius norm decreases from 68.4 to 64.53. This improvement is further supported by an increase in 338 

the correlation coefficient from 0.2744 to 0.446 and slope increase from 0.127 to 0.22. For a larger number 339 

of observations, the performance of the two data types is similar when considering their ideal boundary 340 

conditions.    341 

 342 
4.3 Joint Inversion of flux and head data 343 

The results obtained by joint inversion of flux and head data are provided in Figure 5 (a) to (h) that 344 

show the Y-field estimate for 8, 16, 32, and 64 observations subjected to the constant head and constant rate 345 

borehole boundary conditions. The inversion metrics are outlined in Table 3. It should be noted that we 346 

have two measurements (head and flux) for each point shown leading to 64 observations for 32 observation 347 

points for instance.  348 
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Figure 5: Hydraulic conductivity field (variance 4) estimates from joint inversion: (a) inversion result for 4 350 
observations point and constant rate B.C., (b) inversion result for 4 observations point and constant head 351 
B.C., (c) inversion result for 8 observations point and constant rate B.C., (d) inversion result for 8 352 
observations point and constant head B.C., (e) inversion result for 16 observations point and constant rate 353 
B.C., (f) inversion result for 16 observations point and constant head B.C., (g) inversion result for 32 354 
observation points and constant rate B.C., (h) inversion result for 32 observation points and constant head 355 
B.C., (i) reference Y-field 356 

Table 3: Performance metrics for joint inversion of head and flux data in the area of interest 357 

Variance Boundary 

Condition 

Number of 

observations 

Frobenius norm Correlation coefficient Slope Final 

WRMSE 

 

 

 

 

 

 

4 

 

 

Constant 

Rate 

8 51.8 0.7 0.34 0.8 

16 39.7 0.82 0.68 1.24 

32 24.44 0.94 0.92 2.25 

64 22 0.96 0.98 1.13 

 

 

Constant 

Head 

8 53.97 0.64 0.51 1.1 

16 38.34 0.84 0.74 1.13 

32 27.38 0.93 0.92 1.5 

64 21.71 0.95 0.97 1.65 

 358 
The Frobenius norms for 8, 16, 32 and 64 observations are 51.8, 39.7, 24.44 and 22, respectively, when 359 

considering constant head borehole boundary conditions, while they are 53.97, 38.34, 27.38 and 21.71 for 360 

constant rate boundary condition. For the same number of observations, the Frobenius norms are very 361 

similar regardless of borehole boundary conditions. In contrast to individual inversions, this suggests that 362 

they do not significantly affect the results obtained by joint inversion.  363 

The joint inversion results (Table 3) do not demonstrate any significant improvement compared to the 364 

individual inversions (Tables 1 and 2) when considering the same number of observations. For 8 365 
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observations, the minimum Frobenius norm obtained for head, flux and joint inversion are 48.27, 47.7 and 366 

51.8, respectively. For 16 observations, the minimum Frobenius norm obtained for head, flux and joint 367 

inversion are 30.4, 44.72 and 38.34, respectively while it is 23.47, 32.03 and 24.44 for 32 observations. 368 

When considering the same number of observation points, the joint inversion has twice as many 369 

observations as the individual inversions. This leads to significantly better estimates of the hydraulic 370 

conductivity field. 371 

 372 

5. DISCUSSION  373 

5.1 General findings  374 

Considering the results of all 96 inversion scenarios considered, we find that inversion of flux data (with 375 

appropriate borehole boundary condition) leads to better resolved Y-field estimates then when considering 376 

head data particularly when a small number of observations are available. Furthermore, the quality of the 377 

inversion results is strongly dependent on the type of boundary condition used in the borehole. The 378 

performance metrics in Tables 1 and 2 suggest that it is more suitable to use constant rate borehole boundary 379 

condition for head data and constant head borehole boundary condition for the flux data as reflected in 380 

Frobenius norms' values. The reason is that if the observation is head data and the borehole boundary is set 381 

to constant head, the model response (head) will have less sensitivity to change of Y-field values. The same 382 

argument is also valid for the flux data.  383 

 384 
 The effect of the borehole boundary is essential for proper experimental design. The experimental 385 

designs should ensure that once head data are intended to be used for the inversion, wells must be pumped 386 

at a constant rate while for the inversion of the flux data, the head in the borehole should be kept fixed. 387 

Other borehole boundary conditions lead to an underestimation of hydraulic conductivity values. However, 388 

for the joint inversion of both data, the type of borehole boundary conditions does not play a significant 389 

role. 390 

 391 
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Tso et al. (2016) and Zha et al. (2014) found that joint inversion of head and flux data results in better 392 

estimation of Y-fields in porous and fractured media compared to the head data. Here, we find that joint 393 

inversion does not offer any advantage over the individual inversion of the flux and head data when 394 

considering an equal number of observations and ideal borehole boundary conditions. Our results rather 395 

suggest that, for a constant signal-to-noise-ratio, the inversion performance depends largely on the number 396 

of observations. For a small number of observations, the flux data provides a superior Y-field estimate 397 

compared to inversion of head data, while for the higher number of observations, all data types perform 398 

similarly. However, if we would be able to measure flux and head data at the same location, then for the 399 

same number of observation points, joint inversion of flux and head data provide better estimates of Y-field 400 

as the number of observations are doubled. Furthermore, we demonstrated the importance of borehole 401 

boundary conditions for hydraulic tomography experimental design when performing individual inversions.  402 

 403 
A resolution analysis for the case of the variance of 4 and 4 measurement points demonstrates that flux data 404 

can better resolve the hydraulic conductivity field compared to head data (Figure 6). Figure 6 shows the 405 

diagonal elements of the resolution matrix (calculated in the final inversion iteration) for head data, flux 406 

data, and joint inversion of both data are plotted on their corresponding blocks, respectively. Considering 407 

the best Y-field estimates obtained for the head (constant rate boundary condition) and flux (constant head 408 

boundary condition) data for calculating the resolution matrices, as shown in Figure 6 (a) and 6 (d), it can 409 

be stated that model parameters (hydraulic conductivity values) are better resolved by flux data. This is 410 

manifested by comparing both the values and coverage area of diagonal elements larger than 0.005. When 411 

head data are used for the inversion, the degree of smoothing and averaging is higher compared to the case 412 

in which the flux data are used. It is worth noting that using the constant head boundary condition for head 413 

data can better resolve the Y-field heterogeneity structure than the constant rate boundary condition, even 414 

though it underestimates the Y-field values. Comparing Figure 6 (a) and 6 (b) and the correlation coefficient 415 

in Table 1 certifies this statement. The correlation coefficient increases from 0.27 to 0.49 when a constant 416 

head boundary condition is used instead of a constant rate boundary condition.  417 
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 418 
Figure 6: Diagonal element of the resolution matrix for (a) Y-field obtained by inversion of head data (4 419 
observation points - borehole boundary is set to constant rate), (b) Y-field obtained by inversion of head 420 
data (4 observation points - borehole boundary is set to constant head), (c) Y-field obtained by inversion 421 
of flux data (4 observation points - borehole boundary is set to constant head), (d) Y-field obtained by 422 
inversion of flux data (4 observation points - borehole boundary is set to constant rate), (e) Y-field 423 
obtained by joint inversion of both data (4 observation points - borehole boundary is set to constant rate), 424 
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(f) Y-field obtained by joint inversion of both data (4 observation points - borehole boundary is set to 425 
constant rate).   426 

5.2 The effect of number of observations and variance 427 

Figures 7 (a) to (d) show the correlation coefficient (between estimated Y-field and reference Y-field) 428 

versus the number of observations for different type of data and borehole boundary conditions. It is seen 429 

that as the number of observations increases, the correlation coefficient also increases for all types of data 430 

and boundary conditions. For a small number of observations, flux data are superior to head data. The 431 

difference between the correlation coefficient of flux and head data is the strongest for a small number of 432 

observations, while the difference gradually decreases as the number of observations increases and at a high 433 

number of observations, they converge. This is a consequence of the decreasing distance between data 434 

points as the number of observations increases, thereby decreasing the radius of averaging. The gains by 435 

joint inversion for a prescribed number of observation points is that performance is independent of the 436 

borehole boundary condition and we need half as many boreholes if we are able to measure head and flux 437 

data at the same location. 438 

 439 
The variance of the hydraulic conductivity field affects the final values of the correlation coefficient. 440 

The higher the variance, the lower the correlation coefficient (especially for a small number of 441 

observations), and also the more challenging it is to reach a WRMSE close to 1.  442 
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 443 
Figure 7: Correlation coefficient versus number of observations for reference hydraulic conductivity field 444 
with (a) variance=0.5, (b) variance=1 (c), variance=2 (d), variance=4. The Blue, red and gray color show 445 
the results for head data, flux data and joint inversion of both data, respectively. The data with constant 446 
rate borehole boundary condition is marked with solid line while the data with constant head borehole 447 
boundary condition is shown by the dashed line. 448 

 449 

5.3 The effect of truncation order (P) on final inversion results 450 

One of the inversion cases (variance of 4, 32 observation points, joint inversion of head and flux data) 451 

was chosen to investigate the effect of the truncation order (P) on the final inversion result. Inversions were 452 

performed using truncation orders of 25, 50, 100, 200, 400, 800, and 1600. The inversions were performed 453 

on a server with one Terabyte (1 Tb) memory, 4 processors (Intel Xeon CPU E7-4850 v4 @ 2.10 GHz) and 454 

40 cores in parallel mode. Figure 8 shows the Y-field estimated for each P value, the effect on the correlation 455 

coefficient, and elapsed time for each geostatistical iteration. For a truncation order of 25, we capture an 456 

overly smooth version of the true model with a correlation coefficient of 0.84. By setting the truncation 457 

order to 50, 100, and 200, the correlation coefficient increases to 0.88, 0.91, and 0.94, respectively. The 458 

truncation order of 400 (used in our study) with a correlation coefficient of 0.96 is the point beyond which 459 
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increasing the truncation order does not significantly improve the correlation coefficient. So, the truncation 460 

order leads to improvement of Y-field reconstruction up to some points and after this point, it is only the 461 

computational time that increases as the inversion performance is data limited. The computational time 462 

increased exponentially for large P values. The right choice of P is critical to ensure sufficient 463 

reconstruction of the hydraulic conductivity field while keeping the computational time low. The truncation 464 

order should be chosen based on the degree of heterogeneity and the computational resource available. It 465 

would help perform inversion using different numbers of principal components to ensure the proper choice 466 

of the number of principal components. 467 
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 469 
Figure 8: Estimated Y-field for truncation order of (a) 25, (b) 50, (c) 100, (d) 200, (e) 400, (f) 800, (g) 1600. 470 
(h) Correlation coefficient versus truncation order, (i) elapsed time per one iteration versus truncation 471 
order 472 

 473 

5.4 Implications for field implementations 474 

Our results highlight the added value of using the flux data individually or jointly with head data in 475 

hydraulic tomography to achieve an enhanced reconstruction of the hydraulic conductivity field compared 476 

to using head data alone. This improvement is particularly pronounced when considering a small number 477 

of observations, a more likely setting for field applications. However, using only flux data requires setting 478 
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the borehole boundary condition to constant head, which is feasible (using pumps whose rates are controlled 479 

with water level) but would be more challenging than pumping at a constant rate during the field 480 

experiments. However, measuring the flux data during pumping (with constant rate) and joint inversion of 481 

both data would be quite feasible and removes the limitation of the borehole boundary condition. Moreover, 482 

if one could measure the head and flux data at the same location, by doubling the number of observations, 483 

the Y-field estimate would be significantly improved.  The potential application of FO cables for pressure 484 

measurement is discussed by Bulter et al. (1999) and a recent application for drawdown measurements 485 

during pumping tests is demonstrated by Tiedeman and Barrash (2020). 486 

The results presented in this paper are only valid for steady-state hydraulic tomography. Transient 487 

hydraulic tomography would probably result in better reconstruction of hydraulic conductivity field 488 

estimation and boundary conditions would probably not play a role anymore.  489 

6. CONCLUSIONS 490 

We used a numerical model representing a one-layer heterogeneous aquifer along with a geostatistical 491 

inversion approach (PCGA) to assess the information content of head and flux data. We varied the 492 

observation type, the number of observation points, the hydraulic conductivity variance (with the same field 493 

structure) and the borehole boundary conditions. For a small number of observation points, we find that 494 

flux data produced a better Y-field compared to head data. When increasing the number of observation 495 

points and using appropriate borehole boundary conditions, the effect of the data type vanishes, and all 496 

converge to the same results as the sampling distance between points becomes smaller. For the same number 497 

of observation points, if we are able to measure the head and flux data at the same location, joint inversion 498 

of head and flux data provides an improved estimate compared to the individual inversion of head or flux 499 

data due to the doubling of the number of observations. This means that the head and flux data measured at 500 

the same location provide complementary information. The type of borehole boundary conditions used in 501 

the tomography and modeling affects the inversion results. The appropriate boundary condition for head 502 
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and flux data is constant rate and constant head, respectively, while joint inversion performance is 503 

independent of the boundary type. Inappropriate selection of borehole boundary conditions may result in 504 

an underestimation of the Y-field values. Measuring flux data during a hydraulic tomography experiment is 505 

now feasible, especially for shallow sandy aquifers where active Distributed Temperature Sensing, can be 506 

deployed using direct push method to install the fiber optic cables into the sediments. Since the inversion 507 

is particularly sensitive to the number of measurements, groundwater flux measurements by active DTS 508 

can be particularly useful since it may provide a large number of measurements thanks to the high spatial 509 

resolution of fiber optic temperature measurements. Moreover, it can be also particularly useful in aquifers 510 

where the head drop due to the pumping is small, but there may be high groundwater fluxes. This should 511 

lead to interesting developments of hydraulic tomography experiments in the near future.  512 
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