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Madagascar's burned area from Sentinel-2 imagery (2016–2022): Four 
times higher than from lower resolution sensors 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We present, validate, and analyze a 
burned area database for Madagascar. 

• The spatial validation revealed a high 
accuracy, contrary to global fire data. 

• The temporal validation indicates that 
>50 % of burned area is detected within 
20 days. 

• Analyses at 20 m, by season, communes, 
ecoregions, land cover classes are 
provided. 

• >25 % of the deciduous forests and 
grassy biome ecoregions burn every 
year.  

A R T I C L E  I N F O   

Editor: Paulo Pereira  

A B S T R A C T   

Madagascar is one of the most burned regions in the world, to the point that it has been called the ‘Isle of fire’ or 
the ‘Burning Island’. An accurate characterization of the burned area (BA) is crucial for understanding the true 
situation and impacts of fires on this island, where there is an active scientific debate on how fire affects multiple 
environmental and socioeconomic aspects, and how fire regimes should be in a complex context with differing 
interests. Despite this, recent advances have revealed that BA in Madagascar is poorly characterised by the 
currently available global BA products. In this work, we present, validate, and explore a BA database at 20 m 
spatial resolution for Madagascar covering the period 2016–2022. The database was built based on 75,010 
Sentinel-2 images using a two-phase BA detection algorithm. The validation with independent long-term 
reference units showed Dice coefficients ≥79 %, omission errors ≤24 %, commission errors ≤18 %, and a 
relative bias ≥ − 8 %. An intercomparison with other available global BA products (GABAM, FireCCI51, 
C3SBA11, or MCD64) demonstrated that our product (i) exhibits temporal consistency, (ii) represents a signif-
icant accuracy improvement, as it reduces BA underestimations by about eightfold, (iii) yields BA estimates four 
times higher, and (iv) shows enhanced capability in detecting fires of all sizes. The observed BA spatial patterns 
were heterogeneous across the island, with 32 % of the grasslands burning annually, in contrast to other land 
cover types such as the dense tropical forest where <2 % burned every year. We conclude that the BA 
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characterization in Madagascar must be addressed using imagery at spatial resolution higher than MODIS or 
Sentinel-3 (≥250 m), and temporal resolution higher than Landsat (16 days) to deal with cloudiness, the rapid 
attenuation of burn scars signals, and small fire patches.   

1. Introduction 

Fire is a pervasive disturbance that has shaped the distribution of 
terrestrial biomes, plant evolution and atmospheric composition for 
millions of years (Lasslop et al., 2019; Kelly et al., 2020). Nowadays, 
landscape fires affect a vast extent of Earth's surface, with around 5 % of 
ice-free land burning annually (van der Werf et al., 2017; Chen et al., 
2023; Fernández-García and Alonso-González, 2023). Despite being a 
natural and ancient force, contemporary landscape fires are increasingly 
driven by human activity, and thus are a major element contributing to 
our rapidly changing world, reshaping fire-prone ecosystems, as well as 
those that have historically been less prone to fire (Kelly et al., 2020). 
This context of change poses a global challenge for understanding how 
fire might affect numerous spheres of global interest. Notably, landscape 
fires are intricately linked to several of the United Nations Sustainable 
Development Goals (SDGs), such as Life on Land, Climate Action, Good 
Health and Well-being, No Poverty, or Zero Hunger, among others 
(Martin, 2019). Thus, given the far-reaching implications of fire, it is 
imperative to have accurate spatio-temporal characterizations of this 
phenomenon available to a wide range of end users (Pereira et al., 
2018). This need is particularly pronounced in regions where fire re-
gimes are rapidly changing, and where the achievement of the 
mentioned SDGs is further hindered by socio-economic limitations, as it 
is the case of many regions in tropical Africa (Andela et al., 2017; 
Fernández-García and Alonso-González, 2023; Omisore, 2018). 

In tropical Africa, the island nation of Madagascar stands for its 
unique biodiversity, with >90 % of its species found nowhere else 
(Antonelli et al., 2022; Goodman, 2022). At the same time, it ranks 
among the most burned places on Earth (Andela et al., 2017; van der 
Werf et al., 2017; Fernández-García and Alonso-González, 2023), with 
recent studies estimating an annual burned area (BA) between 121,000 
and 147,000 km2, corresponding to 21–25 % of the island's land 
(Fernández-García and Kull, 2023). In Madagascar, fire serves multiple 
overlapping and sometimes competing interests across a diversity of 
landscapes and vegetation types. While many locals use fire for pasture 
management, crop field preparation or pest and wildfire control, some 
policy makers and conservationists criticise fires for contributing to 
deforestation, soil erosion and risks to private properties (Kull, 2002; 
Kull, 2004). As a result, governments have periodically tried to eradicate 
or minimise landscape burning, but these efforts have been met with 
resistance from rural populations who rely on fire for their livelihoods 
(Kull, 2004). In addition, the scientific community identifies anthropo-
genic fire as a major factor in Madagascar's landscape transformation 
and biodiversity loss, particularly within forested areas. However, most 
tree loss occurs in the absence of large-scale fires (Phelps et al., 2022) 
urging the development of new fire products for the investigation on the 
role of small-scale fires (Ralimanana et al., 2022). There is also con-
troversy regarding the open biomes - notably grasslands - that dominate 
the island and are the main location of fires. Some authors have char-
acterised them as degraded ecosystems (Burns et al., 2016), while others 
view them as ancient representatives of the island's biodiversity, 
asserting that fire is an integral part of them (Bond et al., 2008; Solo-
fondranohatra et al., 2020). Apart from this, fire has been identified as a 
suitable management tool in the open biomes, as well as in the imme-
diate vicinity of forest areas where fire-associated risks can be mitigated 
by specific fire regimes (Bloesch, 1999; Kull, 2004; Ralimanana et al., 
2022). 

Despite the interest in understanding and addressing the challenges 
posed by fires in Madagascar, recent advances in remote sensing and 
modelling have revealed that the BA in this island has been poorly 

characterised over time (Fernández-García and Kull, 2023). In 
Madagascar, as in many regions worldwide, the assessment of BA has 
traditionally relied on coarse resolution sensors (Andela et al., 2017; 
Frappier-Brinton and Lehman, 2022; Phelps et al., 2022; Ralimanana 
et al., 2022). Among these, the Moderate Resolution Imaging Spectror-
adiometer (MODIS) instrument stands out as one of the most extensively 
used sensors, being the basis for the North American Space Agency 
(NASA) standard BA product MCD64A1 (Giglio et al., 2018), as well as 
the FireCCI51 from the European Space Agency (ESA) (Lizundia-Loiola 
et al., 2020), with spatial resolutions of 500 m and 250 m, respectively. 
Other operational BA products include the C3SBA11 (Lizundia-Loiola 
et al., 2021), with a spatial resolution of 300 m, produced under the 
Copernicus Climate Change Service of the European Commission and 
based on the Ocean and Land Colour Instrument (OLCI) on board 
Sentinel-3. GABAM (Long et al., 2019), another global BA product, 
which is based on Landsat imagery at higher spatial resolution (30 m) 
but with lower temporal resolution (16 days when using one sensor), 
provides similar BA estimates than FireCCI50 (Long et al., 2019). 
Despite this reassuring consistency in BA estimates of the aforemen-
tioned databases, validation exercises (Padilla et al., 2014, 2015; 
Boschetti et al., 2019; Franquesa et al., 2022a, 2022b), along with the 
start of the Sentinel-2 mission in 2015 (which offers spatial resolution of 
20 m for most bands, and a temporal resolution of 5 days when 
combining its two twin sensors, both resolutions higher than Landsat), 
have provided groundbreaking estimates that highlight the limitations 
of all previously mentioned products. In this sense, Roteta et al. (2019) 
developed the FireCCISFD11 database for sub-Saharan Africa in 2016, 
which revealed that the BA was 80 % higher than previously reported by 
the MCD64A1. This was mainly due to small fires (<100 ha) which were 
rarely detected by MODIS (comprising only 5 % of the MODIS BA) but 
contributed to 41 % of the BA in FireCCISFD11. Similar results were 
found by Chuvieco et al. (2022), who developed a second version of this 
product, FireCCISFD20 for the year 2019. In the case of Madagascar, 
previous analysis made by Fernández-García and Kull (2023) indicates 
that the BA estimates from Sentinel-2 in 2016 are around four times 
higher than those from MODIS and BA estimations from refined BA data 
showed similar differences for 2000, 2005, 2010 and 2020. Notwith-
standing the urgency of transitioning towards the use of higher- 
resolution sensors for a more accurate characterization of BA, no 
Sentinel-2 or finer BA product currently exists for Madagascar, other 
than those for the years 2016 and 2019. 

The variety and differences in performance among BA products 
indicate that BA retrieval is not a trivial task. Firstly, BA detection must 
cope with the uniqueness of each site in terms of spectral signature, as 
well as with a wide variety of burning conditions (Chuvieco et al., 2019). 
To deal with these challenges, most products are based on temporal 
comparisons of reflectance values, some of which include thermal 
anomalies at coarse resolution (van der Werf et al., 2017; Giglio et al., 
2018; Chuvieco et al., 2018; Lizundia-Loiola et al., 2020). When using 
Sentinel-2 imagery, the same approach has been used (Roteta et al., 
2019), although some researchers have recommended excluding data 
from coarse resolution sensors and focusing solely on the higher- 
resolution data provided by Sentinel-2 MultiSpectral Instrument (MSI) 
(Roy et al., 2019). One approach entirely based on finer imagery is the 
use of supervised multitemporal image analysis. This approach has been 
used, for example, to obtain BA reference data for validation purposes 
(Boschetti et al., 2019; Roteta et al., 2021a; Franquesa et al., 2020). 
Among these methods, a novel option is the use of two-phase algorithms. 
In the first step, these algorithms create a seed region composed of pixels 
with a high probability of being burned. The second phase consists of 

V. Fernández-García et al.                                                                                                                                                                                                                    



Science of the Total Environment 914 (2024) 169929

3

expanding the seed region by incorporating neighbouring pixels that 
meet certain criteria, such as having similar spectral characteristics and 
being spatially connected to the seed region (Bastarrika et al., 2014; Roy 
et al., 2019; Lizundia-Loiola et al., 2020; Roteta et al., 2021a; Sali et al., 
2021). Two-phase algorithms can be effective at detecting complex 
burned patterns, such as those found in Madagascar, and they are ex-
pected to provide more accurate results than simple pixel-based classi-
fications by reducing commission errors due to the use of seeds (Roteta 
et al., 2021a). 

Once a BA product is developed, it is critical to assess its accuracy to 
inform end-users about the data quality (Boschetti et al., 2009; Chuvieco 
et al., 2019; Franquesa et al., 2022a). This process, known as validation, 
can be challenging and time-consuming due to the scarcity of available 
reference data of higher reliability than the products being validated 
(Roy et al., 2008; Franquesa et al., 2020). Validation typically involves a 
spatial comparison of the BA products with the reference BA, a process 
often referred to as spatial validation. On the other hand, the product's 
ability to accurately detect the time of burning, is also relevant for some 
applications and its assessment is referred to as temporal validation. 
Both spatial and temporal validation assess different errors, but tem-
poral errors often affect the estimates of the spatial assessments, a fact 
that can be limited with the use of long temporal reference units 
(Franquesa et al., 2022b). When validating Sentinel-2 products, 
acquiring long temporal reference units at higher spatial resolution than 
the product to be validated is currently infeasible using non-commercial 
satellite imagery (Chuvieco et al., 2019), so previous studies have 
generated independent and higher-quality reference BA data by 
comparing subsequent pairs of Sentinel-2 images and employing expert 
human-based image interpretation (Roteta et al., 2019). 

In this work, we present a new BA database for Madagascar covering 
the period 2016–2022 based on Sentinel-2 imagery (MGBAS2). Specif-
ically, (i) we described how the database was built; (ii) we performed a 
spatial validation of the product using a pioneering approach of long 
temporal reference units; (iii) we performed a temporal validation of the 
product by comparing it with the VIIRS hotspots; (iv) we compared our 
database with other available BA products to show its interannual 
consistency, as well as its outperformance over Landsat, Sentinel-3 and 
MODIS derived BA data; and (v) we provide new insights on Mada-
gascar's BA based on the presented database. 

2. Materials and methods 

The methods section in this work comprises five different blocks 

(Fig. 1). First, we explained how the MGBAS2 product was built with a 
procedure based on BAMT v1.7 (Roteta et al., 2021a). Second, we per-
formed a spatial validation with new independent long-temporal refer-
ence units as recommended by Franquesa et al. (2022b) and analogous 
methods to those used to validate similar products (Chuvieco et al., 
2022). These reference units were made publicly available in the vali-
dation burned area (BA) database BARD (doi:10.21950/YYZNNN; 
Franquesa et al., 2023). Third, we accomplished a temporal validation 
based on VIIRS hotspots to identify the timing error in BA detection. 
Fourth, we compared the BA and accuracy of MGBAS2 with other 
available BA data from several satellites. Lastly, we computed some 
direct outputs from our product, including fire frequency, seasonality, 
and mean annual fraction of burned land by ecoregions and land cover 
classes. 

2.1. Building the MG-BAS2 database 

The BA was identified following a change detection approach, one of 
the most utilised for BA detection (Chuvieco et al., 2019; Liu et al., 2020; 
Gaveau et al., 2021). This approach is based on comparisons between 
the pre- and post-burn reflectance values. A total of 75,010 Harmonized 
Sentinel-2 1C scenes, spanning from 31 August 2015 to 31 December 
2022, were used to build temporal composites with six reflectance 
bands: blue (B2), green (B3), red (B4), near infrared (B8A), and the two 
short wavelength infrareds (B11, B12). These were subsequently 
compared by pairs, each pair representing pre- and post-burn condi-
tions. Sentinel-2 scenes comprised the 2A sensor for the entire study 
period along with the 2B sensor since March 2017. The Level-1C (top of 
atmosphere reflectance; Sentinel-2 MSI User Guide, 2023) was preferred 
over the Level-2A for temporal consistency, and to avoid the already 
reported noise included by the Sen2Cor correction in the Level-2A 
scenes (Roteta et al., 2021a). The composites were built for periods of 
four months by selecting land quality observations with the most 
prominent signals of BA. Specifically, we created a mask to omit clouds, 
cloud shadows and bright surfaces. We did this based on bitwise oper-
ations, first masking bits 10 (cloud) and 11 (cloud shadows), of the 
QA60 band, as well as pixels with values >1500 in the B1 band. From 
these quality observations, we captured the lowest Normalized Burn 
Ratio Index (NBR) values, which ensures maintaining burned signals. 
Four-month periods (breakpoints on 30 April, 31 August, and 31 
December) were selected to maximise the probabilities of getting cloud- 
free images while keeping a low probability of repeated burning in 
subsequent composites. 

Fig. 1. Methodology overview.  

V. Fernández-García et al.                                                                                                                                                                                                                    



Science of the Total Environment 914 (2024) 169929

4

Once the composites were built, a minimum of 10 training burned 
and unburned polygons (>40 ha each) were randomly distributed, with 
at least two polygons per major land cover type (forest, grassland, 
cropland, sparse vegetation/bare soil, and water bodies). The allocation 
of the mentioned training polygons and distribution was ensured in the 
proper locations by visual inspection of RGB false colour composites 
(Sentinel-2 bands B12, B8A, B4) from the first (pre-fire) and second 
(post-fire) temporal composites and their difference. The training 
polygons were used to train the BAMT v1.7 random forest algorithm 
(Roteta et al., 2021a). This algorithm uses the six spectral bands (B2, B3, 
B4, B8A, B11 and B12) and three indices: the Normalized Difference 
Vegetation Index (NDVI), the NBR, and the Enhanced Normalized Burn 
Ratio (NBR2). These indices were computed for both the post-fire 
composite and for the difference between the pre- and post-fire com-
posites. The spectral bands, combined with these spectral indices, served 
as the input for the random forest algorithm. This process resulted in a 
BA probability map that allows the identification of seed pixels (i.e., 
pixels with a high probability of being burned). The seeds and proba-
bility images resulting from each image-composite pair comparison 
were visually inspected in the Google Earth Engine platform, typically 
zooming in to a scale of 1:20,000. The visual inspection involved 
comparing the mapping results (seeds and probability images) with 
burned patches identified by two expert interpreters. The comparison 
was based on RGB false-colour composites (B12, B8A, B4) of the two 
scenes. Visual inspections were carried out in a minimum of 10 regions, 
each covering 60 km2. These regions were chosen independently from 
the training areas (i.e., regions with training polygons were avoided) 
and were randomly selected across the mapping area (i.e., Madagascar), 
encompassing the five major land cover types mentioned above. The 
training process was repeated with further training areas until satis-
factory results were obtained, that is, no classification errors were 
visually detected by the expert interpreters. Then, all those pixels with a 
probability of being burned ≥50 %, and that were spatially connected to 
at least one seed, were classified as burned. The date of observation for 
the pixel in the post-burn composite (minimum NBR in the four-month 
period) was retained for all the pixels classified as burned. The entire 
protocol was implemented in Google Earth Engine using as reference the 
code provided by Roteta et al. (2021a). 

2.2. Spatial validation analyses 

The reference BA databases (Franquesa et al., 2020) were explored 
and the scarcity of enough reference BA data for a robust validation of 
the developed product in Madagascar was confirmed, with no more than 
a single validation area per year. Consequently, we produced and made 
publicly available (BARD database, Franquesa et al., 2023) our own 
independent reference BA dataset for two years in Madagascar (2021 
and 2019). The year 2021 was randomly selected, and 2019 was selected 
for convenience due to the availability of several BA products used in 
this study for intercomparisons. The validation procedure followed the 
recommended ‘good practices’ for land cover validation procedures, 
which involves several steps: implementing a probability-based sam-
pling design, formulating a response design that encompasses the gen-
eration of reference data, and conducting the analysis to derive the 
accuracy metrics (Olofsson et al., 2014). In relation to the reference 
data, Olofsson et al. (2014), stated that if the validation is conducted 
using the same source material, the development of reference data of 
higher quality than the map classification can be achieved by using more 
accurate classification methods than those used in the map. Likewise, we 
have considered recent advances on BA validation (Chuvieco et al., 
2022; Franquesa et al., 2022b) that showed the need for using 
randomization (Olofsson et al., 2014) as well as long temporal reference 
units to reduce the impacts of dating errors (Franquesa et al., 2022b). 
Moreover, we found the most suitable approach to be the computation of 
BA for each comparison between consecutive pairs of Sentinel-2 scenes, 
repeating the process over the longest possible period. This method 

offers higher quality data at 20 m spatial resolution than the one re-
ported by our product based on four-months mosaics and thus is 
appropriate for validation (Roteta et al., 2021a; Chuvieco et al., 2022; 
Franquesa et al., 2022b). Accordingly, our validation protocol involved 
the following steps:  

• Spatial definition and selection of reference units: the sampling units 
for validation purposes were spatially defined based on the tessel-
lation of Sentinel-2 MSI images. All the Sentinel-2 tiles covering the 
island of Madagascar were selected, a total of 95. To increase the 
total population of sampling units and facilitate the reference BA 
retrieval task, each tile was divided into four smaller units of 
approximately 50 × 50 km. To each tile subdivision, we added a 
sequential numeric index to the tile identifier (e.g., 38JMT_1). Then, 
following Stroppiana et al. (2022), all sampling units located in 
different Sentinel-2 orbits and UTM zones were discarded, obtaining 
a total population of 242 sampling units (Fig. 2). We applied a 
stratified random sampling with one level of stratification based on 
the amount of fraction of land burned in each sampling unit, ac-
cording to our MGBAS2 product. First, we compute the percentage of 
burned land in each sampling unit, and then units were stratified into 
two strata (low and high proportion of burned land) based on a 
threshold set in the 80th percentile of the BA proportion of the total 
population. Then, we randomly selected a total of four and two 
sample units in the low and high stratum, respectively. This sampling 
was performed for the randomly selected year 2021 and the same 
sample units were used for the year 2019. The selected sample units 
were the 38JMT_4 (0.47 % of burned land according to MGBAS2 for 
2021), 38KQA_132 (4.1 %), 38KMC_38 (9.8 %), and 38KMG_54 
(30.4 %) for the low proportion of burned land stratum, and 
38KPV_127 (39.5 %) and 38KPE_111 (66.7 %) for the high propor-
tion of burned land stratum (Fig. 2).  

• Temporal definition of reference units: for the definition of the 
temporal length of our reference BA units we followed the criteria of 

Fig. 2. Total population of sampling units defined for validation purposes by 
strata (low and high fraction of burned land), and location of the six reference 
units selected for the spatial validation. 
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reaching a compromise between the minimization of the temporal 
difference between the acquisition dates of pairs of images and the 
maximisation of the temporal length of the unit (temporal extent of 
the set of multiple scenes used for pair comparisons) (Franquesa 
et al., 2022b). Both criteria are highly relevant, but one might 
constrain the other. On the one hand, spectral signals that enable the 
identification of BA from satellite platforms might disappear quickly, 
particularly in grassy and savannah biomes and under wet and 
productive conditions (Melchiorre and Boschetti, 2018). On the 
other hand, the length of the validation unit is essential for spatial 
validations in order to mitigate the impact of temporal errors on 
spatial accuracy metrics. To optimise both criteria we first identified 
all Sentinel-2 MSI scenes with a cloud clover <15 % for the whole 
year (2019 and 2021), and then we identified pairs of consecutive 
images with a temporal maximum difference of 16 days. When the 
difference between consecutive pairs was longer than 16 days, the 
image composites (B12, B8A, B4) and their NBR differences were 
visually inspected to guarantee that all the potential fire scars were 
easily identifiable, using as reference the visual evidence of former 
scars in the newest scene. When there was not a clear persistence of 
the BA signal, the selection procedure was re-started from this date 
onwards. We set the minimum length of the reference units to 40 
days. The long temporal reference units obtained ranged between 40 
and 209 days for 2019 and between 40 and 225 days for 2021.  

• Computation of long temporal reference BA data: the reference BA 
data was computed from the spatially and temporally defined 
reference units by applying the protocol described by Roteta et al. 
(2021a) and similar to the validation of the ESA FireCCISFD20 
product (Chuvieco et al., 2022). This is providing training polygons, 
applying the BAMT v1.7 random forest algorithm, supervising the 
resulting classification and finally generating a BA layer for each 
consecutive Sentinel-2 image pair. Then, all the resulting perimeters 
were combined to generate an ESRI© shapefile with the reference BA 
data for each of the reference units.  

• Accuracy analysis: we calculated a confusion matrix for each of the 
six reference units from the areas of agreement and disagreement 
obtained by crossing the reference BA data with our BA product. 
Then, we calculated the Dice coefficient, omission error, commission 
error, and relative bias (formulas available in Padilla et al., 2015 and 
Franquesa et al., 2022b). The unobserved regions in the BA product 
were considered as unburned areas when computing the accuracy 
statistics, whereas the unobserved areas in the reference BA data 
were excluded from the analysis. Global accuracy estimates were 
inferred for the assessed years (2019 and 2021) using a stratified 
ratio estimator (Cochran, 1977). 

2.3. Temporal validation analyses 

The temporal reporting accuracy was assessed by conducting a 
comparative analysis of the product with the dates of VIIRS hotspots 
(VNP14IMGML) between 2016 and 2021, using a methodology consis-
tent with previous research (Boschetti et al., 2010; Giglio et al., 2018; 
Lizundia-Loiola et al., 2020; Roteta et al., 2019; Roteta et al., 2021b; 
Chuvieco et al., 2022). Specifically, we compared each VIIRS hotspot 
date with the date of burning in the MGBAS2 product in the same 
location, and we calculated the percentage of cases in which both 
products matched with differences <1, <5, <10, <15, <20 and < 50 
days. 

2.4. Intercomparison with other products 

We have conducted intercomparisons of MGBAS2 with other prod-
ucts to complement our spatial validation and demonstrate the temporal 
consistency of our product as well as to showcase the advancements it 
represents over the existing data. The intercomparisons were made with 
the FireCCISFD (FireCCISFD11 and FireCCISFD20), GABAM, ESACCI51, 

C3S11 and MCD64 which represent BA from different satellite plat-
forms, sensors, and resolutions.  

• FireCCISFD is the Small Fire Database product from the European 
Space Agency (ESA) Climate Change Initiative (CCI). The FireCCISFD 
is available for Sub-Saharan Africa for the years 2016 (Fire-
CCISFD11; Roteta et al., 2019) and 2019 (FireCCISFD20; Chuvieco 
et al., 2022). FireCCISFD11 and FireCCISFD20 are primarily based 
on Sentinel-2 MSI sensors at 20 m spatial resolution. The algorithms 
used to build FireCCISFD11 and FireCCISFD20 are the same but the 
first uses MODIS active fires (1000 m spatial resolution) and 
Sentinel-2A imagery, whereas FireCCISFD20 uses VIIRS active fires 
(375 m spatial resolution) and both A and B Sentinel-2 imagery 
(Chuvieco et al., 2022).  

• GABAM (Long et al., 2019) is a global product based on all the 
Landsat images available on GEE platform for the period 1984–2020 
with a spatial resolution of 0.00025 degree (approximately 30 m). 
The revisit period for each Landsat platform is 16 days, but the years 
when more than one platform is available, the combined revisit 
period decreases. In this work we used the only available version 
(GABAM V1) (Long et al., 2021).  

• FireCCI51 (Lizundia-Loiola et al., 2020) has been developed in the 
framework of the Climate Change Initiative (CCI) and is the reference 
global BA product from the European Space Agency (ESA) until 
2020. It is based on MODIS imagery incorporating some of bands at 
250 m, conferring that final spatial resolution to the product.  

• C3SBA11 (Lizundia-Loiola et al., 2021) offers continuity to the 
FireCCI51 product since 2017 adapting the BA detection procedures 
to the Sentinel-3 OLCI on board of the twin satellites (A and B). 
Sentinel-3 OLCI presents similar spatial and temporal resolution than 
MODIS, with a 300 m pixel size and a revisit of <2 days when 
Sentinel-3 A and B platforms are combined.  

• MCD64 (Giglio et al., 2018) is the NASA standard BA product, which 
has been produced since 2001 from MODIS imagery at 500 m spatial 
resolution. MODIS instruments are on board two satellite platforms 
(Terra and Aqua) resulting in a combined revisit period of around 1 
day. In this work we used the pixel version MCD64A1 (collection 6.1) 
and the gridded product MCD64CMQ. 

The FireCCISFD, GABAM, FireCCI51, C3SBA11 and MCD64 were 
compared with MGBAS2 in different ways. First, we calculated the 
spatial accuracy metrics as described in Section 2.2, performing spatial 
validation analyses for the formerly existing products using the six 
selected reference units and validation periods in 2019 and 2021. The 
use of same reference sites and periods for validating a set of BA prod-
ucts minimise differences due to sampling so the accuracy metrics are 
totally comparable. The GABAM product was excluded from this anal-
ysis as it does not provide dates of burning. Second, we studied the 
temporal evolution of the land burned in Madagascar since 2016 nor-
malising the BA in the products to the BA detected in the MGBAS2 (i.e., 
MGBAS2 BA was set to 100 %). Third, for the year 2019, the only one 
where all the products were available, we performed a comparison of the 
number of fires (i.e., patches with different burning dates) by fire size 
class. The selected fire size classes were < 0.25 km2, 0.25 to <1.25 km2, 
1.25 km2 to <2.5 km2, and ≥ 2.25 km2 as in the analysis of the Fire-
CCISFD20 database (Chuvieco et al., 2022). Also, for 2019 we aggre-
gated the area burned in each product at 0.25-degree (or we acquired 
the gridded products when available), and then we computed univariate 
linear regression models with each of the former products (independent 
variable) and MGBA2S2 (dependent variable), showing the R2, bias and 
root mean square error (RMSE) statistics. All the BA and fire size cal-
culations were made in the sinusoidal equal area projection. 

The FireCCISFD pixel products (product names FireCCISFD11 and 
FireCCISFD20) were acquired from the ESA CCI Open data portal (htt 
ps://climate.esa.int/en/odp/), the GABAM product was acquired from 
the Harvard Dataverse available at doi:https://doi.org/10.7910/D 
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VN/3CTMKP, FireCCI51 and C3SBA11 pixel and gridded products were 
acquired from Copernicus Climate Data Store (https://cds.climate.coper 
nicus.eu/). The MCD64 product was acquired at the pixel level (product 
name MCD64A1) from the NASA Earth Data Server (https://www.eart 
hdata.nasa.gov/) and the gridded version (product name MCD64CMQ) 
for intercomparisons from the University of Maryland server (sftp://fuo 
co.geog.umd.edu). The same server from the University of Maryland was 
used to download VIIRS active fires (product name VNP14IMGML). 

2.5. Calculation of direct outputs 

The MGBAS2 product was used to calculate some direct outputs for 
the whole of Madagascar. For instance, we calculated the number of 
times that each pixel burned between 2016 and 2022. In addition, we 
calculated the proportion of burns occurring within the fire season at the 
pixel level between 2016 and 2022. To do this, we defined the fire 
season for Madagascar as those months with a mean Fire Weather Index 
(FWI) higher than 17 (from June to November, inclusive), which has 
been used as a threshold to define high fire risk (Fernandes, 2019). The 
FWI mean monthly values were extracted from the Merra2 IMERG. 
FINAL.v6 available at the NASA Center for Climate Simulation (NCCS) 
for the period 2001–2019. We also calculated the proportion of burned 
land within each commune (a Malagasy administrative level) for the 
period 2016–2022, the proportion of burned land by ecoregions (Olson 
et al., 2001) between 2016 and 2022, and by land cover type after 2019 
as we used the GLAD land cover map of 2019 (Hansen et al., 2022) to 
identify the land cover classes. 

3. Results 

3.1. Product presentation 

The MGBAS2 product covers the period from 1 January 2016 to 31 
December 2022, and is distributed in an ESRI© shapefile format for 
periods of four months. Each shapefile covers the whole of Madagascar. 
The attribute field named “BurnDate” includes the date of burning in a 
Year-Month-Day format (YYYYMMDD) (Fig. 3). This field might have 

zero values, indicating areas that were masked due to the lack of land 
quality observations. The area without any information in the shapefile 
was identified as unburned. The spatial resolution corresponds to a 20 m 
pixel size. A visual example of the MGBAS2 product is shown in Fig. 3. 

3.2. Spatial validation 

The spatial validation of our product showed Dice coefficients of 
78.85 % and 83.61 % for the years 2019 and 2021, respectively, where 0 
% indicates no overlap and 100 % indicates total similarity between 
MGBAS2 and the reference data. The results also showed burned area 
(BA) underestimations of around 8 % for both years, omission errors of 
24.26 % for 2019 and 19.81 % for 2021, and smaller commission errors 
of 17.77 % and 12.63 % for 2019 and 2021, respectively (Table 1). 

Fig. 3. Left panel: example of a Sentinel-2 false colour composite (RGB: B8, B4, B3) acquired on 26 August 2021, with burned areas represented in black and grey 
tones; right panel: MGBAS2 product between 1 May and 26 August 2021 coloured by the date of sensing of burned area in the panel on the right on the same Sentinel- 
2 false colour composite. The scale is represented as pixel sizes, including the pixel size of the MGBAS2 product (20 m) and of other BA products (FireCCISFD 20 m, 
GABAM 30 m, FireCCI51 250 m, C3SBA11 300 m and MCD64A1 500 m). 

Table 1 
Global accuracy metrics (± standard error) of the spatial validation of MGBAS2, 
FireCCISFD20, FireCCI51, C3SBA11 and MCD64A1 products for Madagascar.  

BA product Year Dice 
coefficient 
(%) 

Relative 
bias 
(%) 

Omission 
error (%) 

Commission 
error (%) 

MGBAS2 2019 78.85 ±
4.82 

− 7.89 ±
4.41 

24.26 ±
7.89 

17.77 ± 5.09  

2021 83.61 ±
3.86 

− 8.20 ±
6.97 

19.81 ±
6.57 

12.65 ± 1.04 

FireCCISFD20 2019 84.12 ±
1.48 

− 0.90 ±
2.79 

16.27 ±
2.51 

15.48 ± 0.91 

FireCCI51 2019 36.66 ±
4.39 

− 64.47 
± 4.17 

75.16 ±
3.72 

30.08 ± 3.04 

C3SBA11 2019 30.19 ±
3.10 

− 73.77 
± 2.54 

80.94 ±
2.54 

27.24 ± 2.52  

2021 21.15 ±
8.99 

− 82.06 
± 7.71 

87.53 ±
6.10 

30.49 ± 6.70 

MCD64A1 2019 32.50 ±
5.18 

− 71.90 
± 6.04 

79.18 ±
4.29 

25.93 ± 1.80  

2021 26.18 ±
6.00 

− 79.52 
± 5.31 

83.95 ±
4.34 

25.28 ± 2.20  
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3.3. Temporal validation 

Comparing the BA detection dates with VIIRS hotspots we found that 
MGBAS2 was able to detect 4.59 ± 0.53 % of VIIRS hotspots within the 
same day, and a 51.86 ± 4.19 % in <20 days difference. If we expand the 
period of analysis to 50 days, we observe that 82.11 ± 2.80 of the VIIRS 
hotspots have a corresponding BA in the MGBAS2 (Fig. 4). 

3.4. Intercomparison 

The intercomparison of accuracy metrics among BA products in 2019 
and 2021 revealed similar performance among the Sentinel-2-based 
products (MGBAS2 and FireCCISFD20), which were by far more accu-
rate than the other products based on different sensors (Table 1). The 
Sentinel-2 products reached Dice coefficients ≥78.85 % whereas for the 
rest were ≤ 36.66 %. The differences in relative biases were also 
remarkable with the Sentinel-2 based products showing un-
derestimations up to 8.20 % and the other products detecting at least 
64.47 % less BA than the reference data (i.e., MGBAS2 reduced BA un-
derestimations by about eightfold). The omission errors of Sentinel-2 
based products were around four times less than the rest, and the 
commission errors were approximately the half. Results also showed 
some differences among the coarse-resolution products (FireCCI51, 
C3SBA11 and MCD64A1), the FireCCI51 being the most accurate. 

The accuracy analysis for the years 2019 and 2021 (with long tem-
poral reference units) was supplemented with an analysis of the annual 
BA detected by each product relativized to the BA detected in MGBAS2. 
This offered an annual comparative overview from 2016 onwards and 
provided insights on the Landsat-based BA product that was not 
included in the accuracy analyses because it lacks burning dates. Results 
showed that the difference in BA estimates between the Sentinel-2 based 
products and the rest was consistent over time and revealed that GABAM 
performed similarly to coarse-resolution products in terms of total 
annual BA for Madagascar. Thus, all the products not based on Sentinel- 
2 imagery detected at least four times less BA than those based on 
Sentinel-2 imagery, with the BA in FireCCI51 (the non-Sentinel-2 
product exhibiting the best performance) being 23.25 % of the value 
detected in MGBAS2 (Fig. 5A). 

Results showed that Sentinel-2 based products not only detected 
more BA but also a higher number of fires (Fig. 5B). Sentinel-2 based 
products detected more fires globally and for all the analysed fire size 
categories, but the main difference was found in the number of fires with 
small size (<0.25 km2). Comparing the MGBAS2 with the FireCCISFD20 
we found that the FireCCISFD20 detected more small fires (0 to <1.25 
km2) whereas the MGBAS2 detected more large fires (≥2.5 km2), which 
can be attributed to the assignation of burned patches close in time to a 
same date in the compositing procedure, when NBR values did not decay 
rapidly. Another difference observed between Sentinel-2 products is the 
large extent of unmapped regions of the FireCCISFD20 for some months, 

particularly from January to April (Fig. S2), which on the contrary are 
mapped by MGBAS2. 

The correspondence in global estimates between the Sentinel-2 
products presented above was made extensive to a spatial correspon-
dence, as the linear models performed for 2019 with the MGBAS2 and 
FireCCISFD20 estimates of the percentage of burned land at 0.25◦

showed a close relationship (R2 = 0.89; bias = 0.03 %) (Fig. 5C). In 
contrast, the relationships with GABAM, FireCCI51, C3SBA11 and 
MCD64 gridded data for 2019 were weaker (R2 ≤ 0.51) and biased (bias 
≥18.41) in the line with the reported relative biases, commission, and 
omission errors (Table 1). Results of the regressions for the rest of years 
are similar to those found for 2019, and available in Fig. S1. 

3.5. Direct outputs 

We found that between 20 and 30 % of Madagascar's land burns 
every year, averaging an annual BA of 145,295 km2 (Table S1). The 
number of times that the same area burned between 2016 and 2022 
ranged from zero to 14 according to MGBAS2, although pixels that 
burned more than seven times were scarcely represented (<0.40 % of 
Sentinel-2 pixels). Specifically, 43.42 % of Sentinel-2 pixels did not burn 
during the whole period, and a gradual decrease was observed from 
areas burned once (16.90 %) to those burned seven times (3.46 %), with 
the recurrence of fires being inversely proportional to the burned extent 
(Fig. 6A). The most frequently burned zones were detected in the Central 
Highlands and western Madagascar where significant proportions of 
land exhibit annual and biennial burning (Fig. 6A). We also found that 
most burns in Madagascar are between June and November except for 
some regions in the eastern coast and in the north where burns outside 
this period dominate (Fig. 6B). The quantification of BA by commune 
showed large differences with values ranging from 5.19 ± 0.09 % (mean 
± standard deviation) of land burned annually in a commune in the re-
gion of Analanjirofo (northeast Madagascar) to 73.56 ± 3.90 % in a 
commune in the region of Bongolava (central Madagascar) (Fig. 6C). The 
interannual variability also showed a large spatial heterogeneity, with 
the largest differences in the south, particularly in communes in the re-
gions of Ihorombe and the north of Anosy (Fig. 6D). Analysing the 
percentage of land burned annually by ecoregions (Table 2), the spiny 
thickets were the least burned at 7.36 ± 2.58 %, followed by lowland 
forests (7.62 ± 2.01 %). Mangroves and ericoid thickets exhibited in-
termediate values of annual burned land. Succulent woodlands (26.41 
± 6.71 %), dry deciduous forests (29.37 ± 2.66 %) and subhumid forests 
(33.78 ± 4.44 %, mostly corresponding with the grassy biome in the 
Central Highlands) showed the highest percentage of land burned each 
year. Focusing on the major GLAD land cover types in Madagascar we 
found that the less affected classes were the scarcely vegetated areas as 
well as the dense tree cover class, the last with 1.70 ± 0.32 % of land 
burning annually (Table 2). Intermediate BA values (in percentual 
terms) were observed in the major wetland types, zones where tree cover 
is rising, and semi-arid vegetation. The areas that exhibited tree cover 
loss not related to fire between 2000 and 2019 according to the refer-
ence land cover types, reached 12.82 ± 1.14 % of land burned annually. 
The MGBAS2 also detected that the extent of burning reached 15.75 ±
1.60 % of croplands, 16.48 ± 2.48 % of the open tree cover and 31.86 ±
2.47 % of the dense short vegetation (grassland) annually. 

4. Discussion 

We have developed a burned area (BA) database for Madagascar 
(2016–2022) using Sentinel-2 imagery. This is an important advance-
ment in fire science as it is the first BA product based on Sentinel-2 for 
this island apart from FireCCISFD products that are only available for 
2016 and 2019 (Roteta et al., 2019; Chuvieco et al., 2022). In the case of 
Madagascar, the need of this product was imperative, as using Sentinel-2 
imagery we have detected around four times more BA than reported 
using other satellites. This significant difference should not be omitted 

Fig. 4. Frequency of VIIRS hotspots detected by MGBAS2 within different 
time frames. 
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when studying fire whether for data records and statistical purposes 
(Mahood et al., 2022; Andela et al., 2019), analysis of fire impacts 
(Alonso-González and Fernández-García, 2021; Fernández-García and 
Alonso-González, 2023) or landscape dynamics potentially driven by 
fire such as forest loss (Hansen et al., 2022). Likewise, the new estimates 
provided here might be useful to decrease the currently high un-
certainties in the estimates of carbon emissions due to fire (Liu and Yang, 
2023). 

The validation analyses of our product showed similar accuracy es-
timates to other Sentinel-2 BA products in tropical regions such as the 
FireCCISFD developed for Sub-Saharan Africa for two years (Roteta 
et al., 2019; Chuvieco et al., 2022), or the product developed for 
Indonesia for 2019 (Gaveau et al., 2021). However, some advantages or 
strong points of our product should be highlighted when compared with 
other Sentinel-2 BA products. First of all, our database is the first time 
series of Sentinel-2-derived BA data over a large region, whereas former 
products are available for a single year or for two years (Roteta et al., 
2019; Gaveau et al., 2021; Chuvieco et al., 2022). Second, the algorithm 
we used is fully consistent over time, thus facilitating the comparability 
of seven years of data. This enables not only monitoring over time but 
also analyses such as the stability of BA values, fire frequency, and the 
calculation of other fire regime attributes. Third, our database is fully 
independent from coarse-resolution sources, unlike the FireCCISFD11 
and FireCCISFD20, which only map those tiles with hotspots detected by 
MODIS or VIIRS, respectively and low cloud cover (Roteta et al., 2019; 

Chuvieco et al., 2022), thus leading to large unmapped regions that 
might have BA detectable by Sentinel-2 (see Fig. S2, as well as Figs. 1 
and 2 in Ramo et al., 2021). It is important to note that this advantage of 
our product is not reflected in our validation results because of a tem-
poral and spatial reasons. Thus, the generation of long temporal refer-
ence units necessitates a focus on the dry season period, thus avoiding 
January to March, where unmapped areas predominate in the former 
Sentinel-2 based products. In addition, the reference units are limited in 
number and randomly distributed, with scarce representation of areas 
with absence of MODIS or VIIRS hotspots for the validation period. 

Nonetheless, the Sentinel-2 BA products largely outperformed 
coarse-resolution products, which exhibited higher omission errors for 
Madagascar than the values reported for global validations (e.g. Padilla 
et al., 2015; Boschetti et al., 2019; Lizundia-Loiola et al., 2020; Fran-
quesa et al., 2022a, 2022b). The great outperformance of Sentinel-2 
products over coarse-resolution products (MODIS- and Sentinel-3- 
based) can be attributed to the high prevalence of small fire patches 
which cause the attenuation of BA signals at pixel sizes ≥250 m (Ramo 
et al., 2021; Franquesa et al., 2022a), as well as to fire shapes, since 
errors of coarse-resolution products increase as patches are smaller and 
less compact (Campagnolo et al., 2021; Franquesa et al., 2022a). Both 
aspects can be particularly relevant in complex landscapes such as those 
in many parts of Madagascar, where a rough topography predominates 
with a high density of valleys and ridges, and fine-grained patchy 
peasant landscapes. There, fires with sizes assumed to be within a single 

Fig. 5. Intercomparison between MGBAS2 and other available BA products. A: temporal evolution of the fraction of annual burned land relativized to the fraction 
detected by MGBAS2. B: distribution of fires (burned area patches) by fire size classes. C: linear regression models between the fraction of annual burned land 
detected by MGBAS2 and other available BA products using data aggregated at 0.25◦ grids. 
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or a few coarse pixels usually extend over numerous pixels where burned 
and unburned areas mix, magnifying the mixing between burned and 
unburned spectral signals. This is not only because of the patchy land-
scape but also because of the burning strategies of Madagascar's in-
habitants who burn the landscape in a rotational way over time and 
space to fit their own interests (Kull, 2004). There are options to address 
the challenge of getting BA estimates when there are different spectral 
signals (burned and unburned) within same coarse-resolution pixels, 
such as applying spectral unmixing methods (Quintano et al., 2005), or 
statistical approaches that combine the detected BA with other variables 
such as active fires (van der Werf et al., 2017), landscape fragmentation 
or social variables to refine BA data (Fernández-García and Kull, 2023). 
However, the desirable alternative to solve this limitation is the direct 
use of higher resolution imagery. 

In addition to comparing our estimates with the coarse-resolution 
sensors mentioned above, we have also compared our estimates with 
those obtained from Landsat imagery. Landsat-derived BA showed un-
derestimations and errors comparable to that from coarse-resolution 
imagery. Landsat missions started in 1972 and have been used to 
characterise multiple landscape and land-use change variables for de-
cades. In relation to fire, GABAM is the only available Landsat database 
at the global scale (the only one covering Madagascar) (Long et al., 
2019), although several regional products are available for the Conter-
minous United States (Hawbaker et al., 2020), Portugal (Neves et al., 

2023), or Chile (Miranda et al., 2022) among others, generally showing 
a high accuracy. However, in tropical regions Landsat's long revisit pe-
riods can be a major constraint to proper BA detection, particularly in 
areas with high cloud cover and rapid fade of burn scars (Chuvieco et al., 
2019). This is the case of Madagascar where some regions have a cloud 
cover leading to a near zero probability of having a Landsat cloud-free 
observation in certain seasons (Ju and Roy, 2008). In addition, the 
short persistence of BA spectral signals due to vegetation regrowth is 
another limitation (Franquesa et al., 2022b). In the grassy biome, which 
is the dominant land cover in the island, the persistence of BA signals in 
MODIS imagery has been estimated in between 16 and 48 days, and in 
the tropical forest the 80.5 % of the BA has persistence under 32 days in 
MODIS imagery (Melchiorre and Boschetti, 2018) that might vary 
depending on post-burn weather conditions (Franquesa et al., 2022b). 
Although the limitations of Landsat are very different from those from 
MODIS or Sentinel-3, we found GABAM estimates similar to those from 
coarse-resolution sensors in Madagascar. 

The direct analysis of our BA product showed the heterogeneous 
burning patterns in Madagascar as reported in the literature and previ-
ous analyses using remote sensing (Kull, 2004; Andela et al., 2017; 
Frappier-Brinton and Lehman, 2022; Phelps et al., 2022), with the 
highest values of burned land in central Madagascar. We found an 
insignificant extent showing sub-annual recurrence levels thus indi-
cating the suitability of developing annual presence-absence BA data 

Fig. 6. Maps of Madagascar showing the number of times that a same area burned between 2016 and 2022 (A), the proportion of burns within the fire season defined 
as the period between June and November (B), the proportion of burned land by commune (C) and, the interannual variability of burned land by commune (D). 
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such as GABAM (Long et al., 2019). Moreover, we found that burns 
concentrate between June and November, except in the east and in the 
north where many of the burns were observed out of this period (though 
one should keep in mind that a detection delay can extend up to 50 
days). The spatial and temporal patterns of fire relate strongly to farmers 
and herders' uses of fire. As a rough synthesis, the Central Highlands are 
dominated by grasslands dotted with cultivated fields, where farmers 
primarily use fire to meet the needs of livestock as well as an efficient 
tool for preparing croplands (Kull, 2004; Goodman, 2022). Focusing on 
timing, early fires in the grasslands have been associated with pasture 
renewal (replacement of lignified grasses with new nutritious shoots), 
woodland protection practices and the control of locust invasions. 
Pasture fires continue between June and September, while from 
October, many fires are related to crop field preparation (Kull, 2004). On 
the contrary, in the eastern lowlands and in the north, the landscape is 
dominated by rainforests and agricultural lands. There, fire is more 
related to shifting cultivation practices (tavy), where vegetation is cut 
and allowed to dry, typically between August and October and soon after 
burned, before the rainy season (Kull, 2004). Then, the land is cultivated 
typically between 1 and 3 years and left in fallow for longer. All these 
cyclical practices contribute to explain the BA patterns detected in 
central and eastern Madagascar, with more burned land concentrating 
in grasslands and croplands, and less in tropical rainforests. In relation to 
the seasonality, the high proportion of fires after November in the 
eastern region and in the north is also in agreement with previous work 
analysing VIIRS hotspots that detected 80 % of fires there between 
October and December (Frappier-Brinton and Lehman, 2022). The 
fraction of land that burned annually in the dry deciduous forest and 
succulent woodland ecoregions (west) was quite high, indeed close to 
the estimates reached in the open landscapes of the Central Highlands. 
In the west, pasture maintenance, charcoal production, and expansion of 

agricultural land play also a major role, with the tavy practice in the dry 
tropical forests traditionally following similar patterns to those in the 
east, but with earlier burns (Kull, 2004; Scales, 2011; Waeber et al., 
2015). In this sense, the analyses of Frappier-Brinton and Lehman 
(2022) already highlighted the exceptionally high and increasing 
number of fires detected by VIIRS hotspots in those two ecoregions, with 
a 32 % of the remaining forests being within 500 m of a fire hotspot in 
2016. Our results also found that around 43 % of Madagascar's land did 
not burn between 2016 and 2022. The unburned zones were mostly in 
the arid south (spiny thickets and southern succulent woodlands), in the 
northwest, and in urban communes as indicated by coarser-resolution 
analyses (Andela et al., 2017; Frappier-Brinton and Lehman, 2022; 
Phelps et al., 2022). 

The MGBAS2 has limitations similar to other BA products based on 
Sentinel-2, which can be related to a still insufficient spatial and tem-
poral resolution and the absence of images before 2015. In relation to 
the first, it is important to note that many croplands in Madagascar are 
extremely small, with size even smaller than 20 m × 20 m, which might 
complicate the detection of some agricultural burns using Sentinel-2. In 
relation to the temporal resolution, the cloudiness in the east and north 
led to average periods between cloud-free Sentinel-2 scenes ranging 
from 18 to 46 days (Sudmanns et al., 2019). In these regions, it is 
probable that many tavy burns are missed, as crops are planted soon 
after burnings (Kull, 2004). Another limitation of remote sensing BA 
products is the difficulty of detecting BA below a forest canopy (surface 
forest fires) because of the shielding effect of vegetation (van der Werf 
et al., 2017; Fernández-García et al., 2018). These three limitations 
affect MGBAS2 as well as the validation data, so fire underestimations 
might be larger than reported. Computational capacity can also be a 
limiting factor when producing and working with Sentinel-2 data, a 
challenge that can be addressed using cloud computing platforms such 
as Google Earth Engine (Chuvieco et al., 2019). Even with the 
mentioned limitations, Sentinel-2 provides the most accurate BA esti-
mates among the non-commercial satellites nowadays, and thus we 
recommend the use of our product for accurate fire monitoring, carbon 
emission estimation, land use planning, and ecological studies in 
Madagascar. We also encourage the use of Sentinel-2 BA data for ac-
curate trend analysis in the future. In relation to the last recommenda-
tion, we highlight that coarse-resolution underestimations might not be 
constant over time, as they can be impacted in Africa by an increased 
number of undetected small fires over time attributed to ongoing in-
creases in landscape fragmentation (Archibald et al., 2011; Archibald, 
2016). This plausible inconsistency of errors over time might be relevant 
as it can contribute to misleading trend estimates. Future work might 
attempt to compensate for the historical underestimations from before 
the Sentinel-2 era by using modelling methods that can take advantage 
of the new estimates provided here, similarly to Fernández-García and 
Kull (2023). Likewise, we encourage advancing the field of BA detection 
by exploring the possibilities that might offer the combination of 
different multispectral imagery to improve temporal resolution (e.g. 
Landsat and Sentinel-2; Quintano et al., 2018; Roy et al., 2019), as well 
as the combination of different sensor types (e.g. by combining multi-
spectral and radar data; Tanase et al., 2015) to reduce the impact of 
cloudiness on BA detection and timing in the rainforest (Schulte to 
Bühne and Pettorelli, 2017; Belenguer-Plomer et al., 2021). 

Our database represents a significant contribution to several scien-
tific disciplines and to the achievement of the Sustainable Development 
Goals (SDGs) by providing critical data that support advancements in 
science, informed decision-making, effective management practices, 
and ultimately environmental conservation and development. In this 
sense, concerning the SDG Life on Land, the identification of fire inci-
dence is the initial step in better understanding the actual role of this 
phenomenon in Madagascar's ecosystems, and in characterizing key fire 
regime attributes such as fire frequency and seasonality (Bond et al., 
2008; Fernández-García et al., 2020; Phelps et al., 2022). These attri-
butes are essential to understand the relationships between fire, habitats 

Table 2 
Mean (± standard deviation) percentage of land burned and absolute burned 
extent by Olson ecoregions (Olson et al., 2001) and by the land cover types 
defined by Hansen et al. (2022). Note that the values by ecoregions are 
2016–2022 averages, whereas the values by land cover classes are 2020–2022 
averages, as the land cover product is based on data up to 2019.   

Burned area 

Ecoregions % of land Km2 

Madagascar subhumid forests (Central 
Highlands) 

33.78 ±
4.44 

67,204.48 ±
8835.32 

Madagascar dry deciduous forests 29.37 ±
2.66 

44,498.09 ±
4033.34 

Madagascar succulent woodlands 26.41 ±
6.71 

20,997.33 ±
5335.42 

Madagascar ericoid thickets 14.39 ±
4.85 

183.28 ± 61.71 

Madagascar mangroves 13.62 ±
2.41 

706.65 ± 125.15 

Madagascar lowland forests 7.62 ± 2.01 8521.04 ± 2250.08 
Madagascar spiny thickets 7.36 ± 2.58 3184.24 ± 1117.13  

Land cover classes   

Dense short vegetation 31.86 ± 2.47 91,906.09 ± 6550.13 
Open tree cover 16.48 ± 2.48 24,319.22 ± 2989.51 
Cropland 15.73 ± 1.60 2289.87 ± 247.33 
Tree cover loss, not fire (2000–2019) 12.82 ± 1.14 4257.98 ± 371.87 
Semi-arid 10.76 ± 0.55 3674.26 ± 270.95 
Wetland dense short vegetation 10.33 ± 0.45 755.67 ± 55.53 
Wetland tree cover loss (2000–2019) 10.14 ± 0.73 73.54 ± 11.45 
Built-up 9.63 ± 0.79 261.16 ± 32.97 
Tree cover gain (2000–2019) 8.48 ± 1.23 321.89 ± 41.41 
Wetland open tree cover 8.36 ± 0.88 698.24 ± 99.35 
Wetland tree cover gain (2000–2019) 7.09 ± 1.04 7.52 ± 1.00 
Wetland sparse vegetation 3.97 ± 0.88 35.81 ± 18.71 
Wetland dense tree cover 1.92 ± 0.30 8.39 ± 2.46 
Dense tree cover 1.70 ± 0.32 692.48 ± 150.13 
Salt pan 0.33 ± 0.08 0.34 ± 0.19 
True desert 0.04 ± 0.01 0.11 ± 0.06  
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and biodiversity, as well as to identify and implement sustainable fire 
management practices (Ralimanana et al., 2022). Additionally, our 
database contributes to the SDG Climate Action, by enabling the quan-
tification of carbon emissions from landscape fires with direct obser-
vations instead of the currently used models (Chen et al., 2023). 
Accurate BA mapping also facilitates the estimation of pyrogenic carbon 
forms, which can act as a carbon sink (Jones et al., 2019; Bowring et al., 
2022). Our database further supports advancement in the SDG Good 
Health and Well-being, as fire smoke is responsible of about 680,000 
premature deaths, half of them in Africa (Roberts and Wooster, 2021), as 
well as of >20 % of infant deaths in some regions in Madagascar 
(Pullabhotla et al., 2023) - likely even higher if estimations were based 
on high resolution BA data. Therefore, accurate BA data could 
contribute to epidemiology and public health, and might be useful in 
assisting for public authorities in identifying critical periods and regions 
to implement measures to protect people. A high-resolution database is 
also essential for further unravelling the extent of fire management 
practices that support local livelihoods, mainly agricultural and live-
stock production, which account for a large proportion of the economy 
in Madagascar and sub-Saharan Africa in general (Kull, 2004; Omisore, 
2018). Investigating these intricate relationships would potentially 
contribute to identify suitable management practices supporting the 
SDGs No Poverty and Zero Hunger, and their relationships with biodi-
versity conservation, climate change, health and well-being in the 
complex landscapes of Madagascar. 

5. Conclusions 

Here we develop, validate, intercompare, and analyze a burned area 
(BA) database for Madagascar covering the period 2016–2022 
(MGBAS2). The database, built exclusively with imagery from Sentinel- 
2A and 2B sensors, constitutes the first time series of BA data from 
Sentinel-2 imagery in Africa over a large region, opening multiple 
analytical possibilities. 

The spatial validation with long temporal reference units revealed 
high accuracy for the developed product (Dice coefficients ≥79 %, 
omission errors ≤24 %, commission errors ≤18 %, and a relative bias ≥
− 8 %). Validations also highlighted the necessity of using satellite 
imagery with equal or higher spatial and temporal resolution than 
Sentinel-2 to prevent significant omission errors in Madagascar. In this 
regard, MODIS, Sentinel-3, and Landsat BA data resulted in omission 
errors larger than 75 % and produced largely biased estimates (at least 
− 64.47 % of BA detected). 

The analyses of the BA data from MGBAS2 showed that between 20 
and 30 % of Madagascar's land burns every year, but heterogeneous 
burning patterns were detected. Most of the BA concentrates in Central 
and Western Madagascar. These regions correspond mostly to the Cen-
tral Highlands and the dry deciduous forest ecoregion. Likewise, we 
found that many areas in these fire-prone regions recurrently burn every 
few years, mostly between May and November. 
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