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Mapping higher-order relations between brain
structure and function with embedded vector
representations of connectomes
Gideon Rosenthal 1,2, František Váša3, Alessandra Griffa4,5, Patric Hagmann4, Enrico Amico6,7,

Joaquín Goñi6,7,8, Galia Avidan1,2,9 & Olaf Sporns10

Connectomics generates comprehensive maps of brain networks, represented as nodes and

their pairwise connections. The functional roles of nodes are defined by their direct and

indirect connectivity with the rest of the network. However, the network context is not

directly accessible at the level of individual nodes. Similar problems in language processing

have been addressed with algorithms such as word2vec that create embeddings of words and

their relations in a meaningful low-dimensional vector space. Here we apply this approach to

create embedded vector representations of brain networks or connectome embeddings (CE).

CE can characterize correspondence relations among brain regions, and can be used to infer

links that are lacking from the original structural diffusion imaging, e.g., inter-hemispheric

homotopic connections. Moreover, we construct predictive deep models of functional and

structural connectivity, and simulate network-wide lesion effects using the face processing

system as our application domain. We suggest that CE offers a novel approach to revealing

relations between connectome structure and function.
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An organism’s nervous system is composed of specialized
brain regions, each associated with distinctive processing
capacities and responses. However, these regions do not

work in isolation, and in fact, a region’s functional role is tightly
linked to its anatomical connectivity and physiological interac-
tions with other regions in the system. The totality of these
connections and interactions can be summarized, and system-
atically analyzed by using concepts of network science. Networks
comprise a set of elements and their dyadic (pairwise) connec-
tions which allow characterizing each element’s connection pat-
tern. The connectome offers such a network description,
summarizing an organism’s complete nervous system as a graph
which represents the complete set of connections between pairs of
neurons or brain regions1. 4,).

Despite recent advances in connectome mapping2, the result-
ing collections of dyadic relations do not, by themselves, fully
represent and quantify higher-order relations among nodes
within the network. At the level of the network map, each node is
defined by a vector corresponding to its connections with all
other nodes, arranged in a high-dimensional topological space.
Such a dyadic description does not readily allow visualization,
classification, prediction of missing edges and nodes, and
understanding relations between different networks3, 4. While
there are many descriptive graph measures that can capture local
and global network features5, most of these measures are not
designed to capture the shape of the topological space within
which individual nodes of the network are embedded. Assessing
distances among connectivity profiles and subsequent dimension
reduction (e.g., through PCA or multidimensional scaling) can
reveal pairwise similarities6 but this approach does not capture
other relations such as homologies or higher-order regularities.

Outside of connectomics, another field focused on mapping
relationships between elements is natural language processing,
where words may be represented or embedded in a low-
dimensional distributed vector space7, 8. This representation can
facilitate higher-level natural language processing tasks by
grouping similar words into a similar embedded representation.
One recent set of models for learning vector representations of
words is word2vec which encodes linguistic regularities and
patterns. These regularities may be manipulated using linear
operations. For example, the result of a vector calculation vec
(“King”)—vec(“Man”)+ vec(“Woman”) is closest to vec
(“Queen”) than to any other word vector7–9. Importantly,
word2vec algorithms have been recently generalized for repre-
senting networks instead of text. The analog for sentences in the
network domain are streams of randomly generated walks in the
network (for example Deepwalk, Node2vec, and Grarep;3, 4, 10).
The resultant latent nodes representation captures neighborhood
similarity and community membership in a continuous vector
space with a relatively small number of dimensions4. These low-
dimensional embeddings are useful for subsequent machine
learning applications directed at uncovering structural relations
and similarities.

Here we build upon these advances with an embedded repre-
sentation of the human connectome (connectome embedding;
CE). The aim is to capture the structural network-level relations
between brain regions in a low-dimensional continuous vector
space to allow inferences about their functional roles and rela-
tionships. We suggest that CE provides a general approach for
modeling connectome data that has many potential applications,
including development, individual differences and clinical/trans-
lational studies.

To test the utility of CE, first, a network embedding algorithm
is used to embed a diffusion structural MRI connectome into a
continuous vector representation, or CE (Fig. 1a-e). Next, we
demonstrate that CE representations are neurobiologically

meaningful and can be manipulated using linear operations.
Then, we demonstrate that CE representations can predict
functional connectivity from structural connectivity with high
accuracy for both direct and indirect connections. Lastly, we use
CEs to predict network-level functional effects of localized lesions
in structural networks.

Results
Inter-hemispheric analogies test. To test whether CE vector
representations are consonant with known attributes of brain
topology/topography and can be interpreted and manipulated
using linear operations, we formulated a brain specific bench-
mark, namely, an inter-hemispheric analogies test.

One of the basic organizational characteristics of the human
brain is functional homotopy, i.e., symmetric inter-hemispheric
correlations between bilaterally homologous brain regions11–14.
Functional homotopy is supported by a high proportion of
callosal fibers contributing to homotopic connectivity14, 15.
Moreover, the structural and functional connectivity patterns of
the two hemispheres exhibit high levels of cross-hemisphere
similarity. Consequently, to design a benchmark for testing and
tuning connectome embeddings, we postulated that the relation
between each pair of regions in one hemisphere should be
analogous to the same pairwise relation in the other hemisphere.
We tested all possible inter-hemispheric analogies between all
nodes for both node2vec and spectral embedded vectors. For each
analogy, the cosine similarity7–9 which ranges between −1 and 1
and captures the cosine of the angle between two vectors, was
computed between a linearly combined vector [vector(“Right
Node A”)—vector (“Right Node B”)+vector (“Left Node B”)] and
all of the nodes vector embeddings. This procedure produced a
vector of cosine similarity distances which was then ranked in an
ascending order. The rank of the expected vector (“Left Node A”)
was logged for each analogy. We term this procedure the inter-
hemispheric analogies test.

We benchmarked our results against a more standard spectral
embedding algorithm which is an unsupervised method aimed at
calculating low dimensional non-linear embeddings of the data
using a decomposition of the graph Laplacian16, 17. One of the
strong underlying assumptions of spectral embedding is that
interconnected nodes should be embedded together in the vector
space (homophily) and that these embeddings are useful for
classification. This might not be the case for some networks and
tasks, such as the current analogies task, which requires a
representation of the structural role of each node (structural
equivalence) or a mixture between homophily and structural
equivalence3, 18.

For each hemispheric analogy (vectors’ linear combinations;
see methods for details), the median rank was calculated
across 500 node2vec iterations. For example, vec(“Left Amyg-
dala”)—vec(“Left Fusiform Gyrus”)+ vec(“Right Fusiform
Gyrus”) should yield a vector that has the smallest distance to
vec(“Right Amygdala”) compared with all other node vector
embeddings (see Fig. 1e). If the calculated vector is indeed
closest to vec(“Right Amygdala”), then the rank difference of the
analogy would be 0; Hence we termed this node (in this
example, the Right Amygdala) as the expected node. Note that
higher ranking means that the expected node embedding
was less similar to the calculated vector and consequently
higher ranking reflects worse performance. Thus, if across all
possible analogies, a high proportion of the expected nodes
would have a low rank (a small distance from the
linearly combined vector), then one could infer that the obtained
vector representations encompass meaningful topological
information.
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Dataset 1: Across all hemispheric analogies, 54% of the
expected nodes, 444 out of 820 (number of possible inter
hemispheric analogies with 82 homologous nodes), were ranked
as one of the top five nodes when using connectome embedding.
In contrast, only 18.6%, 153 out of 820, of the expected nodes
were ranked in the top five nodes using a conventional spectral
embedding algorithm. The percentage of the top 5 ranked nodes
significantly differed across these two embedding methods, χ2(1,
N= 1640)= 223, p < 2.2e-16 (Fig. 2). Dataset 2: As was the case
for Dataset 1, the difference between the connectome embedding
and the spectral clustering analogies was significant. Across all
hemispheric analogies, 30% of the expected nodes, 246 out of 820
(number of possible inter hemispheric analogies with 82
homologous nodes), were ranked as one of the top five nodes
when using connectome embedding. In contrast, only 13%, 108
out of 820, of the expected nodes were ranked in the top five
nodes using a conventional spectral embedding algorithm. The

percentage of the top 5 ranked nodes significantly differed across
these two embedding methods, χ2(1, N= 1640)= 68.6, p < 2.2e-
16 (Supplementary Fig. 1).

Similarity of node representation. As implied by the inter-
hemispheric analogies test, the relation between the learned CE
vectors encompasses meaningful neurobiological information. To
further explore this issue and understand the nature of the pair-
wise relation between each pair of nodes in relation to functional
homotopy, we characterized the similarity between the repre-
sentations of their respective CE vectors. Specifically, the cosine
similarity was calculated between each pair of connectome
embedding vectors (Fig. 3). This procedure resulted in a recon-
struction of the structural connectivity matrix (embedding
reconstruction). We did not expect a perfect reconstruction of the
original structural matrix. Rather, we assumed that if CE manages
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Fig. 1 Connectome embeddings workflow. a The input to the connectome embeddings algorithm is a structural connectome, describing pairwise
connectivity between brain regions (nodes). Letters denote unique, corresponding nodes in the right and left hemispheres of the brain (for example a and a’
represent homotopic regions). Dashed lines represent possible direct edges between regions according to the structural connectivity matrix, while full lines
represent random walks [3]. b Random walks are performed on the network using the node2vec algorithm producing node sequences (note that we
present sequences of 3 steps for demonstrational purposes, the sequence may be longer). c The sequence for each node is used as an input to a word2vec
Continuous Bag of Words (CBOW) algorithm. Briefly, for each sequence, each node in turn is considered a target, R(t), which is predicted from the other
nodes in the same sequence [R(t− 1), R(t+ 1)..]. The goal is to maximize the conditional probability p(R(t)| R(t− 1), R(t+ 1)..; θ) by estimating the
parameters θ using a 2 layers neural network (Goldberg & Levy, 2014). d The obtained parameters θ, or vectors capture regularities and may be the basis
for various subsequent tasks [7, 8] which forms a vector distributed representation of each node. e The direction of the produced vector representation of
a node has a topological meaning. For example, the differences between homological nodes in opposing hemispheres are analogs (see results for details)
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to capture high-level topological attributes, it should be reflected
in the CE pair-wise relation.

We first calculated the Spearman’s Rho (rank correlation
coefficient) between each embedding reconstruction (node2vec
and spectral) and the original matrix of structural connectivity
edges that were obtained using diffusion imaging.

Dataset 1: The connectome structural matrix was weakly
correlated with the spectral embeddings reconstruction rs= 0.2, p
< 10−6, and strongly correlated with the node2vec embeddings
reconstruction rs= 0.62, p < 10−6 (Fig. 3). Dataset 2: Similarly to
the correlations measured in Dataset 1, the connectome structural
matrix was not correlated with the spectral embeddings
reconstruction rs=−0.02, p= 0.11 but was strongly correlated
with the node2vec embeddings reconstruction rs= 0.63, p < 10−6

(Supplementary Fig. 2).
We hypothesized that the difference between the node2vec and

the spectral embedding reconstructions may, in part, be due to
the tendency of the embedding algorithm to infer missing
connections on the basis of existing higher-order relationships.
For example, homotopic inter-hemispheric structural connections
are not well captured using diffusion imaging19. Recently, an
analysis which used 32,350 connection reports, expertly collated
from published pathway tracing experiments in rats, suggested
that about two-thirds of all cortical regions send a homotopic
commissural connection20. Thus, homotopic inter-hemispheric
connections may be better recovered in the node2vec connectivity
reconstruction, due to topological features which are captured by
the embedding.

To compare the number of homotopic inter-hemispheric
connections between the original structural connectome and the
reconstructed embedding connectivity matrices, we applied Z-
score normalization to each matrix, followed by a threshold

applied to the Z-score. Dataset 1: The percentage of homotopic
inter-hemispheric edges was 73% for the node2vec reconstructed
matrix compared to 48% in the original connectome
matrix at 0 threshold. This difference was statistically significant
(χ2 (1, N= 82)= 9.76, p= 0.001). Similar patterns emerged
when various thresholds up to 0.9 were applied, but disappeared
at a threshold of 1, with only 44% and 34% of homotopic inter-
hemispheric edges apparent for the node2vec matrix and
original structural connectivity matrix, respectively. The differ-
ence in homotopic inter-hemispheric edges between the
spectral embedding reconstruction (53%) and the structural
connectivity matrix (48%) was not significant for the 0 threshold
(χ2 (1, N= 82)= 0.39, p= .53). Similar results were apparent
across thresholds up to 0.9. Dataset 2: Equivalently to the
results obtained from Dataset 1, the percentage of homotopic
inter-hemispheric edges was 56% for the node2vec reconstructed
matrix compared to 21% in the original connectome matrix at 0
threshold. This difference was statistically significant (χ2 (1, N=
82)= 27.9, p < 10−6). Similar patterns emerged when various
thresholds up to 0.9 were applied, but disappeared at a
threshold of 1, with only 19% and 12% of homotopic inter-
hemispheric edges apparent for the node2vec matrix and original
structural connectivity matrix, respectively. Note that at 0.6, 0.8
and 0.9 thresholds only non-significant trends were apparent (χ2

(1, N= 82)= 3.12, 3.64 and 3.64, p= 0.07, 0.056 and 0.056
respectively).

At lower Z-thresholds (0.0–0.1), there were still significant
differences in homotopic inter-hemispheric edges between the
spectral embedding reconstruction and the structural connectivity
matrix (χ2 (1, N= 82)= 6.97 and 6.2, p= 0.008 and 0.01). Once
increasing the threshold above 0.1 there were no significant
differences at any of the thresholds.
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Fig. 2 Performance of two node embedding algorithms on the inter-hemispheric analogies test. The inter-hemispheric analogies test evaluated the capacity
of two node embeddings to infer the relation between each pair of nodes in one hemisphere, given the same pairwise relation in the other hemisphere.
Predictions across all pairwise analogies were ranked, such that a lower rank corresponds to better performance. Across 500 iterations of the node2vec
algorithm, the ranking of the expected nodes were binned into bins of 5. The boxplots represent the binning of the ranking across 500 node2vec
permutations. The band inside the box represents the median, the lower and upper hinges correspond to the first and third quartiles (the 25th and 75th
percentiles) and the whiskers represent 1.5 times the inter-quartile range (the distance between the first and third quartiles). The red triangles represent
the binning of the spectral ranking. Importantly, the node2vec algorithm produced a higher proportion of expected nodes in the lowest rank bin (0–5
ranking). Note the relatively high proportion of spectral embedding analogies with high ranking which suggest worst performance in this task. This result
demonstrates that node2vec vector embeddings successfully encompass functional homotopy information
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Relation to resting state functional connectivity. As findings
reported so far suggest that CE provides a meaningful repre-
sentation of the structural connectome, we move to examining its
relation to functional networks estimated from resting state
connectivity. Specifically, statistical dependence among regional
time courses is generally called functional connectivity21, and
numerous previous studies have shown that functional con-
nectivity recorded during long sessions of resting state are
robustly related to the underlying structural connectivity22–26.

While such resting state connectivity is dependent on a
structural backbone, it also expresses higher level interactions
between nodes of the network which are not necessarily captured

by direct pairwise structural connectivity24, 27. For example, in
addition to resting-state functional connections between nodes
that are directly anatomically connected (direct connections),
numerous functional connections also exist between nodes that
are not directly anatomically connected (indirect connections),
due to indirect interactions throughout the network and the
transitivity of cross-correlations24. As demonstrated, CE recon-
structed matrices contain high-level topological connectivity
information. We hypothesized that such information may be
associated with resting state functional connectivity to a greater
extent than the original structural connectivity matrix, as it may
capture a significant proportion of indirect effects.
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Dataset 1: Indeed, a higher correlation coefficient was obtained
between the node2vec reconstructed embedding matrices and the
functional connectivity edges (rs= 0.328, p < 10−6; Fig. 4c),
compared to the correlation between the functional connections
and spectral embedding reconstructions edges (rs= 0.13, p < 10
−6; Fig. 4b), as well as between the functional connections and the
original structural edges (rs= 0.311, p < 10−6; Fig. 4a). Impor-
tantly, when considering node pairs that are not directly
connected in the original structural matrix, we obtained a
positive correlation between the node2vec reconstruction and the
functional connectivity matrix (rs= 0.127, p < 10−6) but no
significant correlation between the spectral embedding recon-
struction and the functional connectivity connections (rs=
−0.02, p= 0.52).

Dataset 2: Similarly to the results obtained with Dataset 1, a
higher correlation coefficient was measured between the node2-
vec reconstructed embedding matrices and the functional
connectivity (rs= 0.31, p < 10−6; Supplementary Fig. 3c), com-
pared to the correlation between the functional connections and
spectral embedding reconstructions (rs= 0.15, p < 10−6; Supple-
mentary Fig. 3b), as well as between the functional connections
and the original structural edges (rs= 0.21, p < 10−6; Supple-
mentary Fig. 3a). When examining the nodes that are indirectly
connected in the original structural matrix, we measured a

positive correlation between the node2vec reconstruction edges
and the functional connectivity matrix rs= 0.27, p= 0.003 but
there was no significant correlation between the spectral
embedding reconstruction and the functional connectivity
connections rs= 0.17, p= 0.069.

These findings suggest that node2vec embeddings capture
significant information about functional relations as measured in
resting-state functional connectivity.

Deep learning for structural to functional mapping. To
examine whether the mapping between the reconstructed CE and
functional connectivity could be further improved, we adopted a
supervised deep learning framework. To this end, a representa-
tion of edges was required as opposed to the single node
embeddings3. The mapping between structural embeddings and
functional connectivity was learned utilizing a node-pairs repre-
sentation, while adopting a supervised learning cross-validation
scheme (see Methods for details).

Dataset 1: When assessing the correspondence between
predicted functional connections and the empirical functional
connections in the testing set, we obtained a strong positive
correlation (rs= 0.6, p < 10−6) (Fig. 5) which was apparent for
both direct connections (rs= 0.6, p < 10−6) and indirect
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connections (rs= 0.52, p < 10−6) (respectively green and red
symbols in Fig. 5).

Dataset 2: We obtained a strong positive correlation (rs= 0.52,
p < 10−6) between predicted functional connections and the
empirical functional connections in the testing set which was
apparent for both direct connections (rs= 0.52, p < 10−6) and
indirect connections (rs= 0.6, p= 0.001) (respectively green and
red symbols in Supplementary Fig. 4).

Thus, the CE encompasses considerable information regarding
indirect functional connections matching, or even exceeding prior
structure-function correspondences obtained by computer simu-
lation28, as well as analytic graph-based models22.

As a further validation, we also conducted a simple linear
regression analysis. Dataset 1: a positive correlation (rs= 0.45, p
< 10−6) was obtained between the predicted functional connec-
tion and the empirical functional connection in the testing set
which was apparent for both direct connections rs= 0.41, p < 10
−6 and indirect connections (rs= 0.32, p < 10−6). Dataset 2: A
positive correlation (rs= 0.41, p < 10−6) was measured between
the predicted functional connection and the empirical functional
connection in the testing set which was apparent for both direct
connections (rs= 0.41, p < 10−6) and indirect connections (rs=
0.57, p < 10−6). The fits obtained from the linear regression are
below those obtained with our deep learning pipeline.

Prediction of functional connectivity following FFA lesion. The
high predictive power of connectome embeddings provides an
opportunity for a new type of predictive model to bridge brain
structure and function. One potential application is to predict
changes in functional connectivity that result from changes in
structure-based connectome embeddings. Specifically, one can
create an embedding of the structural connectome after a
manipulation such as an artificial lesion or a selective enhance-
ment of specific nodes or edges (e.g., 29). This embedding can
then be used to predict the functional connectivity following the
manipulation.

We utilized the face network as a testbed for exemplifying this
framework. Face perception is accomplished via the coordinated
activity of a face processing network30. One of the major hubs of
the face network is the right fusiform face area (FFA)31, 32. A

lesion in this region may result in acquired prosopagnosia, a
severe deficit in face perception33. Nevertheless, network-wide
effects associated with such a lesion were not yet examined
explicitly. However our previous studies revealed that critical
regions such as the right FFA serve as a hub in the face network
when participants view an intact face but its connectivity is
disrupted by physically manipulating the face (e.g., 180 degree
rotation of the face32). Critically under such disrupted conditions,
additional regions (the right LOC, the right IPS and the right
inferior temporal cortices) become involved and take on the roles
of hubs in this modified network32. Similar findings are also
obtained when intact faces are perceived by individuals with
impaired congenital face processing abilities (congenital proso-
pagnosia—CP34). Hence, we predicted that a lesion to the right
FFA would simulate a disruption of the face network that mimics
conditions of impaired face perception and would consequently
affect the connectivity of the related hubs. Here we attempt to
simulate network modifications to the face system that may elicit
similar effects to those described above using an artificial lesion.

Employing the CE framework, it is feasible to estimate how a
lesion of the right FFA node, a major hub of the face network,
would causally affect the entirety of the brain network. A node
lesion is performed by setting all of its connections to zero. Using
a permutation test with 10,000 iterations (see methods for
details), we calculated differences between the pre-lesion and
post-lesion simulated functional connectivity. Following the
lesion, the functional connectivity of each edge could either
decrease (pre-lesion > post-lesion) or increase (post-lesion > pre-
lesion). Only simulated edge differences which were greater than
all 10,000 permutation differences were considered statistically
significant.

Dataset 1: The differences between the pre-lesioned and post-
lesioned predicted functional connectivity brain network were
quantified using a measure of node degree difference, which
captures the difference in the number of significant edges
attached to a node5. Following the lesion, the right lateral
occipital cortex (LOC) and the right inferior parietal sulcus (IPS)
nodes showed the highest increase in nodal degree (an increase of
27 and 9 edges, respectively). Conversely, the right LOC and right
inferior temporal cortex showed the highest decrease in nodal
degree as a result of the lesion (an increase of 20 and 17 edges,
respectively). Dataset 2: Following the lesion, the right lateral
occipital cortex (LOC) and the right inferior temporal cortex
nodes showed the highest increase in nodal degree (an increase of
20 and 14 edges, respectively). The inferior parietal cortex was
ranked 6th in terms of nodal degree. Conversely, the right LOC
and right parahippocampal area showed the highest decrease in
nodal degree as a result of the lesion (an increase of 36 and 15
edges, respectively), and the right inferior temporal cortex was
only ranked third (10 edges). These simulated results are
consistent with the hubs associated with CP but they are also
evident when manipulating the network using a behavioral face
inversion paradigm32, 34(Fig. 6).

Note, that the two datasets produced some minor differences in
the ranking of the nodes, which showed the highest increase in
nodal degree in both contrasts and in the specific affected edges.
Given that the two datasets are completely independent and have
distinct preprocessing pipelines, as well as different extracted
measures for structural connectivity (See Methods for details),
such differences in the observed findings are conceivable.

Relationship of embeddings and standard topological mea-
sures. As is evident, CE captures important topological infor-
mation. Nevertheless, to investigate whether there is a potential
relationship between CE and more standard lower-order
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Fig. 5 Prediction of resting state functional connectivity from structural
embbedings using deep learning. Green and red dots mark direct and
indirect edges respectively. A significant correlation between the empirical
functional connections and the predicted functional connections is apparent
when all connections are taken into account (rs= 0.6, p < 10−6), as well
within the direct (rs= 0.6, p < 10−6) and indirect connections separately (rs
= 0.52, p < 10−6)
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topological measures, the correlation between each dimension of
the CE and several topological measures was calculated across
nodes. Specifically, the Spearman’s correlation coefficient between
CE and measures of node centrality (degree, strength, eigenvector
centrality), a nodal measure of integration (betweenness cen-
trality) and a nodal measure of segregation (clustering coefficient)
was examined.

Of the measures tested, the eigenvector centrality showed the
highest magnitude of correlation to only 2 of the CE dimensions
(maximum Spearman’s correlation of ρ= 0.51, p < 10−6 and
minimum correlation of ρ=−0.57, p < 10−6). Nevertheless, the
correlation values between the CE elements and the graph

theoretical measures were low and followed no obvious pattern
(Fig. 7). The significant correlations seem sporadic and they do
not account for most of the variance associated with CE. This
suggests that CE captures network attributes beyond those
captured by more standard topological measures.

Discussion
The utilization of word embeddings techniques such as word2vec
for network science in general, and specifically in the context of
connectomics, holds great promise3, 35. In the current study we
demonstrated that CE representation encompasses high-level
topological information such as inter-hemispheric similarities.
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Moreover, CE was able to reveal, at levels superior to previous
methodology, the relationship and mutual prediction of func-
tional and structural connectivity, and was able to simulate the
effects of localized network lesions on the global pattern of
functional connectivity.

The integration of machine learning techniques with models of
brain networks is a relatively new domain and examples of suc-
cessful applications are still limited35. Previous studies have
mostly utilized embeddings as a dimensionality reduction step of
fMRI data for subsequent machine learning tasks such as classi-
fication of patients with schizophrenia36, depression37, Alzhei-
mer’s disease38 and multiple sclerosis39. Differences between
structural connectomes and deterioration of connectomes as a
result of edge deletion have previously been investigated using the
average similarity of heat diffusion40. However, the word2vec
family of models together with deep learning algorithms have not
yet been applied in the context of brain networks. Furthermore,
this study is the first to create a comprehensive machine-learning
framework which translates meaningful structural embeddings to
functional connectivity, giving rise to a novel predictive model of
how functional connectivity is affected by alterations of structural
elements which may become useful in the investigation of
abnormal brain networks.

To test whether CE vector representations reflect known
attributes of brain topology/topography and can be interpreted
and manipulated using linear operations, several benchmarks
were tested on two independent datasets. Critically, we performed
an extensive validation with a rigorously preprocessed subset of

the Human Connectome Project (100 subjects) and replicated the
main results. Note that due to technical differences in data
acquisition, the preprocessing pipeline, as well as the extracted
measure for structural connectivity were different between the
datasets which further strengthens the generalizability of our
approach and methods. The initial inter-hemispheric analogies
test demonstrated that CE vector representations capture the
known functional homotopy organizational principle11–14. As
predicted, the relation between most pairs of regions in one
hemisphere was analogous to the same pairwise relation in the
other hemisphere, with the CE approach exhibiting superior
performance over previous embedding techniques.

Next, we examined whether the correlation between CE and
the structural connectivity matrix reflects higher-order attributes
over and above the dyadic pattern of structural connections. This
indeed turned out to be the case as homotopic inter-hemispheric
connections were more prominent in the CE connectivity
reconstruction compared with the original structural connectivity
matrix, due to topological features which are captured by the
embedding such as homotopic inter-hemispheric connectivity.
Moreover, the CE matrices were more strongly correlated with
resting state functional connectivity than the original connectivity
matrix. Furthermore, a deep learning algorithm was utilized to
improve the mapping between CE and functional connectivity
utilizing CE representations. This mapping produced high cor-
relation coefficients between the predicted and empirical func-
tional connectivity values, both for direct, as well as in-direct
connections, which are more difficult to estimate41. The CE
approach outperformed previous models of structure-function
correspondences22, 28. Future studies may utilize the same pre-
dictive algorithm to predict missing structural connectivity in
species and modalities where only partial structural connectivity
data is available42.

To capitalize on the high predictive power of CE-functional
mapping, we tested whether it is possible to predict changes in
functional connectivity that result from changes in structure-
based connectome embeddings. Specifically, we used the face
network as a test-bed and simulated a structural lesion to the
right FFA, a well-documented hub of the face network31, 32. The
results of the simulation aligned well with empirical findings
exploring the face network. Hyper-connectivity in the right LOC,
inferior temporal cortex and IPS which was reported in previous
empirical studies32, 34, 43, was also predicted by our CE-based
model. In line with previous work44, 45, our findings suggest that
network-wide functional changes can result from a localized
manipulation such as the suppression of a single node.

Our results, along with the modeling framework, make a fur-
ther step towards the possibility of examining causality in the
context of structural and functional network alterations. The
same framework can be used to induce simulated lesions, over-
expression of nodes, edges, as well as entire sub-networks. Such
simulations might help to elucidate the structural basis for net-
work alterations which occur in neuro-developmental disorders
such as Autism Spectrum Disorder (ASD) in which hyper-
connectivity is apparent29, and developmental dyslexia and
acquired prosopagnosia where the left and right fusiform gyri are
focally implicated, respectively31, 46. Moreover, one may simulate
the changes in network topology observed in normal participants
under different cognitive and perceptual demands. For example, a
number of studies have demonstrated the complementary
extrinsic and intrinsic networks associated with external inputs
and intrinsically driven processing respectively.47.

The embedding algorithm (node2vec3) and the parameters
employed in the current study are not necessarily optimal, and
are subject to further improvement in future extensions of this
work. Our work suggests that CE provides a powerful approach
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< 10−10). Nevertheless, generally the correlation values between the CE
elements and the graph theoretical measures were low and followed no
obvious, meaningful pattern
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for exploring the higher-order network structure of connectome
data sets, with potential applications in modeling and comparing
individual differences in human connectomes across development
and in clinical conditions. Another future application is to use CE
to uncover relationships and homologies among brain archi-
tectures across species.

Methods
MRI Data. Datasets: The analyses were conducted on a dataset of 40 subjects
(Dataset 1) and validated on an independent dataset of 100 subjects (Dataset 2).

Dataset 1 (Lausanne). Prior to collection of MRI data, the project was submitted
for approval to the University of Lausanne Ethics Committee [Institutional Review
Board (IRB)]. The study protocol was approved by the local IRB and informed
written consent from each subject was obtained prior to study inclusion.

Forty healthy subjects (16 females; 25.3 ± 4.9 y old), with no relevant medical or
psychiatric history, underwent an MRI session on a 3 T Siemens Trio scanner with
a 32-channel head coil (previously reported on22, 48). T1 weighted magnetization-
prepared rapid acquisition with gradient echo (MPRAGE) sequence was 1-mm in-
plane resolution and 1.2-mm slice thickness. Diffusion Spectrum Imaging (DSI)49

included 128 diffusion weighted volumes+ 1 reference b0 volume, maximum b-
value 8000 s/mm2, 2.2 × 2.2 × 3.0 mm voxel size and with TR 6800 ms and TE 144
ms. BOLD contrast was recorded with a gradient echo EPI sequence of 3.3-mm in-
plane resolution and 3.3-mm slice thickness and with TR 1920 ms and TE 30 ms..
DSI, resting-state fMRI, and MPRAGE data were processed using the Connectome
Mapping Toolkit50

Segmentation of gray and white matter was based on MPRAGE volumes.
Cerebral cortex was parcellated into a set of 83 regions of the Desikan-Kiliany
atlas51, 52. Whole-brain streamline tractography was performed on reconstructed
DSI data53. During the resting-state fMRI acquisition, subjects were lying in the
scanner with eyes open for 9 min. Functional data preprocessing included motion
correction, white matter, cerebrospinal fluid, global and movement signals
regression, linear detrending, motion scrubbing, and low-pass filtering54, 55.
Average time series were computed for each cortical region and functional
connectivity was estimated as Pearson cross-correlation22.

Dataset 2 (Human Connectome Project; HCP). Prior to collection of MRI data,
the HCP scanning protocol was approved by the local Institutional Review Board at
Washington University in St. Louis and informed written consent from each
subject was obtained prior to study inclusion. Full details on the HCP dataset have
been published previously56–58. Out of the HCP 900 subjects data release, 100
hundred unrelated subjects were used for the analysis58. Individual structural and
functional connectomes were estimated following the same processing procedures
as detailed in Amico & Goni59.

Structural data: Very high-resolution acquisitions (1.25 mm isotropic) were
obtained by using a Stejskal–Tanner (monopolar) diffusion-encoding scheme.
Sampling in q-space was performed by including 3 shells at b= 1000, 2000, and
3000 s/mm2. For each shell corresponding to 90 diffusion gradient directions and 5
b= 0’s acquired twice were obtained, with the phase encoding direction reversed
for each pair (i.e., LR and RL pairs). Directions were optimized within and across
shells (i.e., staggered) to maximize angular coverage using the approach of Caruyer,
et al. (2011)60 (http://www-sop.inria.fr/members/Emmanuel.Caruyer/q-space-
sampling.php), and form a total of 270 non-collinear directions for each PE
direction. Correction for EPI and eddy-current-induced distortions in the diffusion
data was based on manipulation of the acquisitions so that a given distortion
manifests itself differently in different images61. To ensure better correspondence
between the phase-encoding reversed pairs, the whole set of diffusion-weighted
(DW) volumes is acquired in six separate series. These series were grouped into
three pairs, and within each pair the two series contained the same DW directions
but with reversed phase-encoding (i.e., a series of Mi DW volumes with RL phase-
encoding is followed by a series of Mi volumes with LR phase-encoding, i= [1–3]).

The HCP DWI data were processed following the MRtrix362 guidelines (http://
mrtrix.readthedocs.io/en/latest/tutorials/hcp_connectome.html). In summary, a
tissue-segmented image appropriate for anatomically constrained tractography was
generated (ACT63, MRtrix command 5ttgen); the multi-shell multi-tissue response
function was estimated (ref. 64, MRtrix command dwi2response msmt_5tt) and a
multi-shell, multi-tissue constrained spherical deconvolution was performed (ref.
65, MRtrix dwi2fod msmt_csd); afterwards, an initial tractogram was generated
(MRtrix command tckgen, 10 million streamlines, maximum tract length= 250
millimeters, FA cutoff= 0.06) and the successor of spherical-deconvolution
Informed Filtering of Tractograms (SIFT2,66) methodology (MRtrix command
tcksift2) was applied. Both SIFT67 and SIFT266 methods provides more biologically
meaningful estimates of structural connection density66. Finally, the SIFT2
outputed streamlines were parcellated into a set of 82 regions of the Desikan-
Kiliany atlas51, 52 (MRtrix command tck2connectome).

Functional data: The fMRI resting-state runs (HCP filenames: rfMRI_REST1
and rfMRI_REST2) were acquired in separate sessions on two different days, with
two different acquisitions (left to right or LR and right to left or RL) per day. For all
sessions, data from both the left-right (LR) and right-left (RL) phase-encoding runs
were used to calculate connectivity matrices56, 57.

The data was processed using the HCP functional pipeline56, 57. This pipeline
included artifact removal, motion correction and registration to standard space.
Full details on the pipeline can be found in56, 57. The main steps were: spatial
(minimal) pre-processing, in both volumetric and grayordinate forms (i.e., where
brain locations are stored as surface vertices57; weak highpass temporal filtering
(>2000s full width at half maximum) applied to both forms, achieving slow drift
removal. MELODIC ICA68 applied to volumetric data; artifact components
identified using FIX69. Artifacts and motion-related time courses were regressed
out (i.e., the 6 rigid-body parameter time-series, their backwards-looking temporal
derivatives, plus all 12 resulting regressors squared) of both volumetric and
grayordinate data57. Furthermore, global gray matter signal was regressed out of
the voxel time courses70; a bandpass first-order Butterworth filter in forward and
reverse directions [0.001 Hz, 0.08 Hz]70, 71 was applied (Matlab functions butter
and filtfilt); the voxel time courses were Z-scored and then averaged per brain
region of the 82 regions of the Desikan-Kiliany atlas51, 52, excluding outlier time
points outside of 3 standard deviation from the mean, using the workbench
software72 (workbench command-cifti-parcellate).

Pearson correlation coefficients between pairs of nodal time courses were
calculated (MATLAB command corr), resulting in a symmetric connectivity matrix
for each fMRI session of each subject. Finally, the mean connectivity matrix was
calculated for each subject across all 4 acquisitions.

For both of the datasets, the subsequent structural connectivity analyses and
modeling were carried out on a group consensus matrix, built by averaging over all
existing connections (expressed as fiber densities) that were present in at least 25%
of participants48. For the functional data, the consensus matrix was built from
averaging over all participants.

Word and network embedding. Word2vec mainly consists of two models; skip-
gram and the continuous bag of words (CBOW). Briefly, given a corpus of words w
and their context c, the goal is to maximize the conditional probability p(c|w; θ) in
the skip-gram model or p(w|c; θ) in the CBOWmodel by estimating the parameters
θ73. The produced parameters or vectors capture linguistic regularities and may be
the basis for various subsequent tasks7, 8.

The analog for context in the network domain are streams of randomly
generated walks in the network. The way the network sentences are generated
distinguishes between different approaches of network embeddings. One of the
recent implementation of network node embeddings is node2vec which controls
for the depth of the random walk using 2 parameters allowing for local or global
random walks which lead to different representation of the nodes (Fig. 1a-e)3.
Compared with unsupervised feature learning approaches, which utilize the
spectral properties of graphs, the node2vec model has been shown to have higher
predictive power across a range of subsequent supervised learning node
classification tasks and link prediction of edges3. Moreover, it has been shown that
similar network embeddings algorithms capture the k-step (k= 1, 2, 3,..) relation
between each vertex and its k-step neighbors in the graph while projecting all such
k-step relational information into a common subspace10.

We used Node2vec and underlying Gensim python package3, 74 to run the
CBOW node2vec algorithm 500 times on the structural connectivity matrix, as it
can produce different outcomes in each iteration. Each iteration consisted of 800
random walks with a length of 20 steps. The dimension of the embedded vectors
was set to 30 (the length of each vector which represents a node) and the window
size (the number of steps from each node) determining the context of each node,
was set to 3. Parameters of the algorithm were set to correspond to a localized
random walk (p= 0.1, q= 1.6). The walk probabilities were weighted according to
the weight of the connectome edges.

Deep learning better predicts functional connectivity. Previously, Grover and
Leskovec (2016) have shown that the Hadamard operation, the element-wise
multiplication between pair of vectors, was efficient for learning edge features
across various domains. The mapping between structural embedding and func-
tional connectivity can be learned in such a setting utilizing node-pairs repre-
sentations, while adopting a supervised learning cross validation scheme.
Specifically, the edges of the mean functional connectivity matrix were randomly
divided into training (75%) and testing sets (25%). A deep learning multi-layer
perceptron model, as implemented in Keras with a Tensorflow75, was used in
which the independent variables were defined as the Hadamard embbedings and
the dependent variable was defined as the functional connectivity. We first opti-
mized the architecture of the network using a cross validation grid-search over the
parameter space using only the training set. This yielded a 4 layer fully connected
network with 350 neurons in each layer, dropout rate of 0.1, rectified linear units
(RELU) activation function, batch size of 140, 170 epochs and Adam optimizer.

Prediction of functional outcome due to lesion. To test the effect of an artificial
lesion on the functional connectivity, we first constructed new 500 connectome
embbedings following a right FFA removal (post-lesion embeddings compared
with the original pre-lesion embeddings) as this is a major hub of the face
network31, 32. This was done by running the node2vec algorithm 500 times with
random initializations on the structural connectivity matrix after setting to 0 all of
the right FFA edges. As the embedded vector elements may change due to the
random weights initialization conditions (but the cosine similarity between vectors
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is stable), the learned mapping between the pre-lesioned embedding and the
functional connectivity mapping is not generalizable to embeddings of another
connectome. Therefore, we devised a training procedure whose goal is to learn a
mapping between the connectome embeddings to the functional connectivity that
is invariant to the weight initialization conditions. To this end, we implemented a
nested cross validation scheme in which the mapping between pre-lesion structural
embeddings and functional connectivity is trained across many random weights
initializations of the connectome embeddings using only a subset of the edges and
connectome embeddings to avoid overfitting the data. Specifically, the edges are
divided into 3 folds (sub groups) such that in each iteration, 2 folds are used for
training (2268 edges) and 1 fold is used for testing (1134 edges). Moreover, the 500
connectome embeddings are also split randomly 3 times with a training set of 90%
of the connectome embeddings (450 out of 500), and a testing set of 10% (50 out of
500). The predictions were always made on embedding vectors and edges which
were not in the training set. Furthermore, the training is conducted on the pre-
lesion connectome embeddings and the prediction is applied to the pre-lesion, as
well as to the post-lesion connectome embeddings.

Finally, a permutation resampling test was performed with 10,000 iterations to
compare each edge between the pre-lesion and the post-lesion connectome
predictions. Specifically, in each iteration the groups are randomly permuted and
the difference of each edge is calculated between the two groups, effectively forming
the null hypothesis that the groups are invariant under label permutation. Only
edges which had a mean difference greater than the permuted mean difference
(either for pre-lesion > post-lesion or post-lesion > pre-lesion) across all 10,000
iterations were considered significantly different.

Code availability. Code was written using standard python functions and freely
available packages (see connectome embedding implementation at https://github.
com/gidonro/Connectome-embeddings). The original node2vec implementation
can be found at https://github.com/aditya-grover/node2vec.

Data availability. Human Connectome dataset: Data were provided by the Human
Connectome Project, WU-Minn Consortium (Principal Investigators: David Van
Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and
Centers that support the NIH Blueprint for Neuroscience Research; and by the
McDonnell Center for Systems Neuroscience at Washington University (https://
doi.org/10.1038/nn.4361).

Lausanne dataset: The relevant data are available from the authors upon
reasonable request.
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