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Abstract 

The scientific foundation of forensic handwriting examination has been a subject of debate 
and controversy for many years. This is mainly attributable to the subjective approach adopted 
by experts who do not take advantage of modern computer-based techniques to support their 
decision-making. One reason for their reluctance is that computer-based systems focused on 
two-dimensional and static features remain vulnerable to skilled forgeries. This research aimed 
to overcome this limitation by enriching the features used by an offline recognition system. In 
addition to two-dimensional features, pseudo-dynamic three-dimensional information was 
included, measured using three-dimensional microscopy synchronized with white-light imaging. 
Three-dimensional and pseudo-dynamic features were acquired from a dataset comprising 
23,624 signatures. The sample comprised genuine signatures and a range of forgeries 
(freehand, random, or traced). For forensic purposes, score-based likelihood ratios were 
adopted to estimate the strength of handwriting evidence. The rates of misleading evidence 
were low enough (RMEP = 0, RMED = 0.0002) to warrant implementation in forensic 
laboratories. In addition, the testing of machine learning techniques demonstrated the feasibility 
and robustness of the system for commercial application and consideration of feature selection. 
For the most accurate classification algorithm, a precision of 99.91% is reported for an 
equivalent recall rate. 

 

Résumé 

Les fondements scientifiques de l'examen forensique de l'écriture manuscrite font l'objet de 
débats et de controverses depuis de nombreuses années. Cela est principalement dû à 
l'approche subjective adoptée par les experts qui ne tirent pas parti des techniques 
informatiques modernes pour assister leur prise de décision. L'une des raisons de leur 
réticence est que les systèmes informatiques axés sur des caractéristiques bidimensionnelles 
et statiques restent vulnérables aux contrefaçons. Cette recherche vise à surmonter cette 
limitation en enrichissant les caractéristiques utilisées par un système de reconnaissance. 
Outre les caractéristiques bidimensionnelles, des informations tridimensionnelles pseudo-
dynamiques ont été incluses, mesurées à l'aide d'une microscopie tridimensionnelle 
synchronisée avec l'imagerie obtenue en lumière blanche. Les caractéristiques 
tridimensionnelles et pseudo-dynamiques ont été acquises à partir d'un ensemble de données 
comprenant 23’624 signatures. L'échantillon comprenait des signatures authentiques et une 
série de contrefaçons (à main levée, sans modèle ou tracées). La mesure de rapports de 
vraisemblance basés sur des scores a été adoptéé pour estimer la force associées aux 
comparaisons. Les taux d’orientation fallacieuses sont suffisamment faibles (RMEP = 0, RMED 
= 0,0002) pour justifier une mise en œuvre dans les laboratoires de police scientifique. En outre, 
un test des techniques d'apprentissage automatique a démontré la faisabilité et la robustesse 
du système pour une application commerciale et la prise en compte de la sélection des 
caractéristiques. Pour l'algorithme de classification le plus précis, une précision de 99,91 % est 
rapportée pour un taux de rappel équivalent. 
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Glossary 
 
𝐶!!" Calibrated log likelihood ratio 

𝐶!!"#$% 𝐶!!"#$% represents the minimum possible value of 𝐶!!" that can be achieved by the optimally 
calibrated system. The smaller the 𝐶!!"#$%, the better the system. 

2D Two-dimensional 
3D Three-dimensional 
AER Average error rate 
APE Applied probability of error 
AvNN Averaged neural network 
CNAS China National Accreditation Service for Conformity Assessment 
DET Detection error trade-off 
DHM Digital holographic microscope 
DST Dempster–Shafer theory 
DTW Dynamic time warping 
ECE Empirical cross-entropy 
EER Equal error rate 
FAR False accept rate 
FF Freehand forgery (for a signature) 
FHE Forensic handwriting examiner 
FRR False reject rate 
GBM Gradient boosting machine 
GE Genuine (for a signature) 
KDE Kernel density estimation 
KNN K-nearest neighbour 
KST Kolmogorov–Smirnov Test 
LDA Linear discriminant analysis 
LR (LRs) Likelihood ratio (Likelihood ratios) 
LLR (LLRs) Log10 likelihood ratio (Log10 likelihood ratios) 
MANOVA Multivariate analysis of variance 
MDA Mixture discriminant analysis 
MKDE Multivariate kernel density estimation 
ML Machine learning 
MVKD Multivariate kernel density procedure 
MVN Multivariate normal 
NB Naïve Bayes 
NN Neural networks 
nnet Neural net 
PAVA Pool-adjacent violators algorithm 
PCA Principal component analysis 
pcaNNet Neural networks with PCA feature extraction 
PDE Probability density estimation 
PR Pattern recognition 
PT Proficiency test 
QDA Quadratic discriminant analysis 
RDA Regularized discriminant analysis 
RF Random forgery 
R-Forest Random forest 
RMED Rate of misleading evidence in favour of Hd 
RMEP Rate of misleading evidence in favour of Hp  
SigCom2011 Signature Verification Competition for Online and Offline Skilled Forgeries 
SVM Support vector machine 
TF Traced forgery 
WD Writer dependent 
WI Writer independent 
XGB_linear eXtreme gradient boosting based on linear model 
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Chapter 1 Introduction 
 

Handwriting identification is an important task in both forensic science and 
computer science. Today, forensic expertise still lies with forensic handwriting 
examiners (FHEs) who apply their observational skills and make decisions 
about authorship based on their training and experience. Meanwhile, computer-
based handwriting verification systems have yet to successfully make their way 
into forensic processes and are only used for civil biometric applications. 
Currently, computer-based recognition techniques and FHEs operate in silos, 
as if their recognition objectives were distinct. First, the two methods for 
measuring features are different. The computer community uses image-space 
domain or frequency domain measurements; FHEs visually and holistically 
identify features through observation and experience. Second, the features 
used by both communities are not the same, and their tools and methods are 
different. The computer community relies on systematic measures and 
statistical methods, while FHEs rely more on training and empirical judgment. 
In addition, the presentation of the output of their tasks is different; the computer 
science community generally gives a binary outcome (recognized or not), while 
FHEs need to convey their forensic results on a scale of evidential strength. 
Finally, the two groups have different value orientations regarding their tasks. 
The computer community pays more attention to the balance of system 
performance, cost, and efficiency, while FHEs will favour system performance. 

 
Meanwhile, debates over the validity and reliability of forensic handwriting 

examination and other forensic techniques have been ongoing for many years 
(e.g., Saks & Koehler, 2005; Saks, 2010; Saks, 1998). The basic tenets 
traditionally used to justify the variability and individuality of handwriting have 
been challenged and criticized, and there is limited supporting research. In a 
2009 report, the US National Research Council proposed that the scientific 
basis for handwriting comparison and assessment in forensic handwriting 
examination should be strengthened (NRC, 2009). While guidelines aiming to 
standardize FHE processes do exist (ASTM, 2007; De Baere et al., 2016; 
SAMR & SAC, 2018), the methods of forensic handwriting analysis still stand 
on weak foundations when it comes to relying on objective methods 
independent of the FHEs. According to this research, FHEs would benefit 
greatly from embracing computer-based methods. That said, current computer-
based handwritten signature verification systems, based on measurements of 
static (offline) two-dimensional (2D) images, are themselves vulnerable to 
skilled forgery (Soleimani, 2016). In addition, research in this area tends to 
focus on datasets that lack in size and diversity and does not cover all forensic 
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scenarios, especially when there is an allegation of forgery. Indeed, forgeries 
can be produced using different methods (e.g., tracing the forged entity through 
a translucent overlay placed on the genuine or a freehand simulation based on 
a study of an available model). 

 
These shortcomings have hindered the application of computer-based 

techniques to forensic handwriting examination. Studies have shown that offline 
signature verification2 is much more difficult than online signature verification. 
Indeed, EER ranges from 2% to 5% for online signature verification3 and from 
10% to 30% for offline verification systems (Mohammed et al., 2015). 

 
The computer science community treats handwriting as a 2D static image for 

offline verification. The three-dimensional (3D), dynamic nature of handwriting 
is often overlooked. However, handwriting is the product of a behavioural 
process; its morphology mainly depends on dynamic handwriting actions. Thus, 
handwriting is the trace of a dynamic writing action, rather than a static mark, 
that is left on paper by a writing instrument. At first glance, the depth of the 
indented trace does not seem distinctive in a 2D image, but, in reality, the depth 
allows for discrimination, as this research will show. Handwriting embeds 
dynamic and discriminant information in this third dimension. This research 
goes beyond the 2D, static measurements usually made of handwriting and 
embracing the new capabilities offered by 3D acquisition systems. In recent 
years, significant progress has been made in the application of 3D 
measurements to questioned document examination. Some researchers have 
reconstructed the indentation of handwriting on paper by means of laser 
holographic microscope to help establish stroke order (Spagnolo, 2006) or to 
help FHEs visually analyse handwriting strokes (Spagnolo et al., 2013). Based 
on such features, 3D measurement techniques should allow FHEs to better 
distinguish the handwriting of different writers. This research will show that 3D 
features offer increased discriminating power compared to 2D features, 
allowing FHEs to better distinguish genuine from forged entries. 

 
This research aims also to enrich the features used by an offline verification 

system in its applications to forensic science. This project takes advantage of 
dynamic time warping techniques to capture features while maintaining the 
writing sequence. We have qualified these additional features as “pseudo-
dynamic” because they are extracted while considering writing sequence. They 
are not extracted at the time of capture but acquired after the writing act from 

 
2 Offline signature verification is a process of verifying signatures using static images. 
3 Online signature verification systems is a process of verifying signatures using a digitizer to extract 
information, such as x, y coordinates, time, and pressure. 
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the image. These features are different from well-known dynamic features 
extracted from online handwriting but still reflect the writing sequence; these 
have been then called “pseudo-dynamic features”. 

 
In addition to 2D features, this work will add 3D information of a pseudo-

dynamic nature measured using 3D microscope synchronized with white-light 
imaging. Three-dimensional and pseudo-dynamic features were acquired from 
a dataset comprising 23,624 signatures. The sample includes genuine 
signatures and a range of forgeries (freehand, random, or traced). For forensic 
purposes, score-based likelihood ratios (LRs) were adopted to assess the 
strength of the signature evidence. This work aims to not only show the 
increased discriminating power obtained using these features but also position 
the discipline within a proper evaluative framework. 

 
The remainder of this thesis is organized as follows: 
 
In chapter 2: State of the Art, the status of research in both forensic 

handwriting examination and handwriting verification is summarized, focusing 
on signature databases, the quantitative measurement of handwriting features, 
and the assessment of handwriting verification systems. 

In chapter 3: Methods and Materials, Chinese signature databases, 
proficiency tests, and real forensic cases used in this study are introduced. 
Signature databases are used to train and validate the system, and proficiency 
tests and real forensic cases are used to test the system. The acquisition of 
data and reconstruction of 3D profiles of signatures is based on the use of digital 
holographic microscope and wide-area 3D measurement systems. Writing 
sequence tracing allows FHEs to extract 3D and pseudo-dynamic features from 
white-light and 3D images. Then, the LR approach is described. The application 
of machine learning (ML) techniques is presented because they will be used to 
assess the feasibility and robustness of these features for commercial 
applications that are deployed in traditional biometric verification systems. 
Finally, we describe the validation tests used to assess the performance and to 
identify the limits of the system. 

In chapter 4: Statistical Analysis, we will present statistical descriptions of the 
features (e.g., MVN, discriminant analysis, and probability density estimation) 
that are used to explain and illustrate between- and within-writer variations. The 
results of the application of two methods of likelihood ratio (LR) calculation, 
multivariate kernel density estimation (MKDE) and Dempster–Shafer theory 
(DST), are given. The results of 13 ML methods are presented. The comparison 
of these ML methods shows that random forest (R-Forest) is the most accurate 
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system; variable importance is also provided according to the R-Forest method. 
Performance evaluation is conducted on the MKDE and DST LR systems, and 
two calibrations — Pool-adjacent violators algorithm (PAVA) and logistic 
methods—are used to evaluate the performance of the systems. Finally, 
validation test results will show the performance of the system and will highlight 
the need to explore within-writer variations under different writing conditions. 

In chapter 5: Discussion and Perspective, the system of quantitative 
measurement, statistical analysis, and LR evaluation is discussed as a 
paradigm for both forensic handwriting examination and computer-based 
handwriting verification. In addition, the technical contributions of this research 
are summarised. The optimal algorithms of Dynamic time warping (DTW) are 
presented to demonstrate that optimisation is an open-ended question. 
Perspective is given for future research efforts. 

In chapter 6: Conclusion, a route is suggested for bringing forensic 
handwriting examination in line with a rigorous documented methodology, 
based on data and not only on the personal appraisal by FHEs. 

Four Chinese signature datasets from volunteers are used in this research: 
dataset_1, dataset_2, dataset_3, and dataset_4. Two papers (Chen X. 2015 
and Chen X. H. et al. 2018) included in the appendix are research outputs 
based on dataset_1 and dataset_2. Dataset_2 in Chen X. et al. (2018) that 
included 20 volunteers was an expanded version based the dataset_1 on Chen 
(2015). The core dataset (dataset_3) of this thesis is a new dataset including 
100 volunteers. In addition, dataset_4 including another 20 individuals was 
collected to identify the influence of signatures under different writing conditions 
to explore the limitation of this research. 
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Chapter 2 State of the Art 
 
Writer verification helps determine whether two handwriting samples were 

written by the same or by different writers. This is an important task in forensic 
handwriting examination. 

 
Disputed handwritten signatures often appear in civil or criminal cases and 

are submitted to forensic handwriting experts. This is also an active area in 
biometric research. Offline computer-based handwriting verification systems do 
have similar objectives. Handwritings, especially handwritten signatures, are 
used as behavioural biometric characteristics for security or authorization 
purposes (Bhattacharyya et al., 2009). This is mainly because signatures have 
been established as the most widespread means of personal authentication. 
Signatures are generally recognized as a legal means of authentication by 
administrative and financial institutions. Additionally, signature verification does 
not require any invasive measurements, and people are familiar with the use of 
signatures in their daily life (Impedovo & Pirlo, 2008). However, this verification 
task is still conducted manually by trained forensic handwriting examination. 
The state of practice and the increasing demand for objective and reproducible 
methods in HSV and forensic handwriting examination are reviewed below. 

2.1 Forensic handwriting examination 
Since the birth of writing, crimes involving handwriting have been 

commonplace, and handwriting identification (or examination) has also 
emerged as a field of expertise. In France, for example, Demelle’s treatise 
dates back to 1604 (Demelle, 1604). In China, the earliest handwriting case 
dates back to 119 (Chen, 280). Today, forensic handwriting examination 
remains an active speciality of forensic science. Forensic handwriting 
examiners usually provide evidence relating to the identity of the author of a 
disputed handwriting and signature. A protocol named ACE was introduced by 
Huber (1959; 1972) to describe the process underlying handwriting 
identification: first, analysis (A) of reproductible and discriminating elements 
both on questioned and reference samples; then, the comparison (C) of the 
known discriminating elements with the unknown; finally, the evaluation (E) of 
the similarities or differences in discriminating elements (Harralson & Miller, 
2017). The comparative examination of handwriting emphasizes the need to 
consider all of the characteristics of the handwriting in question and to use logic 
and sound reasoning when drawing conclusions. Simply adding the similarities 
and differences does not necessarily lead to a suitable result. On the contrary, 
it is important to consider holistically variables, such as the writer’s age, health, 
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signature style, and other external factors (Bisesi, 2006). Allen (2018, p. 55) 
described the scientific method of the discipline as follows: 

 
To conclude that two writings were made by one person, it would be 
necessary to show that no other explanation is possible. The hypothesis 
that two writings are by one person must be tested by observation of the 
writings and by reference to the resemblances and variations found within 
and between those of members of the relevant population. It is not 
sufficient to note that the writings are similar, assume that everyone 
writes differently, and therefore conclude that they were written by one 
person. To do this is to ignore the possibilities of coincidence and of 
simulation. Only when the findings have been assessed against all the 
possible alternative hypotheses and these have been ruled out as 
practically impossible would the conclusion be justified. This is the 
fundamental principle for the reaching of conclusions for questioned 
handwriting; the same principle applies throughout forensic science. 
 
The conventional forensic handwriting practice has established a basic 

theoretical system for handwriting comparison and has played an important role 
in judicial disputes. A process map of forensic handwriting is shown in Figure 
1.4

 
4 In the original text, the resolution of the image is so low that the details are not legible. Thanks to Linton 
A. Mohammed for the original graphic. 
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Figure 1: Handwriting examination process map (Figure 1.1 in Taylor et al., 2020) 
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Figure 1 (continued): Handwriting examination process map (Figure 1.1 in Taylor et al., 2020) 
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The process map is essentially descriptive but captures the various steps of 
the examination distinguishing Analysis, Comparison, Evaluation, and 
Verification (ACE-V). To establish and maintain working practices in the field of 
forensic handwriting examination that will deliver reliable results, maximize the 
quality of the information, and produce robust evidence, technical standards 
have been proposed. For example, the Scientific Working Group for Forensic 
Document Examination (SWGDOC) provides a standard of forensic 
handwriting examination procedures that should be used by forensic document 
examiners for examinations and comparisons (SWGDOC, 2013). The 
European Network of Forensic Science Institutes (ENFSI) provides a 
framework of procedures, quality principles, training processes, and 
approaches to the forensic examination of handwriting (ENFSI, 2018). A 
specification for forensic identification of handwriting was released by the State 
Administration for Market Regulation (SAMR) and Standardization 
Administration of the People’s Republic of China (SAC) in 2018 (SAMR & SAC, 
2018). This standard specifies the terms and definitions of handwriting 
identification, the classification of handwriting features, the steps and methods 
of handwriting examination, the production of handwriting feature comparison 
tables, the technical points of abnormal handwriting examination, and signature 
handwriting examination. In addition, the document suggests the types, basis, 
and expressions of expert opinions. Note that these guidelines and standards 
are descriptive in nature and set a common language and procedure to conduct 
handwriting examination. When it comes to how experts come to a specified 
conclusion, the documents leave that task entirely to the training and 
experience of the FHEs. 

 
Studies have shown that trained FHEs perform significantly better than lay 

people in the analysis, comparison, and evaluation of handwriting (e.g., Bird et 
al., 2010b). Conscious that leaving the assessment to FHEs is hampering the 
transparency of the examination process, research to demonstrate that FHEs 
outperform novices (or laypersons) was key in helping the field to gain 
admissibility in court. A recent paper deals with experts in South Korea (Kang 
et al., 2022) and shows that the holistic approach brings added value to the 
decision maker, above what could be expected from a layperson. But the 
detailed inferential process remains obscure and does not rely on any 
systematic, quantitative measures, nor statistical analysis. Some authors also 
have highlighted that the difference between experts and novices is modest 
(Martire et al. 2018). In addition, it is well-documented that cognitive bias can 
negatively affect the decision-making (for a review, see Li & Ma, 2018). As 
highlighted by Sulner (2018), the “problems associated with the reliability of 
handwriting identification opinion evidence […] still prevail.” 
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There is a growing body of research in forensic science on the application of 
quantitative extraction methods to handwriting features (Marquis et al., 2005; 
Marquis et al., 2006; Marquis et al., 2011a; Marquis et al., 2011b; Ling, 2002; 
Found et al., 1994) and on statistical methods for forensic handwriting 
examination assessment (Taroni et al., 2014; Taroni et al., 2012; Bozza et al., 
2008; Hepler et al., 2012; Johnson & Ommen, 2021; Crawford et al. 2021). 
These efforts aim at reducing the subjective aspect of forensic handwriting 
examination or at least providing an objective mechanism to support them. 
Almost all research focuses on the measurement of 2D static images on paper. 
However, 2D systems are vulnerable to skilled forgeries. Because of the 
influence of subjective factors (e.g., intention to disguise or simulate), writing 
conditions (e.g., writing instrument, carrier, cushion, posture), physiological 
factors (e.g., alcohol, drugs, pathology, age), writing time, and other factors, 
signature handwriting can reflect complex between- and within-individual 
variations. The actual written utterance may be the result of a combination of 
multiple factors, and the degree of complexity should not be underestimated. 
Given the lack of sufficient diversity in databases used on systematic research, 
although there are many methods for solving the problem of individual 
identification in certain situations, there is still no method that can systematically 
solve all problems of signature handwriting verification. Handwriting verification 
systems fail to reach commercial application, unlike facial verification or 
fingerprints, reflecting the significant gap between practical application and 
theoretical research. 

 
The reliability of forensic handwriting examination has been debated for 

decades. Courts assess expertise by looking for indices of validity. We will focus 
for illustrative proposes on the US judicial practice. In Frye v. United States [293 
F. 1013 (D.C. Cir. 1923)], the federal appellate court noted that: 

 
Somewhere in this twilight zone the evidential force of the principle must 
be recognized, and while courts will go a long way in admitting expert 
testimony deduced from a well-recognized scientific principle or discovery, 
the thing from which the deduction is made must be sufficiently 
established to have gained general acceptance in the particular field in 
which it belongs. 
 
For sixty years, the Frye test had become the dominant expert evidence filter 

used in American courts. In 1993, in Daubert v. Merrell Dow Pharmaceuticals 
(509 U.S. 579 (1993)), the US Supreme Court cited Frye v. United States, 54 
App. D.C. 46,47,293 F. 1013, 1014, affirming that expert opinion based on a 
scientific technique is inadmissible unless the technique is “generally accepted” 
as reliable in the relevant scientific community (as in Frye). In addition, however, 
the US Supreme Court introduced additional factors to help judges decide on 
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admissibility (Table 1: Factors from the Daubert decision (TABLE 1 in Grivas et 
al., 2008). Under Daubert, proffered scientific testimony must be shown to stand 
on a defendable foundation. Judges had an additional duty to act as 
gatekeepers in deciding the admissibility of scientific expert witness testimony 
(Grivas et al., 2008). 

 
Table 1: Factors from the Daubert decision (TABLE 1 in Grivas et al., 2008) 

The content of testimony must 
1. Be testable and have been tested through the scientific method; 
2. Have been subject to peer review; 
3. Have established standards; 
4. Have a known or potential error rate; 
5. Have widespread acceptance by the relevant scientific community. 

 
Conversely, a second decision in relation to handwriting evidence, United 

States v. Starzecpyzel (880 F. Supp. 1027 (S.D.N.Y. 1995)), offered an early 
indication of how Daubert could change judicial views, complicating the debate 
over the admissibility of expert handwriting testimony. In this case, FHEs’ 
expertise was described as ‘not properly characterized as scientific, but as 
practical in character’. The court, therefore, placed forensic document expertise 
under the category of “technical, or other specialized knowledge”, which was 
apparently not covered by Daubert. This case represented an 
acknowledgement by the court that science is too complex to evaluate using a 
single set of standards (Kumho Tire Company, Ltd. v. Carmichael, 526 US 137., 
1999, Haack S., 2005) (Table 2: Factors from the Kumho decision (TABLE 2 in 
Grivas et al., 2008). 

 
Table 2: Factors from the Kumho decision (TABLE 2 in Grivas et al., 2008) 

1. Expert witnesses can develop theories based on their observation and experience and 
then apply those theories to the case before the court. 
2. All forms of expert witness testimony should be evaluated with the same level of rigor. 
3. The Daubert standards are flexible guidelines that may not be applicable in every instance 
of expert witness testimony. 
 
Saks et al. (2005) commented as follows: 
 
Ironically, then, fields that initially gained entry to the courts by declaring 
themselves to be ‘sciences’ now sought to remain in court by denying any 
connection with scientific methods, data, or principles’ (Saks et al., 2005, 
p. 684). 
 
The Kumho decision led to the consideration of handwriting examination as 

a technical skill but one that ought to be assessed in light of the Daubert factors. 
It is fair to say that the essential methods of forensic handwriting stand on a 
weak foundation regarding objective methods. Forensic handwriting 
examination mainly depends on the expert’s experience. Due to a lack of 
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systematic measures and quantitative methods, it is difficult to ensure that each 
trainee will gain sufficient knowledge of the corresponding skills during the 
training process. As a result, it is not uncommon for different experts to have 
conflicting opinions about the same handwriting comparison (Bird et al., 2010a). 

2.2 Offline handwriting verification 
Generally, biometric systems (Bhattacharyya et al., 2009; Yager et al., 2010) 

can be divided into two types. This first rests on behavioural biometrics, in which 
users perform certain actions for data acquisition (e.g., speech, signature 
verification, and keystroke dynamics). The second rests on physiological 
biometrics, in which users do not need to perform any actions since the system 
derives data from the direct measurement of parts of the body, such as 
fingerprints, palm prints, or irises. Handwritten signature verification (HSV) is a 
behavioural biometric technique. HSV systems can be divided into two main 
types: online signature verification and offline signature verification. Offline 
handwritten signature systems deal with static images, whereas online 
handwritten signature systems deal with data obtained from acquisition 
hardware. In general, HSV systems comprise six main stages to complete their 
task: data acquisition, pre-processing, feature extraction and selection, 
comparison, verification, and performance evaluation. For related studies using 
the three most common datasets, we refer to Tables 3 to 5. According to 
whether or not the system depends on the writer, HSV can be divided into 
Writer-dependent (WD) and Writer-independent (WI) systems. In other words, 
WI systems do not need the signature dataset of the writer who was suspected 
of writing the signature in question. Conversely, WD systems do require the 
signature dataset from the writer in question. WD and WI are quite similar to 
“inner-individual” and “inter-individual,” respectively, terms that we will use in 
this research (see Section 3.6.3). 

 
Table 3: Related studies using MYCT signature dataset 

Feature Classifier Type* Performance Related research 

Operates a family of six 

groups of grids lattices 

(GoGs) 

SVM WD EER=4.01 Zois et al. (2016) 

Textual features SVM WD EER=9.12 Diaz et al. (2016a) 

Texture features SVM WD EER=6.10 Bhunia et al. (2019) 

Sparse representation 

techniques 

SVM WD EER=1.37 Zois et al. (2019) 

Structural and 

directional features 

RNN WD EER=0.01 Ghosh (2021) 

* WD means writer dependent; WI means writer independent. 
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Table 4: Related studies using GPDS960 signature dataset 

Feature Classifier Type* Performance Related research 

Curvelet transform features OC-SVM WI EER=15.07 Guerbai et al. (2015) 

Deep CNN features SVM WD EER=10.70 Hafemann et al. (2016) 

Operates a family of six groups 

of grids lattices (GoGs) 
SVM WD EER=3.24 Zois et al. (2016) 

Textual features SVM WD EER=14.58 Diaz et al. (2016a) 

Deep CNN features SVM WD EER=1.72 Hafemann et al. (2017) 

Deep CNN features SVM WD EER=0.41 Hafemann et al. (2018) 

Sparse representation 

techniques 
SVM WD EER=0.70 Zois et al. (2019) 

Structural and directional 

features 
RNN WD EER=1.46 Ghosh (2021) 

* WD means writer dependent; WI means writer independent. 

 
 

Table 5: Related studies using CEDAR signature dataset 

Feature Classifier Type* Performance Related research 
Global, statistic Naïve Bayes WD AER=23.5 

Srihari et al. (2004) 
Distance statistics 

Geometrical and 

Topologic 
WD AER=21.7 

Surroundedness Neural network WI AER=8.33 Kumar et al. (2012) 

Curvelet transform OC-SVM WI AER=5.6 Guerbai et al. (2015) 

Directional Code Co-

occurrence matrix 

(DCCM) feature 

generation method 

Feature Dissimilarity 

Measures (FDM) 
WI AER=2.63 Hamadene & Chibani (2016) 

Operates a family of 

six groups of grids 

lattices (GoGs) 

SVM WD 
EER=3.02 

AER=2.74 
Zois et al. (2016) 

KAZE features SVM WI EER=1.6 Okawa (2016) 

Geometrical features 

+ Genetic Algorithm 
SVM WD AER=4.67 Sharif et al. (2018) 

Texture features SVM WD EER=1.64 Bhunia et al. (2019) 

Texture features Capsule Network WD Accuracy=98.8 Gumusbas & Yildirim (2019) 

Sparse 

representation 

techniques 

SVM WD EER=0.79 Zois et al. (2019) 

Structural and 

directional 

features 

RNN WD EER=0.01 Ghosh (2021) 

* WD means writer dependent; WI means writer independent. 



Xiaohong Chen            Forensic Offline Signature Handwriting Examination Based on 
                                    Three-dimensional and Pseudo-dynamic features 

6 
 

Recently, there has been remarkable progress in quantitative measurement 
and pattern recognition. Could such advances provide a solution for 
strengthening the basis of handwriting comparison and assessment in forensic 
handwriting examination? HSV systems have a higher error rate than other 
biometric systems (Taherzadeh et al., 2011). Furthermore, HSV systems based 
on the measurement of 2D images are vulnerable to forgery (Fierrez et al., 
2008). Such limitations have hindered the application of HSV. However, HSV 
presents a promising area for quantitative feature measurement and statistical 
assessment in forensic handwriting examination. Nevertheless, a gap still exists 
between signature verification methods and the requirements for their 
application in forensic science. There is indeed a need for training data and 
pattern recognition (PR) systems that are compatible with the forensic 
requirements. Current PR output reporting schemes do not fit the needs of 
forensic science (Malik, 2015). The underlying issue is that most state-of-the-
art handwriting/signature analysis systems cannot be directly applied to 
forensic cases. The gap between FHEs and the PR community is summarized 
in Table 6. 

 
Table 6: Gap between FHEs and the PR community 

Lack of common terminology In the PR community, different names are often used 
for the same forgery type, and sometimes the same 
name is used to refer to different types of forgeries 
(Malik, 2015). 

Non-representative and non-diverse 
databases 

Systems trained on databases collected in 
controlled environments are not well suited to 
forensic applications (Malik, 2015). 

Result interpretation The binary output provided by a PR system is not 
acceptable as a presentation method in courts. In 
general, the PR community has not adopted LRs. 
(Found & Rogers, 2003; Malik, 2015). 

Performance evaluation Log-likelihood-ratio cost (Cllr) is used to measure 
the validity and reliability of forensic likelihood-ratio 
systems, which has gained little attention in the PR 
community (Morrison, 2011). 

 
In the case of Chinese signature verification, the process might be much 

more difficult than is the case for Western-language signatures. For instance, 
two offline signature datasets were collected in the context of the Signature 
Verification Competition for Online and Offline Skilled Forgeries (SigComp2011; 
Liwiki et al., 2011): a Chinese dataset and a Dutch dataset. The performance 
results (accuracy) of offline signature verification systems for Dutch signatures 
ranged from 72.02% to 97.67%. For Chinese signatures, the accuracy was 
lower, ranging from 51.95% to 80.04%. These results for Chinese signatures 
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were not nearly as good as results presented in the literature reporting 
accuracies ranging from 91% to 98.5% (Pal et al., 2011). 

 
In forensic practice, several PR systems have been developed, aiming to 

integrate FHE knowledge into interactive computerized solutions, where a 
subset of features employed by experts are assessed using algorithms. Such 
projects include Trigraph (Niels et al., 2005), Wanda (Franke et al., 2004), 
CEDAR-FOX (Srihari et al., 2007), and the well-known Forensic Information 
System for Handwriting (FISH) (Hecker, 1993). Meanwhile, the use of these PR 
systems is very limited in FHEs’ daily work. For instance, CEDAR-FOX has 
proven successful in narrowing down lists of candidates in a database 
comparison. However, these are only as good as their databases allow and 
might not consider handwriting simulations and forgeries (Ellen et al., 2018). A 
recent research study examined the relationship between two systems: an 
automated handwriting/black box system (FLASH ID; Miller et al. 2017) and a 
system (MovAlyzeR5). The former uses measurements extracted from a static 
image of handwriting, the later captures kinematic features from pen strokes. 
The comparison between these two systems validated biometric matching 
algorithms in FLASH ID (Fuglsby et al., 2021). FLASH ID (handwriting 
biometric)6 is similar to CEDAR-FOX and Wanda, and it strives to promote the 
application of computer graphics image processing and ML technology in the 
field of forensic handwriting identification. Such a system may be capable of 
solving the verification of one or some single types of handwriting, but it lacks 
sufficient understanding of the complex situations faced by forensic handwriting 
identification (e.g., various ways of simulated handwriting, disguised 
handwriting, and handwriting under different writing conditions). By perfecting 
the system and making it truly suitable for the practice of handwriting 
examination, FLASH ID may be like Cedar-Fox and Wanda, the certification 
and application in forensic handwriting examination is limited. 

2.3 Signature databases 
To train classifiers and test the performance of verification systems, various 

handwriting datasets are available for handwriting verification research. Only a 
few, however, provide forensic relevant signatures for training and testing. 
Three databases (GPDS, MCYT, and CEDAR) are often used in offline 
signature verification research 7  (Table 7). The GPDS synthetic signature 
database is the largest; it is not made up of real signatures but of synthetic ones. 
Since the scientific soundness of the synthetic generation algorithm is not clear, 
synthetic signature databases should be distinguished from real ones. 

 
5 www.neuroscript.net 
6 https://www.sciometrics.com/flashid.html  
7 https://gpds.ulpgc.es/ and http://atvs.ii.uam.es/atvs/databases.jsp 
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Table 7: GPDS, MCYT, and CEDAR signature databases 

DATABASE 
Number 
of writers 

Number of signatures 
per writer Total mount 

GPDS Synthetic Duplicator 
Engine for Static Signatures 

(Diaz et al., 2016a; Diaz et al., 
2016b) 

75 
(13 or 10 genuine+15 

forged)*20 
>37,500 

100 
(22 or 19 genuine+10 

forged)*20 
>58,000 

100 
(22 or 19 genuine+10 

forged)*20 
>58,000 

GPDS Bengali and Devanagari 
Synthetic Signature Databases 

(Diaz et al., 2016c; Ferrer et 
al., 2017) 

100 
(12 genuine+10 
forged)*3 forged 

(different model pens) 
5,400 

GPDS Synthetic OnLine and 
OffLine Signature Database 

(Ferrer et al., 2016) 
10,000 

24 genuine+30 forged 
(different model pens) 

540,000 

GPDS Synthetic Signature 
Database 

(Ferrer et al., 2014) 
4000 

24 genuine+30 forged 
(10 forged) 

216,000 

GPDS960 signature database 
(Blumenstein et al., 2010) 

960 
24 genuine+30 skilled 

forgeries 
(10 forged) 

51,840 

MCYT BiosecurID-SONOF DB 
(Galbally et al., 2015; Fierrez et 

al., 2010) 
132 

16 genuine+12 skilled 
forgeries 

1,584 

MCYT Bimodal Biometric 
Database (MCYT-
SignatureOff-75) 

(Fierrez-Aguilar et al., 2004) 

75 
15 genuine+15 forged 

(3 forged) 
2,250 

 
The GPDS960 signature database (Ferrer, 2012) is no longer available 

because of the General Data Protection Regulation (EU) 2016/679 (‘GDPR’). 
To comply with GDPR and increase data collection, GPDS provides synthetic 
signatures in recent signature datasets; that is, a synthesis algorithm generates 
new samples from those of an existing user. Two synthetic signature datasets—
the Dual Offline and Online Databases of Bengali and Devanagari Signatures—
contain data from 100 synthetic individuals: 24 genuine signatures for each 
individual; all of the static signatures are generated with different pens. 
Synthetic users in the GPDS synthetic signature database are generated 
following the procedure described in Ferrer et al. (2015). The GPDS Synthetic 
OnLine and OffLine signature database contains data from 10,000 synthetic 
individuals: 24 genuine signatures for each individual, plus 30 forgeries of 
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his/her signature. All of the static signatures are generated with different pens. 
The synthetic users in this database were generated following procedures 
described in Ferrer et al. (2014), Diaz et al. (2016c), Galbally et al. (2012a), and 
Galbally et al. (2012b). Offline synthetic signatures are shown in Figure 2. 
 

 
Figure 2: Six possible synthetic identities with three genuine specimens (first three columns) 
and three possible forged signatures (last three columns). The first four signatures are 
composed of test plus flourish, the fifth example has only text, and the sixth is a simple flourish 
(Figure 11 in Ferrer et al., 2014). 
 

Though the authors of this study claim that these synthetic databases show 
a remarkably high degree of similarity with real databases, several researchers 
note the following limitations: “a common pitfall is to underestimate the data 
scientist’s influence during the generation process on the resulting intrinsic 
properties of the generated synthetic data”; this is because ‘datasets need to 
be transformed by numerous pre-processing and configuration procedures to 
make them accessible to generative models. During these preparatory steps, 
our assumptions about the data play a fundamental role’ (Robin, 2019). Another 
comment was as follows: 

 
Synthetic data-generation methods score very high on cost-
effectiveness, privacy, enhanced security and data augmentation, to 
name a few measures. However, they come with their own limitations, 
too. While synthetic data can mimic many properties of real data, by 
their very design the synthetic data-generation models we have 
discussed do not recreate the original data exactly. So, any analysis 
on synthetic data needs to be verified on the real data set. Synthetic 
data-generative models look for common trends in the real data when 
creating synthetic data but may not capture any anomalies present in 
the real data. In some instances, this may not be a critical issue. 
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However, in other scenarios, it will severely limit the capabilities of 
the model and negatively impact the output accuracy (Joshi, 2019). 

 
When it comes to synthesizing biometric samples, the premise is that the 

model of this biometric trait, such as a DNA profile, which has a clear biological 
model, or a human face sample, which has a defined geometry model, ought to 
be known. However, the model for signature handwriting features is not yet fully 
defined. Therefore, synthetic signature handwriting databases lack adequate 
theoretical support and practical verification. Hence, in forensic research, such 
synthetic databases need to be treated with caution. The signature synthesis 
method is essentially a means of forging, and the synthetic signature is nothing 
other than a forged signature. Thus, there is a paradox if the intention is to use 
a forged signature as a true signature to train a model that can recognize a 
forged signature. 

 
There have been signature competitions intended to reduce the gap between 

forensic handwriting examination by FHEs and PR by computer scientists. Such 
efforts reveal aspects of practical cases of forensic handwriting examination. 
For computer scientists, the signature in forensic practice is much more 
complicated than any signature datasets used in PR. The signatures datasets 
used in research were indeed never designed to cover the types of signatures 
encountered in forensic casework. Genuine signatures, disguised forgeries, 
random forgeries, simulated forgeries, and skilled forgeries are absent. In 
addition, likelihood ratio based probabilistic evaluation is becoming more widely 
used in forensic science (Morrison & Enzinger, 2018; Jacquet & Champod, 
2020) including areas such as handwriting (Hepler et al., 2012), signatures 
(Chen et al., 2018), forensic MDMA comparison (Bolck et al., 2015), fingerprints 
(Egli et al., 2007; Gonzalez-Rodriguez et al., 2005; Leegwater et al., 2017), 
speech recognition (Gonzalez-Rodriguez et al., 2006; Brümmer & Du Preez, 
2006; Morrison, 2011), and marks left on gun cartridges (Riva, 2011; Riva & 
Champod, 2014; Riva et al., 2017). Yet, in the field of computer science, 
attention is rarely paid to the probabilistic interpretation and the assessment of 
the weight of forensic findings. Meanwhile, for FHEs, computer-based 
quantitative measurement and analysis could be a possible avenue for making 
forensic handwriting examination more robust and transparent, considering that 
current methods are still in need of improvement. 

 
There have been forensic signature competitions using collected signature 

datasets (Blankers et al., 2009; Liwiki et al., 2010; Liwiki et al., 2011; Liwiki et 
al., 2012; Malik et al., 2013; Malik et al., 2015) (Table 8). Typically, there are no 
more than 100 writers and 64 forgers. The largest dataset had 5108 signatures. 
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Table 8: Forensic signature competitions 

Dataset 

Training dataset Testing dataset 

Language Writers 
Genuine 

signatures 
Disguised 
signatures Forgers  Forgeries Writers 

Genuine 
signatures  

Disguised 
signatures Forgers Forgeries 

SigComp2009 
(Blankers et al., 

2009) 
Dutch 12 60 0 31 1860 100 1200 0 33 792 

4NSigComp2010 
 (Liwiki et al., 2010)  English 1 85 20 27 104 1 28 7 34 90 

SigComp2011 
 (Liwiki et al., 2011)  

Chinese 10 235 0 / 340 10 116 0 / 367 

Dutch 10 240 0 / 123 54 648 0 / 638 
4NSigcomp2012 

 (Liwiki et al., 2012)  English 2 113 27 61 194 3 30–63 45–90 2–31 70–775 

SigWiComp2013 
 (Malik et al., 2013)  

Japanese 11 462 0 4 396 20 840 0 4 720 

Dutch 66 1356 0 >64 2508 27 270 0 9 974 

SigWiComp2015 
(Malik et al., 2015) 

Italian 50 250 0 0 0 50 229 0 / 249 

Bengali 10 120 0 0 0 10 120 0 / 300 
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There are various metrics that can help measure the performance of 
biometric (and forensic) systems (Bhattacharyya et al., 2009; Meuwly & 
Haraksim, 2017; Naika, 2018) (Table 9). We will refer to these metrics in the 
next description of system performance in Section 3.6.3. 

 
Table 9: Metrics used to measure the performance of biometric authentication systems 

Factors of evaluation Description 

False accept rate 
(FAR) 

Probability that the system incorrectly declares a successful match 
between the input pattern and a non-matching pattern in the database 

False reject rate 
(FRR) 

Probability that the system incorrectly declares a failure of match 
between the input pattern and the matching template in the database 

Equal error rate 
(EER) 

Rates at which both accept and reject errors are equal. This 
corresponds to the threshold value where the false acceptance rate 
and false rejection are same. 

Accuracy Percentage of correct decisions with respect to all questioned patterns. 

𝐶!!" 

Measure of log-likelihood ratio, which can properly evaluate the 
discrimination of all log-likelihood ratio cores. This also evaluates the 
quality of the calibration. Log-likelihood-ratio cost (Cllr) is proposed as 
a metric of accuracy related to the average cost of the LR method 
used. 

𝐶!!"#$% 
𝐶!!"#$% represents the minimum possible value of 𝐶!!" that can be 
achieved by an optimally calibrated system. The smaller the 𝐶!!"#$%, the 
better the indication of the system. 

 
The results of these offline forensic signature competitions show that the 

performance of verification systems is much lower than what has been reported 
in the literature (Table 10). This indicates that research on forensic signature 
verification is not at the stage of meeting practical forensic requirements. Such 
requirements include the stable and accurate verification of signatures under 
actual forensic conditions, including different writing conditions or different 
subjective intentions (disguise, simulation). The stability and repeatability of the 
methods still need to be verified. Researchers need to make more effort toward 
finding methods that meet these requirements for forensic handwriting 
examination (see Table 11). 
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Table 10: Results of offline forensic signature competitions 

Dataset Language EER (%) Accuracy (%) FRR FAR 𝐶!!" 𝐶!!"#$% 

SigComp2009 
(Blankers et al., 2009) 

Dutch 9.15–43.02 / / / / / 

4NSigComp2010 
(Liwiki et al., 2010) 

English 55–80 20–92 0–87.0 10–90 / / 

SigComp2011 
(Liwiki et al., 2011) 

Chinese / 51.95–80.04 21.01–50.00 19.62–47.41 0.76–6.23 0.69–0.95 

Dutch / 71.02–97.67 2.47–29.17 2.19–28.79 0.42–4.13 0.08–0.79 

4NSigcomp2012 
(Liwiki et al., 2012) 

English / 27.98–86.79 13.27–68.14 13.19–73.63 0.50–6.49 0.36–0.77 

SigWiComp2013 
(Malik et al., 2013) 

Japanese / 66.67–90.72 9.74–33.33 9.72–33.33 0.79–4.69 0.40–0.78 

Dutch / 67.90–76.83 23.70–31.11 23.10–32.14 0.88–3.94 0.64–0.86 

SigWiComp2015 
(Malik et al., 2015) 

Italian / / / / 0.66–13.11 0.02–0.99 

Bengali / / / / 0.69–2.84 0.04–0.98 
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Table 11: Requirements for forensic handwriting examination 
Item Requirement 

Signature Actual types (genuine, disguise and forgery), under different writing 
conditions (writing instruments, surface, position, and more) 

Method Quantitative measurement, features and distribution visualization that is 
compatible with or supplies supplement for FHEs’ examination. 

Result format LR 
Performance Stable and accurate 
 
The concept of “forgery” as referred to in the forensic literature requires 

clarification. As Harralson and Miller described, “forgery” is used to represent 
“simulation” in handwriting (Harralson & Miller, 2017). For others, the word 
“forgery” implies intent to deceive and is best avoided when describing 
simulated writings (Ellen et al., 2018). Ellen et al. also distinguished some types 
of simulations, such as freehand simulation, slowly made simulation, poorly 
made simulation, rapidly made simulation, and traced simulation. In addition, 
more general forgeries may refer to nongenuine handwriting, regardless of 
whether or not imitation is intentional (Nguyen et al., 2007; see Figure 3). In this 
research, according to forensic practice, we selected all the types of forgeries 
detailed except the case in which the forged signature is produced without 
knowledge of the genuine writer’s name (random forgery with name unknown). 
The signature dataset in this research is fully presented in Section 3.1. 

 

 
Figure 3: Types of forgery 

 
People’s ability to simulate (or forge) a signature varies greatly. Dewhurst et 

al. (2008) reported the number of misleading authorship opinions for the 
calligraphers’ forgeries were approximately four times that of the laypersons’ 
forgeries. Houmani et al. (2012) presented algorithms to measure forgeries of 

Forgery

Random forgery

(without intention of 
simulation)

Name unknown

Name known

Simulation forgery 
(with intention of 

simulation)

poor simulation

Traced simulation

Skilled simulation
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different quality. The results using the three classifiers (i.e., DTW, HMM, and 
GMM) showed an equal error rate (EER) of good quality forgeries was at least 
1.5 times that of bad quality forgeries. In this research, to explore simulation 
forgeries of different quality, we used a deep learning technique to select skilled 
forgeries (see Section 3.6.1.3). 

2.4 Quantitative measurement of handwriting features 
In current research, handwriting features are obtained from 2D static images. 

Handwritten signatures are scanned and imported into a computer in digital 
form; thus, 2D static images are used as the raw data for feature extraction and 
analysis. Discrimination can take advantage of two kinds of features: global and 
local features, measured from the digital image. Global features describe the 
signature image as a whole (e.g., the ratio of signature height to width, slant 
features, stroke width distribution, centre of gravity, direction, and the trajectory 
of the signature). They can be divided into two groups: statistical and 
geometrical features. Statistical features are taken from the pixel distribution of 
the signature image. Geometrical features describe the geometrical 
characteristics of the signature image (Mohammed et al., 2015). 

 
However, the above-mentioned features for offline signature verification are 

2D static features reflecting the overall aspects of signatures. Research to 
improve signature verification systems remains based on 2D static features, 
using gradient local binary patterns, longest run features (Serdouk et al., 2016), 
texture features (Hannad et al., 2016), and geometric structure features 
measured by grid templates (Zois et al., 2016). Some studies have presented 
pseudo-dynamic features for offline signature verification (Vargas et al., 2011). 
In reality however, their pseudo-dynamic features comprise the grey-level 
distribution in the 2D static signature image. This is different from real dynamic 
features combined with writing sequences. 

 
It leads to the following question: Is it reasonable to treat handwriting as a 2D 

image? Most research has focused on static features, such as contour, gradient, 
and direction, while neglecting the potential of dynamic and 3D features. 
However, handwriting is the product of behavioural processes. The contours of 
handwriting mainly depend on the writing action, which is different from a stamp, 
whose contours mainly depend on the printing surface. Handwriting presented 
to FHEs is the trace left following a writing action rather than a static mark or 
imprint on the writing surface. Therefore, FHEs try to reconstruct the pen tip 
movement sequence, called the writing sequence, during analysis. In addition, 
in 2D images, the depth of the handwriting does not seem to be as distinctive 
as the contour, but it does exist. In this sense, handwriting embeds dynamic 
information in the third dimension. In Figure 4, for instance, the purple stroke 
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(with labelled 1084) is highlighted in 3D profile, grayscale profile, and radian 
plots. The present research thus goes beyond 2D measurement. 

 

 
A) White-light image 

 

B) 3D pseudo-dynamic feature display 
Figure 4: 3D pseudo-dynamic feature for purple strokes labelled 1084 

 
Previous research by the author (Chen, 2015) laid out the process of feature 

detection and analysis in forensic handwriting examination. A threshold was 
applied in image binarization after the signatures were digitalized. The skeleton 
and signature edges were extracted after image processing. Then, a program 
for writing-sequence recovery processed the skeleton of the signatures. The 
width, grayscale, and radian were automatically extracted from the writing 
sequence. Thus, the features of width, grayscale, and radian combined with 
writing sequence were automatically extracted. Next, a DTW method was 
applied to cope with differences in writing speeds. The pairwise comparative 
measurement of the correlation coefficient, distance in DTW and Kolmogorov–
Smirnov test (KST) was used to characterize and express the similarities 
between signatures (see Section 4.3.2). Finally, multivariate analysis of 
variation confirmed significant differences between genuine and forged 
signatures, and discriminant analysis showed a high score in the cross-
validation rate, with a mean value of 95.8%. 

 
The established quantitative feature extraction and statistical analysis 

methods give less freedom in feature selection to FHEs and have helped to 
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develop a transparent assessment framework for forensic handwriting 
examination. The work presented in this thesis expands the signature database 
and features and upgrades the analysis methods. 

 
Research has shown that the shape of loops in certain letters can be used to 

distinguish writers (Marquis et al., 2011a; Marquis et al., 2011b) and to draw 
inferences about the gender identity and handedness of a writer (Taroni et al., 
2014). Progress has been made in the search for formalized handwriting 
examination. Montani (2015) and Gaborini et al. (2017) measured the distances 
(x and y axis) and angles of line strokes in signature images to construct an 
evaluation framework to support expert examinations. Bennour et al. (2019) 
evaluated the effectiveness of an implicit shape codebook technique to 
recognize writers from digitized handwriting images. They applied the Harris 
key-point detector (Harris & Stephens, 1998) to extract junctions and corners 
to obtain a set of informative regions for each handwriting image. Meanwhile, 
Agius et al. (2018) extracted a set of writer characteristics, spatial 
characteristics, and construction characteristics to predict a writer’s country of 
origin. All of the features obtained from handwriting images were 
measurements of spatial distance or spatial distance ratios. Most of the 
handwriting features used in the above-mentioned work are similar to those 
used in research on handwriting verification. 

2.5 Assessment of handwriting verification systems 
Today, the so-called Bayesian approach provides a unified and logical 

framework for analysing evidence and presenting results to courts (and other 
decision makers) in the form of LRs. Forensic scientists should not usurp the 
role of judge and jury but present their findings in the form of focused LRs; this 
approach offers a valid theoretical framework for any forensic discipline. 
Meanwhile, handwriting verification systems (in biometric applications) are 
used to deliver acceptance or rejection decisions. There is indeed a contrast 
between a continuous approach assigning weights of evidence and the decision 
framework used in biometric systems. Having a clear underpinning logic is a 
decisive mechanism that creates greater transparency in the way scientific 
findings are presented in court (Evett et al., 1998; Curran et al., 1998; Champod 
& Meuwly, 2000; Champod et al., 2004; Champod, & Evett, 2009). It is 
suggested that biometric scientists or laboratories should adapt their 
conventional biometric systems or technologies to work according to the LR 
approach (Gonzalez-Rodriguez et al., 2005; Srihari et al., 2005; Gonzalez-
Rodriguez et al., 2006; Gonzalez-Rodriguez et al., 2007). Bayesian inference 
provides an appropriate interpretive framework (Taroni et al., 2002). The formal 
reasoning method based on (Bayesian) decision theory is not only conceptual, 
but rather it gives the basis of actual decision-making procedures and is a 



Xiaohong Chen            Forensic Offline Signature Handwriting Examination Based on 
                                    Three-dimensional and Pseudo-dynamic features 

18 
 

normative method (Biedermann et al., 2018). As far as signature or handwriting 
is concerned, some applied examples show the progress made in this area. For 
example, to quantify the probative value of well-defined measurements 
performed on questioned signatures, Gaborini et al. (2017) presented a way 
that has been formalised and is part of a coherent approach to evaluation. Chen 
et al. (2018) showed an applied example of signature using a score-based LR 
to assess signature evidence. The limitations of existing probabilistic solutions 
for dynamic signature evidence have been noted and explained in detail in the 
literature. In particular, the need to eliminate the assumption of independence 
between the questioned material and the reference material has been 
emphasized (Linden et al., 2021). As described by Robertson et al. (2016, p. 
90), 

We now have a system, either automated or human, that compares trace 
and reference specimens, reporting a LR to give the evidential value for 
the same-source and different-source hypotheses. We can study how 
much information the system is able to extract from the trace and 
reference material, and whether the value of that information is properly 
represented by the reported LR. This can tell us whether we can expect 
to benefit from the system at all, or it can help us to choose between 
different systems. For forensic scientists, it can also help measure 
improvement as they develop a system. Up to this point we have 
discussed how to assess and handle LRs and we have assumed that the 
LRs we are dealing with have the values that give the most rational 
update of the prior odds. We are now discussing reported LRs. We 
cannot necessarily assume that reported LRs have the properties we 
would expect LRs to have. A reported LR is not only a statement about 
the evidence but also implies a claim about how well the comparison 
system performs. 
 
In forensic science, tiny pieces of evidence tend to be hidden in a mostly 

chaotic environment. Consequently, reasoning and deduction must be 
performed based on partial knowledge, approximations, uncertainties, and 
conjectures (Franke & Srihari, 2008). In the literature and in the above-
mentioned competitions, the signature verification community has been 
encouraged to enable their systems to compute LRs instead of computing the 
usual statistics used in biometrics research (e.g., EER, FAR, and FFR). 

 

2.6 Limitations of current research 
For a long time, writer identification has mainly depended on FHEs’ training 

and experience. The application of handwriting verification systems to 
casework has never taken off. The limitations of existing offline handwriting 
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verification approaches are summarized below. 

2.6.1 Signature databases are not comprehensive enough 

Current databases are limited in size or content. A database should be 
comprehensive and strongly representative of the forensic scenarios. In recent 
years, following the proposal of FHEs, several competitions collected skilled 
forgeries and disguised signatures. Nevertheless, existing Chinese signature 
databases are generally limited to 10–50 writers with 100–4800 signatures. 
Natural variations in genuine signatures are rarely taken into consideration or 
fully represented. No two signatures are exactly alike because the act of writing 
cannot be precisely repeated. For patterns such as face images, fingerprints, 
or stamps, inner variations stem from geometric changes. Handwriting is quite 
different, however, in the sense that within-writer variations among signatures 
cannot be entirely explained by geometric mapping. On the contrary, the causes 
of dynamic writing processes are numerous and difficult to control. 

 
Several types of forgeries may be encountered in casework, such as skilled 

freehand simulation forgeries, traced simulation forgeries, and random 
forgeries. Again, current research lacks breadth when it comes to the nature of 
forgeries used to challenge the systems. In addition, factors such as the writing 
skill and educational background of the forgers might affect the performance of 
the verification system. 

2.6.2 Three-dimensional and pseudo-dynamic attributes of 
handwriting are ignored 

Previous handwriting verification research has characterized handwriting as 
a 2D static image. However, handwriting is the product of a behavioural process, 
and the contours of handwriting mainly depend on the handwriting action. 
Moreover, in addition to the obvious handwriting morphology, indentation (due 
to pressure) in the paper also exists. Thus, handwriting is essentially three-
dimensional with dynamic attributes—a dimension that is absent from 
measurements in current research efforts. 

2.6.3 Flaws in the method using 2D static handwriting features 

The morphology of 2D static features can be easily simulated, especially in 
traced simulation forgeries. As a result, high consistency is observed between 
genuine signatures and forgeries. The performance of handwriting verification 
systems based on 2D static features is severely reduced when dealing with 
simulation forgeries (Das et al., 2016). 
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In summary, handwriting verification research is still young, and there is a 

wide gap between theoretical research and practical forensic applications. It is 
then necessary to expand offline handwriting verification research in breadth 
and depth, focusing on the practical needs of forensic handwriting verification. 
The present research will present a new method for forensic signature 
verification based on 3D and pseudo-dynamic features and apply it to a larger 
than normal corpus of signatures. We allow for the consideration of the within- 
and between-writer variability and develop an interpretation framework allowing 
the assignment of LRs. 

2.7. Three-dimensional research in forensic science 
Optical imaging technology is an important tool in forensic science. It has 

unique advantages for the investigation, extraction, and analysis of moulded 
marks and striated impressions. Digital holographic technology is a new type of 
imaging technique, with fast, non-destructive, high-precision imaging 
capabilities. It has gained increasing attention in the field of forensic science. 
As shown in Figure 5, 3D detection and imaging has been applied to tool marks 
(Heikkinen et al., 2014), bullet marks (Sakaya et al., 2008; Chu et al., 2013), 
handwriting and paper (Spagnolo, 2006; Spagnolo et al., 2013), and other 
documents. Optical imaging technology can therefore provide forensic experts 
with an effective and enhanced tool for detection and analysis. 
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Cutter mark 

(Heikkinen et al., 2014) 
 

 
Crossing line 

(Spagnolo, 2006) 

 
Impressions in paper 

(Spagnolo et al., 2013) 

 
Handwriting strokes 

(Spagnolo et al., 2013) 

 
Cartridge case 

(Sakaya et al., 2008) 
 

 

 
Bullet marks 

(Chu et al., 2013) 
Figure 5: Applications of three-dimensional techniques in forensic science 

 
 
For document examination, in particular, progress has been made in the 

application of 3D measurement. Spagnolo et al. (2006; 2013) reconstructed 
handwriting indentations in paper using laser holographic microscopy to help 
experts investigate handwriting strokes, identify the stroke order in crossing, 
and reveal the relationships between indentation depth and time. They further 
studied the 3D detection of handwriting, discussing variations in different writing 
tools and among different writers. Their results indicated that 3D features are 
attributable not only to different writing tools but also to differences among 
writers. Thus, they proposed the idea of distinguishing writers based on 3D 
features. 
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When writing instruments are used to write on paper, their tips act on the 

surface and reshape it microscopically, forming deep or shallow, wide or narrow 
groove marks on the paper. This constitutes the 3D appearance of the 
handwriting. By means of 3D optical measurement, the 3D profile of handwriting 
can be detected and acquired (Figure 6). The 3D profile measurements provide 
a 3D image as well as a white-light image. It is possible to obtain the stroke 
width, grayscale, and radian from the white-light image and depth feature in 3D 
images in the order of the writing sequence. 

 

  
A) White-light signature image B) Three-dimensional signature image 

Figure 6: White-light and 3D signature images 
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Chapter 3 Methods and Materials 
 

3.1 Chinese signatures datasets 
A database characterized by representativeness, high quality, and 

considerable quantity was an important prerequisite of this research. The 
dataset included more than 140 Chinese volunteers (individuals) who agreed 
to participate in the study. Almost all had forensic knowledge, although not all 
were trained in handwriting examination. Nine proficiency tests of forensic 
signature handwriting examination and materials associated with 55 questioned 
signatures from real forensic cases were also used. 

3.1.1 Signatures from volunteers 

 For a description of dataset_1 and dataset_2 refer to Chen (2015) and Chen 
et al. (2018) in the appendix). Dataset_3 is a collection of 302,000 signatures 
obtained from 100 volunteers. Dataset_4 was collected to explore the impact 
of different writing conditions on the developed system. A sample associated 
with a given individual consisted of a set of both genuine and forged signatures. 
Signatures from volunteers, both genuine signatures and forgeries, were from 
known sources. One hundred individual signatures were collected, including 
GE (5000), RF (99,000), FF (99,000), and TF (99,000) (total: 302,000). To 
increase the diversity of the dataset, the educational levels of the volunteers 
comprised three levels: primary school, high school, and university. The writing 
skill of the volunteers was separated into three levels: high, medium, and low. 

 
For a given volunteer, 3,020 signatures consisting of 50 GE, 990 RF, 990 FF, 

and 990 TF were acquired as follows: 
 
1. Each writer was asked to produce a total of 50 GE over the span of five 

writing sessions (10 signatures each). Each session was spaced by one 
or two days. 

 

2. Each writer was instructed to produce forgeries for all other 99 individuals 
involved in the study. For each targeted individual, the forger prepared 10 
RF, 10 FF, and 10 TF. In Chinese, signatures are constructed in a way 
similar to the writing act. Hence, knowledge of the name of the person is 
sufficient to produce a freehand forgery that will be legible and potentially 
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recognized as genuine. To prepare TF, the writer took advantage of a 
model of the GE and traced the forgeries on a lighted table through a 
transparent sheet. FFs were produced without tracing assistance after 
some training by the forger referring to a model GE. The amount of 
practice time before the production of the forgeries was not controlled. 

 
It must be stressed at the outset that the large number of signatures per 

participant (3020) means that they were mass-produced to some degree. The 
risk of such a production is that these signatures may not have the same within-
writer variation as signatures produced in forensic case circumstances. In 
reality writers will use different pens, different paper, different support for that 
paper (soft/hard). We sign on lines or in boxes, in different positions, and with 
varying amounts of time in between signatures (sometimes years). This 
limitation in the within-writer variation may lead to easier discrimination 
between genuine and simulated signatures within the database, and thus to 
performance measures that may be unrealistically high. 

 
A specific dataset (dataset_4, see Section 4.4.3) will later investigate the use 

different pens and different paper to better assess that sample limitation. 
 
The dataset taken from dataset_3 is a selection of 23,624 signatures taken 

from the above population according to the following process: 
1. For RF signatures, since most forgeries produced by a given forger were 

very similar, only one forgery per forger was randomly selected. 
2. For FF, RF, and TF signatures, only forgeries judged by an FHE to be 

close to the target signature were selected. 
 
A sample associated with a given individual consisted of a set of both genuine 

and forged signatures. Table 12 gives the totals for each individual by type of 
signature. 

 
Table 12: Chinese signature dataset_3 

Individual 
ID 

Genuine 
(GE) 

Freehand 
simulation 

forgery (FF) 

Traced 
simulation 

forgery 
(TF) 

Random 
forgery 
(RF) 

Total 
 

1 50 99 98 98 345 
2 50 30 99 33 212 
3 50 31 98 52 231 
4 50 35 99 30 214 
5 49 30 99 26 204 
6 49 47 86 92 274 
7 50 34 99 54 237 
8 51 30 99 30 210 
9 50 39 99 56 244 
10 57 41 99 42 239 
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11 54 35 99 36 224 
12 50 99 99 99 347 
13 50 31 99 33 213 
14 50 30 99 32 211 
15 50 34 97 48 229 
16 50 43 30 71 194 
17 50 30 99 71 250 
18 54 99 97 99 349 
19 54 31 98 35 218 
20 50 50 99 40 239 
21 50 30 99 39 218 
22 50 32 95 43 220 
23 50 37 99 43 229 
24 50 31 99 42 222 
25 50 98 99 98 345 
26 52 35 99 38 224 
27 50 32 99 32 213 
28 50 24 97 66 237 
29 50 65 99 56 270 
30 51 99 98 106 354 
31 50 40 99 40 229 
32 50 32 98 47 227 
33 50 22 98 68 238 
34 50 40 99 41 230 
35 50 99 98 99 346 
36 49 41 98 41 229 
37 / / / / / 
38 50 99 99 97 345 
39 / / / / / 
40 50 33 97 41 221 
41 49 31 98 36 214 
42 52 47 98 81 278 
43 60 56 99 74 289 
44 50 30 99 30 209 
45 55 38 98 47 238 
46 50 45 99 53 247 
47 50 51 97 66 264 
48 50 27 97 48 222 
49 56 32 98 36 222 
50 39 25 99 29 192 
51 48 33 99 33 213 
52 50 41 98 38 227 
53 50 25 99 37 211 
54 50 33 99 30 212 
55 50 97 99 56 302 
56 / / / / / 
57 50 35 97 42 224 
58 60 32 98 41 231 
59 60 32 99 29 220 
60 53 47 97 43 240 
61 50 38 99 67 254 
62 50 33 99 38 220 
63 51 30 99 31 211 
64 50 30 99 31 210 
65 50 32 99 33 214 
66 50 61 76 64 251 
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67 60 99 99 98 356 
68 50 30 99 31 210 
69 50 99 99 98 346 
70 49 99 98 107 353 
71 50 30 99 33 212 
72 49 54 97 29 229 
73 49 37 99 30 215 
74 52 30 99 30 211 
75 49 33 99 46 227 
76 53 40 99 41 233 
77 51 43 99 46 239 
78 52 29 98 45 224 
79 59 26 99 33 217 
80 50 33 99 33 215 
81 50 33 99 32 214 
82 50 31 99 34 214 
83 50 32 99 32 213 
84 59 27 99 30 215 
85 50 99 97 95 341 
86 56 31 99 32 218 
87 50 98 99 98 345 
88 50 28 92 52 222 
89 49 37 98 44 228 
90 50 41 99 42 232 
91 60 30 98 39 227 
92 53 29 99 34 215 
93 52 33 99 40 224 
94 50 29 98 37 214 
95 50 59 99 67 275 
96 49 38 98 40 225 
97 50 49 99 87 285 
98 58 33 99 32 222 
99 50 65 98 60 273 
100 60 38 96 45 239 
Note: / means damaged or illegible signature. 
 

3.1.2 Signature dataset from proficiency tests 

A proficiency test is an important instrument used by accreditation bodies to 
assess the technical competence of laboratories. Proficiency test providers 
prepared simulated cases for the participants. All the information about their 
production is known. The Forensic Science Academy is the proficiency test 
provider for the China National Accreditation Service for Conformity 
Assessment (CNAS). CNAS signature proficiency tests from 2011 to 2020 were 
used to assess the performance of the developed offline system under realistic 
but known forensic conditions (Table 13). 

 
Table 13: Proficiency test of Chinese signatures 

PT 
provider Year 

Questioned 
signature Signature image Expected result 
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CNAS 2011 1 

 

Different sources 

     

CNAS 2013 

1st of 2 

 

Different sources 

2nd of 2 

 

Different sources 

     

CNAS 2014 

1st of 2 

 

Same source 

2nd of 2 

 

Same source 

     

CNAS 2015 1 

 

Same source 

PT 
provider Year 

Questioned 
signature Signature image Expected result 

     

CNAS 2016 1 

 

Different sources 

     

CNAS 2017 1st of 2 

 

Different sources 
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2nd of 2 

 

Same source 

     

CNAS 2019 1 

 

Different sources 

     

CNAS 2020 

1st of 2 

 

Different sources 

2nd of 2 
 

Different sources 

 

3.1.3 Real forensic cases 

Fifty-five questioned signatures from real forensic cases were selected 
randomly from the Academy of Forensic Science, China. The developed system 
will be used to provide results for these questioned signatures. A comparison 
of the results of the system with those of the FHEs will allow for an assessment 
of how FHEs can be of assistance in their daily casework. 
 

3.2 Acquisition and reconstruction of 3D images of 
signatures 

Two types of 3D measurement systems were tested to meet the requirement 
for 3D acquisition and reconstruction (Figure 7): 

• A Lyncee Tec DHM reflection-configured digital holographic 
microscope R series and; 

• A Keyence wide-area 3D measurement system VR3000 series. 
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Keyence VR3000 series Lyncee Tec DHM R series 
  

 

  

 
White-light image Three-dimensional profile image 

Figure 7: Three-dimensional signature detection 

3.2.1 Reflection holographic microscopes: Lyncee Tec R22008 

The Lyncee Tec DHM reflection-configured digital holographic microscope R 
series is manufactured by Lyncee Tec. This customized system offers two 
simultaneous measurement modes: DHM and colour-intensity images (Figure 
8). 

 
 

 
8 https://www.lynceetec.com/reflection-dhm/#tab-1  
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Figure 8: Digital hologram microscopy for forensic document examination: 3D signature 

mapping 
 

The benefit of DHM is that it can acquire real colour information and height 
information at each pixel, providing a new perspective and tool for quantitative 
measurement. Colour images provide 2D images of signatures. The skeletons 
and edges of the signatures can be obtained by image processing, and writing 
sequence tracing can be performed on the signature colour image. Then, width, 
grayscale, and radian can be obtained on the writing sequence order from the 
colour image. Finally, thanks to the white-light and the synchronous imaging of 
the 3D profile, data of the 3D profile can also be measured on the writing 
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sequence order in 3D profile images. 

3.2.2 Wide-area 3D measurement system: Keyence VR 32009 

In the Keyence wide-area 3D measurement system, structured light is 
emitted from the transmitter lens and projected onto the surface of the object. 
The reflected light is then detected by the receiver lens and appears banded 
and bent based on changes in the topography of the surface. Triangulation is 
then used to calculate and measure the height of the surface. To enable high-
accuracy measurements throughout the field of view, the VR Series uses a 
telecentric lens with low lens aberration. Objects can be captured as they 
appear and at their actual size, ensuring high measurement accuracy anywhere 
on the screen. Based on the light-section method of measurement, the VR 
Series calculates data down to 1 pixel or less using proprietary light-projection 
patterns. This results in highly accurate, ultra-precise measurement. The VR 
Series’ ability to accurately measure height differences of only 1 μm has been 
confirmed through the measurement of a calibrated height difference gauge. 

3.2.3 Two-dimensional white-light images and 3D image 
acquisition 

The results obtained on different types of paper surfaces allow us to evaluate 
the complementarity between the two instruments. Three-dimensional 
detection results showed that the Lyncee Tec DHM is good at measuring 
handwriting on specular reflection surfaces, and the Keyence wide-area 3D 
measurement system is better at measuring handwriting on diffuse reflective 
surfaces. 

 
Two-dimensional white-light images and 3D images were acquired for all 

signatures using the Lyncee Tec DHM reflection digital holographic microscope 
R series and the Keyence wide-area 3D measurement system VR3000 series. 
The Keyence device offers a lower resolution (0.5 μm) than the Lyncee Tec 
DHM (0.3 nm) but operates with a higher acquisition speed (10 seconds versus 
five minutes). The first batches of signatures (6040 signatures from two 
individuals) were acquired using the Lyncee Tec. Then, it was switched to the 
Keyence instrument to reduce acquisition time without losing much in terms of 
accuracy. The higher resolution acquisitions from Lyncee Tec were reduced to 
the resolution of the Keyence device. In that configuration, the data were fully 
comparable. 

 
9 https://www.keyence.com/ 
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3.3 Extraction and post-processing of three-
dimensional and pseudo-dynamic features 

As explained before, handwriting, including the production of signatures, is 
the result of a dynamic behaviour. This behaviour materializes on paper in the 
form of static traces that are submitted to FHEs. FHEs then reconstruct the 
dynamic writing sequence based on an optical analysis of the traced images. 
This means that the operator-independent features used to characterize the 
handwriting should capture the dynamic nature of the behaviour and not rest 
only on static measurements, such as the relative proportions, sizes, and 
shapes of letters. Prior research has focused mostly on static features such as 
contour, gradient, and slope direction but has neglected the writing sequence.  

 
Writing sequence is a new feature that will be measured in this study. This 

study also takes advantage of dynamic time warping techniques to capture 
features while maintaining the writing sequence. As already mentioned these 
are qualified as “pseudo-dynamic features” because they are extracted while 
considering the writing order. They are not extracted at the time of capture but 
acquired after the writing act from the images themselves. These features are 
different from dynamic features extracted from traditional online handwriting 
systems, such as writing tablets, but they still reflect the writing sequence; 
hence the name ‘pseudo-dynamic features.’ 

 
Writing sequence recovery is performed on the 2D image, and the skeleton 

and edge of the strokes in signatures are obtained. Given a starting point, a 
trace of the writing sequence of the strokes will be obtained automatically. The 
width, grayscale, and radian characterize the order of the writing sequence. 
After aligning the 3D image and the 2D image, the 3D feature can also be 
associated with the order of the writing sequence. 

3.3.1 Writing sequence tracing 

In previous research (Chen X., 2015), signatures were digitalized into a 
computer by means of an Epson Perfection V700 Photo Scanner with a 
resolution of 400 dpi. MATLAB 7.0 software was used to extract the features. 
The same process has been used in this research. First, a threshold is set for 
the image binarization. Then, the skeletons and edges of the signatures were 
extracted by separately skeletonizing and edging the images (Figure 9). The 
stroke order tracing was automatically used in the signature skeletons after a 
beginning point was manually provided (Figure 10). If any error occurred, it was 
corrected manually. The stroke order or the sequence of signatures (S) was 
assigned x coordinates (X) and y coordinates (Y). 
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 Signature binary image 

 

Signature skeleton image 

 

 Signature edge image 
Figure 9: Image pre-processing 

 

 
Figure 10: Basic stroke order recovery processing from an image 

 
Writing instruments have various types of tips and can produce different 

strokes, mainly in terms of line width and depth. A previously used toolkit (Chen, 
2015) could not determine the skeletons of handwriting done using big tips and 
wide lines. It did not work until the image was resized to be smaller. Meanwhile, 
ink does not always distribute evenly, which also affects the quality of the 
extracted skeleton. This research improved upon previously developed 
algorithms to meet these new requirements, a pre-processing step was added 
before skeletonization, such as image erosion using disk-shape structuring 
element, 2D image filtering to filter noise, and image dilation with structuring 
element. To obtain a suitable image for skeletonization, a series of parameters 
in pre-processing can be tried and set manually according to different aspects 
of the signature (Figure 11). 

 

 

A) White-light image 
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B) Skeletonized using old toolkit 

 
C) Skeletonized using new toolkit 

Figure 11: Improvement in the skeletonization process 
 
Different writing surfaces lead to different image backgrounds in actual 

situations. This research used additional image-processing techniques to filter 
the background. 

 
With the previous toolkit (Chen X., 2015), the tracing of the writing sequence 

was done pixel by pixel. When the resolution is high, and number of images 
increases to millions, the tracing procedure takes quite a lot of time. This project 
split the strokes and aligned the pixels of each stroke in advance (Figure 12). 
When a starting pixel is given, it traces the stroke one by one, which makes 
tracing faster (see Table 14: The comparison between the old and new toolkit.). 

 

 
Figure 12: Split strokes in a skeletonized image 

 

 
Table 14: The comparison between the old and new toolkit. 

 

 

Toolkit Pre-processing Parameters Stroke Tracing 
Previous  research 

(Chen X., 2015) No Fix Pixel by pixel 

Current research Yes manually Stroke by stroke 
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3.3.2 Features extraction in white-light and 3D signature 
images 

After writing sequence acquisition, the width (W), grayscale (G), and radian 
(R) values were automatically extracted in the stroke order. The grayscale 
values of the points in the skeleton were used as the grayscale data. The width 
and radian data were calculated per the following functions, as shown in Figure 
13. 
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𝑆 =$(𝑋$ , 𝑌$)
%

$&'

; Equation 1 

𝑊 =$(𝑤$);
%

$&'

 Equation 2 

𝑅 =$(𝜃$ ∙
𝜋
180)

%

$&'

; Equation 3 

𝐹 =$(𝑊$ , 𝐺$ , 𝑅$)
%

$&'

. Equation 4 

Figure 13: Previous features detection. (Stroke order (S); x coordinate (X); y coordinate 
(Y); width (W), grayscale (G), radian (R); feature (F); tangent line (T). n=length (X) or 
length (Y); i=1,2,3…n) 
 

In the previous features detection, grayscale was calculated on the skeleton 
pixels of the signatures. In this research, grayscale and depth were measured 
for all pixels of the signatures (Figure 14). This provides more specific features 
analysis. 

Edge 
Skeleton 
Present Pixel (𝑋! , 𝑌!)  
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%
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 Equation 6 
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%
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 Equation 7 
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 Equation 8 
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𝜋
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%
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 Equation 9 

𝐹 =$(𝑊$ , 𝐺$ , 𝐺_𝑠𝑘𝑒𝑙$ , 𝑅$ , 𝐻$ , 𝐻_𝑠𝑘𝑒𝑙$

%

$&'

) Equation 10 

Figure 14: New features detection. (Stroke order (S); x coordinate (X); y coordinate (Y); width 
(W), grayscale (G), radian (R); tangent line (T); height (H); n=length (X) or length (Y); i=1, 2, 
3…n) 

3.3.3 Pseudo-dynamic features visualization 

Data associated with the signatures include a combination of 2D white-light 
and 3D information, and were obtained using a 3D imaging system coupled 

Di 

Ci 

Edge 

Skeleton 

Adjacent Pixels 

Circle with (𝑋$, 𝑌$) as centre, and tangent to edges 

Line 𝐴$: defined by (𝑋$, 𝑌$) and (𝑋$&', 𝑌$&') 

Diameter line perpendicular to Line 𝐴$ 
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with a 2D white-light imaging system operating in a synchronous manner. 
Hence, at each point of the acquired images, information regarding grey levels 
and 3D can be extracted. Data acquisition was followed by feature extraction, 
which entailed the following image-processing steps: 

 
1. A signature is composed of multiple strokes corresponding to 

movements used by the signatory. These strokes and their sequences 
were identified by operators (using a dedicated interface). Each 
signature stroke was defined by a skeleton obtained from the grayscale 
acquisition. Strokes could then be stitched together by their order on a 
line defined by the skeletons. This approach ensures that the data fully 
maintain the writing sequence (see Supplemental Video). 

2. From each stroke, pseudo-dynamic features were obtained from white-
light images in the form of the width, radian, and grayscale distribution 
measured at each point of the stroke. These features are called pseudo-
dynamic because they indirectly reflect the dynamics of each stroke but 
are visualized in 2D. These features have been detailed in previous work 
(Chen X., 2015; Chen X. et al., 2018) 

 
3. Taking advantage of the synchronous acquisition of the 3D image, for 

each point on the stroke, the height information was measured in addition 
to the pseudo-dynamic features (Chen X. et al., 2018). 

 
Figure 15 shows an example of the acquisition, showing two genuine 

signatures (GE-1 and GE-2 from the same writer) alongside a corresponding 
freehand forgery (FF) and a traced forgery (TF), obtained in white-light (left) 
and with 3D measurements (right). 
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 White-light Image Three-dimensional Image 

G
E-

1 

  

G
E-

2 

  

RF
 

  

FF
 

  

TF
 

  

Figure 15: White-light and three-dimensional profile of a signature 
(Background of the paper was omitted in the three-dimensional profile image) 

 
Some features are obtained from the white-light images, others from the 3D 

measurements. More specifically, 
 
1. Figure 16 shows the radian measurements obtained from the white-light 

images for genuine, random forgery, freehand simulation forgery, and 
traced simulation forgery. 
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Figure 16: Radian features from the white-light images 

 

2.  
Figure 17(a) shows the grayscale distribution on the stroke measured from 

the white-light images. The y-axis gives the width of the stroke.  
Figure 17(b) shows a normalized representation. 
 
3.  
Figure 18(a) shows the 3D measurement of height made along the strokes, 

with the indication of stroke width on the y-axis.  
Figure 18(b) shows the normalized measures. 
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a) Grayscale profile features b) Normalized grayscale profile features 
 

Figure 17: Grayscale profile features of strokes measured from white-light images 
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a) Three-dimensional profile features b) Normalized three-dimensional profile features 
 

Figure 18: Three-dimensional profile features of strokes measured from the three-dimensional profile images. 
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Of particular interest is the difference between the 3D profile images (Figure 
15, right) of the two genuine signatures and the forgeries. It is more difficult to 
observe these differences based on the white-light images alone (Figure 15, left). 
For the grayscale and height distribution, the genuine signatures show more 
similarities compared to the forgeries. The similarities between the genuine 
signatures are maintained, while differences with the forgeries are enhanced. As 
seen on GE-1 and GE-2 in Figure 15 to  

Figure 18, in the white-light image, the morphology of the signature for a given 
writer is variable in shape and stroke length and in the specific positions between 
strokes. In the pseudo-dynamic images, they show more within-writer similarities. 
For the between-writer variations, a random forgery (without the model, see RF 
in Figure 15 to  

Figure 18) shows a different morphology in the white-light image, whereas a 
freehand simulation forgery and traced forgery (with a model, see FF and TF in 
Figure 15 to  

Figure 18) could present high similarities with the genuine signature. This is 
even more true with a traced forgery, which can present almost the same 
morphology as the genuine signature. The similarities in contour between a 
traced forgery and a genuine signature can be higher than between genuine 
signatures. In pseudo-dynamic images, however, between-writer differences are 
enhanced. 

3.3.4 Post-processing of three-dimensional and pseudo-
dynamic features 

Writing speed can be different, even when the signatures come from the same 
writer (Figure 19(a) and 19(b)). Dynamic time warping (DTW) provides a flexible 
and non-linear telescoping to get the minimum distance between two time series 
with different lengths. 

 
DTW is used to cope with different writing speeds between two signatures. As 

a result of DTW, the metric obtained gives the maximum similarity. 
Corresponding strokes should be aligned for comparative analysis. The shape 
of the strokes could be reflected by the radian feature. DTW is used to make the 
corresponding strokes aligned based on the radian feature (Figure 19(c)). 
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GE1 signature image       GE2 signature image 

a) Original signature binary image 
 

 
b) Stroke alignments before DTW 

 

 
c) Stroke alignment after DTW 

Figure 19: DTW processing 
 

3.4 Statistical description of features 
This research has been ongoing for a few years and has led to an expansion 
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of the size and diversity of the database and the addition of new features to 
characterize the characteristics of handwriting. Table 15 presents the databases 
and features used in different stages of the research. 

 
Table 15: Variables and datasets used at the different stages of the research. 

 

Variables Denoted 

Dataset 1 
(Chen X., 

2015) 

Dataset 2 
(Chen X. et al., 

2018) 
Dataset 

3 
Width W √ √ √ 

Radian R √ √ √ 
Grayscale G × × √ 

Height H × × √ 
DTW DTW × × √ 

Grayscale_skeleton G_skel √ √ √ 
Height_skeleton H_skel √ √ √ 

KST_Width* KST_W × × √ 
KST_Radian* KST_R × × √ 

KST_Grayscale* KST_G × × √ 
KST_Height* KST_H × × √ 

KST_Grayscale_skeleton* KST_G_skel × × √ 
KST_Height_skeleton* KST_H_skel × × √ 

*: KST means statistics in Kolmogorov–Smirnov test 
 
In statistics, a correlation coefficient measures the strength and direction of a 

linear relationship between two variables. In this research, the correlation 
coefficient is used to characterize similarities between signatures. For GE, for 
example, the correlation coefficients of one genuine signature were calculated 
between each possible pair of this genuine signature and other genuine 
signatures. The maximum value is used as the final correlation coefficient of the 
genuine signature. For forgeries (FF, RF, and TF signatures), for example, the 
correlation coefficients of one forgery signature were calculated between each 
possible pair of forgeries and all genuine signatures. The maximum value is then 
used as the final correlation coefficient of this forgery signature. All statistical 
analyses described below were performed on the correlation coefficients of the 
width, grayscale, and radian data obtained. MATLAB 2020a was used for this 
correlation analysis. 

3.4.1 Multivariate analysis of variables and discriminant 
analysis 

For the multivariate analysis of variance (MANOVA), we invite the reader to 
refer to Chen (2015) in the appendix. A graphical representation per writer of 
their within-genuine variability and their genuine-against-forgery variability using 
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2D KDE after PCA is presented in Chen et al. (2018). 
 
To measure the ability of these features to carry out forensic tasks, cases of 

known ground truth from available materials were produced, as described in 
Chen (2015) and Chen et al. (2018). This involved the random selection of a 
questioned signature with a genuine signature or any forgeries compared with 
five genuine references from that individual. In Chen et al. (2018), care was 
taken to construct within-writer distribution using only signatures from the 
individual under consideration. Besides, between-writer distribution was 
obtained by comparing all genuine signatures against the forgeries of that 
individual. In this study, this approach is referred to as ‘inner-individual’. Given 
that in forensic practice, it can be difficult to obtain sufficient samples from a 
given individual to carry out this first method, a second method was tested, 
referred to as “inter-individual”, where within-writer distribution is made up of all 
the pairwise comparisons between genuine signatures of all the individuals in 
the dataset. The between-writer distribution is obtained from the comparisons 
between all genuine and forged material from all individuals in the dataset. Thus, 
for the second method, there is a generic within-writer distribution and a generic 
between-writer distribution that do not depend on the individuals used for the 
simulated cases. By comparing the two methods, it can be assessed if, in cases 
in which limited references are available, generic underpinning distributions 
could still be used. 

3.4.2 Descriptive and Comparative measurement 

Using data directly measured from subjects for analysis is common in 
research in many disciplines. In our case, variables such as width, grayscale, 
radian, and height can be described as descriptive measurement. 

 
As described in Chen (2015), DTW is used to make the corresponding strokes 

aligned and matched for correlation analysis. The correlation coefficient between 
signatures is then calculated. For instance, a number m of genuine signatures 
was used as the reference signatures; a number n of unknown signatures was 
used as the questioned signatures. For each genuine signature, there were m-
1 measurements of width, grayscale, radian, and height between reference 
signatures. In other words, the proximity between two signatures is obtained by 
the computation of the correlation on the paired variables. Additionally, the 
distance between two signatures during DTW processing is used as one feature. 

 
The two-sample Kolmogorov–Smirnov test (Massey, 1951; Miller, 1956; 

Marsaglia et al., 2003) is used to further describe differences between the 
distributions of features in genuine signatures vs forgeries. More specifically, the 
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KSTest function in MATLAB 2020a allows to evaluate the difference between the 
cumulative distribution functions of the distributions of the two sample data 
vectors. The test statistic KS2stat is used to describe the similarity between the 
two vectors. For each genuine signature, there were m-1 measurements of the 
KSTest in width, grayscale, radian, and height between reference signatures. 

To summarize the metrics used, for each questioned signature, there are m 
measurements of correlation with regards to width, grayscale, radian, and height. 
Additionally, there were m KSTest measurements with regards to width, 
grayscale, radian, height, and DTW between the questioned signatures and m 
reference signatures. 

 
Hence, for a comparison between one questioned signature (Q) and three 

specimens (S1–S3), the following matrix is obtained. 
 

 Width* grayscale* radian* height* DTW** 
Q – S1 CwQ-S1 CgQ-S1 CrQ-S1 ChQ-S1 DQ-S1 
Q – S2 CwQ-S2 CgQ-S2 CrQ-S2 ChQ-S2 DQ-S2 
Q – S3 CwQ-S3 CgQ-S3 CrQ-S3 ChQ-S3 DQ-S3 

* Features calculated by correlation coefficient. 
** Euclid distance feature calculated by DTW. 

KSTest width grayscale radian height 

Q – S1 KSTwQ-S1 KSTgQ-S1 KSTrQ-S1 KSThQ-S1 
Q – S2 KSTwQ-S2 KSTgQ-S2 KSTrQ-S2 KSThQ-S2 
Q – S3 KSTwQ-S3 KSTgQ-S3 KSTrQ-S3 KSThQ-S3 

 
The feature vector is based on the above measurements but obtained in a 

comparative way after the comparison between two signatures. When two 
signatures are compared, the following nine variables are computed: four 
correlations respectively for the radian, width, grayscale, and height, and a 
normalized DTW using the radian measures from both signatures as described 
in Chen (2005) and Chen et al. (2018), and four Kolmogorov–Smirnov distance 
measures (KST) for the comparison of respectively width, grayscale, radian, and 
height. 

 
Statistical analysis methods are used to measure within- and between-writer 

variation. Analysis of variance is used to validate significant between-writer 
differences in pseudo-dynamic and 3D features. This was the basic initial step 
towards determining the specificity of 3D and pseudo-dynamic features. 
Multivariate distributions, kernel-based distributions, and other distributions are 
used to estimate the probability density of 3D and pseudo-dynamic features to 
investigate within- and between-writer differences. This is the key component of 
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this research and is used in concert with the evaluation, provided it was 
considered reasonable to take 3D and pseudo-dynamic features as the basis for 
individual discrimination. 

 
The comparative measurements allowed for measuring variability in 

handwriting, both within genuine sources and compared to forgeries. 
 

3.5 ML method for signature verification 
In addition to the next investigation of score-based LRs using the above 

variables, the nine selected features informed a Machine Learning (ML) strategy 
in which the ability to distinguish comparisons arising from a common source (a 
given individual) from comparisons involving forgeries (which also are 
associated with each individual) has been investigated. That use of ML 
corresponds to the use of the system as a biometric system for automatic 
identification. A range of ML classifiers were tested, from low complexity (high 
level of explainability) models to high complexity (less explainability) models. ML 
and subsequent statistical analysis were carried out in R version 4.0.2 (R core 
team, 2022) coupled with RStudio version 1.3.959 (RStudio Team, 2020) using 
the following packages: tidyverse (Wickham, 2019) for data wrangling, caret for 
ML, computing confusion matrices, and associated error statistics (Kuhn, 2021). 
The following models were tested: K-nearest neighbour (knn), four options of 
discriminant analysis (lda, rda, mda, qda), a naive Bayes classifier (nb), tree-
based models (rpart, gbm, C5.0, xgbLinear, R-Forest), support vector machine 
(svm Radial), and neural networks (nnet, avNNet, pcaNNet). The abbreviations 
in parentheses correspond to the methods used in caret. The associated 
packages were loaded as required. Nine variables were used (setting aside the 
_skeleton variables). The predictor variables were scaled and centred as part of 
the pre-processing. Parameter tuning was achieved on a training set composed 
of half of the individuals using leave-one-out cross-validation. The leave-one-out 
strategy was done by individual; hence, for 48 individuals in the training set, 
parameter tuning was carried out on 47 folds. For computing efficiency, and to 
have an equal representation of each state of the target class (common source 
versus forgery), the number of cases in the training set was limited to 50,000 by 
random sampling without replacement. For each model, variable importance 
was investigated using the vip package (Greenwell and Boehmke, 2020). The 
final measure of accuracy in the retained models was obtained from a test set 
comprising the remaining 49 individuals. 

 
There were two test sets (Figure 20): 

A) Named test1: one fully independent, as their IDs were not taken in the 
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training set and 
B) Named test2: one with the remaining cases whose IDs were in the training 

set. 

 

 

Figure 20: Training and test data for ML 
 
Model-dependent variable importance was obtained directly from some of the 

models, such as neural net, random forest, and gradient boosting machine. For 
other models, model-independent variable importance was computed using the 
vip package (Greenwell and Boehmke, 2020). 
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3.6 Estimation of the strength of the signature evidence 

3.6.1 Probability density distribution 

Before estimating the probability density distribution, we investigated the type 
of appropriate distribution. 

3.6.1.1 Test for multivariate normal distribution (MVN) 

The purpose of testing for MVN was to explore whether 3D pseudo-dynamic 
features data can be considered as normal multivariate distributions. 

 
The MVN package 10  was used without considering the IDs, but a 

segmentation of the data based on type was done between genuine–genuine 
comparisons (Hp) and genuine–forgery comparisons (Hd). Tests were conducted 
with the plotting options available in the MVN package. 

 
10 CRAN - Package MVN (r-project.org) 
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Royston_Test_Hd <- mvn (data= SampleResFEA_Hd %>% slice_sample (n = 1999, replace 
= FALSE), mvnTest=“royston”, univariatePlot=“qqplot”) 
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# MVN tests and plots for comparisons under Hd 
Mardia_Test_Hd <- mvn (data= SampleResFEA_Hd, mvnTest=“mardia”, 
multivariatePlot = “qq”) 
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The MVN test results clearly rejected the hypothesis of considering 3D 

pseudo-dynamic feature data as normal multivariate distribution. Therefore, a 
multivariate kernel density estimation will be used to subsequently estimate 3D 
pseudo-dynamic features data. 

3.6.1.2 Kernel density estimation 

The kernel smoothing function estimate for multivariate data in MATLAB 2020 
was used to compute a probability density estimate of the sample data in a 
matrix x, evaluated at the points in pts using the required name-value bw for 
bandwidth value. The estimation was based on a product Gaussian kernel 
function. 
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Furthermore, in Dempster–Shafer theory (DST) calculation, 1-D kernel density 

estimation was utilized to predict a probability for each feature; kde in ks 
package11 was used in estimation. For the DST calculation, see Section 3.6.2.2. 

3.6.1.3 Skilled forgery selection 

As explained in Section 2.3, people’s ability to simulate a signature varies, and 
some skilled forgeries are difficult to distinguish from genuine signatures. To 
explore the performance of the system on skilled forgeries, deep learning was 
used to select the skilled forgeries from the FF and TF samples. Transfer 
Learning Using AlexNet12 (Krizhevsky et al., 2012; BVLC AlexNet Model) in 
MATLAB 2020 was used to automatically select the skilled forgeries. 

 
For transfer learning, a pretrained network can be taken and used as a starting 

point to learn a new task. Fine-tuning a network with transfer learning is usually 
much faster than training a network with randomly initialized weights from 
scratch. It can transfer learned features to a new task using a smaller number of 
training images. 

 
Using GE (as target) and RF (as non-target) as training data, freehand 

simulations and traced simulations were used as test data. Transfer learning for 
each individual was performed 30 times, and the forgeries that were always 
misclassified as GE were selected as skilled forgeries. 

3.6.2 Score-based LR calculation 

3.6.2.1 Score-based LR calculation using MKDE 

In previous published research by the author, score-based LR was used to 
measure the strength of signature comparison findings using subsampling 
based on dataset_2 (Chen et al., 2018). The forensic findings consist of three 
parts: 

 
EU = questioned signatures 
ES = signatures known to have been written by the person of interest (POI) 

(and hence genuine), leading to a template for the POI 
EA = signatures obtained from writers other than the POI (and hence forgeries) 
 

 
11 CRAN - Package ks (r-project.org) 
12 Transfer Learning Using AlexNet - MATLAB & Simulink (mathworks.com) 
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The variables expanded from three to nine and were extracted from dataset_3.  
 
In this thesis, we present only the results associated with dataset_3. For 

previous work, the reader can refer to the publications listed in the appendix. 
 
For a given questioned signature, compared to a set of known specimens (ES), 

the findings are represented by a set of scores (Cw, Cg, Cr, Ch, DTW, KSTw, KSTg, 

KSTr, KSTh), denoted as 𝑠"𝐸!	, 𝐸#%. 

The estimated score-based LR 𝑆𝐿𝑅)  (equation 11) is obtained by the ratio 

between the probability density observed for 𝑠"𝐸!	, 𝐸#% given two alternative 

propositions Hp and Hd. Hp stands for the proposition that the questioned 
signature shares common authorship with the signatures from the POI. The 
signature is then genuine. Hd stands for the proposition that the questioned 
signature is not from the POI’s hand but is a forgery. The distributions of the 
scores under both propositions are needed to obtain the respective densities. 
This was done by conducting comparisons between signatures from ES (under 
Hp) and from EA against ES (under Hd). 

 

𝑆𝐿𝑅B = +,-./0"	,0$1|3%4
+,[.(0",0$)|3&]

. Equation 11 

To simulate operational conditions, simulated cases were generated based on 
the signature dataset. For instance, for a given individual (writer) composed of 
m genuine signatures and n forgery signatures, forensic cases were generated 
by taking one questioned signature (ES) and five reference signatures (EU) from 

the genuine signatures; a set of {𝑠"𝐸!	, 𝐸#%} is then obtained representing one 

forensic case. The choice of five genuine references is motivated by the fact that 
although the FHE will ask for as many known genuine signatures as possible for 
comparison purposes, the amount of genuine material is often limited. Based on 
our practice, the value of five is considered to be a reasonable number of known 
references. 

 
As introduced in Section 3.4.3.2, two conditions are possible depending on 

the proposition considered (Hp or Hd) and how the variability will be computed: 
 
Inner-individual mode: Inner-individual mode involves the random selection 

of a questioned signature that can be a genuine or any one of the forgeries that 
is compared with the five randomly selected genuine references from a given 
individual. For each transaction, a score-based LR is calculated and the final LR 
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associated with the case itself will be the mean of the five score-based LRs. For 
a given simulated case, the within-writer distribution is obtained using the 
pairwise comparisons between all of the remaining genuine signatures (leading 
to 44*43/2 comparisons) from the individual under consideration. The between-
writer distribution is obtained by comparing the remaining genuine signatures 
against the remaining forgeries of that individual. 

 
For the process of score-based LR calculation, see Figure 21. 

 

 
Figure 21 

Figure 21: Simulation of cases for inner-individual 
 

 
Inter-individual mode: In practice, it can be difficult to obtain as many 

reference samples as signature dataset from each individual as in this study. 
Hence, we then tested a second method in which the within-writer distribution is 
based on all of the pairwise comparisons among all of the genuine signatures 
for the individuals in the dataset. Likewise, the between-writer distribution is 
based on all the comparisons between genuine and forged entries of all the 
individuals in the dataset. In the latter method, we have then a generic within-
writer distribution and a generic between-writer distribution that do not depend 



Xiaohong Chen            Forensic Offline Signature Handwriting Examination Based on 
                                    Three-dimensional and Pseudo-dynamic features 

60 
 

on the specific individual used to produce the simulated case (see Figure 22). 
 

 
Figure 22: Simulation of cases for inter-individuals 

 
For each individual, simulation cases were generated as shown in Figure 23. 

Random selection of five references was performed 10 times for each individual, 
and then a score-base LR was calculated on 231,390 simulation cases in both 
modes. All results were gathered for inner- and inter-individual modes, 
respectively. Comparing both methods allowed us to assess whether or not, in 
cases with limited known references, generic underlying distributions could still 
be used. 
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Figure 23: Generation processing for the simulation of cases. 

 
To choose a proper bandwidth for MKED, the parameter varying between 0.1 

and 0.2 was tested as follows: 20 individuals were randomly selected in the 
dataset, as questioned signatures, and the other 22 individuals in the dataset 
were kept as background information. Ultimately, 0.2 was selected as the 
optimized bandwidth, for estimating the reasonable LR distribution without too 
many infinite values (see Figure 24). Note that the choice of the bandwidth 
impact on the magnitude of the LR obtained both under Hp and Hd. 
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Figure 24: Bandwidth comparison and its selection for MKED. In red the distribution of 
log10(LR) under Hp. In blue the distribution of log10(LR) under Hd. 
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3.6.2.2 Score-based LR calculation using Dempster–Shafer theory 

Dempster–Shafer theory (DST) is a generalization of the Bayesian theory of 
subjective probability, also referred to as the theory of belief functions. Belief 
functions base degrees of belief (or confidence or trust) for one question on the 
probabilities for a related question. They are often used as a method of sensor 
fusion, which is based on two ideas: obtaining degrees of one question from 
subjective probabilities for a related question, and Dempster’s rule (Dempster, 
1968) for combining such degrees of belief when they are based on independent 
items of evidence. In essence, the degree of belief in a proposition mainly 
depends on the number of answers (to the related questions) containing the 
proposition and the subjective probability of each answer. The combination rules 
reflect the general assumptions about the data that contributed as well. 

 
Here, a degree of belief (also called a mass) is represented as a belief function 

rather than a probability distribution. Probability values are assigned to sets of 
possibilities rather than single events: their appeal rests on the fact they naturally 
encode evidence in favour of propositions. 

 
DST has the following advantages: The required prior data are more intuitive 

and easier to obtain than in standard probabilistic reasoning theory. DST 
satisfies a weaker condition than standard probability—that is, “it is not 
necessary to meet the probability additivity”. Various data and knowledge can 
be integrated. DST has the ability to directly express “uncertain” and “don’t know”. 
This information is expressed in the mass function and is retained during the 
evidence synthesis process. 

 
In the first step, subjective probabilities (masses) are assigned to all subsets 

of the frame. In this research, the hypothesis was set to four masses: null 
(neither genuine nor forgery), genuine, forgery, and either (genuine or forgery). 
Setting the mass of the null hypothesis as 0, the remaining mass (the gap 
between the supporting evidence on Hp and the contrary evidence on Hd) is 
“indeterminate”, which means that it could be either genuine or forgery (Table 
16). 
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E 

Table 16: Hypothesis and mass of Dempster–Shafer theory 

Hypothesis MASS of 3D and pseudo-dynamic features 

Null (neither genuine nor forgery) 0  
Genuine supporting evidence on Hp (𝑆𝐸𝐻𝑃{:})* 

Forgery supporting evidence on Hd (𝑆𝐸𝐻𝐷{:})* 

Either (genuine or forgery) 1- (𝑆𝐸𝐻𝐷{:} +𝑆𝐸𝐻𝐷{:}) *  
* F means features used in calculation. 

 

 
 
 

Figure 25: Estimation of density under Hp and Hd denoted as kde_hp, and kde_hd 
respectively. Score of evidence denoted as E. 

 
For each feature, first, 1-D kde in the ks package is used to estimate the 

density under Hp and Hd (kde_hp and kde_hd, respectively) ( 
 

Figure 25). Second, kde_hp/(kde_hp + kde_hd) is used as probability of 
supporting evidence on Hp (SEHP); kde_hd /(kde_hp + kde_hd) was used as 
probability of supporting evidence on Hd (SEHD). Then, the package ibelief was 
invoked (using the Dempster–Shafer criterion) to combine masses of supporting 
evidence on Hp and supporting evidence on Hd ( 𝐷𝑆𝑇$𝑆𝐸𝐻𝑃{"}(  and 
𝐷𝑆𝑇$𝑆𝐸𝐻𝐷{"}( , respectively). Finally, LRs were calculated by the ratio of 
𝐷𝑆𝑇$𝑆𝐸𝐻𝑃{"}( vs 𝐷𝑆𝑇$𝑆𝐸𝐻𝐷{"}(; see Equations 12–15. 

 

Kde_hp 

Kde_hd 

D
ensity 

Score 
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𝑆𝐸𝐻𝑃{:}=
<=>_@A{(}

(<=>_@A{(}B<=>_@={(}
; Equation 12 

𝑆𝐸𝐻𝐷{:}=
<=>_@={(}

(<=>_@A{(}B<=>_@={(}
; Equation 13 

{F}=&𝑊, 𝑅, 𝐺, 𝐺.<>! , 𝐻, 𝐻.<>! , 𝐷𝑇𝑊,𝑊<.C , 𝑅<.C , 𝐺<.C , 𝐺.<>!*+, , 𝐻<.C , 𝐻.<>!_<.C,; Equation 14 

𝐿𝐿𝑅 = 𝑙𝑜𝑔'D 3
EFG/F03H{(}1

EFG/F03H{(}1
4. 

Equation 15 

 
Parallel computing in the packages doSNOW (Microsoft Corporation and 

Stephen Weston, 2020) and foreach (Microsoft Corporation and Steve Weston, 
2020) is used to save on computation time. 

 
The methods of weighting and no weighting for variables were used in DST 

calculation. Weighing parameters (Table 17) were assigned based on the 
relative importance of each variable obtained from the R-Forest model (see 
Section 3.5). 

 
Table 17: Variables and weighting parameters 

Variables Description Weighting parameter 
Width Width of stroke 0.325 

Radian Radian of stroke 0.001* 
Grayscale Grayscale of stroke 1 

Height H 0.41 
DTW DTW 0.21 

Grayscale_skeleton G_ske 0.001* 

Height_skeleton H_ske 0.001* 
KST_Width Kst_w 0.0436 

KST_Radian  0.809 
KST_Grayscale  0.762 

KST_Height  0.243 
KST_Grayscale_skeleton  0.001* 

KST_Height_skeleton  0.001* 
Note: * indicates variables that were not calculated or got a 0 value in ML. 

3.6.3 Performance evaluation 

Inter- and inter-individual modes 
Four distinct properties are mentioned regularly in the context of assessing 

scientific evidence: reliability (Royall, 2000; Taylor, 2014), validity (Ramos-
Castro & Gonzalez-Rodriguez, 2013), accuracy, and precision (Biedermann et 
al., 2016). Performance measures are obtained through the study of LR 
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distributions, which are used to assess the method for the evaluation of findings. 
If the histograms of two probability distributions under the respective hypotheses 
(Hp and Hd) show an overlap of the distributions; this reflects the discriminating 
power of a method at a particular value of log(LR). Tippett plots generalize the 
rates of misleading evidence in comparison. A detection error trade-off (DET) 
plot presents false positives versus false negatives in the function of a decision 
threshold (Aitken et al. 2021). 

 
Performance metrics are represented graphically through Tippett plots, 

detection error trade-off (DET) plots, empirical cross-entropy (ECE) plots, and 
applied probability of error (APE) plots. Classification accuracy is measured 
based on Cllr and ECE. Log-likelihood ratio cost (𝐶$$%) is another measure of 
performance. Discriminative power is measured using 𝐶$$%&'(  and EER; 
calibration is assessed using 𝐶$$%)*$ and the difference between ECE and ECE-
after-PAV (Haraksim et al., 2015). 

2.6.3.1 Calibration 

Robertson et al. (2016) described “calibration” as follows: 
 
For comparison systems, there is no ascertainable true value for the LR; 
only in experiments we can know for sure that a hypothesis is true. We 
therefore define the property ‘calibration’ in a different way. Suppose we 
are given a comparison system that reports LRs. Rather than simply 
accepting them at face value, we might instead evaluate the LRs 
reported for each hypothesis (Robertson et al., 2016, p. 91). 
 
There are many examples of calibration in forensic science, forensic speaker 

recognition (Morrison, 2018), glass evidence (Corzo et al., 2018), mRNA 
profiling (Ypma et al., 2021), DNA profiling (Gonzalez-Rodriguez et al., 2007), 
inkjet classification (Chen et al., 2021), and signatures (Chen et al., 2018). 
Factors such as a bad choice of databases or of statistical models, or a limited 
quantity or quality of signatures, can lead to misleading LRs (meaning they may 
provide support for the wrong proposition). Calibration is a way to mitigate this 
problem and ensure that the LRs can be probabilistically interpreted as 
representing the evidential value of the comparison in a Bayesian evaluation 
framework (Lucena-Molina, 2015; Haraksim, 2015). Several measures for the 
performance of LR-based system and calibration methods have been proposed 
in the literature (Brümmer, 2006; Lucena-Molina, 2015; Ramos, 2013a; Ramos, 
2013b; Martin, 1997). 
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3.6.3.1 Logistic and PAVA calibration 

The solution proposed in Brümmer (2006) and Brümmer (2010) by means of 
the Pool Adjacent Violators Algorithm (PAVA) has been used to measure the 
calibration of LRs (Ramos, 2013a; Ramos, 2013b). Morrison (2021) suggested 
that PAVA-based metrics of degree of calibration do not actually measure the 
degree of calibration; rather, they measure sampling variability between the 
calibration data and the validation data, as well as overfitting on the validation 
data. 

 
Morrison (2013) provided a tutorial on logistic regression calibration and fusion 

at a practical conceptual level with minimal mathematical complexity. A 
traditional-style phonetic-acoustic forensic-speaker-recognition analysis was 
conducted on Australian English /o/ recordings calibrated using logistic 
regression. Different parametric curves were fitted to the formant trajectories of 
the vowel tokens, and cross-validated LRs were calculated using a single-stage 
generative MVKD formula (Morrison & Kinoshita, 2008). Aitken (2004) 
investigated the calibration of scores generated by the MVKD formula. 

3.6.3.4 Performance evaluation in datasets 

In this research, a validation toolkit 13  (Beta v1.06) was initially used to 
measure the performance and PAVA calibration based on dataset_2. The 
purpose of this toolkit was to enable end users to effortlessly measure the 
performance of log-likelihood-ratio values coming from their experiments. 
Performance representations include Tippet plots, limit Tippett plots, DET plots, 
ECE plots, and APE plots. Given the dependence on the writer, analysis was 
carried out per writer (an individual in data collection includes genuine and 
forged signatures of a given individual). The toolbox calculates 𝐶$$%, 𝐶$$%)*$,𝐶$$%&'(, 
EER, rate of misleading evidence in favour of Hd (RMED), and rate of misleading 
evidence in favour of Hp (RMEP). The above computation involves an 
exceptionally large number of cases, and we explored whether performance 
metrics could be estimated with a lower number of cases. To reduce computing 
time, three percentages (50%, 30%, and 10%) of the data were randomly 
selected, and the metrics were bootstrapped (1000 bootstrap samples). These 
results are presented in Chen et al. (2018), which is provided in the appendix. 

 
In this study and for dataset_3, the comparison package (Lucy et al., 2020) is 

used to evaluate the performance of the LR system. This package includes two-
level functions to calculate LR assuming multivariate normality; another drops 
this assumption and uses a multivariate kernel density estimate. This package 

 
13 https://sites.google.com/site/validationtoolbox/home 
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also contains code for performing the ECE calibration of LRs. In this research, it 
is used to perform multivariate LR calculation and evaluation based on 
dataset_3. It calculates the calibrated set of LRs with logistic regression. 
Additionally, to show performance based on two methods of regression, PAVA 
regression is also used to calculate the calibrated set of LRs. 

 
 
To answer the question as to whether or not the skilled forgeries selected 

through CNN deep learning necessarily tend to mislead, density distribution will 
be used to observe the differences between skilled forgeries (as selected by 
CNN) and other forgeries based on the calibrated log LR. 
 

3.7 Validation tests 

3.7.1 Competition test 

In the past, many competitions have been organized to measure the detection 
rate of several classifiers. As we noted, however, most of the current research 
in the field of signature verification does not take the real needs of FHEs into 
account. In their case work, they often work with signatures produced in various 
real-world environments. The Signature Verification Competition for Online and 
Offline Skilled Forgeries (SigCom2011) was the first verification competition 
focused on Chinese signatures. This study will use the SigCom2011 dataset as 
the blind test dataset. 

 

3.7.2 CNAS proficiency test (PT) 

Since 2014, the China National Accreditation Service for Conformity 
Assessment (CNAS) has released PT projects every year. There are 10 PT 
projects: raw documents could be obtained from 9 out of 10 projects, which 
provide 3D and pseudo-dynamic features. One out of 10 projects scanned 
documents in 9 projects, which provided only 2D and pseudo-dynamic features. 

 
In each PT case, using dataset_3 as the background information, the nine-

variable option was chosen for the PT case in which original documents were 
available. The seven-variable option was chosen for the PT case that only 
provided scanned images (without access to the 3D variables). The retained 
options for these variables are given in Section 4.1.4.2.  
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A comparison is carried out between reference signatures and questioned 
signatures and the LRs are calculated. The comparison between reference 
signatures also provides a baseline to see if the background information was 
adequate or suitable for the specific PT case. 

 

3.7.3 Real forensic cases test 

Finally, 50 real cases were collected randomly from the Academy of Forensic 
Science, covering 2019 to 2020. These provided original documents that 
allowed us to obtain 3D and pseudo-dynamic features. The writing conditions of 
the real cases—including writing instruments, surfaces, and positions—varied to 
a large degree between the cases. Performance will be evaluated by 
comparison between the obtained LRs with the reported expert opinions in the 
case. 
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Chapter 4 Results 
 

4.1 Between- and within-writer variations 

4.1.1 Statistical description and descriptive analysis 

4.1.1.1 Descriptive measurement 

 
a) 

 

b) 

 

c) 

  

d) 

 

 
Figure 26: Pair plots based on four 1D features (width, radian, skeleton grayscale, and skeleton 
height) and kernel 2D distribution after PCA based on distribution features from all individuals in 
the signature dataset. a) For each plot density in the diagonal, correlation in upper, density_2d 
in lower. b) Two-dimensional density distribution plot after PCA based on four 1D features (width, 
radian, skeleton grayscale, and skeleton height) and height (skeleton and distribution). c) 
Grayscale distribution and d) height distribution. Red lines and areas represent freehand forgery 
(FF), green lines and areas represent genuine signature (GE), blue lines and areas represent 
random forgery (RF), and purple lines and areas represent tracing forgery (TF). 

 
As shown in Figure 26 above, when signature data of different prediction 

modes (typically genuine signatures vs forgeries) were put together, the directly 
measured features had different degrees of similarity, and no difference was 
found in the width, height, and radian features. This phenomenon revealed two 
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things: first, the direct measurement features were greatly affected by the 
signature text; and, second, the direct measurement features from different 
source were not discriminable. In other words, description measurement is 
sensitive to the character morphology of signature. 

4.1.1.2 Comparative measurement 

The statistical description of features, MANOVA, and discriminant analysis 
using dataset_1 is documented in Chen (2015) in the appendix. The MANOVA 
result confirmed significant differences between GE signatures (genuine 
signature was denoted as original signature (OR) in the published paper) and 
forgeries (forgeries was denoted as non-original signature (NON-OR) in the 
published paper) with respect to width and grayscale. Moreover, significant 
differences between GE and FF and between GE and TF were shown with 
respect to radian data. The mean distances between the observations showed 
that the imitation signatures, such as the FF and TF signatures, were close to 
the GE signatures in width, grayscale, and radian values. The differences 
between the GE and TF signatures were not significant with regards to radian 
data. The imitation signatures were more similar to GE signatures than to RF 
signatures considering their width, grayscale, and radian data. The MANOVA 
result on dataset_1 indicated that the width, grayscale, and radian information 
are effective features for discriminant analysis. GE, FF, RF, and TF signatures 
were classified in the discriminant analysis. The discriminant analysis between 
GE signatures and forgeries showed high scores in the cross-validation rate with 
a mean of 95.8% (see Table 18). 

 
Table 18: Discriminant analysis based on width, grayscale, and radian: cross-validation between 
OR and non-OR in each group 

Group G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 

C.Va 97.6% 97.6% 95.1% 96.4% 94% 97.6% 95.2% 95% 97.4% 93.9% 90.5% 98.8% 

Note: a, C.V., cross-validation. 
 

The variables are presented in Figure 27, in which each variable is presented 
by its histograms, pairwise plots, and correlation measures with other variables. 
For each plot histogram in the diagonal part, correlation in the upper part, and 
density_2d in the lower part was based on width, radian, skeleton grayscale, 
skeleton height, grayscale distribution, and height distribution. The distance 
between signatures during DTW processing is another variable. 
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Figure 27: Pair plots based on comparative measurement from all individuals in Dataset_3: Red 
lines and areas represent freehand forgery (FF), green lines and areas represent genuine 
signature (GE), blue lines and areas represent random forgery (RF), and purple lines and areas 
represent tracing forgery (TF). 
 

Comparative measurement provides a novel method to investigate 
handwriting in a systematic way. For features of width, skeleton height, and 
height distribution, the similarities between genuine signatures were higher than 
those between genuine signatures and forgeries. For skeleton grayscale and 
grayscale distribution features, the similarities between genuine signatures were 
much higher than those between genuine signatures and forgeries. For radian 
features, random forgery showed lower similarity with genuine signatures in 
handwriting morphology. In the distances between signatures following DTW, 
however, the distance between random forgery and genuine signature was 
much shorter than that between other types of forgeries. Based on the 
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interpretation of correlation coefficients (Lippmann, 1987), there were high 
positive relationships (correlation coefficients: 0.7–1.0) between the correlation 
coefficient of skeleton height and height distribution and weak positive linear 
relationships (correlation coefficients: 0.0–0.3) between the correlation 
coefficients of radian and skeleton grayscale, skeleton height, and height 
distribution. The remaining pairwise features showed moderate (correlation 
coefficient: 0.3–0.5) or strong (correlation coefficient: 0.5–7.0) positive linear 
relationships. In addition, there was a strong positive linear relationship between 
the correlation coefficient of radian and distance of DTW—that is, a higher 
similarity in signature morphology corresponded to further DTW distance. 

 
Compared with descriptive measurement features, when the signature data of 

different character morphology were combined, the comparative measurement 
features did not reveal the same phenomenon because of the different texts but 
they showed stable differences between GE and forgeries (GE, RF, FF, and TF). 
This result tells us that, even in the absence of background data corresponding 
to the questioned signatures, the signature data for different types of languages 
might provide reliable background data for real cases. This behaviour is 
especially important in actual cases, and it can be used to propose a text-
independent background data for the evaluation of the findings. 

 
Width, skeleton height, and height distribution showed that similarities 

between genuine signatures are higher than those between genuine signatures 
and forgeries. For grayscale, the similarities between genuine signatures are 
higher than between genuine signatures and forgeries. For radian features, 
random forgeries show lower similarity with genuine signatures in handwriting 
morphology. Unexpectedly, the distance between random forgery and genuine 
signature is lower than for other types of forgeries. The correlation coefficients 
were high for some combinations of variables. This testifies to the correlated 
nature of the variables. 

4.1.2 Probability density distribution 

In the second published paper by Chen et al. (2018), also in its appendix, we 
have shown that relevant dynamic features (width, grayscale, and radian 
features measured as a function of the writing sequence derived from static 
images) allow to discriminate between genuine and forged signatures from 
Dataset_2 (an expanded dataset based on Dataset_1). These features are 
important additions to traditional features measured statistically on the images. 
Our data confirmed that some signatures are easier to forge than others, but 
reasonable discrimination can be achieved. 
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The two published papers (Chen, 2015; Chen et al., 2018) initially proposed 
and verified the signature pseudo-dynamic features and its specificity. The 
features were obtained from scanned 2D images in these two papers. In this 
research, 3D information was added to the features. Dataset_3 is a brand-new 
and larger database that provides signatures for a larger population of people. 
Compared with Dataset_2, the number of individuals has increased from 20 to 
100, and the number of forgers of various forgeries has increased from 3 to 99, 
which currently could be the largest Chinese signature database. We hope to 
use Dataset_3 to re-verify the previous 2D pseudo-dynamic feature research 
and to provide sufficient signature data for the 3D pseudo-dynamic feature 
research. Therefore, four options for variable combinations were selected to 
observe the performance of different options in terms of number of variables 
considered (Table 19). Option 1 represents the first three important variables, 
according to the variable importance parameters in R-Forest (see later Section 
4.2.5). Option 2 represents the first six important variables, still according to the 
variable importance parameters in R-Forest importance. Option 3 represents 
seven variables, excluding height information. Option 4 represents all variables 
available. Option 5 represents 13 variables, by adding 2D pseudo-dynamic 
features associated to published papers. To find the best variable combinations, 
four options were used for comparison. 
 

Table 19: Five options for variable combinations 
Option LR NM* Width Radian Grayscale Height DTW KST_W KST_R KST_G KST_H Additional** 

1 LR1 3   √    √ √   
2 LR2 6  √ √ √ √  √ √   
3 LR3 7 √ √ √  √ √ √ √   
4 LR4 9 √ √ √ √ √ √ √ √ √  
5 LR5 13 √ √ √ √ √ √ √ √ √ √ 

* NM: number of variables. 

** Additional grayscale, height in skeleton and KST, respectively. 

 
In dataset_3, nine features were measured: width, grayscale, radian, height, 

DTW, KST_width (KST_W), KST_grayscale (KST_G), KST_radian (KST_R), 
and KST_height (KST_H). The KDE plot based on the six, seven, and nine 
features after PCA showed significantly different distributions between GE and 
forgeries (RF, FF, and TF) than that of the three features (Figure 28). 
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a) Based on three variables b) Based on six variables 

  

c) Based on seven variables d) Based on nine variables 
Figure 28: Two-dimensional density distribution plot for all individuals after principal 
component analysis (PCA) based on different variables options: three variables, six 
variables, seven variables and nine variables. 

 
A Shiny web application was created to show the KDE plot after PCA for each 

individual and 100 individuals together (see 
https://cchampod.shinyapps.io/ChineseSignatures/) (Figure 29). Nine variables 
were used in this application. 

 
PCA plots for any user can be consulted in the dedicated Shiny app. The 

Shiny app Score-based LRs estimate the strength of the signature evidence. 
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Figure 29: Shiny app for the Chinese signature project 

 
To further illustrate how comparisons between genuine signatures can be 

distinguished from comparisons between genuine and forgeries, Figure 30 
presents a 2D kernel density distribution plot of the first two principal 
components obtained after PCA. The top left plot shows the joint results for all 
97 individuals. This can be contrasted with the results for three individuals: 22, 
67, and 89. Globally, it is observed that genuine comparisons are separated 
from comparisons with forgeries. The distance with genuine comparisons is 
higher in comparisons involving RF and lower for cases involving other types of 
forgeries. The individual examples show that the magnitude of these trends 
depends on the donor. Some individuals (e.g., 89) allow for a distinction between 
types of forgeries; others (e.g., 67) have all their comparisons involving forgeries 
in the same cluster. The level of discrimination between genuine signatures and 
forgeries also depends on the donors (e.g., 22 compared to 89). 
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Figure 30: 2D kernel density distribution plot after PCA: PCA for all individuals, for individual 22, 
for individual 67, and for individual 89, respectively. 

 

4.2 Machine Learning (ML) 
In addition to the investigation of the score-based LRs, these nine features 

have informed a ML strategy in which we investigated the capability to 
distinguish comparisons arising from a common source (a given individual) from 
comparisons involving forgeries (associated with each individual). The use case 
for ML should correspond to the use of the biometric system for automatic 
identification. A range of ML classifiers have been tested from low complexity 
(higher explainability) models to high complexity (lower explainability) models. 
Refer to chapter 3 for methodological details. 

4.2.1 K-nearest neighbour 

Nearest neighbour is based on the labels of the K-nearest patterns in the data 
space. KNN classifier is used to classify unknown observations by assigning 
them to the class of the most similar labelled examples. Nearest neighbour 
techniques are strong in case of large datasets and low dimensions as a local 
method. Variants for multilabel classification, regression, and semi-supervised 
learning settings can be applied to a broad scope of ML (Kramer, 2013; Zhang, 
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2016). Table 20 shows the resampling results across tuning parameters for KNN. 

 
Table 20: Resampling results across tuning parameters for KNN 

k Accuracy 

 

The final value used for the model was k = 
23. 

5 0.9883 
7 0.9885 
9 0.9885 
11 0.9888 
13 0.9888 
15 0.9890 
17 0.9891 
19 0.9891 
21 0.9891 
23 0.9891 

4.2.2 Discriminant analysis 

Discriminant analysis is utilized to predict the probability of belonging to a 
given class based on one or multiple predictor variables. It is suitable for 
continuous and/or categorical predictor variables. Compared with logistic 
regression, discriminant analysis is more suitable for predicting the observed 
category when the outcome variable contains more than two classes. 
(Kassambara, 2018). 

4.2.2.1 Linear discriminant analysis (LDA) 

The LDA algorithm first finds directions that maximize the separation between 
classes and then uses these directions to predict the individual’s class. These 
directions are called linear discriminants, which are linear combinations of 
predictor variables (Kassambara, 2018). This model obtained the following 
results: 0.990 in accuracy and 0.980 in Kappa. 

4.2.2.2 Mixture discriminant analysis (MDA) 

The LDA classifier assumes that each class is from a single normal distribution. 
This restricts other distributions too much. For MDA, there are classes, and each 
class is assumed to be a Gaussian mixture of subclasses, where each data point 
has a probability of belonging to each class. We assumed that the covariance 
matrix between classes is equal (Kassambara, 2018). Table 21 shows the MDA 
resampling results across tuning parameters. The final value used for the model 
was subclasses = 2. 
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Table 21: MDA resampling results 

Subclasses Accuracy 
2 0.9904 
3 0.9890 
4 0.9899 

 

4.2.2.3 Quadratic discriminant analysis (QDA) 

QDA is a bit more flexible than LDA and QDA does not assume the equality 
of variance or covariance. LDA tends to be better than QDA when you have a 
small training set (Kassambara, 2018). By contrast, if the training set is 
exceptionally large, QDA is recommended so that the variance of the classifier 
is not a major issue, or if the assumption of a common covariance matrix for the 
K classes is clearly untenable (James et al., 2014). This model obtained the 
following results: 0.988 in accuracy and 0.976 in Kappa. 

4.2.2.4 Regularized discriminant analysis (RDA) 

RDA builds a classification rule to regularize the group covariance matrices 
(Friedman, 1989) allowing for a more robust model against multicollinearity in 
the data. This might be particularly useful for large multivariate datasets that 
contain highly correlated predictors. Recall that, LDA assumed an equality of 
covariance matrix for all classes, whereas QDA assumes different covariance 
matrices. Regularized discriminant analysis is a middle level between LDA and 
QDA. RDA reduces the individual covariances of QDA to the common 
covariance, just like LDA. In the case in which the number of predictors is greater 
than that of the number of samples in the training data, this improves the 
estimate of the covariance matrices, which may increase the accuracy of the 
model (Kassambara, 2018). 

 
Table 22 shows the resampling results across tuning parameters. The final 

values used for the model were gamma = 0 and lambda = 1. Accuracy was used 
to select the optimal model by its largest value; the MDA model was slightly 
better than the others. 

 
 
 
 



Xiaohong Chen            Forensic Offline Signature Handwriting Examination Based on 
                                    Three-dimensional and Pseudo-dynamic features 

80 
 

Table 22: RDA resampling results 
Gamma Lambda Accuracy 

0.0 0.0 0.9879 
0.0 0.5 0.9901 
0.0 1.0 0.9902 
0.5 0.0 0.9864 
0.5 0.5 0.9891 
0.5 1.0 0.9897 
1.0 0.0 0.9784 
1.0 0.5 0.9817 
1.0 1.0 0.9821 

 

4.2.3 Naive Bayes (NB) 

The naive Bayes (NB) classifier greatly simplifies learning by assuming that 
the features are independent of a given class; it is based on the Bayes theorem 
and assumes that the features are independent of a given class. It is a resource-
efficient algorithm with fast speed and good scalability (Rish, 2001). Table 23 
shows the NB results. The final values used for the model were fL = 0, usekernel 
= TRUE, and adjust = 1. 

 
Table 23: NB resampling results 

Usekernel Accuracy 

  

FALSE 0.9882 

TRUE 0.9894 

 

4.2.4 Tree-based models 

4.2.4.1 Classification and regression tree (CART) 

The most basic type of tree-structure model is a decision tree or 
classification and regression tree (CART). CART analysis is different from the 
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traditional establishment technology data analysis method. It is suitable for 
generating clinical decision rules. In addition, CART often reveals complex 
interactions between predictor variables (Lewis, 2000). Table 24 shows the 
CART resampling results across the tuning parameter. The final value used for 
the model was cp = 4e-04. 

 
Table 24: CART resampling results 

cp Accuracy 

 

0.0002 0.9871 
0.0003 0.9873 
0.0003 0.9877 
0.0004 0.9878 
0.0004 0.9878 
0.0012 0.9867 
0.0050 0.9832 
0.0057 0.9823 
0.9619 0.5054 

 

4.2.4.2 Stochastic gradient-boosting machine (GBM) 

Gradient boosting constructs an additive regression model by sequentially 
fitting a simple parameterized function (basic learner) to the current pseudo-
residuals through the least squares method in each iteration. The pseudo-
residual is the gradient of the minimized loss function, relative to the model value 
of each training data point evaluated in the current step. The results show that 
both the approximation accuracy and execution speed of gradient boosting can 
significantly improve stochastic gradient boosting. The stochastic gradient 
boosting method also increases the robustness to excess capacity of the basic 
learner (Friedman, 2002). Table 25 shows the GBM resampling results across 
the tuning parameters. The tuning parameter “shrinkage” held constant at a 
value of 0.1. The tuning parameter “n.minobsinnode” held constant at a value of 
20. The final values used for the model were n.trees = 200, interaction.depth = 
5, shrinkage = 0.1, and n.minobsinnode = 20. 

 
Table 25: GBM resampling results 

Interaction depth n.trees Accuracy 
3 50 0.9878 
3 100 0.9887 
3 200 0.9887 
3 500 0.9883 
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3 1000 0.9882 

 
 

5 50 0.9888 
5 100 0.9891 
5 200 0.9892 
5 500 0.9885 
5 1000 0.9882 
7 50 0.9887 
7 100 0.9886 
7 200 0.9887 
7 500 0.9885 
7 1000 0.9885 

 

4.2.4.2 C5.0 decision trees (C50) 

Applying the lifting procedure to the decision tree algorithm can produce an 
accurate classifier. These classifiers take the form of majority voting on many 
decision trees. Unfortunately, these classifiers are usually large, complex, and 
difficult to interpret. C50 is proven to be competitive with enhanced decision tree 
algorithms, and the generated rules are usually smaller in size and therefore 
easier to interpret (Pandya & Pandya, 2015). Table 26 shows the C50 decision 
tree resampling results across tuning parameters. The final values used for the 
model were trials = 60, model = rules, and winnow = TRUE. 

 
Table 26: C50 resampling results 

Model Winnow Trials Accuracy AccuracySD 
tree FALSE 10 0.9883 0.0370 
tree FALSE 20 0.9882 0.0375 
tree FALSE 30 0.9881 0.0378 
tree FALSE 40 0.9880 0.0383 
tree FALSE 50 0.9881 0.03837 
tree FALSE 60 0.9880 0.0387 
tree FALSE 70 0.9879 0.0388 
tree FALSE 80 0.9878 0.0392 
tree FALSE 90 0.9879 0.0389 
tree FALSE 100 0.9879 0.0389 
tree TRUE 10 0.9883 0.0370 
tree TRUE 20 0.9882 0.0375 
tree TRUE 30 0.9881 0.0378 
tree TRUE 40 0.9880 0.0383 
tree TRUE 50 0.9881 0.0384 
tree TRUE 60 0.9880 0.0387 
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tree TRUE 70 0.9879 0.0388 
tree TRUE 80 0.9878 0.0392 
tree TRUE 90 0.9879 0.0389 
tree TRUE 100 0.9879 0.0389 
rules FALSE 10 0.9883 0.0369 
rules FALSE 20 0.9883 0.0378 
rules FALSE 30 0.9882 0.0379 
rules FALSE 40 0.9883 0.0381 
rules FALSE 50 0.9883 0.0380 
rules FALSE 60 0.9884 0.0379 
rules FALSE 70 0.9883 0.0381 
rules FALSE 80 0.9882 0.0383 
rules FALSE 90 0.9883 0.0380 
rules FALSE 100 0.9882 0.0382 
rules TRUE 10 0.9884 0.0369 
rules TRUE 20 0.9883 0.0378 
rules TRUE 30 0.9882 0.0379 
rules TRUE 40 0.9882 0.0381 
rules TRUE 50 0.9883 0.0380 
rules TRUE 60 0.9884 0.0379 
rules TRUE 70 0.9883 0.0381 
rules TRUE 80 0.9882 0.0383 
rules TRUE 90 0.9883 0.0380 
rules TRUE 100 0.9882 0.0382 

 

4.2.4.3 eXtreme gradient boosting based on linear model (XGB_linear) 

eXtreme Gradient Boosting is an efficient and scalable implementation of 
the gradient boosting framework (Friedman, 2001; Friedman et al., 2000). It 
includes an efficient linear model solver and tree learning algorithm (Chen, 2015). 
Table 27 shows the XGB_linear resampling results across the tuning parameters. 
The tuning parameter “eta” held constant at a value of 0.3. The final values used 
for the model were nrounds = 100, lambda = 0.01, alpha = 0.1, and eta = 0.3. 

 
Table 27: XGB linear resampling results 

Nrounds Lambda Alpha Eta Accuracy AccuracySD KappaSD 

10 0.01 0.01 0.3 0.9872 0.0400 0.0802 

10 0.01 0.1 0.3 0.9876 0.0390 0.0781 

10 0.01 0.2 0.3 0.9876 0.0383 0.0766 

10 0.1 0.01 0.3 0.9876 0.0389 0.0779 

10 0.1 0.1 0.3 0.9876 0.0386 0.0772 
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10 0.1 0.2 0.3 0.9872 0.0401 0.0803 

100 0.01 0.01 0.3 0.9874 0.0396 0.0792 

100 0.01 0.1 0.3 0.9880 0.0379 0.0757 

100 0.01 0.2 0.3 0.9875 0.0390 0.0780 

100 0.1 0.01 0.3 0.9879 0.0383 0.0766 

100 0.1 0.1 0.3 0.9877 0.0385 0.0770 

100 0.1 0.2 0.3 0.9876 0.0390 0.0780 

200 0.01 0.01 0.3 0.9873 0.0399 0.0798 

200 0.01 0.1 0.3 0.9877 0.0386 0.0771 

200 0.01 0.2 0.3 0.9875 0.0392 0.0783 

200 0.1 0.01 0.3 0.9879 0.0381 0.0762 

200 0.1 0.1 0.3 0.9878 0.0386 0.0771 

200 0.1 0.2 0.3 0.9875 0.0395 0.0790 

500 0.01 0.01 0.3 0.9874 0.0397 0.0795 

500 0.01 0.1 0.3 0.9876 0.0388 0.0775 

500 0.01 0.2 0.3 0.9874 0.0391 0.0782 

500 0.1 0.01 0.3 0.9876 0.0389 0.0778 

500 0.1 0.1 0.3 0.9877 0.0388 0.0776 

500 0.1 0.2 0.3 0.9875 0.0395 0.0790 
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4.2.5 Random Forest (R-Forest) 

The random forest algorithm is successful as a general classification and 
regression method. This method combines several random decision trees and 
aggregates their predictions by averaging. It shows excellent performance in 
settings in which the number of variables is much larger than the number of 
observations (Biau & Scornet, 2016). Table 28 shows the R-Forest resampling 
results across the tuning parameters. The final value used for the model was 
mtry = 4.  

 
Table 299 shows the confusion matrix and statistics for performance and 

variable importance. 
 

Table 28: R-Forest resampling results across tuning parameters 

mtry Accuracy 

 
 

2 0.9894 

4 0.9896 

6 0.9892 

9 0.9886 
 
 

Table 29: Confusion matrix and statistics 
Accuracy 0.9968 

 

95% CI (0.9967, 0.9969) 

No information rate 0.8184 

p-value [Acc > NIR] < 2.2e-16 

Kappa 0.9894 

Mcnemar’s test p-value < 2.2e-16 

Sensitivity 0.9967 

Specificity 0.9972 

Pos pred value 0.9994 

Neg pred value 0.9855 

Prevalence 0.8184 

Detection rate 0.8158 

Detection prevalence 0.8163 

Balanced accuracy 0.9970 
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4.2.6 Support vector machines (SVM) with radial basis function 
kernel 

Support vector machine (SVM) is a new type of learning machine based on 
statistical learning theory. It includes polynomial classifiers, neural networks, and 
radial basis function (RBF) networks as special cases (Scholkopf et al., 1997). 
Table 30 shows the SVM resampling results across the tuning parameters. The 
final values used for the model were sigma = 0.01 and C = 0.1. 

 
Table 30: SVM resampling results 

Sigma C Accuracy AccuracySD 

 
 

0.01 0.1 0.9905 0.0312 

0.01 1 0.9904 0.0312 

0.01 2 0.9903 0.0310 

0.01 4 0.9903 0.0309 

0.01 8 0.9901 0.0313 

0.1 0.1 0.9901 0.0321 

0.1 1 0.9889 0.0335 

0.1 2 0.9881 0.0351 

0.1 4 0.9874 0.0366 

0.1 8 0.9868 0.0375 

0.4 0.1 0.9890 0.0339 

0.4 1 0.9880 0.0355 

0.4 2 0.9867 0.0378 

0.4 4 0.9858 0.0393 

0.4 8 0.9851 0.0403 

0.8 0.1 0.9880 0.0354 

0.8 1 0.9866 0.0369 

0.8 2 0.9856 0.0379 

0.8 4 0.9848 0.0381 

0.8 8 0.9842 0.0379 

4.2.7 Neural networks 

Neural networks (NN) are a large class of flexible nonlinear regression and 
discriminant models, data reduction models, and nonlinear dynamic systems. 
They usually are composed of a large number of neurons, that is, simple linear 
or nonlinear computational elements, which are usually connected to each other 
in complex ways and often organized into layers (Sarle, 1994). Three NN models 
were used: neural net (NN), averaged neural Network (AvNN), and neural 
network with feature extraction (pcaNNet). Table 31–Table 35 and Figure 31: 
Difference in accuracy between models. show the resampling results across the 
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tuning parameters. 

4.2.7.1 Neural net (nnet) 

 

Table 31: NN resampling results 
Size Decay Accuracy 

 

The final values used for the model were size = 1 and decay = 0.1. 

 

1 0.0000 0.9881 

1 0.0001 0.9900 

1 0.0032 0.9899 

1 0.1000 0.9902 

3 0.0000 0.9887 

3 0.0001 0.9882 

3 0.0032 0.9889 

3 0.1000 0.9874 

5 0.0000 0.9872 

5 0.0001 0.9870 

5 0.0032 0.9880 

5 0.1000 0.9885 

7 0.0000 0.9870 

7 0.0001 0.9882 

7 0.0032 0.9878 

7 
0.1000 0.9874 
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4.3.7.2 Averaged neural network (AvNN) 

The tuning parameter “bag” held constant at a value of FALSE. The final 
values used for the model were size = 5, decay = 1e-04, and bag = FALSE. 

 
Table 32: AvNN resampling results 

Size Decay Bag Accuracy AccuracySD 

1 0 FALSE 0.9859 0.0330 

1 0.0001 FALSE 0.9898 0.0320 

1 0.003162278 FALSE 0.9895 0.0334 

1 0.1 FALSE 0.9898 0.0309 

3 0 FALSE 0.9850 0.0282 

3 0.0001 FALSE 0.9899 0.0330 

3 0.003162278 FALSE 0.9893 0.0346 

3 0.1 FALSE 0.9882 0.0370 

5 0 FALSE 0.9836 0.0310 

5 0.0001 FALSE 0.9900 0.0320 

5 0.003162278 FALSE 0.9895 0.0339 

5 0.1 FALSE 0.9877 0.0380 

7 0 FALSE 0.9853 0.0313 

7 0.0001 FALSE 0.9896 0.0328 

7 0.003162278 FALSE 0.9895 0.0344 

7 0.1 FALSE 0.9879 0.0372 
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4.3.7.3 Neural networks with PCA feature extraction (pcaNNet) 

The final values used for the model were size = 3 and decay = 0.1. 
 

Table 33: pcaNNet resampling results 
Size Decay Accuracy AccuracySD 

1 0.0000 0.9842 0.0370 

1 0.0001 0.9810 0.0740 

1 0.0032 0.9884 0.0348 

1 0.1000 0.9880 0.0354 

3 0.0000 0.9830 0.0302 

3 0.0001 0.9828 0.0539 

3 0.0032 0.9769 0.0778 

3 0.1000 0.9891 0.0339 

5 0.0000 0.9799 0.0400 

5 0.0001 0.9836 0.0471 

5 0.0032 0.9816 0.0511 

5 0.1000 0.9884 0.0358 

7 0.0000 0.9769 0.0641 

7 0.0001 0.9829 0.0496 

7 0.0032 0.9868 0.0374 

7 0.1000 0.9746 0.0866 
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4.2.8 Comparing models 

Thirteen models were selected for the previous analysis: LDA, MDA, QDA, 
RDA, CART, KNN, R-Forest, NN, AvNN, C50, GBM, XGB_linear, and NB. As 
described at the beginning of Section 4.2, the number of individuals for 
resamples was 48. See Table 34: Model accuracy comparison for the accuracy 
results, and Table 35: Kappa of model comparison for the Kappa results. There is 
no significant difference between models; however, the accuracy of R-Forest 
showed smaller variation in accuracy than other models. Therefore, R-Forest 
was selected as the best model. 

 
Table 34: Model accuracy comparison 

Model Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s 

LDA 0.8210 0.9971 0.9995 0.9902 1.0000 1 0 

MDA 0.8228 0.9961 0.9995 0.9904 1.0000 1 0 

QDA 0.8230 0.9973 0.9998 0.9879 1.0000 1 0 

RDA 0.8210 0.9971 0.9995 0.9902 1.0000 1 0 

CART 0.8224 0.9949 0.9984 0.9878 0.9991 1 0 

KNN 0.8343 0.9941 0.9982 0.9891 0.9995 1 0 

R-Forest 0.8228 0.9983 0.9992 0.9896 1.0000 1 0 

NN 0.8425 0.9957 0.9984 0.9902 0.9995 1 0 

AvNN 0.8348 0.9959 0.9992 0.9900 1.0000 1 0 

C50 0.8239 0.9978 0.9992 0.9884 1.0000 1 0 

GBM 0.8302 0.9959 0.9986 0.9892 0.9993 1 0 

XGB_linear 0.8260 0.9968 0.9989 0.9880 0.9996 1 0 

NB 0.8348 0.9959 0.9984 0.9894 1.0000 1 0 
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Table 35: Kappa of model comparison 
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s 

LDA 0.6442 0.9938 0.9990 0.9805 1.0000 1 0 

MDA 0.6477 0.9922 0.9990 0.9809 1.0000 1 0 

QDA 0.6489 0.9945 0.9996 0.9759 1.0000 1 0 

RDA 0.6442 0.9938 0.9990 0.9805 1.0000 1 0 

CART 0.6472 0.9898 0.9968 0.9756 0.9982 1 0 

KNN 0.6712 0.9882 0.9964 0.9783 0.9989 1 0 

R-Forest 0.6478 0.9966 0.9984 0.9791 1.0000 1 0 

NN 0.6874 0.9914 0.9968 0.9803 0.9990 1 0 

AvNN 0.6723 0.9914 0.9983 0.9801 1.0000 1 0 

C50 0.6500 0.9955 0.9984 0.9768 1.0000 1 0 

GBM 0.6632 0.9917 0.9973 0.9783 0.9985 1 0 

XGB_linear 0.6542 0.9937 0.9977 0.9759 0.9992 1 0 

NB 0.6723 0.9918 0.9969 0.9788 1.0000 1 0 

 
Call: 
summary.diff.resamples(object = rocDiffs) 
 
p-value adjustment: bonferroni 
Upper diagonal: estimates of difference 
Lower diagonal: p-value for H0: difference = 0 
Kappa 
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Figure 31: Difference in accuracy between models. 
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4.2.9 Application to test data 

As described in comparison of models, the R-Forest model is very efficient. 
Thus, the R-Forest model was used to validate the performance on test data. 
For recursive feature selection based on training data, Recursive feature 
elimination (RFE) provides a simple backward selection of predictors based on 
predictor importance ranking, function of ref14 in caret (Kuhn, 2021). The cross-
validation (tenfold) was used as the outer resampling method to select the best 
predictors (Table 36). 

 
Table 36: R-Forest resampling result used to select the best predictors 

Variables Accuracy Kappa AccuracySD KappaSD Selected 

1 0.6794 0.3589 0.0039429 0.007886  
2 0.9169 0.8337 0.0885523 0.177105  
3 0.9873 0.9746 0.0008587 0.001717  
4 0.9883 0.9767 0.0008140 0.001628  
5 0.9893 0.9787 0.0006980 0.001396  
6 0.9956 0.9912 0.0006596 0.001319  
7 0.9962 0.9923 0.0007367 0.001473  
8 0.9965 0.9930 0.0008386 0.001677  
9 0.9970 0.9939 0.0007166 0.001433 * 

 
The top five variables (out of nine) were radian, grayscale, DTW, KST_H, and 

width. 
Next, the R-Forest model was retrained based on the selected set of 

predictors (Table 37). 
 
 
 
 
 
 

 
14  Model details about these functions, including examples, are available at 

http://topepo.github.io/caret/recursive-feature-elimination.html 
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Table 37: R-Forest resampling result (retrained) 
Mtry Accuracy Kappa AccuracySD KappaSD 

1 0.9895 0.9790 0.0361 0.0717 

2 0.9894 0.9788 0.0365 0.0726 

3 0.9895 0.9790 0.0364 0.0725 

4 0.9895 0.9790 0.0362 0.0720 

5 0.9894 0.9788 0.0363 0.0723 

6 0.9892 0.9784 0.0364 0.0723 

7 0.9890 0.9780 0.0363 0.0722 

8 0.9888 0.9776 0.0364 0.0724 

9 0.9885 0.9770 0.0366 0.0728 

 

The final value used for the model was mtry = 1. 
 

The dataML_test1 and dataML_test2 with all models were predicted. All 
results have been compiled (Table 38 and Table 39). 
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Table 38: Performance of MLs_test1 (sample size = 100,000) 

MLmodel Accuracy Sensitivity Specificity 

Pos pred 

value 

Neg pred 

value Precision Recall F1 Prevalence 

Detection 

rate 

Detection 

prevalence 

Balanced 

accuracy 

Pred_Hd_ 

when_Hp Sum_Hp 

Pred_Hp 

_when_Hd Sum_Hd 

AvNN 0.9980 0.9998 0.9699 0.9980 0.9973 0.9980 0.9998 0.9989 0.9381 0.9379 0.9398 0.9849 711 23652 61 358453 

R-Forest 0.9979 0.9994 0.9755 0.9984 0.9901 0.9984 0.9994 0.9989 0.9381 0.9375 0.9390 0.9874 579 23652 231 358453 

MDA 0.9976 0.9989 0.9791 0.9986 0.9828 0.9986 0.9989 0.9987 0.9381 0.9370 0.9383 0.9890 495 23652 405 358453 

QDA 0.9974 0.9993 0.9696 0.9980 0.9884 0.9980 0.9993 0.9986 0.9381 0.9374 0.9393 0.9844 720 23652 269 358453 

RDA 0.9970 0.9983 0.9778 0.9985 0.9737 0.9985 0.9983 0.9984 0.9381 0.9365 0.9378 0.9881 524 23652 625 358453 

LDA 0.9970 1.0000 0.9517 0.9968 0.9995 0.9968 1.0000 0.9984 0.9381 0.9381 0.9411 0.9758 1142 23652 11 358453 

NB 0.9969 1.0000 0.9507 0.9968 0.9999 0.9968 1.0000 0.9984 0.9381 0.9381 0.9411 0.9754 1165 23652 3 358453 

C50 0.9907 0.9912 0.9844 0.9990 0.8801 0.9990 0.9912 0.9950 0.9381 0.9298 0.9308 0.9878 370 23652 3171 358453 

KNN 0.9895 1.0000 0.8300 0.9889 0.9999 0.9889 1.0000 0.9944 0.9381 0.9381 0.9486 0.9150 4020 23652 1 358453 

XGB_linear 0.9327 0.9288 0.9909 0.9994 0.4788 0.9994 0.9288 0.9628 0.9381 0.8713 0.8719 0.9599 215 23652 25509 358453 

GBM 0.8549 0.8454 0.9979 0.9998 0.2987 0.9998 0.8454 0.9162 0.9381 0.7931 0.7932 0.9217 49 23652 55409 358453 

NN 0.8181 0.8062 0.9992 0.9999 0.2538 0.9999 0.8062 0.8927 0.9381 0.7563 0.7563 0.9027 19 23652 69483 358453 

CART 0.7573 0.7414 0.9985 0.9999 0.2030 0.9999 0.7414 0.8514 0.9381 0.6955 0.6956 0.8699 36 23652 92705 358453 
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Table 39: Performance of MLs_test2 (sample size = 100,000) 

Rank MLmodel Accuracy Sensitivity Specificity 

Pos 

pred 

value 

Neg pred 

value Precision Recall F1 Prevalence 

Detection 

rate 

Detection 

prevalence 

Balanced 

accuracy 

Pred_Hd_ 

when_Hp Sum_Hp 

Pred_Hp 

_when_Hd Sum_Hd 

1 R-Forest 0.9988 0.9995 0.9960 0.9990 0.9979 0.9990 0.9995 0.9992 0.7962 0.7958 0.7966 0.9977 507 127282 267 497256 

2 MDA 0.9987 0.9990 0.9972 0.9993 0.9963 0.9993 0.9990 0.9992 0.7962 0.7954 0.7960 0.9981 360 127282 474 497256 

3 AvNN 0.9986 0.9998 0.9942 0.9985 0.9990 0.9985 0.9998 0.9991 0.7962 0.7960 0.7972 0.9970 734 127282 122 497256 

4 QDA 0.9984 0.9995 0.9942 0.9985 0.9981 0.9985 0.9995 0.9990 0.7962 0.7958 0.7970 0.9969 738 127282 245 497256 

5 RDA 0.9982 0.9987 0.9966 0.9991 0.9948 0.9991 0.9987 0.9989 0.7962 0.7951 0.7958 0.9976 432 127282 664 497256 

6 LDA 0.9977 1.0000 0.9890 0.9972 0.9999 0.9972 1.0000 0.9986 0.7962 0.7962 0.7984 0.9945 1396 127282 14 497256 

7 NB 0.9976 1.0000 0.9885 0.9971 0.9999 0.9971 1.0000 0.9985 0.7962 0.7962 0.7985 0.9943 1460 127282 13 497256 

8 C50 0.9930 0.9917 0.9980 0.9995 0.9686 0.9995 0.9917 0.9956 0.7962 0.7896 0.7900 0.9948 260 127282 4112 497256 

9 KNN 0.9812 1.0000 0.9076 0.9769 1.0000 0.9769 1.0000 0.9883 0.7962 0.7962 0.8150 0.9538 11755 127282 1 497256 

10 XGB_linear 0.9379 0.9223 0.9988 0.9997 0.7670 0.9997 0.9223 0.9595 0.7962 0.7344 0.7346 0.9606 148 127282 38616 497256 

11 GBM 0.8640 0.8294 0.9994 0.9998 0.5999 0.9998 0.8294 0.9067 0.7962 0.6604 0.6605 0.9144 76 127282 84834 497256 

12 NN 0.8079 0.7589 0.9993 0.9998 0.5147 0.9998 0.7589 0.8628 0.7962 0.6042 0.6043 0.8791 88 127282 119905 497256 

13 CART 0.7814 0.7256 0.9993 0.9998 0.4825 0.9998 0.7256 0.8409 0.7962 0.5777 0.5779 0.8625 84 127282 136441 497256 
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Using a different number of signatures as references for the five ML methods 
(Hsu & Lin, 2002; Dudani, 1976; Ho, 1995; Breilman, 2001; Lippmann, 1987) 
led to different results (Table 40). As expected, increasing the number of 
references led to improved performance. The overall results showed 
outstanding performance: even if there was only one genuine signature for 
reference, performance was significant (above 96.50% in precision, 99.31% in 
recall, and 98.04% in F1 score) in SVM, KNN, R-Forest, and MLP. When the 
references were increased to three, significant improvement was obtained for 
each method (except for the precision of MLP). Random forest showed the best 
performance (99.75% in precision, 100% in recall, and 99.88% in F1 score). 
Performance continuously improved when there were five references. Random 
forest again showed the best performance (99.86% in precision, 100% in recall, 
and 99.93% in F1 score). 

 
Table 40: Performance evaluation of ML 

Reference 
number ML Algorithm NB SVM KNN R-Forest MLP 

1 
Precision 0.9342 0.9650 0.9784 0.9877 0.9903 

Recall 0.9864 0.9963 0.9931 0.9956 0.9961 
F1 score 0.9596 0.9804 0.9857 0.9916 0.9932 

3 
Precision 0.9760 0.9877 0.9934 0.9975 0.9897 

Recall 0.9988 1.0000 0.9996 1.0000 0.9996 
F1 score 0.9873 0.9938 0.9965 0.9988 0.9946 

5 
Precision 0.9843 0.9885 0.9950 0.9986 0.9971 

Recall 1.0000 1.0000 1.0000 1.0000 1.0000 
F1 score 0.9921 0.9942 0.9975 0.9993 0.9986 

4.2.10 Variable importance 

Variable importance analysis was implemented in R-Forest, and nnet (see 
Table 29 and Table 31). To show the variable importance of different ML models, 
using the vip package, eight ML models provide variable importance information 
(see Figure 32(a)). The R-Forest model served as the basis for the variable 
importance analysis (see Figure 32(b)) for the results of the variable importance 
analysis. 
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a) Eight models providing variable importance 
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b) R-Forest model retained on training dataset selected the best parameter. 

Figure 32: Variable importance analysis 
 

The variable importance result based on R-Forest was used as the weight 
parameters in the LR calculation using DST. 
 

4.3 Performance evaluation of score-based LR system 
The LRs performance evaluation of dataset_2 was published in Chen (2018), 

which is included in the appendix. 
 
On dataset_3, we have used two methods of calibration, logistic and PAVA, 

to calibrate the LR system based on MKDE and DST, respectively. 
 
See Table 41 for the method matrix of the performance evaluation. 

 
Table 41: Method matrix of performance evaluation 

 LLR calculation Calibration Mode Result 

1 MKDE Logistic Inner individual Figure 33 
2 MKDE Logistic Inter individual Figure 34 
3 MKDE PAVA Inner individual Figure 35 
4 MKDE PAVA Inter individual Figure 36 
5 DST Logistic Inner individual Figure 39 
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6 DST Logistic Inter individual Figure 40 
7 DST PAVA Inner individual Figure 41 
8 DST PAVA Inter individual Figure 42 

 

4.3.1 PAVA calibration of score-based LR using MKDE based 
on dataset_3 

We took advantage of the comparison package (Lucy et al., 2020) to perform 
multivariate LR calculation and evaluation on dataset_3. It calculates the 
calibrated set of LRs using logistic regression. Additionally, to show the 
performance based on the two methods of regression, PAVA regression was 
also used to calculate the calibrated set of LRs. 

 
For inner- and inter-individual scenarios, the ECE plots based on PAVA and 

logistic regression showed similar performance, as well as RMEP and RMED. 
The density distribution of same sources and different sources showed different 
regression results with different density distribution. Logistic regression showed 
smoother density than PAVA; the former seemed to be more reasonable. In the 
following validation tests (Section 4.4), calibration based on logistic regression 
will be used (Figure 33 to Figure 36). 

 
For each LR option in both inner- and inter-individual scenarios, the density 

distributions for genuine signatures and forgeries were different. Additionally, 
different types of forgeries (RF, FF, and TF) showed similar density distributions: 
traced forgeries showed the closest distance to genuine density, and random 
forgeries showed farthest distance to genuine density (Figure 37). 

 
Skilled forgeries, when selected 30 times by CNN deep learning, showed 

images similar to genuine signatures. However, the density distribution 
between skilled and non-skilled forgeries did not show significant differences in 
calibrated LLR. This was because CNN and this system each depend on 
different features: 2D images vs 3D and pseudo-dynamic features. The similar 
images did not necessarily mislead skilled forgeries as genuine signatures. For 
instance, Figure 37 shows the histogram of calibrated LLR and skilled forgery 
vs ordinary forgery (five feature options, using MKDE, inner-individual mode). 
The histogram distribution of skilled forgery showed slightly closer to genuine 
than ordinary forgery to genuine. 
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Figure 33: PAVA calibration for the inner-individual mode using MKDE. Upper figures are ECE plots; lower figures are log10(LR) density distribution before and 
after calibration. LR1 to LR5 refer to Table 19: Five options for variable combinations. 
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Figure 34: PAVA calibration for the inter-individual mode using MKDE. Upper figures are ECE plots; lower figures are log10(LR) density distribution before and 
after calibration. LR1 to LR5 refer to Table 19: Five options for variable combinations. 
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Figure 35: Logistic calibration for the inner-individual mode using MKDE. Upper figures are ECE plots; lower figures are log10(LR) density distribution before 
and after calibration. LR1 to LR5 refer to Table 19: Five options for variable combinations. 
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Figure 36: Logistic calibration for the inter-individual mode using MKDE. Upper figures are ECE plots; lower figures are log10(LR) density distribution before 
and after calibration. LR1 to LR5 refer to Table 19: Five options for variable combinations. 
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a) Inner individual mode 
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b) Inter individual mode 

Figure 37: Histogram of calibrated log10(LR) and skilled forgery vs ordinary forgery (five feature options, using MKDE). In the upper subplot of each figure, red 
areas represent freehand forgery (FF), green areas represent genuine signature (GE), blue areas represent random forgery (RF), and purple areas represent 
tracing forgery (TF). In the lower subplot of each figure, green areas represent skilled forgery, and red areas represent non-skilled forgeries. 
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4.3.2 PAVA calibration of score-based LR using DST based on 
dataset_3 

Two options, with or without weight for variables, were tested in the DST 
calculation. The weight parameters were adapted from variable importance–
based R-Forest obtained from ML. Figure 38 shows the histogram distribution 
for GE, RF, FF, and TF. Regarding the overlaps between GE and forgery, DST 
with weight was significantly better than without weight for the inter- and inter-
individual modes. In the following steps, DST with weight was selected. 

 

 
a) Inner-individual without weights 
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b) Inner-individual with weights 

 
c) Inter-individual without weights 
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d) Inter-individual with weights 

Figure 38: Histogram distribution of the log10(LR) for GE, RF, FF, and TF, respectively. Red 
lines and areas represent freehand forgery (FF), green lines and areas represent genuine 
signature (GE), blue lines and areas represent random forgery (RF), and purple lines and areas 
represent tracing forgery (TF). 

 
 
The RMEP in LR before calibration is high. The LR system results using DST 

showed a significantly lower performance compared to MKDE for calibration 
(Figure 39–Figure 42). The density distribution between skilled forgeries and 
ordinary forgeries showed a different distribution density in calibrated Figure 
43, for example, shows the histogram of calibrated LR and skilled forgery vs 
ordinary forgery (five feature options, using DST) under inner- and inter-
individual mode. Skilled forgery was slightly closer to genuine than ordinary 
forgery. DST presents a greater similarity than MKDE.
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Figure 39: PAVA calibration for the inner-individual mode using DST. Upper figures are ECE plots; lower figures are log10(LR) density distribution before and 
after calibration. LR1 to LR5 refer to Table 19: Five options for variable combinations. 
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Figure 40: PAVA calibration for the inter-individual mode using DST. Upper figures are ECE plots; lower figures are log10(LR) density distribution before and 
after calibration. LR1 to LR5 refer to Table 19: Five options for variable combinations. 
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Figure 41: Logistic calibration for the inner- individual mode using DST. Upper figures are ECE plots; lower figures are log10(LR) density distribution before and 
after calibration. LR1 to LR5 refer to Table 19: Five options for variable combinations. 
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Figure 42: Logistic calibration for the inter-individual mode using DST. Upper figures are ECE plots; lower figures are log10(LR) density distribution before and 
after calibration. LR1 to LR5 refer to Table 19: Five options for variable combinations. 
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a) Inner-individual mode 
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b) Inter-individual mode 

Figure 43: Histogram of calibrated log10(LR) and skilled forgery vs ordinary forgery (five feature options, using DST). In the upper subplot of each figure, red 
areas represent freehand forgery (FF), green areas represent genuine signature (GE), blue areas represent random forgery (RF), and purple areas represent 
tracing forgery (TF). In the lower subplot of each figure, green areas represent skilled forgery, and red areas represent non-skilled forgeries. 
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Finally, the logistic calibration of LR using MKDE was selected. Figure 44 
shows the results of log10 (mean LR) for the inner- and inter-individual modes. 
Though there was a significant difference between GE and forgery in the inner-
individual mode compared to the inter-individual mode, there was a stable and 
obvious difference between GE and forgery in LR per individual. This shows 
the feasibility of using the inter-individual data as background information. 

 

 
Figure 44: Results of log10 (mean LR) for the inner-individual and inter-individual modes. Red 
boxplots represent freehand forgery (FF), green boxplots represent genuine signature (GE), 
blue boxplots represent random forgery (RF), and purple boxplots represent traced forgery (TF). 
 

Figure 45 shows the RMEP and RMED for the inner- and inter-individual 
modes. There was a lower rate of misleading in the inner-individual (mean value 
of RMEP = 0.0017, mean value of RMED = 0.0023) than in the inter-individual 
(mean value of RMEP = 0.0033, mean value of RMED = 0.0048). This is 
reasonable according to the results of LR distribution. The mean value of RMEP 
was smaller than that of RMED, both in the inner- and inter-individual modes. 
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Figure 45: Rate of misleading evidence for inner-individual and inter-individual modes. 
 

4.3.3 Comparison of performance between MKDE and DST 

The comparison between MKDE and DST in log10 (mean LR), RMEP, and 
RMED for the inner-individual and inter-individual modes showed no significant 
difference, and MKDE was slightly better than DST (see Figure 46). 



Xiaohong Chen            Forensic Offline Signature Handwriting Examination Based on 
                                    Three-dimensional and Pseudo-dynamic features 

119 
 

 
a) Boxplots of calibrated score-based LR for MKDE and DST, respectively. Red boxplots 
represent freehand forgery (FF), green boxplots represent genuine signature (GE), blue 
boxplots represent random forgery (RF), and purple boxplots represent traced forgery (TF). 
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b) Calibrated score-based LR distribution of inner-individual vs inter-individual using MKDE and 
DST, respectively. Red dots represent freehand forgery (FF), green dots represent genuine 
signature (GE), blue dots represent random forgery (RF), and purple dots represent traced 
forgery (TF). 
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c) Overall view of rate of misleading evidence under inner-individual and inter-individual 

modes using MKDE and DST. 
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d) Detailed view of rate of misleading evidence under inner-individual and inter-individual 

modes using MKDE and DST. 
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e) Detailed view of LRs distribution for closer individuals under inner-individual and inter-

individual modes using MKDE and DST. 
 

Figure 46: Comparison between MKDE and DST 
 

4.4 Validation tests 
The test based on Sigcom2011 is presented in Chen et al. (2018) and is 

included in the appendix. 

4.4.1 Proficiency tests (PT) 

The PT results were similar to the results obtained for real forensic cases 
(see below). Interestingly, the system gave reasonable LLRs (log10(LR)) to 
disguised signatures, such as CNAS_2017mym (Figure 47). 
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Figure 47: Calibrated log10 score-based LR result for PTs (left: different source; right: same 
source; REF denotes comparisons involving reference signatures, blue dots; QUE_SS denotes 
comparison of questioned signatures with references from same source, green dots; and 
QUE_DS denotes comparison of signatures from different sources compared to the references, 
red dots). 

4.4.2 Test of real forensic cases 

Figure 48 shows performance in real cases in which the conclusion reached 
by the practitioners was an exclusion. The calibrated LLR of the questioned 
signatures showed good calibration as well.  

 
However, in many cases in which an identification conclusion was reached 

by the practitioners, the LLR of questioned signatures was lower than zero. 
Figure 49 show the LLRs of questioned signatures located among those of the 
references. 

 
These results will be further discussed in chapter 5. 
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Figure 48: Calibrated log10 score-based LR for cases where practitioners reached exclusion 
conclusions (REF denotes comparisons among reference signatures; and QUE_DS denotes 
comparisons of questioned signatures from the same source as the references) 

 

 
Figure 49: Calibrated log10 score-based LR for cases of where practitioners reached 
identification conclusions (REF denotes comparisons among reference signatures; QUE_SS 
denotes comparison of questioned signatures from different sources as the references) 
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4.4.3 Impact of different writing conditions on signatures 

Many conditions contribute to differences in handwriting. These can be 
divided into two parts: one is the internal writing conditions, which changes 
according to the writer, and the other is the external writing conditions based on 
physical circumstances. Internal writing conditions include changes in the 
health, physical condition, or mental state of the writer, as well as carelessness 
or negligence. Different writing conditions (place or circumstances) can include 
writing instruments, surfaces, or positions; these are external writing conditions 
based on physical circumstances. In practice, it is very common, of course, to 
write using different writing instruments or on different types of paper. 

 
An additional 20 individuals were organized to collect signatures with different 

writing instruments or on different types of paper (Table 42: Signature types in 
dataset_4). In this last dataset (dataset_4), each individual was asked to 
generate genuine signatures with a ballpoint pen on 120 g paper with or without 
an underlay (P1 and UN, respectively), with a ballpoint pen on 17 g paper with 
an underlay (P2), and with a fountain pen on 120 g paper with an underlay (PE). 
In addition, three individuals were asked to generate freehand simulation 
forgeries with a ballpoint pen on 120 g paper with an underlay (FF). 

 
Table 42: Signature types in dataset_4 

Type 
ID 

Writing 
instrument 

Writing 
paper Underlay Signature image 

P1 Ballpoint pen 120 g Yes 

 

UN Ballpoint pen 120 g No 
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PE Fountain pen 120 g Yes 

 

P2 Ballpoint pen 17 g Yes 

 

FF Ballpoint pen 120 g Yes 

 

 
The PCA for the genuine signatures from 17 individuals showed large within-

writer variations using different instruments and paper. The PCA for genuine 
signatures from three individuals showed a similar distribution between 
freehand simulation forgeries and genuine signatures using different 
instruments (Figure 50). Different writing instruments and paper types could 
thus lead to significant differences between genuine signatures. The calibrated 
LRs show misleading results in genuine signatures under different writing 
conditions (see  

 
Figure 51). The mixed dots between P1vs FF, P1 vs Ps, and P1 vs PE 

showed the confusion of forgeries and genuine signatures under different 
writing conditions. 
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Figure 50: PCA plots for genuine signatures under different writing conditions and freehand 
simulation forgeries. P1, P2, PE, PS, and UN refer to Table 42: Signature types in dataset_4. 
 
 
 
 
 
 
 

  
a) Calibrated LRs for individuals with FF  b) Calibrated LRs for individuals without FF 

 
Figure 51: Calibrated LRs (in log10) for individuals under different writing conditions 

(Dataset_3 as background information). P1, P2, PE, PS, and UN refer to Table 42: Signature 
types in dataset_4. 

 
 
These findings call attention to the impact of the writing conditions, such as 

writing instruments and paper. Maintaining similar writing instruments and 
paper between references and questioned signatures is the rule for the 
application of this system. It will be necessary, therefore, to pursue the research 
to understand and mitigate the impact of different writing conditions. 
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Chapter 5 Discussion and Future 
Perspectives 

 

5.1 Scientific basis for handwriting comparison and 
assessment in this research 

When we discuss whether or not forensic handwriting examination is 
scientific, we mainly need to answer two generic questions: first, does forensic 
handwriting examination rests on measurable features allowing discrimination 
between individuals? Second, are the specific techniques and methods used in 
handwriting examination repeatable and reliable for the task at hand? 

 
Harralson and Miller (2017, p. 67) described the fundamentals of forensic 

handwriting examination as follows: 
 

Handwriting identification is based on two accepted premises or 
principles and a corollary to one of them. The first is habituation. 

The second premise or principle upon which handwriting 
identification is founded involves the individuality or heterogeneity of 
writing. 

Corollary—the discriminative reliability of the identification 
process—pertains to the accuracy of judgments made across samples 
of writing from different persons, including those that are simulations of 
another person’s writing, by whatever process of imitation may have 
been employed. 

 
This description sounds reasonable. Moreover, experts can cite hundreds of 

examples to demonstrate relative within-writer stability and general between-
writer specificity in handwriting. However, the supporting evidence from 
neurology, brain science, and other disciplines for the mechanism of 
handwriting examination, such as why the handwriting of different individuals 
has enough specificity to identify them, is beyond the scope of this research.  

 
Our intention was to use rigorous methods to verify the individual specificity 

of handwriting in a larger population, rather than exploring or trying to explain 
the formation mechanism of the individual specificities, such as supports from 
neurology, brain science, and other disciplines. Although the mechanism behind 
individual specificity remains controversial or is not clear enough, from the 
perspective of application, the individual specificity of handwriting is an 
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important fundamental requirement for forensic handwriting examination. 
 
The research results indicate that random forgeries (RF) are easier to be 

distinguished than simulation forgeries. As such it is not a surprising result for 
forensic practitioners, but it is one that now rest on systematic data. 

 
We explored whether skilled forgeries pose a challenge to the individual 

specificity of handwriting, in particular, collected skilled simulation forgeries. 
This difficult problem is often encountered in real forensic cases because they 
are similar to genuine signatures. We tried a variety of methods to realistically 
simulate genuine signatures and collected these simulation forgeries. The 
results show that the skilled simulation forgeries are indeed closer to the 
genuine signatures than other signatures, but the difference between skilled 
forgeries and genuine entries was significant and sufficient to be recognized. 

 
After examining various intentional or unintentional forgeries similar to 

genuine signatures, the individual specificity of the handwriting was stable. 
From an empirical point of view, this study confirmed the individual specificity 
of handwriting in the population. This conclusion refutes the argument that 
handwriting identification has no scientific basis, and strongly supports the 
existing theoretical system of handwriting identification. 

 
Science requires verifiability, reproducibility, and operability. Verifiability 

means a certain proposition can be tested empirically. Repeatability means a 
certain proposition must be able to be reproduced by multiple people. 
Operability means the verification of the proposition can be accomplished 
through practical and limited technical steps (Popper, 1959). As described in 
Section 2.1, many technical standards aim to standardize the forensic activity 
of handwriting identification. No matter which standard is followed, however, the 
consistency and correctness of the identification conclusion cannot be 
guaranteed. Each step in the standards or guidelines have a subjective process 
that depends on experts’ experience. Because this is a subjective process, it 
will vary from expert to expert, although these experts have received extensive 
professional training and perform better in these tasks than laypeople. These 
technical standards or guidelines are more principled norms, and they lack 
practical operability in a stricter sense. They have not fundamentally changed 
the dependence of forensic handwriting examination on subjective empirical 
judgments. 

 
This research, like other research dedicated to the quantitative identification 

of handwriting, firmly adheres to the reproducibility and operability in this strict 
sense. This research does not intend to compete with the existing forensic 
handwriting identification. On the contrary, our research is designed to provide 
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reproducibility and operable detailed steps for each process that may 
unfortunately vary from person to person under the framework of principled 
norms. 

 
We suggest combining this system with experts’ work. This system can be 

summarized as follows: 
 
1) A series of methods: features acquisition and extraction for examination 

of questioned signatures and references, respectively, statistical 
analysis for signatures comparison, score-based LR calculation, and 
evidence evaluation. All of these methods were designed to offer 
objective (operator independent) measurements. 

2) Thanks to quantitative measurement and analysis, all of the results can 
be rigorously repeated and verified through limited steps. 
 

5.2 An effort to change the operative model of 
handwriting examination 

We next discuss a deeper question: Why is it difficult for forensic handwriting 
examination to achieve developments and make progress like in other 
disciplines such as computer, chemistry, or biology? The present author believe 
that this has something to do with the development model of forensic 
handwriting examination. Indeed, the main mode of the development of the 
discipline of handwriting appraisal is based on the inheritance of experience. 
Just like writing poetry, it is difficult for us to surpass Shakespeare and Pushkin; 
it is also difficult for a composer to say that his or her level has reached the level 
of Beethoven or Mozart; but Newton took it. You may have learned the results 
of decades of his research in half a year. You may know the basics of the 
geometry written by Euclid in elementary school. This is the difference between 
science and literature or art. From this example, we should be able to 
understand that the future development path of this field should rely on the 
superposition of scientific discoveries, rather than solely on the accumulation of 
experience. Science relies on objective methods. The research of predecessors 
can be obtained by future generations without any difference, and it can be 
further developed on the basis of the former. This idea embodies the internal 
logic of the rapid development of science. Therefore, use of the scientific 
method can bring about super-positional improvement. 

 
After seven years of professional education and training, and with 17 years 

of practical casework experience, the author deeply feels that experience is 
difficult to spread and inherit. It is particularly prominent in the process of 
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receiving training and teaching and also in teaching. Although endless 
examples and observations can be cited, there is no guarantee that experience 
will be effectively disseminated and accepted. So, it is difficult to develop this 
field on the basis of previous experience because all of the necessary 
experience cannot be acquired and disseminated in a rigorous way, and 
deviations in understanding and specific operation caused by subjective factors 
are unavoidable. For example, CNAS publishes proficiency tests (PTs) every 
year. The participating experts are legally qualified and well-trained appraisers, 
and they follow the same forensic handwriting examination guidelines. Although 
the difficulty of the PT has varied over years, the feedback results have shown 
that different or even contradictory conclusions are often reported (see Table 
43: Feedback results of PT from CNAS). 

 
Table 43: Feedback results of PT from CNAS 

Year 
Questioned 
signature Writing condition 

Conclusion of 
SS* 

Conclusion of 
DS** 

Candidate 
number 

2014 
1st of 2 

Different writing 
condition 

36 (50%) 26 (36.6%) 71 

2nd of 2 Normal condition 64 (90.1%) 4 (5.6%) 71 

2015 1 Normal condition 153 (89.4%) 13 (7.6%) 171 
2016 1 freehand forgery 14 (6.9%) 186 (92.1%) 202 

2017 
1st of 2 Normal condition 6 (3.1%) 186 (95.3%) 193 

2nd of 2 
Disguised in 
references 

17 (9.3%) 45 (23.3%) 193 

*SS: Same source; **DS: Different source. 
 
There is an old saying in China: “Stones from other hills may serve to polish 

jade.” This means that you can use good things from other people to help you 
develop. It is time to move beyond this concept. The combination of forensic 
handwriting examination with quantitative measurement, statistical analysis, 
appropriate help from computer technology (e.g., image processing, deep 
learning) is in the right direction for the development of forensic handwriting 
examination. 

 

5.3 Adaptation of the claim of uniqueness of 
handwriting 

In the traditional sense, class characteristics within a handwriting are 
those writing habits or features that emanate from the published and/or 
prescribed method (i.e., system) of writing that has been utilized in the 
learning process. In the more distant past, they have been of two kinds: 
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(1) unique characteristics or features that serve to distinguish one method 
or system from another and (2) common characteristics such as slope, 
spacing, height, proportions, and letter designs that are shared with other 
systems. (Harralson & Miller, 2017, p. 40) 
 

 
The hypothesis of the uniqueness of handwriting is widely accepted in 

forensic handwriting circles and we can find numerous instances to support this 
hypothesis by expert’s observation. The results of this research, however, show 
that the difference between genuine signatures and forgeries varies from 
individual to individual. Moreover, the similarity between genuine signatures 
also varies from individual to individual. In other words, for some individuals, 
their signatures are easier to associate because their handwriting has strong 
specificity, whereas for other individuals, it is more difficult because their 
signatures are similar to those of others. Based on this assertion, we argue that 
the hypothesis of unique handwriting needs to be corrected, and handwriting 
should be qualified as specific by degree rather than unique. 

 

5.4 Technical contributions of this research 
The contributions of this research include multidimensional and dynamic 

perspectives, an application oriented for forensic science, and multidisciplinary 
crossover. 

 
The 3D features of handwriting were introduced to forensic handwriting 

examination. The research has shown that the 3D profile is a valuable feature 
that has been neglected for a long time due mainly to the lack of ways to easily 
measure it. The fusion of 2D and 3D features significantly improves the 
performance of the system. 

 
The pseudo-dynamic features of handwriting are another original aspect of 

this research. This concept reminds everyone that handwriting is the product of 
a dynamic writing process. Writing sequence is like a needle and thread, 
stringing all the features in the signatures into a series of pseudo-dynamic 
features. 

 
The introduction of ML techniques provided quantitative measures, and a 

possible use for the system in a more traditional biometric system. The best 
accuracy of R-Forest reached as high as 99.86%. Other ML systems also may 
increase performance (if required). 
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An LR system was developed based on MKDE and logistic calibration, 
and the metrics used for these choices are RMEP and RME. The comparison 
between MKDE and DST in log10 (mean LR), RMEP, and RMED for the inner-
individual and inter-individual modes showed that MKDE is slightly better than 
DST. 

 
Two solutions are tailored for forensic handwriting examination: inner-

individual and inter-individual modes. The inner-individual mode (mean value 
of RMEP = 0.0017, mean value of RMED = 0.0023) was significantly better than 
in the inter-individual mode (mean value of RMEP = 0.0033, mean value of 
RMED = 0.0048). In real forensic cases, the inner-individual mode is 
encouraged, which means that samples of genuine signatures and forgeries 
should be collected as much as possible. Of course, the inter-individual model 
also can be used in the case of insufficient inner-individual samples and can 
deliver satisfactory results. 

 
RMEP and RMED are low enough for forensic casework under the 

conditions established in the database in this research. Both RMEP and RMED 
are lower than 0.005, This is a satisfactory result compared with the results of 
the CNAS PT cases by certified forensic handwriting examiners. In a positive 
and prudent manner, we recommend the mechanisms of interactions between 
experts and machine (i.e., a system allowing for an assignment of a score-
based LR) should be clarified in the future. 

 
The other options tested have shown less efficiency based on the 

comparison between different the options of LR computation and calibration. 
The comparison between MKDE and DST in log10 (mean LR), RMEP, and 
RMED for the inner-individual and inter-individual modes showed no significant 
difference, and MKDE was slightly better than DST. The density distribution of 
the same sources and different sources showed different regression results with 
different density distributions. Logistic regression showed smoother density 
than PAVA regression, and the former seemed to be more reasonable. 

 
Although the performance of the system on our research datasets is high, we 

do not believe that this study is perfect and that all problems have been solved. 
On the contrary, we know that this is just the beginning. We tested the 
developed model on real cases and PT cases. The purpose was not only to 
discover and analyse limitations but also to delineate the direction of follow-up 
research efforts. 

 
In these operational conditions, we have shown that the performance of the 

system for signatures from different source are relatively satisfactory, but the 
results for signatures from the same source under different conditions (e.g., 
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writing instrument, paper) are not satisfactory. The experimental results based 
on dataset_4 also confirm that the system has blind spots for the same-source 
signatures with different writing conditions and the results are misleading. This 
finding served as a reality check. It does not alter the conclusions reached in 
cases that match the types of cases acquired in our datasets, but care must be 
exercised when applying an immediate application of this system to all cases 
and all conditions. 
 

5.5 Open-ended questions for an optimal DTW 
algorithm 

The technological choices that guided this research effort are not set in stone 
and could be revisited. For example, we tried two different DTW algorithms: (1) 
the algorithm used in this research, the DTW search path, is limited, and the 
code used is from Lee et al. (2005), which is denoted as DTW_1; and (2) the 
DTW function15 provided in Matlab2018a (Sakoe et al., 1978; Paliwal et al., 
1982), with no path restriction, is denoted as DTW_2. The results presented 
earlier are all based on DTW_1 (see Figure 52: Different algorithms for DTW 
(DTW_1 aligns data with restriction on the warping path; DTW_2 aligns data without 
restriction on warping path.)). DTW_2 presents a better alignment than DTW_1. To 
illustrate how results may vary depending on algorithmic choice, we have tested 
the replacement of DTW_1 with DTW_2. These two DTW algorithms show 
some different and interesting results, such as the probability distribution of 
features, and differences between forgeries (TF, RF, and FF) using DTW_1 are 
significant, whereas the distributions between forgeries (TF, RF, and FF) using 
DTW_2 merged together (see Figure 53). Similar behaviour was also presented 
in pair plots (see Figure 54). The performance between the two algorithms 
shows that DTW_2 is slight better than DTW_1, with fewer misleading cases, 
as shown in Figure 56. The LRs of the inter-individual mode using DTW_2 
(mean value <-20) are much smaller than that using DTW_1 (−5> mean 
value >−10). Moreover, focusing on the distance between genuine signatures 
and forgeries, when using DTW_1, the LRs of the inter-individual mode is 
significantly closer than that of the inner-individual mode, whereas the results 
for DTW_2 are the opposite (see Figure 55 and Figure 57). Finally, the 
performance of ML showed bigger variation and lower accuracy when using 
DTW_2 than DTW_1, as shown in Figure 58. 

 
These results exemplify that changes in algorithms or parameters can lead 

to different results. Optimisation is a never-ending task and validation protocols 
(based on defined performance metrics) should be systematically applied. This 

 
15 https://www.mathworks.com/help/signal/ref/dtw.html 
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research provides a building block in that direction. 

 
Figure 52: Different algorithms for DTW (DTW_1 aligns data with restriction on the warping 
path; DTW_2 aligns data without restriction on warping path.) 
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DTW_1 DTW_2 

  
Figure 53: 2D kernel density distribution plot after PCA using two different DTW algorithms. Red lines represent freehand forgery (FF), green lines represent 
genuine signature (GE), blue lines represent random forgery (RF), and purple lines represent tracing forgery (TF). 
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Because of the non-restriction warping path of DTW_2, the distribution plot 
using DTW_2 merges three types of forgeries (RF, FF, and TF), and the 
difference between genuine signatures and forgeries using DTW_2 is more 
significant than that using DTW_1. 

 
a) Pair plot using DTW_1. Red lines and areas represent freehand forgery (FF), green lines 
and areas represent genuine signature (GE), blue lines and areas represent random forgery 
(RF), and purple lines and areas represent tracing forgery (TF). 
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b) Pair plot using DTW_2 

Figure 54: Pair plots based on comparative measurement from all individuals in Dataset_3 
using two different DTW algorithms: red lines and areas represent freehand forgery (FF), green 
lines and areas represent genuine signature (GE), blue lines and areas represent random 
forgery (RF), and purple lines and areas represent tracing forgery (TF). 

 

The pair plots show that the radian feature using DTW_2 is much higher 
than that of DTW_1, and the DTW feature (distance in DTW calculation) using 
DTW_2 is much lower than that using DTW_1. Similar to the distribution plot, 
these three types of forgeries do not show any difference between each other, 
and the difference between genuine signatures and forgeries increases. 
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DTW_1 DTW_2 

 

 

 

Figure 55: Results of log10 (mean LR) for the inner-individual mode and inter-individual mode respectively using two different DTW algorithms. Red boxplots 
represent freehand forgery (FF), green boxplots represent genuine signature (GE), blue boxplots represent random forgery (RF), and purple boxplots represent 
tracing forgery (TF). 
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DTW_1 DTW_2 

  

Figure 56: Rate of misleading evidence for inner-individual and inter-individual modes respectively using two different DTW algorithms 
 
 

The results of log10 for the inner-individual mode using DTW_1 show significantly better performance than those using DTW_2. 
The results of log10 for the inter-individual mode using DTW_1 show some variation among the three types of forgeries; however, 
when using DTW_2, no significant variation exists among the three types of forgeries. 
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DTW_1 DTW_2 

  
Figure 57: Calibrated score-based LR distribution of inner-individual mode vs inter-individual mode using two different DTW algorithms. Red dots represent 
freehand forgery (FF), green dots represent genuine signature (GE), blue dots represent random forgery (RF), and purple dots represent tracing forgery (TF). 

 
 

In the calibrated score-based LR distribution using DTW_2, genuine signatures are pushed to the top-right direction, which shows 
a bigger variation in the LLR of forgeries. Nevertheless, the calibrated score-based LR distribution using DTW_1 shows a more 
balanced variation for the LLR in genuine signatures and forgeries. 
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DTW_1 DTW_2 

  
Figure 58: Model accuracy comparison using different DTW algorithms
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The DTW_2 algorithm showed better performance than DTW_1, and the LR 
distribution showed different behaviour toward individuals. For example, four 
similar individuals (individuals 17, 22, 43, and 57, their genuines are close to 
their fogeries,respectively) are highlighted in  

Figure 59 using DTW_1 and DTW_2.  

 

a) LR distribution using DTW_1 for similar individuals (individuals 17, 22, 43, and 57). 
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b) LR distribution using DTW_2 for similar individuals (individuals 17, 22, 43, and 57). 

 
Figure 59: LR distribution for similar individuals using different DTW algorithms. 

 

5.5 Future perspectives 
This research is just a start. The following paragraphs outline future research 

efforts. 
 
The proposed set of solutions for the current difficulties faced in forensic 

handwriting examination offers potential but also has some limitations in current 
casework. The results have shown that the performance of the system for 
signatures from different source is relatively satisfactory, but the results for 
signatures from the same source under different conditions (e.g., writing 
instrument, paper) are not satisfactory. The experimental results based on 
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dataset_4 also confirm that the system may produce misleading results in the 
same-source signatures under different writing conditions. That was an 
anticipated limitation (see Section 3.1.1), and the results confirmed that the 
developed system may have a large discrimination power due to the rather 
constrained within-source variability obtained with the chosen sample 
production. 

 
To improve this system, the database of signatures ought to be expanded, 

especially incorporating signatures obtained under different writing conditions 
and over larger period of time. This means that it could also be necessary to 
optimize the methods for feature extraction and comparative analysis in 
response to these more complex situations. The performance metrics will also 
need to be adapted and reported accordingly. 

 
To use scientific research methods as an enabler to drive the development 

of handwriting comparison is one thing, but the efforts of researchers should 
not be limited to development of tools or prototypes residing only in the research 
sphere. Future work should also include the provision of a user-friendly 
interface for handwriting experts, and establishing feedback mechanisms so 
that experts can raise issues and opportunities for improvement. These 
developments should be “with experts and for experts.” In addition, it will be 
necessary to disseminate new technologies, new methods, and scientific 
outputs, for them to be ultimately accepted and recognized by practitioners. 
Training practitioners on the use of these systems will be a key component. 

 
We hope to provide forensic handwriting experts with a set of software tools 

to help them use the system provided in this study to perform examinations. 
Experts will need to import only the corresponding 2D and 3D images to 
observe the results of statistical analysis and visualization of features. It will be 
necessary to compare whether or not the experts’ opinions are consistent with 
the guidance provided by the system. We currently are developing a more user-
friendly graphical user interface (GUI) to be used by forensic handwriting 
experts who, for most of them, do not have a background in statistics or 
computer science. 

 
We hope that way to advance the application of this research in a gradual 

and pragmatic way for the following two reasons: (1) we recognize that 
improvements in the system and improvements in its performance take time; 
and (2) it also takes time for a new system to be accepted by the community. 
Therefore, we will consider a human–machine joint venture; in other words, the 
system can be regarded as another expert, and the results given by the system 
can be regarded as the conclusion of another expert (i.e., a critical friend). 
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There is a body of research dealing with human–machine or multi-expert 
appraisal models. Swofford and Champod (2021) explored why practitioners 
generally oppose algorithmic intervention and discussed how to overcome their 
concerns considering issues related to human–algorithm interaction in real-
world domains and laboratory research, as well as issues related to algorithmic 
litigation in the US legal system. With these issues in mind, they proposed a 
strategy to implement the algorithm in a responsible and practical way, as well 
as different ways to implement the algorithm. Montani et al. (2019) explored the 
procedural mechanisms for resolving different conclusions when two experts 
initially work independently. These experts can be two human experts, or one 
of them can be a computer-based model. They proposed a resolution process, 
such as the ACE-V protocol that sets the operating conditions, and described a 
resolution process based on the principles of transparency and detailed 
argumentation. 

 
The development of a path based on quantitative measurement, calculation, 

and analysis is a difficult but needed direction for forensic handwriting 
examination. We need to gradually introduce some of these technologies or 
tools into traditional forensic handwriting examination and implement steadily 
advancing strategies to promote the development of this discipline. 
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Chapter 6: Conclusion 
 

This research proposes a set of feasible schemes based on objective 
quantification and scientific statistical analysis to assess the strength to be 
assigned to forensic signature comparison as carried out by forensic 
laboratories. Although the object of this research is signature handwriting, the 
examination of signature handwriting is not essentially different from other 
handwriting samples and this system should be applicable to other handwriting 
samples. 

 
This research introduced in the field of handwriting research two new types 

of features that were termed 3D and pseudo-dynamic. They allowed to add 
extra information beyond the obvious 2D features in offline handwriting samples. 
More specifically, pseudo-dynamic features capture the writing sequence in 
handwriting and 3D features capture the height profile of the handwriting. 
Compared with 2D features, the results with the addition of 3D features have 
shown significant improvement in performance. 

 
In most previous studies, when mentioning the specificity of handwriting 

features, it had to be conditioned on the same signature text, hence they were 
text-dependent. This research effort transformed direct measurement features 
into relative measurement features from a comparative perspective. This 
means that regardless of the text of the signature, a signature dataset can be 
used as background information for other questioned signatures. This research 
proposed the addition of 3D pseudo-dynamic properties of handwriting and 
successfully used these 3D pseudo-dynamic features to achieve the individual 
recognition of offline handwriting. The system showed excellent performance. 

 
This research offers a quantitative method to measure, compare, and 

analyse handwriting features. It provided a scientific way to verify the relative 
stability and general specificity of handwriting. It supports the understanding of 
between- and within-writer variations in handwriting. 

 
This research is based on extensive and task-relevant datasets composed of 

more than 300,000 signatures from more than 140 individuals. In addition to the 
genuine signatures, this research also included several forgeries as could be 
produced in real cases. Considering the possible similarities in the handwriting 
of some individuals in the sample, we also asked volunteers to write other 
people's signatures in their own writing methods (what we named a random 
forgery). After measuring various intentional or unintentional forgeries against 
genuine signatures, this study confirmed the individual specificity of handwriting 
in the population.  
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This conclusion refutes the argument that handwriting identification has no 
scientific basis. 

 
This thesis started from the observation that the whole expertise of 

handwriting examination rests on experts’ experience and training that lacks 
transparency and is not supported by a body of systematic measures and solid 
statistical underpinning. The proposed quantitative method of signature 
comparison adheres to the reproducibility and operability requirements. It 
provides a method to extract features and, thanks to statistical modelling (and 
appropriate calibration), it allows for an expert-independent assessment of the 
weight to be attached to the findings among the compared signatures. This 
weight is based on a score-based likelihood ratio (LR). The method has shown 
very good forensic performance under controlled conditions with low rates of 
misleading evidence. These rates are dependent on the individual and show 
that the specificity of a given signature depends on the individual. They are in 
the large majority of cases below 0.5%. 

 
When comparing genuine to genuine signatures, the average expected 

score-based LR is of the order of 7 (on log10, inner-individual mode). When 
genuine signatures are compared with forgeries, the LR is of the order of −5 on 
average (in log10, inner-individual mode). 

 
When the system is applied to signatures used in proficiency tests or obtained 

from real forensic cases, however, we noted some deviations in terms of 
direction of support from the expected results (as per the known ground truth 
or as declared by the forensic handwriting examiners (FHEs)). The 
performance of the system for signatures from different sources was mostly in 
line with expectations, but the results for signatures from the same source under 
different conditions (e.g., writing instrument, paper) could be misleading. 

 
This result highlights two important aspects to consider in the future. First, 

further research should investigate more thoroughly the impact of the writing 
instrument and paper; and, second, in the future, the mechanisms of 
interactions between experts and machine (i.e., a system allowing an 
assignment of a score-based LR) need to be clarified. This research paves the 
way for a handwriting/signature discipline in which automatic systems will help 
the examination of disputed signatures. This work will diminish the sole reliance 
on the expert’s judgment and increase transparency. Experience cannot be 
acquired and disseminated in a rigorous way, and the subjective factor is 
unavoidable. Systems based on systematic measures and a broad corpus of 
data indeed will be able to overcome this difficulty. This change will not be 
successful, however, if it is approached as a standalone endeavour operating 
in isolation. FHEs should be associated with developments and operational 
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deployments of these systems. Their boundaries of usage need to be defined. 
This research has shown that when operating in a robust application, which 
brings added value to the examiner and transparency to the discipline.  
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