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SUMMARY 

Plants rely on an adaptable immune system to regulate their intricate interactions 

with the many microorganisms that surround them, particularly in the soil. While roots can 

mount very effective defences against pathogens, they also host an extremely rich 

microbiota that provides beneficial functions to the plant. Surprisingly, commensal and 

pathogenic bacteria are recognized via the same conserved molecular patterns which 

induce MAMP-triggered immunity (MTI). This raises the question of how plants manage to 

accommodate a useful microbial community without overstimulating their immune system, 

which would cause growth penalties. It was recently shown that plant roots restrict their 

immune responses at microbial entry sites, suggesting that plants spatially control their 

defences. Nevertheless, MTI responses were rarely assessed with a tissue-specific 

resolution. 

In this work, we first demonstrated that the combination of local damage and 

microbial molecular patterns could unlock defences in otherwise unresponsive parts of the 

root. This would ensure that defences are only induced when plants are threatened by 

aggressive microbial colonizers. We also showed that MAMP-receptor expression is induced 

by damage, which determines MAMP responsiveness in certain regions. Using recombinant 

lines expressing the FLS2 receptor ectopically, we discovered that the root central meristem 

is refractory to flg22 ligand perception. However, ectopic FLS2 expression in the 

meristematic epidermis can render this region super-competent, leading to strong root 

growth inhibition in the presence of commensals. Therefore, our findings revealed that the 

spatial regulation of defence is crucial to the flexibility of MAMP perception. 

Furthermore, we explored how commensal bacteria can bypass plant defences. We 

found that despite the strong sensitivity of super-competent plants, their growth was not 

affected by either specific individual bacterial strains or by complex bacterial communities. 

The structure of bacterial communities was also not affected by the strong responsiveness 

of these lines. To understand how bacteria can overcome plant defence, we screened a 

population of Pseudomonas protegens CHA0 mutants for loss of MTI suppression and 

identified potential candidates with defects in lipopolysaccharides, exopolysaccharides or 

gluconate synthesis. 
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Tissue-specific expression of FLS2 revealed lignification as a downstream 

response of MTI. When induced specifically in the endodermis, this lignification was 

surprisingly akin to the response observed after external application of CIF2 endogenous 

peptide, which lead to stimulation of the SCHENGEN pathway ensuring the integrity of the 

Casparian strip. Since FLS2 and SCHENGEN signalling share several analogous components, 

we used the endodermal FLS2 line to investigate how specificity is achieved by two different 

pathways in a single cell-type. Using transcriptomic and microscopic analyses, we showed 

that both pathways have a large set of core responses in common, as well as specific 

features. Thus, the endodermis can be used as a model system to assess signalling specificity 

between the related CIF2 and flg22 signalling pathways. 

Plant defences have long been studied as a whole, focusing on the outcome of 

single plant-pathogen interactions. This work shows that the use of cell-type specific 

immune response markers can improve our understanding of immunity at the cellular scale 

and reveals the complex dynamics between tissue-specific MTI responses and bacterial 

communities. 
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RÉSUMÉ EN FRANÇAIS 

Les plantes interagissent constamment avec les micro-organismes qui les 

entourent. Les racines, en particulier, abritent une communauté bactérienne extrêmement 

riche qui leur fournit une vaste palette de fonctions bénéfiques. On peut toutefois constater 

que de nombreuses bactéries, qu’elles soient commensales ou pathogènes, sont capables 

d’activer l’immunité innée des végétaux. En effet, elles présentent des motifs moléculaires 

conservés, les MAMPs (microbes-associated molecular patterns), aussi nommés éliciteurs, 

qui vont être reconnus par des récepteurs membranaires PRRs (pattern recognition 

receptors). On peut dès lors se demander comment les plantes réussissent à héberger un 

microbiote sans surstimuler leur système immunitaire, ce qui ralentirait leur croissance, 

tout en se défendant contre les pathogènes. Il a été montré récemment que les plantes 

confinent leurs réponses immunitaires aux régions les plus vulnérables de la racine. Cela 

suggère qu’elles sont capables de contrôler localement leurs défenses. Néanmoins, 

l’immunité innée n’a pas encore été étudiée avec une résolution qui soit tissu-spécifique. 

Dans ce projet, nous avons tout d’abord démontré qu’il suffisait de combiner un 

dommage localisé avec une exposition à des MAMPs pour débloquer les défenses 

immunitaires dans les zones racinaires qui étaient auparavant insensibles à la présence 

d’éliciteurs. Ce mécanisme permettrait à la plante d’induire une réponse immune 

uniquement en présence de bactéries agressives. Nous avons également montré que 

l’expression du récepteur FLAGELLIN SENSING 2 (FLS2) était activée par des lésions 

tissulaires, et déterminait, associée aux propriétés intrinsèques des différents tissus, les 

régions sensibles à l’éliciteur flg22 (flagellin peptide 22). En effet, l’utilisation de lignées 

exprimant le récepteur FLS2 de façon ectopique nous a permis de découvrir que la zone 

centrale du méristème de la racine est réfractaire à la perception de flg22. Cependant, 

l’épiderme entourant cette région peut être rendu hautement immunocompétent si FLS2 y 

est artificiellement exprimé. Cette super-immunocompétence cause ainsi une importante 

inhibition de la croissance racinaire en présence de flg22 ou de bactéries pourtant 

inoffensives. Notre analyse révèle ainsi l’importance d’une localisation contrôlée des 

réponses immunitaires. 
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Nous avons également étudié les moyens par lesquels les bactéries contournent 

les défenses immunitaires des plantes. En effet, nous avons montré que, malgré la forte 

sensibilité des plantes super-compétentes, leur croissance n’est pas affectée 

lorsqu’inoculées avec certaines souches bactériennes spécifiques, ou avec un microbiote 

complexe. De plus, ces lignées super-compétentes n’influencent pas la composition de la 

communauté bactérienne. Pour comprendre le mécanisme de cette suppression immune, 

nous avons effectué un crible génétique sur une population de mutants de la souche 

Pseudomonas protegens CHA0. Nous avons isolé des candidats, affectés dans la synthèse du 

gluconate, de lipopolysaccharides et d’exopolysaccharides, ayant perdus leurs propriétés 

immunosuppressives. 

L’expression tissu-spécifique de FLS2 nous a permis d’identifier le processus de 

lignification comme une réponse de l’immunité innée. Lorsqu’induite spécifiquement dans 

l’endoderme, cette lignification est étonnamment semblable à la réponse induite par la voie 

de signalisation SCHENGEN (SGN). Activée par le peptide CIF2, elle contrôle l’intégrité des 

cadres de Caspary. Comme l’immunité et la signalisation SGN partagent nombre de 

composants, nous les avons comparés au sein d’un même type cellulaire pour comprendre 

comment elles induisent des réponses spécifiques. Grâce à des analyses microscopiques et 

transcriptomiques, nous avons montré que les deux voies de signalisation partagent un 

même set de réponses centrales, mais diffèrent dans leur localisation et leur temporalité. 

L’endoderme se révèle être un excellent système modèle pour étudier la spécificité des 

réponses induites par CIF2 et flg22. 

Les défenses végétales ont longtemps été étudiées comme un tout, se concentrant 

principalement sur le résultat d’une interaction entre une plante et un pathogène, ou, au 

mieux, sur la réponse immune d’un organe spécifique. Ce projet de thèse offre à présent 

plusieurs exemples dans lesquels l’utilisation de marqueurs de l’immunité, spécifiques à un 

type cellulaire, a amélioré notre compréhension à plus petite échelle de l’immunité innée. 

Ces approches apporteront une nouvelle lumière sur notre conception du système 

immunitaire végétal. 
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RÉSUMÉ TOUT PUBLIC 

Compartimentation des défenses dans les racines d’Arabidopsis thaliana 

Aurélia Emonet, Département de Biologie Moléculaire Végétale (DBMV), Université de 

Lausanne 

Tout comme les animaux, les plantes possèdent un système immunitaire inné et 

peuvent se défendre efficacement contre les pathogènes. Cependant, leurs racines 

hébergent une myriade de bactéries bénéfiques qui les aident dans de multiples fonctions, 

mais qui peuvent également déclencher les réponses immunitaires de la plante. 

Malheureusement, nous ne comprenons toujours pas comment les plantes arrivent à 

distinguer une bactérie bénéfique d’un pathogène virulent, et comment elles décident de la 

stratégie à adopter : se défendre ou accueillir le colonisateur ? 

Nous commençons à comprendre que les plantes sont capables de réguler 

finement leurs réponses immunitaires, notamment en confinant leurs réponses immunes à 

certaines régions vulnérables. Nous avons pu démontrer que le reste de la racine n’est pas 

complètement insensible pour autant, et peut soudainement induire une réponse immune 

si la racine est blessée et entre en contact avec des molécules bactériennes. Ainsi, la lésion 

des tissus de la racine induit la production de récepteurs FLS2 qui vont détecter les 

éliciteurs bactériens flg22. De la sorte, la plante ignore les bactéries bénéfiques, mais 

s’active lorsque celles-ci font des dégâts. De plus, nous avons observé que des défenses 

activées au mauvais endroit pouvait passablement affecter la croissance racinaire. Ainsi, les 

tissus responsables de la prolifération cellulaire sont complétement incapables de détecter 

flg22, probablement pour éviter une réponse immunitaire qui perturberait la croissance. En 

revanche, les tissus entourant cette région centrale sont particulièrement 

immunocompétents : en temps normal, ils sont peu réactifs à la présence de flg22, mais 

deviennent hyperactifs et induisent un fort ralentissement de la croissance un fois qu’ils 

expriment le récepteur FLS2. Ces résultats nous aident à comprendre comment les plantes 

régulent l’activation de leurs défenses immunitaires pour éviter une suractivation qui serait 

néfaste à son développement et à son microbiote, tout en maintenant leur protection contre 

les pathogènes.  
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1.1. THE LAYERED INNATE IMMUNE SYSTEM OF LAND PLANTS 

Invisible to our naked eyes, they are everywhere. In the air, in the water or in the 

soil, they cover every surface, colonize every environment, even the harshest ones. It is 

therefore no wonder that microbes have always interacted with more complex organisms. 

Most microbes are simple opportunists that will leap at the chance to access free resources. 

However, hidden among the crowd, some pathogens evolved remarkable capacities to 

invade specific hosts. Fortunately, multicellular organisms developed immunity to 

counteract these trespassers. Although animals are commonly known to possess an 

immune system, it is sometimes forgotten that plants can defend themselves as well. Plants 

lack the adaptive immune system that allows animals to remember previous infections, but 

they have developed a robust and much simpler innate immune system which prevents 

most diseases. In contrast to the intricate immune arsenal of animals, which is constituted 

of many specialized cells such as macrophages, neutrophils or monocytes, to cite a few, 

every single plant cell can rely on itself to detect microorganisms and mount the appropriate 

defences (Dangl and Jones, 2001). Such defences come in three flavours and are constituted 

of the interconnected layers of constitutive barriers and inducible responses (Nürnberger 

and Brunner, 2002). 

The constitutive defences consist of physical barriers and pre-formed chemicals, 

also called phytoanticipins (Nürnberger and Lipka, 2005; VanEtten et al., 1994). Cell wall 

modifications can block microbial invasion (Miedes et al., 2014). For instance, the leaf 

cuticle prevents pathogens penetration, notably fungi that need to secrete hydrolytic 

enzymes like cutinases, esterases and lipases to break into the epidermis (Ziv et al., 2018). 

Secondary cell wall strengthening with lignin, an aromatic polymer, can also decrease initial 

pathogen colonization (Miedes et al., 2014; Vance et al., 1980). Consequently, 

overexpression of lignin biosynthesis genes leads to increased resistance to pathogens, 

whereas plant with reduced lignin content are more susceptible (Bhuiyan et al., 2009; 

Miedes et al., 2014; Shadle et al., 2003; Shi et al., 2012; Way et al., 2002). In the root, suberin 

forms a structural barrier and was suggested to restrict the entry of pathogenic bacteria, 

fungi or even beneficial mycorrhizas into the stele (Geldner, 2013; Reinhardt and Rost, 

1995; Vasse et al., 1995). As an example of pre-formed chemicals, latex is produced in a 
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diverse range of plants and constitutively contains defensive peptidases (Ramos et al., 

2019). 

By contrast, inducible defences are only triggered upon microbe detection. The 

Microbes-Associated Molecular Patterns (MAMP)-Triggered Immunity (MTI) constitutes a 

powerful first layer of defence and protects the plant against a diverse range of pathogens 

and opportunists. It relies on the perception of strongly conserved microbial patterns 

(MAMPs), or “elicitors”, by Pattern Recognition Receptors (PRRs) located at the plasma 

membrane. The second layer, called Effector-Triggered Immunity (ETI), targets specialized 

pathogens that escaped the first line of defences. It is based on the precise recognition of 

pathogen-specific effectors by intracellular Nucleotide-binding and Leucine-Rich repeat 

domain proteins (NLRs) and eventually leads to a hypersensitive cell death response at the 

site of infection. The MTI and ETI are shaped by the constant arms race between hosts and 

microbes (Dangl and Jones, 2001). Jones and Dangl (2006) proposed a “zigzag” model to 

explain how both layers are interconnected. Avirulent microbes, whose MAMPs are 

recognized by PRRs, induce MTI, which then halts colonization. In contrast, successful 

pathogens deploy effectors that counteract immune responses and cause an Effector-

Triggered Susceptibility (ETS). Plants that recognize effectors directly or indirectly through 

specific NLRs then induce ETI and keep at bay the invaders. Several rounds of evolution will 

see the alternation of ETS and ETI dependently on the appearance of new effectors and 

corresponding NLRs (Dangl and Jones, 2001). The complex interplay between effectors and 

NLRs is nicely reviewed in Asai and Shirasu (2015); Khan et al. (2016) and  Toruño et al. 

(2016). 

It must be noted that MTI and ETI are not occurring sequentially in the course of 

an infection. Two recent preprints suggested that the MAMP- and effector-triggered 

immunities are mutually potentiated to induce strong defence against pathogens. The ETI 

notably enhances PTI signalling component expression to compensate for their turnover. 

Reversely, the ETI requires PTI to provide an effective resistance to pathogens (Ngou et al., 

2020; Yuan et al., 2020a). Therefore, the traditional MTI-ETI dichotomy is now 

progressively replaced by a general concept of innate immune system, in which 

extracellular and intracellular “danger signals” are sensed by a common surveillance 

system. This includes, in addition to MAMPs and effectors, endogenous Damage-Associated 
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Molecular Patterns (DAMPs) released by plants after wounding by pathogens or herbivores 

(Gust et al., 2017; Heil and Land, 2014; Saijo et al., 2018). Cook et al. (2015) also proposed 

an alternative “Invasion Model”, in which Invasion Patterns (IPs) are sensed by IP receptors 

(IPRs), erasing the distinction between MTI and ETI. Whatever the model chosen, it remains 

critical to decipher the molecular and regulatory mechanisms of the innate immune system 

to better understand how plants and microbes interact together.  
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1.2. MAMPs AND DAMPs AS DANGER SIGNALS FOR INNATE IMMUNITY 

The MAMP-triggered immunity relies on different types of Pattern Recognition 

Receptors. While a few are particularly well characterized, the repertoire of MAMPs and 

their cognate receptors is now exponentially extending (see an exhaustive list by Boutrot 

and Zipfel (2017)). PRRs are generally divided into two groups: receptor-like kinases 

(RLKs) and receptor-like proteins (RLPs). Both receptors are formed by an extracellular and 

a transmembrane domains, but in addition, RLKs harbour an intracellular kinase domain 

(Boutrot and Zipfel, 2017; Couto and Zipfel, 2016; Saijo et al., 2018). These receptors are 

localised at the plasma membrane, where they form “signalling platforms” with many co-

receptors and receptor-like kinases (Bücherl et al., 2017). Together, they sense the presence 

of highly conserved epitopes of microbial molecules (Zipfel, 2008). These MAMPs are 

derived from essential, slowly evolving molecules, therefore preventing, in principle, 

pathogens to escape immunity (Jones and Dangl, 2006). MAMPs are found in all types of 

microorganisms, from bacteria to fungi and oomycetes, and include a diversity of molecules. 

PRRs are classified according to the type of their ectodomains, which usually corresponds 

to the nature of the ligands perceived. While Leucine-Rich Repeat (LRR) domains recognize 

mainly peptides and proteins, lysin (LysM) and lectin-like (LEC) motifs recognize sugars 

and fatty acids residues (Saijo et al., 2018; Wan et al., 2019). A couple of them have been 

extensively characterised. 

1.2.1. MICROBES-ASSOCIATED MOLECULAR PATTERNS 

The best studied MAMPs perceived by Arabidopsis thaliana are peptides derived 

from the bacterial flagellin and the EF-Tu elongation factor. The flagellin elicitor, a highly 

conserved small peptide of 22 amino acids, accordingly named flg22, is recognized by the 

receptor FLAGELLIN SENSING 2 (FLS2) (Chinchilla et al., 2006, 2007; Felix et al., 1999; 

Gómez-Gómez and Boller, 2000; Gómez-Gómez et al., 1999; Zipfel et al., 2004). Interestingly, 

the full flagellin protein cannot induce MTI. Indeed, the flg22 sequence is buried inside the 

flagellin molecule, so that flagellin should be processed by proteases and the β-galactosidase 

1 (BGAL1) to release the flg22 peptide (Buscaill et al., 2019; Fliegmann and Felix, 2016).  

EF-Tu is one of the most abundant and slowly evolving bacterial protein (Lathe 

and Bork, 2001). The elf18 peptide, derived from an 18-amino acids epitope at its N-
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terminus, is perceived by the LRR-RLK receptors EFR (EF-Tu RECEPTOR) (Kunze et al., 

2004; Zipfel et al., 2006).  

Several PRRs and their cognate ligands were added to the list in the last decade. 

Chitin is a major component of the fungal cell wall and is sensed by the LysM-RLK 

homodimers CERK1 (CHITIN ELICITOR RECEPTOR KINASE 1) (Miya et al., 2007; 

Petutschnig et al., 2010; Wan et al., 2008) associated to LYK5 (LYSM-CONTAINING 

RECEPTOR-LIKE KINASE 5) (Cao et al., 2014), or by LYM2 (LYSM DOMAIN GPI-ANCHORED 

PROTEIN 2) (Faulkner et al., 2013). Bacterial cell walls can release peptidoglycan (PGN) 

which is perceived by the LysM-RLPs AtLYM1 and AtLYM3 (Willmann et al., 2011). Recently, 

the LEC-RLK LORE (LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION) was 

shown to bind free medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) derived from the lipid 

A moiety of lipopolysaccharides (LPS), a major outer membrane component of gram 

negative bacteria (Kutschera et al., 2019; Ranf et al., 2015). In addition to exogenous 

MAMPs, PRRs can also recognize endogenous signals indicating cell-damage. 

1.2.2. DAMAGE-ASSOCIATED MOLECULAR PATTERNS 

DAMPs initiate an analogous mechanism to MAMP perception and are perceived 

by similar PRR families. They can be separated between primary and secondary 

endogenous danger signals. The first ones are pieces of cell wall or intracellular compounds 

abnormally present in the apoplast, released passively upon damage. They are considered 

as classical DAMPs, since they are constitutive component of plant cells that do not require 

to be synthesised or secreted de novo. A few true DAMPs were identified so far, such as 

oligogalacturonides (OGs), extracellular ATP (eATP), cutin monomers or cellobiose, but 

their corresponding receptor is often still unknown (Gust et al., 2017). In A. thaliana, only 

two DAMP receptors were identified. The WAK1 (WALL-ASSOCIATED KINASE1) receptor 

binds OGs, which are fragments of cell-wall derived pectin (Brutus et al., 2010). In addition, 

eATP is thought to be sensed by the LEC-RLK DORN1 (DOES NOT RESPOND TO 

NUCLEOTIDES 1)(Choi et al., 2014).  

In contrast to classical DAMPs, secondary danger signals are actively synthesised 

by plants and released upon wounding, sometimes through secretion. Secondary danger 

signals are often described as phytocytokines that modulate MTI responses (Gust et al., 
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2017). They are usually small peptides processed by proteolytic cleavage from larger pro-

proteins. As such, systemin is an 18-amino acids peptide found in tomato, cleaved from a 

larger prosystemin protein after damage perception and released in the apoplast (McGurl 

et al., 1992; Pearce et al., 1991). Similarly, the peptides AtPep (1 to 3, 5 and 8) are induced 

by wounding and need to be processed from ELICITOR PEPTIDE PRECURSORs (PROPEPs) 

prior sensing by two LRR receptor kinases, PEPR1 and 2 (PEP1 RECEPTOR 1/2) (Bartels 

and Boller, 2015). While PEPR1 can bind the eight known AtPeps, PEPR2 interacts only with 

AtPep1 and AtPep2 (Krol et al., 2010; Yamaguchi et al., 2006). In contrast to systemin, 

PROPEPs do not encode N-terminal signal peptide for secretion, suggesting they are 

released by tissue damage, though it is still debated if secretion could occur (Huffaker et al., 

2006; Yamaguchi and Huffaker, 2011). Hander et al. (2019) recently proposed that 

PROPEP1 is localized at the tonoplast of undamaged cells. After laser ablation, they 

observed that the METACASPASE 4, activated by Ca2+ entry, cleaved PROPEP1 protein and 

released AtPep1, which will then diffuse to neighbouring cells to induce defence responses, 

making it a bona fide classical DAMPs. 

From the recognition of MAMPs and DAMPs to the actual defence mechanisms, 

intricate signalling processes will take place, incorporating environmental and endogenous 

inputs to deliver a precise and controlled immune response. 
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1.3. MAMP-TRIGGERED IMMUNITY SIGNALLING: FLS2 AND FLG22 

Upon perception of elicitors, all currently studied MAMPs and DAMPs induce 

surprisingly similar downstream responses, starting from a common signalling cascade 

involving calcium influx, ROS production, MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) 

phosphorylation cascades and hormonal signalling, until the induction of actual defence 

mechanisms (Tang et al., 2017; Wan et al., 2019). However, the formation and regulation of 

the PRRs platforms, the composition of their intricate signalling networks or the localisation 

of immune responses can be slightly different depending on the elicitor perceived. The next 

paragraphs therefore focus on the mechanisms observed in response to the best studied  

MAMP, the flg22 peptide and its receptor FLS2. 

1.3.1. PRRs FORM TIGHTLY REGULATED SIGNALLING PLATFORMS  

Most LRR-containing receptor kinases (LRR-RK) interact with co-receptors from 

the SERK (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE) protein family upon 

ligand perception. Additionally, they scaffold into nanodomains of receptor complexes 

(Bücherl et al., 2017; Roux et al., 2011; Wan et al., 2019). As such, FLS2 associates principally 

to BRI1-ASSOCIATED RECEPTOR KINASE (BAK1/SERK3)(Chinchilla et al., 2007). 

Interestingly, BAK1 also interacts with the brassinosteroid receptor BRI1 

(BRASSINOSTEROID INSENSITIVE 1) to regulate growth (Li et al., 2002; Nam and Li, 2002). 

Yet, how does BAK1 specifically activate one or the other pathway is not completely 

understood. Perraki et al. (2018) showed that some conserved phosphosites of the kinase 

domain are required specifically for the immune function of BAK1, but not for its 

developmental role. Moreover, FLS2-BAK1 and BRI1-BAK1 complexes are localized in 

distinct nanodomains at the plasma membrane (Bücherl et al., 2017). 

FLS2/BAK1 complex, in resting state, constitutively associates with several other 

proteins, which tightly regulate FLS2-BAK1 interactions to avoid a constant activation of 

immunity. BIR2 and BIR3 (BAK1-INTERACTING RECEPTOR-LIKE KINASE) prevent the 

interaction of FLS2 and BAK1 in absence of flg22 (Halter et al., 2014; Imkampe et al., 2017). 

The receptor-like kinases ANXUR1 and 2 also inhibit the formation of the signalling complex 

(Mang et al., 2017). Receptor-like cytoplasmic kinase (RLCKs) in their inactive state, like 

BIK1 (BOTRYTIS-INDUCED KINASE1) or PBL1 (PBS1-LIKE 1), also constitutively interact 
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with the FLS2/BAK1 complex (Lu et al., 2010; Veronese et al., 2006; Zhang et al., 2010). BIK1 

homeostasis is closely controlled: the CALCIUM DEPENDENT PROTEIN KINASE CPK28 

associates with non-activated BIK1 to promote its degradation by phosphorylating E3 

ligases (Monaghan et al., 2014). The protein phosphate PP2C38 also dephosphorylates BIK1 

to maintain it in an inactive state (Couto et al., 2016). In addition, LRR-RK FLS2-

INTERACTING RECEPTOR (FIR) or the heterotrimeric G-proteins XLG2/AGB1/AGG1/2 

stabilize the signalling complex (Liang et al., 2016; Smakowska-Luzan et al., 2018). All those 

mechanisms ensure a tight regulation of immunity, that is ultimately triggered upon 

MAMP/DAMP perception. 

1.3.2. SIGNALLING AT THE PLASMA MEMBRANE UPON MAMP PERCEPTION 

Flg22 acts as a molecular glue between FLS2 and BAK1 to induce MTI signalling 

(Hohmann et al., 2017; Sun et al., 2013). Upon its perception, the inhibitory proteins BIR2 

and BIR3 dissociate from FLS2/BAK1 (Halter et al., 2014; Imkampe et al., 2017) while 

components of the scaffolding complex such as FERONIA (FER), IMPAIRED OOMYCETE 

SUSCEPTIBILITY 1 (IOS1) and LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 (LLG1) promote 

and stabilize FLS2/BAK1 association (Li et al., 2015; Shen et al., 2017; Stegmann et al., 2017; 

Yeh et al., 2016). Flg22 binding induces rapid transphosphorylation of FLS2 and BAK1 

(Chinchilla et al., 2007; Heese et al., 2007; Schulze et al., 2010). Then, BAK1 phosphorylates 

several RLCKs, like BIK1 or PBL1. This releases them from the complex to further activate 

downstream signalling (Lin et al., 2013). BIK1 has a preponderant role in MTI and is 

required for FLS2, EFR, PEPR1/2 and CERK1-induced responses (Liu et al., 2013; Lu et al., 

2010; Veronese et al., 2006; Zhang et al., 2010). Non-phosphorylated BIK1 is ubiquitinated 

to prevent its overaccumulation (Wang et al., 2018). 

FLS2 is also quickly recycled after induction of MTI signalling. Indeed, flg22 

perception causes the turnover of FLS2 by BAK1- and clathrin-dependent endocytosis upon 

10-20 min (Boller and Felix, 2009; Keinath et al., 2010; Mbengue et al., 2016; Robatzek et 

al., 2006). Endocytosed FLS2 is then targeted to degradation after ubiquitination by PUB12 

and PUB13 (PLANT U-BOX12/13), allowing signal desensitization and the cell to replenish 

its pool of uninduced FLS2 (Lu et al., 2011; Robatzek et al., 2006; Smith et al., 2014). 
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With a better understanding of the apoplastic events allowing signal perception, 

we can now focus on the intracellular downstream mechanisms permitting signal 

transduction. 

 

Figure 1 : Simplified view of immune signalling in response to flg22.  

Upon flg22 perception, BIR1/2 dissociate from FLS2 and BAK1, which interact and cross-phosphorylate. BIK1 is 
phosphorylated by FLS2/BAK1 and induces both MAPK phosphorylation cascades and ROS production through RBOHD 
phosphorylation. BIK1 also activates the Ca2+ channel CNGC2/4. Entry of calcium is sensed by CPK5 that phosphorylates 
RBOHD. MAPK cascade and calcium signalling lead to activation of immune responses. 

1.3.3. TRANSDUCTION OF IMMUNE SIGNAL – EARLY RESPONSES 

CA2+ SIGNALLING  

Elicitors such as flg22 trigger immediate changes in ions fluxes, and notably 

cytosolic calcium entry (Boller and Felix, 2009; Seybold et al., 2014). Indeed, BIK1 and PBL1 

directly or indirectly regulate the opening of calcium channels (Ranf et al., 2014). 

Glutamate-receptors were implicated in calcium burst upon flg22 detection (Kwaaitaal et 

al., 2011), but this finding could not be confirmed by Thor and Peiter (2014). Activated FLS2 

was shown to directly associate and inhibit the Ca2+ exporter AUTOINHIBITED CA2+-

ATPASE, ISOFORM 8 and 10 (ACA8/10), which increases cytosolic calcium concentration 
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(Frey et al., 2012). Recently, Tian et al. (2019) demonstrated that BIK1 directly 

phosphorylates the CYCLIC NUCLEOTIDE GATED CHANNEL dimers CNGC2 and 4, inducing 

cytosolic Ca2+ increase in response to pathogens. 

Cytosolic calcium increase propagates by waves through the plant and is thought 

to induce responses in distal tissues (Choi et al., 2016; Gilroy et al., 2014, 2016; Stanley et 

al., 2018). Interestingly, different MAMPs can trigger distinct calcium signatures which are 

assumed to dictate response specificity (Ranf et al., 2011; Thor, 2019). Changes in calcium 

concentration are then perceived by diverse proteins: calmodulin (CaM), CaM-like proteins 

(CMLs), calcineurin B-like proteins (CBLs), CBL-interacting protein kinases (CIPKs) or Ca2+-

dependent kinases (CDPKs or CPK), all of which modulate downstream immune responses, 

such as MAPK activation, ROS production, hormone signalling or directly gene expression 

(Boudsocq et al., 2010; Choi et al., 2016; Thor, 2019). 

REACTIVE OXYGEN SPECIES 

In addition to calcium signalling, MAMPs induce in the first 2 minutes upon 

perception the production of reactive oxygen species (ROS) (Boller and Felix, 2009). The 

NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) is essential for MTI 

induction, but RBOHF plays also a minor role (Zhang et al., 2007). Activated RBOHD 

produces O2- that is converted by superoxide dismutases into H2O2. RBOHD binds to FLS2 

and BIK1 in absence of ligand and is activated and phosphorylated upon flg22 perception 

by the combined effect of BIK1, PBL2 and CPK5 (Dubiella et al., 2013; Kadota et al., 2014; Li 

et al., 2014b). Interestingly, RBOHD is also positively regulated by several RLCK (i.e. PBL1, 

BSK1)(Shi et al., 2013; Zhang et al., 2010) and the MAP4K SIK1 (SERINE/THREONINE 

KINASE 1)(Zhang et al., 2018). 

ROS production is tightly linked to cytosolic calcium concentration changes, 

therefore both pathways are often described as a ROS-Ca2+ wave, propagating on long 

distances (Gilroy et al., 2014, 2016; Miller et al., 2009). Ca2+ is indeed required for ROS 

signalling through direct binding to RBOHD, or through indirect activation of RBOHD by 

CPK proteins (Drerup et al., 2013; Dubiella et al., 2013; Ranf et al., 2011). Moreover, ROS 

production is inhibited by the Ca2+ channel inhibitor LaCl3 (Ranf et al., 2008). Reversely, ROS 

(in particular H2O2) was proposed to induce calcium signalling by activating Ca2+ channels, 
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which would further increase MTI responses in a feed forward loop (Choi et al., 2016; Pei et 

al., 2000; Rentel and Knight, 2004). Increase in cytosolic Ca2+ concentration was suggested 

to induce the ROS-sensitive channel TPC1 (TWO-PORE CHANNEL 1) and to propagate 

through plasmodesmata. However, TPC1 is not involved in the flg22-mediated calcium 

response (Ranf et al., 2008).  

ROS mainly act as secondary messengers, but they also have direct effects such as 

antimicrobial and cell wall crosslinking properties (Boller and Felix, 2009). Moreover, ROS 

are required for stomata closure and callose deposition in response to pathogens 

(Mersmann et al., 2010; Zhang et al., 2007). 

ROS and Ca2+ are well-established as the early steps of signal transduction, but 

MAPK phosphorylation cascades are also involved as a parallel chain of events leading to 

the defence response. 

MITOGEN-ACTIVATED PROTEIN KINASE CASCADE 

Activated PRRs also induce MAPK phosphorylation cascades, allowing to 

transduce MAMP-perception into an appropriate transcriptional response. These signalling 

modules are constituted of MAPKKK (Mitogen-Activated Protein Kinase Kinase Kinase or 

MEKK), MAPKK (MAP Kinase Kinase) and MAPK (Meng and Zhang, 2013). Two distinct 

MAPK pathways were involved in MTI (Tang et al., 2017). The first one relies on the 

phosphorylation of MKK4/MKK5 - MAPK3/MAPK6 (Asai et al., 2002; Tang et al., 2017). It 

was recently proposed that MAPKKK3 and MAPKKK5 are implicated in MAPK3/6 

activation, although their effects are not consistent across different MAMP signalling 

pathways. Supporting this suggestion, BIK1 and other RLCKs associate with and 

phosphorylate MAPKKK3/5 (Bi et al., 2018; Sun et al., 2018; Yamada et al., 2016). The 

second cascade involves MEKK1 – MKK1/MKK2 - MPK4 and was shown to downregulate 

some immune responses such as salicylic acid (SA) and ROS production (Pitzschke et al., 

2009). 

Upon activation, MAPK cascades phosphorylate proteins and transcription factors, 

mainly WRKY DNA-BINDING PROTEINS (WRKYs), that in turn activate defence genes. 

MAPK cascades play a large role in the MAMP-induced transcriptional response. 36% of the 

flg22-upregulated genes and 68% of the downregulated genes were influenced in at least 
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one of the mpk3, mpk4, and mpk6 mutants (Frei dit Frey et al., 2014). MAPKs modulate 

defence hormones synthesis and signalling, phytoalexin biosynthesis, hypersensitive cell 

death response and stomatal immunity. Interestingly, MAPK cascade and ROS signalling are 

independent of each other, but might crosstalk in downstream signalling (Meng and Zhang, 

2013), which also includes hormonal regulation. 

DEFENCE HORMONES 

In addition to ROS/Ca2+ burst and phosphorylation cascade, MTI responses affect 

hormonal signalling. MAMP perception induces the synthesis of ethylene (ET), and salicylic 

and jasmonic acid (SA and JA) signalling (Boller and Felix, 2009). Interestingly, SA and 

ET/JA are in many cases antagonistic. SA signalling is central to responses to biotrophic and 

hemibiotrophic pathogens whereas the ET and JA pathways contribute to defence against 

necrotrophic pathogens (Glazebrook, 2005; Pieterse et al., 2012). However, the three 

pathways can also act synergistically since the analysis of dde2/ein2/pad4/sid2 quadruple 

mutant, impaired in JA, ET, PHYTOALEXIN-DEFICIENT 4 (PAD4), and SA signalling 

pathways, revealed that all three hormones act positively in flg22/elf18-mediated MTI and 

mainly control late responses (Tsuda et al., 2009). These will then directly affect the 

microbial invaders responsible for the induction of MTI signalling.  
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1.4. DOWNSTREAM DEFENCE RESPONSES AS FINAL OUTPUT OF MTI 

The intricate signalling networks occurring during MTI responses eventually 

induce a set of defence mechanisms to protect the plant against the perceived microbes. 

Among these responses, the production of antimicrobial compounds and the strengthening 

of cell walls are key features hindering the penetration of pathogens. 

In contrast to phytoanticipins, constitutively synthesized by the plant, 

phytoalexins are low molecular mass secondary metabolites with antimicrobial activity, 

produced upon perception of MAMPs, DAMPs or pathogens (Ahuja et al., 2012). In 

A. thaliana, flg22 triggers the production of camalexin, generally in a limited region 

neighbouring the pathogen-induced lesion (Denoux et al., 2008; Kliebenstein et al., 2005; 

Schuhegger et al., 2007). Camalexin production is directly regulated by the WRKY33 

transcription factor, itself activated by the MKK4/5 - MPK3/6 pathway (Meng and Zhang, 

2013; Pitzschke et al., 2009). Coumarins are also synthesized by a vast range of species in 

response to pathogens and have antimicrobial properties against fungi, oomycetes and 

bacteria (Stringlis et al., 2019a).  

Additionally, MAMP-triggered immunity typically induces the formation of cell 

wall depositions containing callose, an amorphous β-(1,3)-glucan polymer that serves as a 

matrix for localized antimicrobial compound accumulation (Gómez-Gómez et al., 1999; 

Luna et al., 2010). Callose is also a constituent of papillae formed at the penetration site of 

pathogens (Voigt, 2014). Callose biosynthetic genes are induced by flg22 and require the 

transcription factor MYB51 (MYB DOMAIN PROTEIN 51) and CYP81F2 (CYTOCHROME 

P450, FAMILY 81, SUBFAMILY F, POLYPEPTIDE 2) involved in the glucosinolate pathway. 

Indeed, the callose synthase uses breakdown products of indole glucosinolates. Callose 

synthesis is also dependent of ethylene signalling both in root and shoot (Clay et al., 2009; 

Millet et al., 2010). 

Lignin-impregnation of cell walls was one of the first described responses at the 

cellular scale to living pathogens (mostly fungi) and was correlated with hypersensitive 

responses leading to controlled cell-death (Baayen et al., 1996; Bhuiyan et al., 2009; Lawton 

and Lamb, 1987; Menden et al., 2007; Nicholson and Hammerschmidt, 1992; Vance et al., 

1980). Nevertheless, some “elicitor preparations” consisting of boiled extracts of pathogens 
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were also reported to induce accumulation of monolignols and lignin deposition in wheat, 

cucumber and Picea abies cell culture (Campbell and Ellis, 1992; Lange et al., 1995; Menden 

et al., 2007; Siegrist et al., 1994). The use of pure MAMPs and DAMPs later confirmed that 

lignin deposition was a direct effect of MTI responses. Smit and Dubery (1997) showed that 

a protein-lipopolysaccharide elicitor of Verticillium induced lignin deposition in cotton 

sprout. Chitin induces the production of lignin-like components in cell culture of Pinus and 

the upregulation of lignin biosynthesis genes in rice (Kaku et al., 2006; Lesney, 1989). 

Robertsen  (1986) identified several elicitors inducing lignin in cucumber hypocotyls, while 

Adams-Phillips et al. (2010) reported an elf18-driven lignification in A. thaliana. More 

recently, flg22 was shown to induce MYB15-dependent seedling lignification (Chezem et al., 

2017). Lignin was often linked to non-host resistance and blocks pathogens progress in 

leaves (Bhuiyan et al., 2009; Lee et al., 2019; Nicholson and Hammerschmidt, 1992; Vance 

et al., 1980). 

Suberin is a large constituent of plant preformed barriers (Bernards, 2002; 

Geldner, 2013; Kamula et al., 1994; Thomas et al., 2007). However, suberin deposition can 

also be induced in roots of soybean after Phytophtora sojae infection  and influences cultivar 

resistance (Ranathunge et al., 2008). However, I could not find evidence in the literature 

that suberisation would be triggered in response to a single MAMP. 

Other defence mechanisms are induced by MTI in addition to phytoalexin 

production and cell wall strengthening. MAMPs trigger stomatal closure to avoid pathogens 

entry (Melotto et al., 2017), increase the expression of secondary danger signals as 

PROPEP2/3 (Bartels et al., 2013; Yamaguchi and Huffaker, 2011), increase the transcription 

of PRRs (Boutrot et al., 2010; Tintor et al., 2013) and the generation of pathogenesis-related 

(PR) proteins (Boller and Felix, 2009).  

MAMP- and DAMP-triggered immunity is indeed a very intricate mechanism that 

starts from the recognition of simple “danger signal” molecules and leads to a complex array 

of defensive weapons. These diverse responses converge to form a protective physical and 

chemical barrier and allow the plant to survive despite the omnipresence of pathogens. 
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1.5. GROWTH AND DEFENCE: AIMING FOR THE EQUILIBRIUM  

MTI allows plants to deal with various microorganisms but does not come without 

a cost. Indeed, plants must allocate their limited resources wisely between growth and 

defence. Overresponsive mutants with constitutive defences  were shown to bear increased 

fitness costs and to display stunted growth (Heil et al., 2000; Todesco et al., 2010).  

The most flagrant impact of MTI on the growth-defence trade-off is the inhibition 

of seedling growth after long-term treatment with MAMPs or DAMPs (Gómez-Gómez and 

Boller, 2000; Jing et al., 2020; Zipfel et al., 2006). Seedling growth inhibition is a hallmark of 

MTI induction. The exact mechanism behind this process is still unclear but can be explained 

broadly by resource reallocation and hormonal crosstalk. 

A recurrent explanation was that the brassinosteroid (BR) and MTI pathways 

would compete for their common BAK1 co-receptor. Their crosstalk was rather 

unidirectional, as brassinosteroid application was reported to inhibit flagellin-triggered 

defence (Belkhadir et al., 2012, 2014). However, the trade-off was then shown to be 

independent of BAK1 since BR treatment did not affect the physical interaction of FLS2 and 

BAK1 (Albrecht et al., 2012). Later on, Lozano-Durán et al. (2013) demonstrated that 

induction of BZR1 (BRASSINAZOLE-RESISTANT 1) through BR signalling was required and 

sufficient to inhibit the MTI pathway. BZR1 activates a handful of inhibitors of immune 

signalling such as HBI1 (HOMOLOG OF BEE2 INTERACTING WITH IBH 1) or WRKY40 (Bai 

et al., 2012; Fan et al., 2014; Lozano-Durán et al., 2013; Malinovsky et al., 2014). Reversely, 

MTI signalling can inhibit the brassinosteroid pathway through repression of HBI1 and 

BIK1-mediated phosphorylation of BR1 (Fan et al., 2014; Lin et al., 2013). Overall, 

brassinosteroid and MTI signalling crosstalk to control the balance between growth and 

defence. 

The trade-off between growth and defence could also involve the FERONIA 

receptor, which was shown to coordinate many biological processes, including 

development, growth and defence response. FER is not only important for the scaffolding of 

PRR signalling platforms (Stegmann et al., 2017), but is required for cell elongation during 

the vegetative growth (Guo et al., 2009). FER has a structural role, independent of its kinase 

activity, for the ligand-induced dimerization of FLS2 and BAK1; consequently, the fer 
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mutant displays reduced MAMP-responses. However, a flg22-activated RALF23 (RAPID 

ALKALINIZATION FACTOR 23) ligand binds to FER and negatively regulates PRR complex 

formation, likely to avoid overactivation of immune responses (Gronnier et al., 2020; 

Stegmann et al., 2017). Fer mutants were also reported to be specifically resistant to 

powdery mildew, suggesting that FER can also negatively affects the immune responses 

(Kessler et al., 2010). 

More and more findings illustrate the interactions between growth and defence 

pathways, usually involving interactions between hormonal signalling. For example, 

salicylic acid and jasmonate signalling can override the development-oriented auxin and 

gibberellin pathways (Huot et al., 2014). Flagellin also induces the expression of the 

microRNA miR393, which degrades activators of the auxin signal route, implicated in stem 

development and root architecture (Navarro et al., 2006). Developmental programs also 

repress immune responses. Thus, DELLA proteins, a group of gibberellin-signalling 

repressors, form a feedback regulatory loop with the plant immune regulator ENHANCED 

DISEASE SUSCEPTIBILITY 1 (EDS1) (Li et al., 2019). MTI signalling is also downregulated 

by the root growth-promoting hormones phytosulfokine (PSKs) and PLANT PEPTIDE 

CONTAINING SULFATED TYROSINE1 (PSY1). Indeed, mutants for the respective receptors 

pskr1 and psy1r exhibit enhanced MAMP responses (Amano et al., 2007; Igarashi et al., 2012; 

Matsubayashi and Sakagami, 2006).  

The crosstalk between growth and defence is of crucial importance for plant 

development. Indeed, plants need to suppress growth when attacked by a pathogen to 

ensure that all resources go to their defence and their survival. On the other hand, in 

absence of threat, it makes sense that plants would allocate their resources towards growth. 

However, plants are never in such a simple interaction with a single pathogen. They are 

constantly in contact with bacteria, archaea, fungi and protists of all kinds, and must cope 

with damages caused by herbivores, insects or nematodes. Moreover, only few 

microorganisms are actual pathogens, and we still do not understand whether plants can 

really discriminate them from inoffensive microbes. In that context of a densely microbe-

populated environment, a tight control of immune responses on the plant side is required 

to equilibrate the trade-off between growth and defence.  
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1.6. THE RHIZOSPHERE, A MELTING POT OF BIOTIC INTERACTIONS 

The last decades of research on MAMP-triggered immunity revealed complex and 

evolving mechanisms regulating the detection of microbes and leading to effective defences. 

They allowed us to understand why some plants were susceptible to specific pathogens, and 

why other were resistant. They also highlighted the constant co-evolution between 

pathogens and plants. However, the study of MTI was often restricted to events occurring 

on plant leaves, and mostly overlooked the fact that roots are also affected by pathogens. 

Despite their importance in many physiological processes, little interest has been given to 

defences in the “hidden half” of the plants, probably because of the difficulty to study organs 

buried in the ground. Using an anthropomorphic analogy, roots are often described as an 

inverted gut, foraging the soil for water and nutrients. Moreover, like for animals, they 

recruit and host a specific and very diverse microbiota that provides services to the plant, 

such as nutrient acquisition or protection against pathogens. How plants deal with such a 

complex community, how they recruit and influence their microbiome, how they regulate 

their defence system to avoid pathogens to spread while keeping a healthy microbiome, are 

some of the emerging questions of the plant-microbe interactions field. 

1.6.1. THE RHIZOSPHERE COMMUNITY OR THE 2ND GENOME OF THE PLANT 

The study of soil microbiota was long hindered by the impossibility to culture most 

soil microorganisms. However, the emergence of new generation high-throughput 

sequencing technologies and corresponding computational tools allowed to shed light on 

one of the richest microbial community on Earth and assess its composition (Bulgarelli et 

al., 2013; Hacquard, 2016; Pascale et al., 2020). The root releases photo-assimilates and 

exudates that attract a subset community of the soil microbiota in its close periphery, called 

the rhizosphere (Berendsen et al., 2012; Bulgarelli et al., 2013; Durán et al., 2018; Hacquard 

et al., 2017; Massalha et al., 2017a). This less complex but more specialized community still 

includes a rich variety of microbes such as bacteria, fungi, archaea and protists. In 

comparison, the leaf microbiota is predominantly composed of bacteria, though the 

phyllosphere bacterial composition presents a taxonomic overlap with the rhizosphere 

community (Bai et al., 2015; Bulgarelli et al., 2013). 
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Roots are mostly colonized by the bacterial phyla Gamma-proteobacteria, Beta-

proteobacteria, Actinobacteria and Bacteroidetes, specifically enriched in the “endosphere” 

compartment, the community living inside or in very close association to the roots (Bai et 

al., 2015; Bulgarelli et al., 2012; Durán et al., 2018; Lundberg et al., 2012). This community 

structure can be found in all flowering plants (Bai et al., 2015; Bulgarelli et al., 2015; 

Edwards et al., 2015; Schlaeppi et al., 2014). Root-colonizing fungi are mostly represented 

by member of the Basidiomycota and the Ascomycota phyla, and, in contrast to bacteria, 

seem more subjected to variation depending on plant biogeography (Durán et al., 2018; 

Hassani et al., 2018). Much less studied, protists known to interact with plants are generally 

part of the Oomycota and Cercozoa lineages (Gao et al., 2018; Hassani et al., 2018; Sapp et 

al., 2018). 

Microbes living in and on the roots display a vast repertoire of behaviours. At the 

extreme end of the spectrum are found symbiotic organisms that require morphological 

changes to accommodate their development. Thus, arbuscular mycorrhizas form 

intracellular structures called arbuscules and extend the plant root network with their 

hyphae, increasing plant access to mineral nutrients. In exchange of phosphates, roots 

provide lipids and carbohydrates (Gutjahr and Parniske, 2013). This symbiotic association 

is occurring in 70-90% of land plant species and co-evolved since at least 400 Mya (Gutjahr 

and Parniske, 2013; Parniske, 2008). Similarly, the more recent symbiotic nodule-forming 

rhizobacteria provide their host with nitrogen. Both symbionts rely on a similar symbiotic 

pathway, underlining their shared evolutionary origins (Martin et al., 2017).  

At the opposite end of the microbial scope are biotrophic and necrotrophic 

pathogens, that prefer their host respectively alive or dead. Although less visible than foliar 

pathogens, they can have drastic impact on plant development and cause root rot, wilting, 

growth inhibition or plant death. Fungi and oomycetes are the most prevalent, such as 

Fusarium oxysporum, Verticilium spp., Rhizoctonia solani, and Pythium or Phytophthora spp., 

respectively. Only a few bacteria can infect roots: Ralstonia solanacearum, Erwinia spp. or 

the well-known Agrobacterium tumefaciens that causes crown gall formation, are the best 

described. Soilborne pathogens often reside in the soil under a dormant form or as 

saprophytes until root exudates induce their growth (Bais et al., 2006; De Coninck et al., 

2015; Pascale et al., 2020). 
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Most of the remaining microorganisms colonizing roots do not have such extreme 

lifestyles. Many are described as commensals that benefit from, but do not harm the plant. 

Some are even beneficial, while others are opportunistic pathogens waiting for the 

appropriate moment to show their dark side. All these microbes rely on exudates and dead 

cells released by the root as a source of nutrients, but they can also provide the plant with 

specific functions (Bulgarelli et al., 2013; Pascale et al., 2020). Therefore, they are generally 

considered as the second genome of the plant, to the point that the combination of the host 

and its microbiome is currently defined as a single functional entity called the “holobiont” 

(Hassani et al., 2018; Rosenberg and Zilber-Rosenberg, 2016). 

1.6.2. MICROBIOTA AS A PROVIDER OF SERVICES 

Many functions provided by the rhizosphere microbiota eventually impact plant 

growth. The exact mode of action of Plant-Growth Promoting Rhizobacteria (PGPRs, mainly 

Pseudomonas but also Azospirillum) is still poorly understood, but one of the mechanisms 

they use relies on the enhancement of nutrient availability (Bulgarelli et al., 2013; Goswami 

et al., 2016; Pascale et al., 2020). Indeed, rhizobacteria can either fix or denitrify nitrogen, 

increase phosphorus and iron solubilization by the production of organic acids or 

siderophores, respectively. Non-mycorrhizal plants can also rely on endophytic fungi to 

increased phosphate uptake, such as Colletotrichum tofieldiae or Serendipita indica 

(Castrillo et al., 2017; Hiruma et al., 2016; Pascale et al., 2020; Yadav et al., 2010). Some 

beneficial microbes can also stimulate the plant iron-deficiency response to increase iron 

absorption (Martínez‐Medina et al., 2017; Pascale et al., 2020; Zamioudis et al., 2015; Zhou 

et al., 2016). Alternatively, microbes can interfere with plant hormones by producing auxins 

or analogues of salicylic and jasmonic acids, or by degrading ethylene, known to repress 

plant growth (Stringlis et al., 2018a). The rhizosphere community can also impact indirectly 

growth by competing with pathogenic microorganisms, production of antimicrobial 

compounds or through Induced Systemic Resistance (ISR). ISR relies on the PGPR-mediated 

activation of several hormonal responses leading to the priming of defences. Such an 

energy-saving strategy allows a faster and stronger defence induction only upon further 

pathogen attack (Pieterse et al., 2014). 

34



 

Roots growing in this this multi-organismal context challenge constantly the 

growth-defence trade-off paradigm. Knowing that a large part of the commensal and 

beneficial microbial communities can also induce MAMP-triggered immunity, it seems 

essential that plants precisely regulate or target their defences in order to conserve a 

healthy microbiome while getting pathogens under control. Root defences must be 

particularly adapted to such a complex environment, and therefore cannot be expected to 

be identical to defences in the shoot.  

35



 

1.7. IMMUNITY IN THE ROOT, A STORY OF COMPARTMENTATION 

1.7.1. ROOT ANATOMY AND BARRIERS 

Roots are constituted of concentric cell layers defined as distinct tissues: the 

epidermis, the cortex, the endodermis and the pericycle surround the vascular central 

cylinder, also called the stele (Fig.1). Roots lack, generally, an impermeable cuticle, which 

allows nutrients to reach the vasculature by diffusion and active transport (Barberon, 2017; 

Geldner, 2013). Newly generated cells are found in the meristematic zone located at the root 

tip (Schiefelbein and Benfey, 1991). They are covered by the root cap, constituted of the 

columella cells directly below the quiescent centre, and by the lateral root cap cells that 

surround the meristematic region. In addition to its role in gravitropism, the root cap 

protects the meristem from physical damages caused by penetration in the soil. Moreover, 

during the first three days after germination, the root cap cells display a thin cuticle, 

involved in salt stress protection. Root cap cells are perpetually growing and shed layer by 

layer once a new row of cells is generated (Barlow, 2002). These “root cap border cells” still 

secrete exudates once detached, and are thought to release extracellular DNA to trap 

pathogens (Driouich et al., 2013; Hawes et al., 2016). 

Roots display a developmental gradient across their longitudinal axis, with newly 

generated cells being pushed away from the meristematic region the more they 

differentiate. Once they reach the elongation zone (EZ), cells stop to divide and start to 

elongate, before they enter the differentiation zone (DZ) where they develop their final 

features (Schiefelbein and Benfey, 1991). It is only in that region that the structural barriers 

of the endodermis are established. The lignified Casparian strip ensures an apoplastic 

diffusion barrier for nutrients (Naseer et al., 2012), while suberin lamellae depositions, 

appearing later in development, block the uptake of water and nutrients from the apoplast 

to the endodermal cytoplasm (Barberon et al., 2016). Similar barriers can be observed in 

the exodermis, the outermost cortical cell layer, located just below the epidermis. Overall, 

roots are complex organs with tissue-specific structural properties which interfere with 

microbial colonization.  
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Figure 2 : Anatomical structure of the root with a close-up view of the model organism Arabidopsis thaliana.  

Roots are divided in three parts: the meristematic zone (MZ), the elongation zone (EZ) and the differentiated zone (DZ). 
The EZ starts when cells begin to elongate and stops at the appearance of the first root hair cells. Once differentiated, 
cells establish a diffusion barrier made of two features. The Casparian strip seals the endodermal cells together and 
blocks the apoplastic diffusion. The endodermis (en) is later coated with suberin lamellae. Some cells, called 
endodermal passage cells, are situated in front of the xylem poles and remain devoid of suberin to allow nutrient 
exchange. 

1.7.2. INTERACTION OF RHIZOSPHERE MICROBES WITH THE ROOT 

Though recent progresses in metagenomics allowed to decipher the general 

composition of the root microbiome and its functions (Bulgarelli et al., 2013), data on the 

spatial structure of the community are still scarce. They are mostly based on histological 

studies of pathogen infections, deciphering their entry points and invasion routes. The 

different root tissues and regions have indeed distinct properties that shape the preference 

of microbes for a specific niche. 

Microbes that attempt to colonize the root will first meet the epidermis. In leaves, 

pathogens often enter through stomata or hydathodes to bypass the cuticle (Faulkner and 

Robatzek, 2012; Ziv et al., 2018). However, the absence of cuticle on the root make it easier 

for the rhizosphere microbiota to directly interact with the cell walls. The rhizosphere 
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community is nevertheless not homogenous. DeAngelis et al. (2009) showed that micro-

organisms spread along the root following a longitudinal gradient and tend to accumulate 

around the root tip and root hairs. Around 8% of taxa retrieved from their analysis of wild 

oat (Avena fatua) display root-zone dependent enrichment. Some bacteria from Bacteroides 

phyla or from Bacillus, Rhizobium and Azospirillum genus concentrate at the root tip or in 

the elongation zone. This might be due to local variations in metabolites released alongside 

the root axis (Cardinale et al., 2015; Massalha et al., 2017b; Pini et al., 2017; Santos et al., 

2017, 2011). Other bacteria strains like Pseudomonas fluorescens or Azospirillum brasilense 

are found in mature regions or all along the root. Root hairs also form a specific niche and 

their absence alter the microbiota composition (Eynck et al., 2007; Robertson-Albertyn et 

al., 2017; Santos et al., 2017; Schmidt et al., 2018; Zhou et al., 2020). Interestingly, bacteria 

tend to accumulate in the ridge between epidermis cell borders (Schmidt et al., 2018). 

A fraction of this microbiota colonizes also the endosphere (Berg et al., 2014). Most 

of endophytes subsist inside or in between the epidermis and cortex cells (Bulgarelli et al., 

2013; Schmidt et al., 2018). Their progression is thought to be stopped by endodermal 

barriers (Geldner, 2013). Thus, the mutualist Piriformospora indica enters the root in the 

differentiated region and colonizes only the epidermis and the cortex (Jacobs et al., 2011). 

Arbuscular mycorrhizal fungi need to cross the exodermis to form arbuscules in the cortical 

region. Interestingly, they do so by entering through exodermal passage cells, which are 

exempt of suberin lamellae (Enstone et al., 2002). Interestingly, in Petunia, these same cells 

express specifically the PDR1 exporter, which releases strigolactone hormone known to 

attract arbuscular mycorrhizal fungi (Borghi et al., 2016; Kretzschmar et al., 2012; 

Steinkellner et al., 2007). 

Successful pathogens usually penetrate the root until the stele, where they use the 

vasculature to spread throughout the plant. Fungi tend to grow intracellularly, using 

appressoria to break through the cell walls, but they can also extend their hyphae in the 

apoplast. Thus, Verticillium longisporum colonizes the xylem of Brassica napus crossing the 

cell wall (Eynck et al., 2007). The oomycete Phytophotora parasitica invades root hairs or 

the elongation zone (Attard et al., 2010). In contrast, soilborne bacterial pathogens like 

Ralstonia solanacearum invade roots between cells and develop extracellularly, inducing 

cell death in the endodermis (Digonnet et al., 2012; Faulkner and Robatzek, 2012). 
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Nevertheless, damaged sites, or zones with weaker barriers, are preferential entry 

points for microbes. Like many commensals, R. solanacearum and F. oxysporum target the 

elongation zone where endodermal barriers are not yet established, possibly allowing 

invaders to break into more easily (Czymmek et al., 2007; Digonnet et al., 2012). Several 

bacteria (R. solanacearum, Rhizobia) and fungi (F. oxysporum, F. solani) also accumulate and 

penetrate at lateral root emergence sites (Czymmek et al., 2007; Digonnet et al., 2012; 

Perrine-Walker et al., 2007; Zhou et al., 2020). Indeed, the formation of the primordia, going 

through the endodermis and outer layers, causes the Casparian strip to be temporarily 

degraded and the suberin deposition to be remodelled (Ursache et al., 2020; Vermeer et al., 

2014). 

The many inhabitants of the rhizosphere and endosphere have as diverse 

colonization mechanisms as life strategies. Whether the spatial composition of the root 

community is controlled by plant defence responses is so far unknown. Although root 

structural barriers have always been considered important to protect the root, no clear data 

supports a role against pathogens or other members of the microbiota. Moreover, their 

effect might strongly variate from one microbe to another. However, roots can also induce 

immune responses. 

1.7.3. MAMP-TRIGGERED IMMUNITY ALSO OCCURS IN THE ROOT 

In contrast to root symbiosis, little is known about the root-specific molecular 

processes activated in response to pathogens or commensals. Analyses using classical or 

confocal microscopy permitted to decipher the mode of entry and the propagation of some 

pathogens in great details. However, these descriptive investigations did not focus on the 

actual activation of defences (see review De Coninck et al., 2015).  

Nevertheless, the study of various patho-systems could report that hormonal 

pathways usually involved in shoots were also induced in the root by soil microbes 

(Chuberre et al., 2018; De Coninck et al., 2015). Despite this similarity, the activation of 

Arabidopsis genes known to be triggered by defence pathways (later called “reporter” or 

“marker” genes) was somewhat different between root and shoot (Badri et al., 2009). These 

discrepancies were also observed for other Brassica species (Papadopoulou et al., 2018; 

Tytgat et al., 2013). The usual antagonism between the salicylic acid and the jasmonic 
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acid/ethylene pathway was not always conserved: indeed, Phytophthora parasitica 

surprisingly induces both SA and JA/ET pathways during its necrotrophic phase, while in 

leaves, necrotrophy is generally admitted to activate only the JA/ET pathway (Attard et al., 

2010). In addition, single cell ablation of root epidermis can induce ethylene but not JA, the 

classical hallmark of wounding response in leaves (Marhavý et al., 2019). 

It is only recently that some studies shed light on MTI signalling in roots. Like in 

leaves, MAMPs, DAMPs and root knot nematodes elicitors induce ROS burst, calcium 

influxes, phosphorylation of AtMAPK3 and 6, activation of marker genes and camalexin 

production (Jacobs et al., 2011; Jing et al., 2020; Millet et al., 2010; Ranf et al., 2011; Teixeira 

et al., 2016; Wyrsch et al., 2015). Flagellin-induced callose deposition was also dependent 

on ethylene, yet independent of salicylic acid (Millet et al., 2010). Among the strongest genes 

induced by MAMPs and DAMPs can be found FRK1 (FLG22-INDUCED RECEPTOR-LIKE 

KINASE 1), PER5 (PEROXIDASE 5) , MYB51, WRKY11 or CYP71A12 (Beck et al., 2014; Jacobs 

et al., 2011; Marhavý et al., 2019; Millet et al., 2010; Poncini et al., 2017; Yu et al., 2019a; 

Zhou et al., 2020). Moreover, flg22 causes the release of DNA-containing extracellular traps 

by pea root border cells, that can immobilize R. solanacearum pathogens (Hawes et al., 2011; 

Tran et al., 2016). In response to flg22 and PGN, root border cells of Arabidopsis and flax 

also produce ROS, callose deposition and induction of defence genes (Plancot et al., 2013). 

Interestingly, each MAMP induces its specific spatial pattern of defence. The 

development of new transcriptional read-outs of immunity, based on GUS staining or 

fluorochrome tags, offers today a first glimpse at the delicate cartography of defence (Millet 

et al., 2010; Poncini et al., 2017). As such, AtPep1 induces stronger Ca2+ and immune 

transcriptional read-out responses in the root than in the shoot (Poncini et al., 2017; Ranf 

et al., 2011). Similarly, chitin generates callose depositions all along the root (Millet et al., 

2010). On the other hand, flagellin- and peptidoglycan-triggered gene activation and callose 

formation are restricted to the elongation zone and lateral root primordia. Yet, Jacobs et al. 

(2011) observed flg22-elicited callose deposition on the whole root. Flg22- and elf18-

induced calcium waves are also severely reduced in the root in comparison to leaves (Ranf 

et al., 2011). Consistently, elf18 has no effect on defence reporters or callose deposition in 

the root (Millet et al., 2010). Altogether, these data indicate that root defence responses are 

either abolished (elf18) or strongly downregulated (flg22 and PGN) for bacterial elicitors. 
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The responses to flagellin are particularly interesting since they are locally confined to sites 

particularly attractive for bacteria like the root tip or the lateral root primordia (Millet et 

al., 2010). 

One might ask how defences can be reduced or enclosed to such a restricted area. 

Ranf et al. (2011) suggested the involvement of PRRs, because the predicted expression 

levels for FLS2 and EFR were extremely low in roots compared to shoot. By contrast, PEPR1 

and PEPR2 are strongly expressed in the whole root or in the stele, respectively (Bartels et 

al., 2013). Accordingly, Beck et al. (2014) showed that FLS2 accumulates in wounded spots 

and stomata on leaves and was restricted to the stele and lateral primordia in roots. 

However, FLS2 expression was excluded from the elongation zone and was surprisingly not 

coinciding with flg22-inducible defences. To assess the role of FLS2 expression pattern in 

the confinement of immune responses, Wyrsch et al. (2015) expressed FLS2 in specific root 

tissues. They observed that MTI responses were maintained independently of the cell-type 

expressing FLS2. Moreover, the strength of the response was not proportional to the amount 

of FLS2 proteins expressed. Despite the lack of resolution of their analysis, they proposed 

that flg22-mediated immune responses were cell-autonomous, and that flg22-

responsiveness was not constant across tissues. 

Overall, even if the core machinery of MAMP-triggered immunity is conserved 

between shoot and roots, substantial differences have been described, notably concerning 

the precise localisation of immune responses. Such a delicate spatial control of immune 

response might prove to be central to balance growth and defence. 
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1.8. SCOPE OF THE PHD THESIS  

Despite decades of research on the interaction between plants and pathogens, very 

little interest was given, until recently, to the activation of MAMP-triggered immune 

responses in the roots. However, the rapid development of microbiome analyses is now 

putting into light the complex community living in the rhizosphere. Understanding how 

plants accommodate so many different microorganisms while keeping immune responses 

under control is now at the heart of the plant-pathogen field. In that context, regulation of 

PRRs is thought to play a key role to regulate the activation of defences and to define the 

structure of the root microbiota. Despite the local component of MTI, immune responses 

were rarely assessed with cellular resolution. The main goal of this thesis project was to 

precisely map MTI responses and to investigate the biological significance of spatial 

regulation of immunity in the roots. 

Root were shown to restrict most of their bacterial MAMP-triggered immune 

responses in the elongation zone. However, it was not understood how plants regulate the 

localization of their defence. In Chapter 2, we investigate, in collaboration with Dr. Feng 

Zhou, how root damages can gate plant immune responses in otherwise unresponsive root 

zones. This chapter is a published article in Cell extended with complementary information 

and experiments. 

Although MTI is generally considered as an intrinsic feature of all plant cells, there 

is now increasing evidence suggesting that not all root tissues respond equivalently. 

However, tissue competency and its impact on growth was never assessed with a cellular 

resolution. In Chapter 3, I combined tissue-specific expression of the FLS2 receptor with 

cell type-specific markers of defence to map flg22-responsiveness throughout the root. This 

allowed me to identify lines that are super-competent to flg22 perception with severe 

effects on root growth. The chapter is a manuscript posted on BioRxiv, now under review in 

Current Biology. 

In Chapter 4, I investigated how plants with misbalanced growth-defence trade-

off are impacted by their microbiome and how, in turn, they influence the structure of the 

rhizosphere community. 

42



 

Commensal bacteria can also modulate MTI responses to avoid activation of 

defences. In Chapter 5, I used our previously identified super-competent line to screen a 

collection of Pseudomonas protegens CHA0 mutants to identify possible mechanisms of MTI 

suppression. 

MAMP and DAMP-triggered immunity can mutually amplify their responses, using 

the ethylene signalling cascade as an intermediary. However, this dependency to ethylene 

was not yet shown in roots. The Chapter 6 explores the link between AtPep1, flg22 and 

ethylene signalling. 

Lignin deposition is a characteristic component of pathogen defence but was 

rarely used as a direct output of MTI. In Chapter 7, I described the similarity between flg22-

inducible lignin deposition and compensatory lignin induced in response to the loss of 

Casparian strip integrity. This chapter presents data obtained in collaboration with Dr. Yan 

Ma. 

Chapter 8 contains concluding remarks integrating results from all chapters and 

provides perspectives for future studies. 
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2 CO-INCIDENCE OF DAMAGE AND MICROBIAL 

PATTERNS CONTROLS LOCALIZED IMMUNE 

RESPONSES IN ROOTS 
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2.1. RATIONAL OF THE STUDY 

As we uncover the rich diversity of the soil microbiome, we start to understand 

that the interactions occurring in the rhizosphere are extremely complex. How plants can 

deal with such a variety of partners is one of the key questions largely remaining 

unanswered. It is fascinating to realize that plants can at the same time defend against 

pathogens but still accommodate a rich microbiota. Latest advances in the study of root 

innate immunity showed that plants confine their defence responses in the elongating zone 

of the root and keep their differentiated zone silent (Millet et al., 2010; Poncini et al., 2017). 

This is thought to avoid the overactivation of their innate immune system. However, the 

exact mechanism and the biological relevance of this regulation is so far unknown.  

An understanding of the interaction occurring in the rhizosphere will indeed 

requires a change of scale in our methodology, so that we can no longer average immune 

responses at the whole organ level. New tools such as fluorescent cellular markers of 

defence or single-cell ablation techniques are now available to bring back the spatial 

dimension of immunity. They already proved useful to characterize the non-systemic, 

regional responses to single-cell damage (Hander et al., 2019; Marhavý et al., 2019) and to 

map defences on the root with a true cellular resolution (Poncini et al., 2017). Moreover, 

these studies revealed that damage responses are remarkably important in roots (Marhavý 

et al., 2019; Poncini et al., 2017).  

The following article provides a first explanation for the confinement of defences 

at the elongation zone. It describes how plants use damages to elegantly gate the induction 

of responses in mature part of the root, protecting tissues against deleterious bacteria but 

limiting immune responses to harmless microbes. 

  

62



 

2.2. CONTRIBUTIONS 

In this chapter, the main results were obtained by Feng Zhou, who carried out all 

published experiments and participate in the writing of the manuscript with Niko Geldner. 

As second author, I provided the first description of UBQ10::FLS2-GFP fls2 coupled 

to PER5::NLS-3mVenus (described in details in Chapter 3). I also crossed ein2-1 and etr1-1 

mutants with reporters of MTI (PER5/MYB51/WRKY11) and FLS2 expression or protein 

fusion. I additionally generated the FLS2::NLS-tdTomato construct for co-localisation of 

FLS2 and MAMP reporters and FLS2long::FLS2-3myc-mVenus-3’UTR in fls2 background for 

complementation experiments. I also replicated experiments in parallel to F. Zhou, or 

carried out exploratory work to assess the implication of ethylene in damage-induced FLS2 

expression, to test flg22 and Atpep1 diffusion in the root and to characterize lateral-root 

dependent MAMP-responsiveness (see Appendices). Finally, I participated in discussion 

and proof-read the manuscript. 

Valérie Dénervaud Tendon generated transcriptional read-out of immunity: 

PER5/MYB51/WRKY11::NLS-mVenus. 

Dousheng Wu was involved in experimental work with Ralstonia solanacearum. 

Peter Marhavy and Thomas Lahaye revised the manuscript and were involved in 

discussion of project. 

2.3. ORIGINAL ARTICLE 

63



Article

Co-incidence of Damage and Microbial Patterns

Controls Localized Immune Responses in Roots
Graphical Abstract
Highlights
d Arabidopsis roots request cell damage to mount a strong,

localized immune response

d Damaged cells upregulate pattern-recognition receptor

expression in their neighbors

d Endodermal barriers compartmentalize immune responses

in differentiated cell-types

d Damage-gating can minimize immune responses against
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SUMMARY

Recognition of microbe-associated molecular pat-
terns (MAMPs) is crucial for the plant’s immune
response. How this sophisticated perception system
can be usefully deployed in roots, continuously
exposed to microbes, remains a mystery. By
analyzing MAMP receptor expression and response
at cellular resolution in Arabidopsis, we observed
that differentiated outer cell layers show low expres-
sion of pattern-recognition receptors (PRRs) and
lack MAMP responsiveness. Yet, these cells can be
gated to become responsive by neighbor cell dam-
age. Laser ablation of small cell clusters strongly
upregulates PRR expression in their vicinity, and
elevated receptor expression is sufficient to induce
responsiveness in non-responsive cells. Finally,
localized damage also leads to immune responses
to otherwise non-immunogenic, beneficial bacteria.
Damage-gating is overridden by receptor overex-
pression, which antagonizes colonization. Our find-
ings that cellular damage can ‘‘switch on’’ local
immune responses helps to conceptualize how
MAMP perception can be used despite the presence
of microbial patterns in the soil.
INTRODUCTION

A number of defined molecular patterns and corresponding

receptors have been identified and shown to elicit a

conserved set of molecular responses (Macho and Zipfel,

2014). However, identical microbial patterns from symbiotic

or commensal microbes should be equally perceived (Pel

and Pieterse, 2013). This is especially apparent in the

microbe-rich soil environment of roots, whose outer cell layers

do not possess protective barriers comparable to leaves.

Recent breakthroughs in root microbiome research have

heightened the interest in understanding how constitutive acti-

vation of PRRs by non-pathogenic microbes is avoided, while
440 Cell 180, 440–453, February 6, 2020 ª 2020 The Author(s). Publi
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maintaining their effectiveness in defense (Castrillo et al.,

2017; Finkel et al., 2017; Garrido-Oter et al., 2018; Yu et al.,

2019). The molecular outlines of microbe-associated molecu-

lar pattern (MAMP) perception were characterized in systems

allowing for quantitative, time-resolved measurements of early

responses (Felix et al., 1999). In Arabidopsis (Chinchilla et al.,

2006; Gómez-Gómez et al., 1999), leaf-disk reactive oxygen

species (ROS) assays, phosphorylated mitogen-activated

protein kinase (MAPK) blots, quantitative PCR (qPCR), or

genome-wide transcription profiling became popular tools

(Zipfel et al., 2004, 2006). Although such assays establish

the molecular components of PRR signal transduction, they

do not allow for a meaningful degree of spatial resolution,

because they average cellular responses across entire organs.

Actual, initial pathogen/microbe contacts, however, are local-

ized to a few cells and cell types and this highly relevant

spatial dimension of responses has remained largely unre-

solved. When studied, significant differences between sin-

gle-cell and whole seedling responses were observed (Thor

and Peiter, 2014). Roots mount an autonomous MAMP

response (Poncini et al., 2017; Wyrsch et al., 2015) and

b-glucuronidase (GUS) reporters, or callose deposition, re-

vealed a restricted response to high concentrations of the

bacterial MAMP, flg22, mainly in the root cap and root transi-

tion/elongation zone (Jacobs et al., 2011; Millet et al., 2010).

GUS reporter assays are destructive, however, and remain

below single-cell or tissue resolution. Moreover, the causes

of this spatially restricted MAMP response have remained

obscure, as well as its potential biological relevance.

In order to address these questions, we combined new

and recently published fluorescent marker lines, based on a

triple mVENUS fused to a nuclear localization signal (NLS-

3xmVENUS) (Poncini et al., 2017; Vermeer et al., 2014). This

allows for analysis of MAMP responses in vivo and at true cellular

resolution. These highly sensitive markers were selected for

good expression and stable responses, across transgenic lines

and in successive generations. The promoters selected were

based on well-established and widely used MAMP responsive

genes. PER5 (PEROXIDASE 5) was chosen from public

databases as a strong and early MAMP-induced gene that is

highly induced in roots (Hruz et al., 2008; Wyrsch et al.,

2015); WRKY11 (WRKY DNA-BINDING PROTEIN 11) is a
shed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Flg22-Induced MAMP Responses Are Spatially Confined in Arabidopsis Roots

(A) Schematic of a 6-day-oldArabidopsis root showing the different developmental zones. Three different zoneswere imaged:meristematic zone (MZ), elongation

zone (EZ), and differentiation zone (DZ). TZ indicates the transition zone.

(B) The expression pattern of one representative MAMP promoter marker lines (pFRK1) in response to 1 mM flg22 treatment for 6 h. Images correspond to the

zones indicated in (A). Images in the differentiated zone were always taken at a distance of 25 endodermal cells after onset of cell elongation. In each treatment,

single confocal section (single image, left) and maximal projections of z stacks (max z, right) are presented; median longitudinal and transverse (xz) section views

are shown on the top and bottom, respectively. Nuclear-localized mVENUS signals (green) are co-visualized with propidium iodide (PI, red). Scale bar, 50 mm.

(C) Quantitative analysis of mVENUS signal intensities of the fourMAMPmarkers in the absence (�) or presence (+) of flg22. RID, raw intensity density. RID of total

fluorescent signals in a single image is the sum of the RID of each nuclear signal in the imaged aera. RID of fluorescent signal of per nucleus = the size of the

mVENUS signal area of a nucleus (number of pixels)3 the average fluorescent intensity of the pixels for the nucleus. Boxplot centers showmedian (n = 12 roots).

Asterisks (***p < 0.001) indicate statistically significant differences between means by ANOVA and Tukey’s test analysis. ns, not significant.

(D) MAMP responsiveness during lateral root primordium (LRP) formation. Images of stage IV lateral root in 8-day-old seedlings of double marker lines, high-

lighting plasmamembrane of all root cells through pUBQ10::RCI2A-tdTomato expression (red) in addition to theMAMP responses (green). Maximum projections

of longitudinal (left panel) and transverse sections (right panel) are shown. In transverse sections, a single red-channel image was overlaid with the green-channel

maximum projection in order to obtain a clear plasmamembrane outline. Arrows indicate cell nuclei with MAMPmarker responses. The shape of emerged LRP is

indicated by dotted circle in the orthogonal view, and site of emergence is indicated by a blue arrowhead in longitudinal maximum projections. Scale bar, 50 mm.

(E) Spontaneous, non-induced cell death (asterisks) causes flg22 responsiveness (arrows) in neighboring cortical cell layer. Damaged epidermal cells are

highlighted by PI staining. Scale bar, 50 mm.

(legend continued on next page)
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representative of the WRKY transcription factor family, shown

to mediate MAMP signaling and to be early-response genes

themselves (Asai et al., 2002; Navarro et al., 2004). MYB51

(MYB DOMAIN PROTEIN 51) was shown to be transcriptionally

regulated by MAMPs and to control production of major Arabi-

dopsis defense metabolites (Clay et al., 2009; Gigolashvili

et al., 2007). We also generated FRK1 (FLG22-INDUCED

RECEPTOR-LIKE KINASE 1), a receptor-like protein of unknown

function shown to be a strong and early MAMP-induced tran-

script (Asai et al., 2002; Boudsocq et al., 2010).

RESULTS

flg22-Induced MAMP Responses Are Spatially
Restricted in Arabidopsis Roots
Among the four MAMP markers generated, we found that PER5

and FRK1, especially, displayed very low background before,

and good induction upon, stimulation (Figures 1A–1C and S1A)

(Poncini et al., 2017). For precise assignment of signals to spe-

cific cells and cell types, we generated double marker lines

with a constitutively expressed, plasma membrane-targeted

red fluorescent protein (Figure 1D). Alternatively, counterstaining

with the red fluorescent cell wall stain propidium iodide (PI)

was done.

Using thesemarkers, we confirmed thatMAMP-responses are

confined to the root cap, transition/elongation zone, with an

absent, or orders-of-magnitudes weaker, response in differenti-

ated root parts, even at high doses of flg22 (1 mM) (Figures 1A–1C

and S1A) (Millet et al., 2010). flg22, a peptide fragment of bacte-

rial flagellin and a well-established elicitor in plants, was used as

a prototypical MAMP (Felix et al., 1999). Lack of responses in

differentiated roots is not due to a problemwith peptide penetra-

tion, because the active, fluorescently labeled flg22 (TAMRA-

flg22) fully penetrated the root until the endodermal diffusion

barrier (Figures S1B and S1C). Thus, the absence of responses

in the endodermis, cortex, and epidermis are not due to a block

in MAMP penetration, while absence in the differentiated stele

might be due to the endodermal diffusion barrier. The spatially

restricted responses we observe are not observed only for

flg22, because other MAMPs, such as nlp20 or a medium-chain

3-hydroxy fatty acid (3-OH-C10:0) (Böhm et al., 2014; Kutschera

et al., 2019), display very similar response patterns (Figure S1D).

elf18, another well-characterized bacterial MAMP (Kunze et al.,

2004), showed very little response in roots overall, while the

fungal chitin was the only MAMP that elicited some direct

response in the differentiated zone.

Our high-resolution mapping of MAMP/flg22 responses re-

vealed intriguing, spatially confined exceptions to the attenuated

MAMP responses in differentiated roots. The first exception are

emerging lateral roots, where adjacent cortical cells—that have

become pushed, separated, possibly damaged, by the emerging

primordium—consistently showed a strong response to MAMP

treatment (Figures 1D, 1F, S1E, and S1F). The second exception
(F and G) Quantification of FRK1 and PER5 response to different developmental st

in different backgrounds (G) with or without flg22 application. Boxplot centers sh

(p < 0.001) indicate statistically significant differences between means by ANOV

See also Figure S1.
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we observed was a flg22 responsiveness in cells whose immedi-

ate neighbor had undergone sporadic cell death (Figures 1E,

1G, and S1G). Thus, differentiated roots have the capacity to

respond to MAMPs and this responsiveness can be induced in

a highly localized manner.

Laser-Induced Cell Ablation Causes Localized MAMP
Responsiveness in Roots
The intriguing spatial association of MAMP responsiveness and

neighbor-cell-death prompted us to induce reproducible and

precisecellulardamageandobserve itseffectonflg22responsive-

ness. By ablating small clusters of distinct root cell types with a

pulsed infrared laser, we observed a strong enhancement of

flg22 responsiveness in immediately neighboring cell layers only

(Figures 2A, 2B, S2A, and S2B). Importantly, ablation on its own

led to no, or very little, induction of MAMP marker genes (Figures

2A, 2B, S2A, and S2B), showing that cellular damage per se is

insufficient to induce a robust MAMP response. Already single-

cell ablations induced flg22 responsiveness, but the effects

became gradually more pronounced when more cells were abla-

ted (Figures S2C and S2D), prompting us to use ablation of three

or four cells as our standard. Time-lapse analysis showed that

the earliest observable responses occurred at 4 h after flg22 treat-

ment (Figure S3), leading us to use 6 h for most treatments. Intro-

gression of our marker lines into an fls2 mutant demonstrated a

full dependency of the responses on a functional FLS2 receptor

(Figures S2E and S2F). Interestingly, we observed directionality

to damage induction, with inward-lying tissue layers generally re-

sponding the strongest. Cells of the stele responded strongly to

flg22 upon epidermis, cortex, and endodermis ablation, while

ablation of an epidermal cell did not cause flg22-responsiveness

in epidermal neighbors (Figures 2A, 2B, S2A, and S2B). To explain

the lack of responses in epidermal neighbors, one could postulate

thatmechanical stimulation is required for induction.Suddenpres-

sure differences would only occur in cortex, but not in epidermal

cells upon ablation, because epidermal cells do not experience

counter-pressure from overlying cells. Another possibility might

be that a collapse of plasmodesmatal integrity is perceived, and

there are differences in quality and degree of plasmodesmatal

connections between cortical and epidermal neighbors.

In the differentiated zone, absence of MAMP responsiveness

without damage—even at high levels of flg22 (1 mM)—makes

observation of the enhancement of MAMP responsiveness

upon damage very obvious, leading to an essentially switch-

like, qualitative change. Many commensal and root-pathogenic

bacteria, however, preferentially colonize the root transition/

elongation zone, which displays a direct response to high-doses

of flg22, not requiring damage. Yet, when we used 100 nM of

flg22, we saw only weak induction of MAMP responses in this

zone (Figures 2C and 2D). In this situation of suboptimal stimula-

tion, epidermal cell damage strongly enhanced response to flg22

in cortical cells, similar to the differentiation zone. Thus, although

most easily observed in differentiated roots, damage-induced
ages of lateral root emergence (F) and to non-induced (spontaneous) cell death

ow median (n = 10 roots). Different letters in (F) (p < 0.05) and asterisks in (G)

A and Tukey’s test analysis. ns, not significant.
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Figure 2. Restricted Cell Damage Causes

Localized MAMP Responsiveness in Roots

(A) In differentiated roots, laser ablation of different

cell types induces localized FRK1 response only in

the presence of flg22 (+flg22, 1 mM, 6 h), but not on

its own (�flg22). Nuclear-localized signals of FRK1

reporter (green), co-visualized with the plasma

membrane marker (see Figure 1D) (red). Images

were taken at 25 endodermal cells after onset of

cell elongation. Maximal projections of longitudi-

nal and transverse sections are shown in left

and right panels, respectively. White asterisks

indicate laser-ablated cells. Arrows indicate FRK1

responsive nuclei. RID, see legend Figure 1C.

Scale bar, 50 mm.

(B) Quantification of experiments shown in (A).

Column scatterplot of the number of FRK1

responsive cells in different cell types after laser

ablation in the absence (green) or presence (red) of

flg22. Each circle represents an individual laser

ablation of one root (n = 12 roots). Graph depicts

mean values and SD (error bars). Asterisks (p <

0.001) indicate statistically significant differences

between means by ANOVA and Tukey’s test

analysis. ns, not significant. Ep, epidermis;

Co, cortex; En, endodermis; St, stele.

(C) Damage of epidermal cells induces strong and

localized FRK1 and PER5 response only in the

presence of ‘‘suboptimal’’ (low) levels of flg22

(+flg22, 100 nM, 6 h), but not on its own (�flg22).

Nuclear-localized signals of FRK1 and PER5 re-

porter (green) visualized alone (bottom panels,

�PI) or co-visualized with PI staining (upper

panels, +PI). White asterisks indicate laser-abla-

ted cells. Arrows in white and blue indicate MAMP

responsive nuclei by laser ablation and direct low

level flg22 (100 nM) treatment in cortical and

epidermal cells, respectively. Laser ablation and

confocal images were taken at two or three cells

just after onset of cell elongation. Scale bar,

50 mm.

(D) RID quantification of experiments shown in (C).

Boxplot centers show median (n = 12 roots). RID,

raw intensity density. Different letters indicate

statistically significant differences (p < 0.001)

between means by ANOVA and Tukey’s test

analysis.

See also Figures S2, S3, and S5.
enhancement of MAMP responsiveness might be a wide-

spread, possibly general, phenomenon in roots.

Presence of DAMPs Alone Are Not Sufficient to Induce
MAMP Responses
How cellular damage is perceived by neighboring cells is not well

understood, but one important element is thought to be the

release of damage-associated molecular patterns (DAMPs),

which can be abundant, but largely cytosolic molecules such

as adenosine triphosphate (ATP), or small peptides, such as
68
AtPEP1 (Roux and Steinebrunner, 2007;

Toyota et al., 2018; Hander et al., 2019).

In plants, cell wall-breakdown products,
such as oligogalacturonides (OGs) and cellobiose are addition-

ally acting as DAMPs (Boller and Felix, 2009; Lotze et al., 2007;

Souza et al., 2017). Interestingly, evenwhen applied systemically

at high concentrations, either individually or as a cocktail,

DAMPs alone were not able to induce the strong and consistent

flg22 responsiveness that we observe upon actual cellular dam-

age (Figures 3A and 3B). AtPEP1 treatment alone caused some

slight induction of FRK1—but not PER5 responsiveness—in

the stele, but could not induce any MAMP responsiveness in

differentiated outer cell layers. This suggests that perception
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A B Figure 3. Presence of DAMPs Alone Are Not

Sufficient to Induce MAMP Responses

(A and B) Representative pictures of the expres-

sion pattern of FRK1 (A) and PER5 (B) markers in

elongation zone (EZ) and differentiation zone (DZ)

treated with a combination of flg22 and four types

of DAMPs. Six-day-old roots were treated with

each DAMP alone or combined with flg22 for 6 h.

DAMPs cocktail is a mixture of all four tested

DAMPs. The chemicals were used for treatment at

the following concentrations: 1 mM flg22; 1 mM

AtPEP1; 100 mM eATP; 100 mM cellobiose;

50 mg/mL OGs. Nuclear-localized mVENUS sig-

nals (green) co-visualized with PI counterstaining

(red). Maximal projections of mVENUS signals and

image overlaid in transverse sections done as

described previously. Note that AtPEP1 leads a

relatively weak FRK1 response only in some

differentiated stelar cells, which is not the case for

PER5 marker, rather than in cortical or endo-

dermal cells that we observed upon actual cellular

damage and that DAMPs cocktail, but not single

DAMP, is able to activate a weak PER5 respon-

siveness in the elongation zone. Scale bar, 50 mm.
of neighbor cell damage is more complex than a simple

presence of DAMPs, relying on additional cues, possibly ion

and osmolyte release or mechanical stress, caused by cellular

disintegration.

MAMP Receptor Expression Is Induced by Cell Ablation
and Is Sufficient to Induce Responsiveness
We found that expressing the MAMP receptor FLS2 under a

constitutive UBIQUITIN 10 promoter (pUBQ10) was sufficient to

install responsiveness to flg22 in differentiated outer root cell

layers (Figure 4A). This indicates that FLS2 itself is the only

component restricting the ability of differentiated root cells to

respond to flg22, implying that all other necessary downstream

components (such as BRI1-associated kinase [BAK1], Botrytis-

induced kinase [BIK1], MAPKs, WRKYs, etc.) are present. This

fits with earlier observations of MAMP receptor mis-expression

in other organs or species (Lacombe et al., 2010; Wyrsch et al.,

2015). Consequently, wewanted to alsomonitor FLS2 expression

at single-cell resolution after damage. The currently used FLS2

promoter complements fls2 (Zipfel et al., 2004) and roughly

matches the spatial patterns of MAMP responses (our work and

[Beck et al., [2014]). However, the promoter is of small size (less

than 1,000 bp), shows important line-to-line variability and in

some cases does not match with MAMP responses (Beck et al.,

2014). We therefore additionally generated a longer promoter

line (pFLS2long) (Figure S4A), which showed less variability and

an average pattern that is largely consistent with the described

flg22-induced MAMP responses (Figure S4D), i.e., responses

adjacent to emerging lateral roots or enhancement of responses

to ethylene (Figures S4E and S4F). FLS2 expression from this

longer promoter fragment also complemented the absence of

flg22 responses in fls2 background (Figures S4B and S4C).

In contrast to the MAMP response markers, we found that

FLS2 is transcriptionally activated upon wounding alone, both

in differentiation and elongation zone of the root (Figures 4B–
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4D, 4F, and 4G), readily explaining how cells can become

responsive uponwounding. Indeed, the timing and spatial extent

of FLS2 upregulation matched the observed pattern of MAMP

responsiveness (compare Figures 4B–4D and 4F with Figures

2A–2D and S3, respectively). We confirmed that, although less

easily quantifiable, a local upregulation of FLS2 protein could

also be observed using pFLS2::FLS2-GFP reporter line (Fig-

ure 4E). To fully correlate local FLS2 activation upon damage

with MAMP responsiveness, we generated double marker lines

of pFLS2::NLS-tdTomato and mVENUS MAMP reporters and

found that the near-totality of neighboring MAMP responsive

cells were also positive for FLS2 expression when treated with

flg22 upon ablation (Figures 4H, 4I, S4G, and S4H). Previously,

pFLS2::GUS reporter lines showed signal in regions around

large-scale wound sites, but relevance for MAMP signaling

was not established at the time (Beck et al., 2014). Our co-visu-

alization of receptor expression and MAMP responses now

additionally reveals that transcriptional MAMP responses can

be strictly cell autonomous, allowing for a very fine-grained acti-

vation of immunity. This degree of spatial specificity is surprising,

considering that flg22 stimulation was shown to induceROS pro-

duction, depolarization, and even propagating calcium waves,

all of which have the potential to induce non-cell autonomous

responses (Jeworutzki et al., 2010; Keinath et al., 2015).

Induction of MAMP Responsiveness by Damage Does
Not Require Ethylene Signaling
FLS2 expression is also known to strongly depend on ethylene

(Boutrot et al., 2010; Mersmann et al., 2010) and recent work

from our group demonstrated that single cell ablation causes

regional induction of ethylene production (Marhavý et al.,

2019). Although the spatial patterns of ethylene production re-

porters upon ablation (extending over many cellular distances,

mainly in the stele, no induction of immediate neighbors) did

not match the observed FLS2 induction pattern (Marhavý
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Figure 4. Localized FLS2 Expression Induced by Neighbor Cell Death

(A) Expression of FRK1 and PER5marker (green) with or without flg22 treatment (1 mM, 6 h) in differentiated zone (DZ) of a pUBQ10::FLS2 transgenic background.

Marker line was counterstained with PI (red). Arrows indicate MAMP responsive nuclei. Scale bar, 50 mm.

(B) Laser ablation of different cell types (without flg22 treatment) induces localized FLS2 expression in 6-day-old differentiated roots. Nuclear-localized mVENUS

signals of FLS2 promoter marker (green) co-visualized with plasma membrane marker (red). Images overlaid was done as described before and pictures were

taken at 25 endodermal cells after onset of cell elongation. Asterisks highlight laser-ablated cells and arrows indicate FLS2-positive nuclei. Scale bar, 50 mm.

(C) Quantification of the number of FLS2-positive cells in different cell types shown in (B). Column scatterplot of the number of FRK1 responsive cells after laser

ablation in the absence (green) or presence (red) of flg22. Each circle represents an individual laser ablation of one root (n = 12 roots). Graph depicts mean values

and SD (error bars). Asterisks (p < 0.001) indicate statistically significant differences between means by ANOVA and Tukey’s test analysis. ns, not significant.

Ep, epidermis; Co, cortex; En, endodermis; St, stele.

(D) Real-time monitored FLS2 induction after laser ablation of differentiated epidermal cells with or without flg22 application in orthogonal view. Asterisks and

arrows highlight laser-ablated cells and FLS2-positive nuclei, respectively. Scale bar, 50 mm.

(E) Maximal projections of orthogonal view of accumulation of FLS2-fused protein (FLS2-GFP) by ablation of epidermal cells. Yellow arrows highlight upregulated

FLS2-GFP fluorescence (fire LUT of ImageJ software) in neighboring cortical cells. White asterisks indicate damaged cell by laser ablation. Scale bar, 50 mm.

(F andG) Cell damage activates localized FLS2 expression level in the undifferentiated zone. In (F), nuclear-localized signals of FLS2 (green) co-visualized with the

PI staining (red), and white arrows highlighted positive nuclei neighboring damaged epidermal cells. Boxplot centers in (G) show median (n = 12 roots). RID, raw

intensity density, see legend Figure 1C. Asterisks letters indicate statistically significant differences (***p < 0.001) between means by ANOVA and Tukey’s test

analysis. ns, not significant. EZ, elongation zone; Ep, epidermis; Co, cortex. Scale bar, 50 mm.

(H) FLS2 expression was co-visualized with FRK1 expression in cortical cells after laser ablation of adjacent epidermal cells. FLS2 promoter-driven nuclear

tdTomato signal (red) and nuclear MAMP reporter signal (green) are co-localizing (yellow) in the presence of flg22 application for 6 h. Arrows indicate MAMP

responsive or/and FLS2-positive nuclei. Scale bar, 50 mm.

(I) Venn diagrams showing the number of co-localized cells in cortex (yellow) of FLS2-positive (red) and MAMP-responsive cells (green) caused by laser-ablation

of epidermal cells. The total cell number for each marker was added from 10 independent ablation events. The size of each circle reflects relative cell numbers.

See also Figures S4 and S5.
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et al., 2019), we nonetheless tested whether FLS2 upregulation

after damage depended on ethylene.

By combining FLS2 reporter and MAMP markers in strong

ethylene-insensitive mutants, ein2-1 and etr1-1, we could

observe a very strong dependency of MAMP responses on

ethylene signaling in the elongation zone (Figures S5A and

S5B), consistent with a previous study (Millet et al., 2010).

However, both sporadic and laser-induced cell damage were

still able to induce MAMP responsiveness, independently of

ethylene signaling (Figures S5A and S5B). This also applies to

lateral root emergence, where cortical cells showed upregulation

of FLS2 expression independently of ethylene signaling (Fig-

ure S5C). Treating wild-type MAMP marker lines with ethylene

biosynthesis inhibitor corroborated these results (Figure S5D).

Consequently, induction of FLS2 expression itself upon damage

was also found to be fully independent on ethylene signaling,

although the basal expression levels in the untreated controls

were strongly reduced (Figures S5E and S5F). These findings

now provide a rationale for earlier observations noting that

impaired flg22 signaling in ethylene mutants is not observed in

assays involving dissected (wounded) tissues (Mersmann

et al., 2010). Importantly, we establish an abiotic stress input

into immune signaling that appears to work fully independently

of the important stress hormone ethylene.

Casparian Strips Compartmentalize flg22 Responses in
Differentiated Roots
In light of the comparatively high expression of FLS2 in the stele of

differentiated roots, we tested whether a mutant defective in Cas-

parian strips, the extracellular diffusion barrier in roots (Geldner,

2013), would display flg22 responsiveness, because of penetra-

tion of flg22 into the stele. Indeed, fluorescently labeled flg22 is

blocked by the Casparian strip and penetrates into the stele in

the barrier mutant (schengen3-3 [sgn3-3]) (Figure S1F). Yet, to

our surprise, no flg22 response was observed in the stele of a

sgn3mutant with endogenous FLS2 expression (Figure 5A). How-

ever, when a constitutively expressing pUBQ10::FLS2 line was

used, a strong flg22 response could be observed in the stele of

the endodermal barrier mutant, but not of wild-type (Figures 5B

and 5C). This result illustrates the ability of the Casparian strip to

compartmentalize perception of immune peptides within the

root. Interestingly, however, the wild-type, steady-state levels of

FLS2 expression that we observe in the stele are apparently insuf-

ficient to cause MAMP-responsiveness, while enhanced receptor

expression fromtheUBQ10promoter issufficient to install respon-

siveness. This suggests a thresholded relationship between FLS2

expression and flg22-dependent transcriptional output.

Suberin Lamellae Interfere with flg22 Perception in the
Endodermis
While the Casparian strip functions to block extracellular diffu-

sion of substances (e.g., microbial patterns) into the stele, a

second cell wall modification—endodermal suberin lamellae—

eventually surrounds the entire endodermis and is thought to

inhibit uptake of molecules into the endodermis, because the hy-

drophobic suberin layer does not allow molecules from the cell

wall to reach the endodermal plasma membrane (Figures 5C

and 5D) (Barberon et al., 2016). We therefore wanted to see
446 Cell 180, 440–453, February 6, 2020
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whether suberization interferes with the ability of endodermal

cells to perceive flg22. Indeed, we found that early differentiated

endodermis (25 cells after onset of elongation, non-suberized)

still respond to flg22 in a pUBQ10::FLS2 line, while they are un-

responsive in older endodermal cells (55 cells after onset of elon-

gation, suberized) (Figures 5C and 5E). We confirmed absence

and presence of suberin at 25 and 55 cells, respectively,

using a previously established suberization marker, pGPAT5::

mCITRINE-SYP122 (Barberon et al., 2016; Naseer et al., 2012)

(Figure S6A). By inducing precocious and enhanced suberization

by two different mechanisms, using either the enhanced suberin

1 (esb1) mutant or treatment with abscisic acid (ABA) (Barberon

et al., 2016; Hosmani et al., 2013; Wang et al., 2019), flg22

responsiveness was suppressed in early endodermis (25 cells)

(Figures 5C and 5E), demonstrating that protective suberization

of a cell is incompatible with continued perception of microbial

patterns (Figure 5D). This suppression of endodermal responses

by suberization could not only be observed in the constitutive

FLS2-expressing line, but also with endogenously expressed

FLS2, after ablation of epidermis and cortex. In this case again,

we found that endodermal flg22 responses, observed in early

differentiated cells, were abrogated in esb1 (Figures 5F, S6B,

and S6C) or upon ABA treatment (Figures S6D and S6E). We as-

certained that ABA does not cause a general suppression of

MAMP responses, because responses in the root elongation

zone are maintained upon ABA treatment (Figure S6F).

Cell Damage Activates Expression of Multiple Pattern-
Recognition Receptors
We then broadened our observations based on FLS2 to other

MAMP receptors by establishing transcriptional reporter lines

for three additional PRRs, the EF-TU RECEPTOR (EFR) (Zipfel

et al., 2006), the CHITIN ELICITOR RECEPTOR KINASE 1

(CERK1) (Miya et al., 2007), as well as the nlp20 receptor

RECEPTOR-LIKE PROTEIN 23 (RLP23) (Albert et al., 2015). In

all three cases, a very similar, localized upregulation of receptor

expression upon laser-induced cell damage was observed (Fig-

ures 6A and 6B), suggesting that cell damage leads to a rather

generalized upregulation of response capacity to MAMPs.

We then used an independent MAMP, 3-OH-C10:0, the newly

described ligand for the LIPOOLIGOSACCHARIDE-SPECIFIC

REDUCED ELICITATION (LORE) receptor kinase (Ranf et al.,

2015). Similar to the other PRRs, LORE expression is strongly

induced upon damage in the early differentiated cells (Figures 6C

and 6E). 3-OH-C10:0 elicits directMAMP responses in the elonga-

tion zone, but not in the differentiation zone, similar to flg22

(Figure 6D). More importantly, upon damage, a strong enhance-

ment of responses to3-OH-C10:0was observed in the early differ-

entiation zone (Figures 6D and 6F), showing that the observed

damage-gating of MAMP responses is not restricted to flg22-

FLS2 module, but is also observed for a non-peptidic, conserved

bacterial pattern, perceived by a non-LRR type receptor.

Local Gating of Immune Responses by Damage in
Root-Bacteria Interactions
Finally, we tested whether our observations are relevant in the

context of actual, bacterial root colonization. For this, we first

used the model commensal/beneficial Pseudomonas protegens
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Figure 5. Endodermal Barriers Compartmentalize MAMP Responses in Differentiated Roots
(A and B) Expression pattern of FRK1marker in the absence or presence of flg22 in the differentiated zone ofWT and endodermal barrier-defective sgn3-3 roots in

Col-0 (A) and pUBQ10::FLS2 lines (B). Arrowheads indicate site of PI penetration block by the Casparian strips. Note the penetration of PI signals (red) into the

stele in sgn3-3 mutants, revealing their barrier defects. Arrows in (B) indicate MAMP-responsive (FRK1-positive) nuclei (green) in the stele of sgn3-3. Maximal

projections of confocal image stacks were taken at 25 endodermal cells after the onset of cell elongation. Nuclear-localized mVENUS signals (green) coun-

terstained with PI. Scale bar, 50 mm.

(C) Schematic view of the two endodermal barriers—Casparian strips and suberin lamella—in different backgrounds (WT, sgn3-3, and esb1-1mutants) and ABA

treatment. Lignin and suberin deposition in the endodermis are represented by green and yellow lines, respectively.

(D) Schematic depicting the putative role of suberin lamellae in restricting receptor-peptide recognition on the cell surface. Primary stage and secondary stage of

endodermal differentiation are presented by non-suberized (left) and suberized (right) endodermal cells, respectively. In non-suberized cells, peptides can access

to the endodermal plasma membrane through apoplastic movement. The resulting plasma membrane-localized receptor-peptide (FLS2-flg22) association is

capable of activating downstreamMAMP responses inside the cell. By contrast, in suberized cells, direct MAMP signal perception on the cell surface is blocked

by the presence of suberin lamellae between plasma membranes and primary cell walls of endodermal cells, interrupting the downstream responses.

(E) Representative images depicting expression of PER5 reporter combined with FLS2 constitutive expression line (pUBQ10::FLS2) in different backgrounds

(WT and esb1-1 mutant) or pre-treatment with ABA (1 mM, 18 h). Dotted circles and arrows indicate the boundary between endodermal and cortical layers, and

endodermal PER5 responsive nuclei, respectively. Scale bar, 50 mm.

(F)Co-ablationof epidermal andcortical cells triggers responsiveness toflg22 indifferentiatedendodermal cells ofWT,butnot in theprecociouslysuberizingesb1-1

mutant. White asterisks indicate damaged cells by laser ablation. Maximal projections of confocal image stacks. Image overlays done as described for Figure 1D.

Dotted circles and arrows indicate the boundary between endodermal and cortical layer, and endodermal FRK1 responsive nuclei, respectively. Scale bar, 50 mm.

See also Figure S6.
strain CHA0 (CHA0) (Haas and Défago, 2005; Haas and Keel,

2003). Indeed, despite strong colonization of seedling roots on

plates and floating hydroponic roots, no significant MAMP

response could be observed in undamaged, differentiated roots
7

(Figures 7A and S7A–S7C). However, when cell ablation was

combined with colonization, the cells neighboring the damage

site were showing a MAMP response to the presence of the

bacteria (Figures 7B and 7C). As with flg22 treatments, MAMP
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Figure 6. Cell Damage Activates Expression of Multiple Pattern-Recognition Receptors

(A and B) Representative images (A) and quantitative analysis by column scatterplots (B) of promoter activation of three additional PRRs after laser ablation of

different cell types in differentiated roots. Nuclear-localized mVENUS signals for each PRR reporter (green) co-visualized with plasma membrane marker,

pUBQ10::RCIA2A-tdTomato or PI counterstaining (red). Maximum projections of Z stack of mVENUS signals were combined with single red-channel images.

White asterisks indicate laser-ablated cells. Arrows indicate PRR promoter-positive nuclei. Each circle in (B) represents individual laser ablation event of one root

(n = 12 roots). Graph depicts mean values and SD (error bars). Different letters indicate significant differences between means by ANOVA and Tuckey’s test

(p < 0.001). Ep, epidermis; Co, cortex; En, endodermis; St, stele. Scale bar, 50 mm.

(C) The expression pattern of another PRR reporter, LORE in response to 1 mM 3-OH-C10:0 treatment in the elongation zone (EZ) and cell ablation in the early

differentiation zone (DZ), respectively. Maximum projections of z stack of mVENUS signals were combined with single red-channel images. Scale bar, 50 mm.

(D) The expression pattern of MAMP reporters in response to 3-OH-C10:0 treatment in the elongation zone or combined with ablation in the early differentiation

zone. White asterisks and arrows in (C) and (D) indicate laser-ablated cells and reporters positive/responsive nuclei in cortical cells, respectively. Scale

bar, 50 mm.

(E and F) Quantitative analysis by column scatterplot of LORE reporter (E) and MAMP responsiveness (F) in the absence (�) or presence (+) of laser ablation in

3-hydroxydecanoic acid treated (+3-OH-C10:0) or untreated (�3-OH-C10:0) roots. Each circle represents individual laser ablation event of one root (n = 12 roots).

Graph depicts mean values and SD (error bars). Asterisks indicate significant differences between means by ANOVA and Tuckey’s test (p < 0.001).
responses to the bacteria were also observed around lateral root

emergence sites and upon spontaneous damage (Figure 7A).

Next, we tested a root pathogenic bacterium, Ralstonia solana-

cearum GMI1000 (GMI1000) (Genin and Boucher, 2004). Inter-

estingly, GMI1000 colonization initially does not cause cell

damage, nor a strong MAMP response (Figure 7D). However,

progression of infection eventually leads to cell death of some

epidermal cells, which is then associated with a localized upre-

gulation of MAMP responses in neighboring cells (Figures 7D

and S7A–S7C). Our bacterial colonization experiments demon-
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strate that cellular damage and lateral root emergence does

not only unlock MAMP responsiveness to high doses of pure

MAMPs such as flg22, or 3-OH-C10:0, but is also effective in

unlocking responses to the more complex and probably much

less concentrated cocktail of MAMPs associated with actual

bacterial colonization. Interestingly, flg22 derived from

GMI1000 flagellin was found not to activate the Arabidopsis

FLS2 receptor (Pfund et al., 2004;Wei et al., 2018). This indicates

that the damage-associated MAMP responses we observe upon

GMI1000 infection must be caused by MAMPs other than flg22.
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Figure 7. Local Gating of Immune Responses by Damage in Root-Bacteria Interaction

(A) Comparison of PER5 responsiveness in different developmental zones of control (Col-0) and FLS2-overexpressing line (pUBQ10::FLS2) in the absence

(�CHA0-gfp2) or presence (+CHA0-gfp2) of bacterial colonization for 9h. MZ, meristematic zone; EZ, elongation zone; DZ, differentiation zone; LRP, lateral root

primordium. A blue arrowhead indicates the site of lateral root emergence.White asterisks and arrows indicate non-induced damaged cells and PER5 responsive

nuclei, respectively. Scale bar, 50 mm.

(B) Laser-induced cell damages can cause MAMP responsiveness (as FRK1 marker-positive cells) in differentiated roots in response to non-pathogenic CHA0

microbe colonization. Laser ablation was performed on indicated cell layer(s) followed by 9 h colonization by CHA0-gfp2 strain (OD600 = 0.1). Laser-ablated cells

are indicated by white asterisks. Arrows indicate localized FRK1 responses (green), easily distinguished by size and shape from green fluorescent bacteria.

Counterstained with PI (red). Image overlays done as described before. Scale bar, 50 mm.

(C) Quantification of experiments shown in (A). Column scatterplots of the number of FRK1 responsive cells in different cell types without (blue,�ablation) or with

(orange, +ablation) laser damage of different cell layer(s). Each circle represents an individual laser ablation event of one root (n = 12 roots). Graph depicts mean

values and SD (error bars). Asterisks indicate significant differences between means (***p < 0.001) by ANOVA and Tukey’s test analysis. ns, not significant.

Ep, epidermis; Co, cortex; En, endodermis; St, stele.

(D) Local MAMP responses could also be observed in cells adjacent to damaged cells, observed 12 h post infection (hpi) with the root pathogenic bacteria

GMI1000-gfp2. By contrast, upon infection with GMI1000 for short time course (6 hpi), no cell death, and no MAMP response were observed in differentiated

cortical cells. Damaged cells associated with GMI1000 infection are indicated by white asterisks. Arrows indicate localized MAMP responses (green), coun-

terstained with PI (red). Scale bar, 50 mm.

(E) Quantitative measurement of relative CHA0 abundance in Col-0 and pUBQ10::FLS2 roots at indicated colonization time point. Roots colonized with CHA0-

gfp2 strain or mock solvent were collected and their DNA used for real-time PCR using a 16S primer pair described in the STAR Methods. Ct values were

normalized to Ct values obtained by a primer set (AtACTIN2) amplifying plant-derived DNA. Values are shown with means ± SD (3 biological replicates, see

Figure S7E). Asterisks (**p < 0.01 and ***p < 0.001) indicate statistically significant differences based on ANOVA and Tukey’s test analysis. ns, not significant.

(F) Schematic model of one of PRRs, FLS2 expression pattern in Arabidopsis roots and damage-gated local MAMP responses during root-bacteria interaction.

Plant roots request both presence of MAMPs and damage before mounting strong immune responses. This model can help to explain how these important PRRs

can be usefully employed by plant roots, despite the continuous presence of high amounts of commensal or beneficial microbes while maintaining resistance to

pathogenic, damage-inducing bacteria.
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In addition, the similar, local upregulation of MAMP responsive-

ness seen uponGMI1000-induced damage further suggests that

the phenomenon we describe here is not specific to laser-abla-

tion induced cell damage (already indicated by our observations

that MAMP responsiveness also occurs adjacent to sites of

spontaneous cell death).

Intriguingly, our constitutively expressing pUBQ10::FLS2 line,

showed directMAMP responses toCHA0, in the absence of dam-

age (Figure 7A). Such a constitutive, non-damage-gated defense

activation should interfere with root colonization of a commensal

bacterium such as CHA0 and might be quantifiable, in contrast

to a local interference with microbial colonization upon laser-

induced damage, which would be impossible for us to quantify.

We indeed found a slight, but consistently lower degree of root

colonization in plate assays in pUBQ10::FLS2 lines, both by

qPCR-basedquantification and colony forming units (CFU) count-

ing (Figures 7E and S7D–S7G). Thus, a restricted, damage-gated

MAMP responsiveness of roots contributes to allow for root colo-

nization by innocuous or beneficial bacterial species.

DISCUSSION

Plant roots generate an attractive environment for a subset of

soil-borne microbes. These microbes, in turn, affect roots by

manipulating plant hormones, signaling, nutrient acquisition, or

growth of other microbes, using large sets of genes associated

with their root-colonizing life-style (Levy et al., 2017). One impor-

tant function that promotes colonization is thought to be the

ability of some bacteria to suppress MAMP responses, thus

avoiding production of anti-microbial compounds and inhibition

of root growth. Suppression of MAMP perception by non-patho-

genic colonizers has been reported, but is just starting to be un-

derstood in mechanistic terms (Garrido-Oter et al., 2018; Pel and

Pieterse, 2013; Yu et al., 2019). Type III secretion system (T3SS)

effectors are known to suppress MAMP perception (Chisholm

et al., 2006), yet appear to be associated with a pathogenic (or

symbiotic) life-style, with commensal/beneficial bacteria either

not possessing a T3SS or containing only few recognizable

T3SS proteins whose functions remain enigmatic (Loper et al.,

2012; Stringlis et al., 2019). Our findings now provide an addi-

tional level of explanation of how non-pathogenic microbes

can successfully colonize roots—by simply avoiding damage

and the strong enhancement of immune responses that comes

with it (Figure 7F). From the plant-side, such a damage-gating

of immune responses is economical, as it avoids constitutive

activation of defenses and localizes them to sites where aggres-

sive microbial colonizers might induce cellular damage or where

damage due to other causes has generated potential pathogen

entry points. For innocuous, root-colonizing bacteria, such a

system would alleviate the need to repress plant immunity, as

long as colonization proceeds without damage. It will be

intriguing to see whether the suppression of MAMP responses

by non-pathogenic bacteria still allows for damage-induced

enhancement of MAMP responsiveness, in contrast to suppres-

sion by type III effectors, which can directly interfere with

signaling components downstream of MAMP receptors and

can thus be expected to suppress MAMP perception in absence

or presence of damage.
450 Cell 180, 440–453, February 6, 2020
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An initial pathogenic infection in soil is bound to be localized,

involving one or a few cells. Manipulations and molecular read-

outs at single-cell resolution are therefore of crucial importance

for a mechanistic understanding of root-microbe interactions.

Recently, we reported that single-cell damage causes surface

depolarization, actively propagating calcium signals, ROS,

and ethylene production in a surprisingly large region around

the single-cell wound (Marhavý et al., 2019). Here, we demon-

strate that ablation of clusters of a few cells causes an ethylene-

independent, much more restricted, upregulation of MAMP

responsiveness, difficult, or impossible to observe by standard

molecular readouts or standard methods of wounding.

Recently, damage of root cap tissue in meristems was shown

to lead to jasmonate receptor-dependent regeneration re-

sponses (Zhou et al., 2019). Although we have focused on the

differentiated and transition/elongation zone of the root—in

which we do not observe regeneration responses—it would

be intriguing to investigate whether and how the damage-

gating of immune responses described here can be integrated

with tissue regeneration. A recent report proposes that loss of

cellular integrity causes calcium increases, activating AtPEP1

processing and release into the apoplast, where it could report

damage to neighboring cells (Hander et al., 2019). Yet, the

damage-induced gain of MAMP responsiveness that we

observe here is not reconstituted by co-treatment with AtPEP1

or other DAMPs. We therefore propose that local, non-propa-

gating signals are additionally required for a damage response,

such as mechanical stresses on neighboring cell walls or plas-

modesmatal collapse, induced by loss of turgor and cellular

disintegration in the neighbor. Our data suggest that DAMP

release might be a necessary element of damage perception,

but is, on its own, insufficient to reconstitute actual cellular

damage. In the future, it will be fascinating to use single-cell

damage to investigate the immediate molecular events and

mechanism that translate loss of cellular integrity into immune

responsiveness of adjacent cells.
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AtPEP1 Peptide Specialty Laboratories GmbH N/A

nlp20 Peptide Specialty Laboratories GmbH N/A

elf18 Peptide Specialty Laboratories GmbH N/A

TAMRA-flg22Pa Peptron N/A

TAMRA-AtPEP1 Peptron N/A

Propidium iodide (PI) Sigma-Aldrich Cat#P4170

Extracellular ATP (eATP) Sigma-Aldrich Cat#A2383

D-(+)-Cellobiose Sigma-Aldrich Cat#C7252

(±)-3-Hydroxydecanoic acid (3-OH-C10:0) Sigma-Aldrich Cat#H3648

Chitin from shrimp shells Sigma-Aldrich Cat#C9752

Galacturonan oligosaccharide mixture DP10-DP15 (OGs) Elicityl GAT114

(±)-Abscisic acid (ABA) Sigma-Aldrich Cat#A1049

Aminoethoxyvinylglycine (AVG) Sigma-Aldrich Cat#A6685

1-Aminocyclopropane-1-carboxylic acid (ACC) Sigma-Aldrich Cat#A3903

Critical Commercial Assays

MESA BLUE qPCR MasterMix Plus for SYBR Assay Eurogentec RT-SY2X-03+WOUB

Experimental Models: Organisms/Strains

Arabidopsis thaliana: WT Col-0 NASC NCBI:txid3702

Arabidopsis: fls2 Zipfel et al., 2004 SALK_062054C

Arabidopsis: sgn3-3 Pfister et al., 2014 SALK_043282

Arabidopsis: esb1-1 Hosmani et al., 2013 NASC ID: N2106042

Arabidopsis: ein2-1 Alonso et al., 1999 NASC ID: N65994

Arabidopsis: etr1-1 Chang et al., 1993 NASC ID: N237

Arabidopsis: pGPAT5::mCITRINE-SYP122 Barberon et al., 2016 Transgenic Col-0

Arabidopsis: pPER5::NLS-3xmVENUS Poncini et al., 2017 Transgenic Col-0

Arabidopsis: pPER5::NLS-3xmVENUS, pUBQ10::RCI2A-tdTomato This paper Transgenic Col-0

Arabidopsis: pWRKY11::NLS-3xmVENUS Poncini et al., 2017 Transgenic Col-0

Arabidopsis: pWRKY11::NLS-3xmVENUS, pUBQ10::RCI2A-tdTomato This paper Transgenic Col-0

Arabidopsis: pMYB51::NLS-3xmVENUS Poncini et al., 2017 Transgenic Col-0

Arabidopsis: pMYB51::NLS-3xmVENUS, pUBQ10::RCI2A-tdTomato This paper Transgenic Col-0

Arabidopsis: pFRK1::NLS-3xmVENUS This paper Transgenic Col-0

Arabidopsis: pFRK1::NLS-3xmVENUS, pUBQ10::RCI2A-tdTomato This paper Transgenic Col-0

Arabidopsis: pFLS2::NLS-3xmVENUS This paper Transgenic Col-0

Arabidopsis: pFLS2::NLS-3xmVENUS, pUBQ10::RCI2A-tdTomato This paper Transgenic Col-0

Arabidopsis: pFLS2long::NLS-3xmVENUS, pUBQ10::RCI2A-tdTomato This paper Transgenic Col-0

Arabidopsis: pEFR::NLS-3xmVENUS, pUBQ10::RCI2A-tdTomato This paper Transgenic Col-0

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Arabidopsis: pCERK1::NLS-3xmVENUS, pUBQ10::RCI2A-tdTomato This paper Transgenic Col-0

Arabidopsis: pRLP23::NLS-3xmVENUS, pUBQ10::RCI2A-tdTomato This paper Transgenic Col-0

Arabidopsis: pLORE::NLS-3xmVENUS This paper Transgenic Col-0

Arabidopsis: pFLS2::FLS2-3xMYC-GFP Robatzek et al., 2006 Transgenic Ws-0

Arabidopsis: pFLS2long::FLS2-3xMYC-mVENUS This paper fls2 mutant

Arabidopsis: pPER5::NLS-3xmVENUS, pFLS2long::FLS2-3xMYC-

mVENUS

This paper fls2 mutant

Arabidopsis: pUBQ10::FLS2 This paper Transgenic Col-0

Arabidopsis: pFRK1::NLS-3xmVENUS, pUBQ10::FLS2 This paper Transgenic Col-0

Arabidopsis: pPER5::NLS-3xmVENUS, pUBQ10::FLS2 This paper Transgenic Col-0

Arabidopsis: pFRK1::NLS-3xmVENUS, pFLS2::NLS-tdTomato This paper Transgenic Col-0

Arabidopsis: pPER5::NLS-3xmVENUS, pFLS2::NLS-tdTomato This paper Transgenic Col-0

Oligonucleotides

Primers for cloning reporter lines, see Table S1 This paper N/A

Primer: CHA0 16S gene Forward: TGAAGAAGGTCTTCGGAT

TGTAAAGC

This paper N/A

Primer: CHA0 16S gene Reverse: GCTACACAGGAAATTCCACCACCCT This paper N/A

Primer: Arabidopsis housekeeping gene AtACTIN2 Forward:

CTGGATCGGTGGTTCCATTC

This paper N/A

Primer: Arabidopsis housekeeping gene AtACTIN2 Reverse:

CCTGGACCTGCCTCATCATAC

This paper N/A

Recombinant DNA

pFRK1::NLS-3xmVENUS This study N/A

pPER5::NLS-3xmVENUS This study N/A

pWRKY11::NLS-3xmVENUS This study N/A

pMYB51::NLS-3xmVENUS This study N/A

pFLS2::NLS-3xmVENUS This study N/A

pFLS2long::NLS-3xmVENUS This study N/A

pEFR::NLS-3xmVENUS This study N/A

pCERK1::NLS-3xmVENUS This study N/A

pRLP23::NLS-3xmVENUS This study N/A

pLORE::NLS-3xmVENUS This study N/A

pFLS2::NLS-tdTomato This study N/A

pUBQ10::RCI2A-tdTomato This study N/A

pUBQ10::FLS2 This study N/A

pFLS2long::FLS2-3xMYC-mVENUS This study N/A

Software and Algorithms

Fiji (ImageJ) Schneider et al., 2012 https://imagej.nih.gov/ij/

Zeiss Zen 2011 https://www.zeiss.com/corporate/

int/home.html

N/A

GraphPad Prism 7.0 https://www.graphpad.com N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

Niko Geldner (niko.geldner@unil.ch). Plasmids and transgenic plant seeds generated in this study will be made available on

request, but we may require a payment and/or a completed Materials Transfer Agreement if there is potential for commercial

application.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material
Arabidopsis thaliana ecotype Columbia (Col-0) was used as wild-type control for all experiments. The fls2 (SALK_062054C), and

sgn3-3 and esb1-1 mutants were previously described (Zipfel et al., 2004; Pfister et al., 2014; Hosmani et al., 2013). The ein2-1

and etr1-1 mutants were provided by the Nottingham Arabidopsis Stock Centre (NASC) and was originally reported in Alonso

et al. (1999) and Chang et al. (1993). MAMP response reporter lines pPER5::NLS-3xmVENUS, pWRKY11::NLS-3xmVENUS and

pMYB51::NLS-3xmVENUS were described previously (Poncini et al., 2017). Suberization maker pGPAT5::mCITRINE-SYP122 was

generated and reported previously (Barberon et al., 2016). pFLS2::FLS2-3xMYC-GFP line was obtained from Prof. Thomas Boller’s

group (Robatzek et al., 2006).

Plant growth conditions
For all experiments, plant seedswere surface-sterilized in 70%EtOH for 10min, thenwashed twice in 99%ethanol and dried in sterile

conditions. Seeds were stratified at 4�C in the dark on 0.8% half Murashige and Skoog (MS) agar plates without addition of sucrose.

Plant roots were grown vertically for 6 d at 22�C under continuous days.

Bacterial strains and growth conditions
The GFP-tagged Pseudomonas protegens strain, CHA0-gfp2 (CHA0::attTn7-gfp2; Gmr) and the GFP-labeled Ralstonia solanacea-

rum strain, GMI1000-gfp2 (GMI1000::attTn7-gfp2; Gmr) were provided by Prof. Christoph Keel (Péchy-Tarr et al., 2013) and gener-

ated by electroporation transformation method (See in METHOD DETAILS), respectively. Bacterial strains were incubated overnight

in liquid LB medium (1% tryptone, 0.5% yeast extract and 1% NaCl, for CHA0-gfp2) or BG medium (1% peptone, 0.1% Casamino

acid, 0.1% yeast extract and 0.5% glucose, for GMI1000-gfp2) supplemented with 30 ml/ml gentamycin at 28�C. Bacterial cells were

collected by centrifugation, and resuspended in sterile MiliQ water for further root inoculation assays.

METHOD DETAILS

Generation of transgenic lines
For generating expression constructs, the In-Fusion Advantage PCR Cloning Kit (Clontech), Gateway Cloning Technology (Invitro-

gen) and GreenGate Cloning System (Lampropoulos et al., 2013) were used. See Table S1 for primer details. All plasmids were trans-

formed by heat shock into Agrobacterium tumefaciens GV3101 strain with or without pSoup plasmid and then transformed into the

corresponding plant lines by floral dipping method (Clough and Bent, 1998; Zhang et al., 2006). Several independent transgenic lines

were analyzed, and the strongest line of each construct was selected for further studies.

For labeling of the plasmamembrane, pUBQ10::RCI2A-tdTomato construct was generated using a triple Gateway reaction recom-

bining the following plasmids: pDONR P4-P1R-pUBQ10, pDONR 221-RCI2A (containing the coding sequence of the small plasma

membrane localized protein RARE-COLD-INDUCIBLE 2A (AtRCI2A)), pDONR P2R-P3-tdTomato and pK7m34GW (destination vec-

tor containing the kanamycin resistance gene for in planta selection). The resulting plasmid was transformed into Col-0 plants. Tran-

scriptional reporters were created using the following promoters: pFRK1 (Asai et al., 2002), pFLS2 (Zipfel et al., 2004), pFLS2long,

pEFR (Zipfel et al., 2006), pCERK1(Miya et al., 2007), pRLP23 (Albert et al., 2015), pLORE (Ranf et al., 2015). Fragments were

PCR-amplified and cloned into HindZ site of pGreenHygromycin-NLS-3xmVENUS (Vermeer et al., 2014). The resulting constructs

were introduced into Col-0 or pUBQ10::RCI2A-tdTomato background.

To overexpress FLS2 gene in MAMP marker lines, the pUBQ10::FLS2 plasmid was constructed using double Gateway cloning.

The full-length genomic FLS2 DNA, including the FLS2 coding region, 227 bp of upstream sequence, and 953 bp downstream

sequence was cloned into the entry clone pDONR 221. This vector was then combined to the entry clone pDONR P4-P1R-

pUBQ10 and the destination vector pK7m24GW to create the final expression clone pUBQ10::FLS2. The resulting construct was

transformed into stable MAMP marker lines, which were then introduced into the sgn3-3 mutant background by genetic crossing.

For generating FLS2 complementation line, the pFLS2long::FLS2-3xMYC-mVENUS plasmid was constructed by double Gateway

cloning. Full-length genomic FLS2 fragment fused with triple MYC tag followed by a mVENUS sequence was cloned into pDONR

221. This vector was then combined with an entry clone pDONR P4-P1R-pFLS2long and the destination vector pFR7m24GW (desti-

nation vector containing the FastRed cassette for transgenic seed selection) (Shimada et al., 2010) to create the final expression

clone, which was transformed into fls2 mutant background.

To combine FLS2 and MAMP-reporters in the same background, pFLS2::NLS-tdTomato plasmid was constructed using Green-

gate Cloning System. pFLS2 short promoter was PCR-amplified and cloned into pGGA (plasmid Green Gate A) entry vector to

generate pGGA-pFLS2, which was then recombined using Greengate reaction with the following plasmids: pGGB-SV40-NLS,

pGGC-tdTomato, pGGD-dummy, pGGE-UBQ10terminator, pGGF-FastRed and pGGZ-empty destination vector. The final construct

possesses the FastRed cassette for transgenic plant selection. The obtained construct was transformed into a stable MAMPmarker

background.
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Elicitor, hormone and inhibitor treatments
flg22CHA0 oligopeptide from Pseudomonas protegens CHA0 (TRLSSGLKINSAKDDAAGLQIA) (Jousset et al., 2014), nlp20 oligopep-

tide from Phytophthora parasitica (PpNLP) (AIMYSWYFPKDSPVTGLGHR) (Böhm et al., 2014), elf18 oligopeptide from E. coli strain

GI826 (Ac-SKEKFERTKPHVNVGTIG) (Kunze et al., 2004) and Arabidopsis thaliana Plant Elicitor Peptide 1, AtPEP1 (ATKVKAKQRG

KEKVSSGRPGQHN) (Yamaguchi et al., 2006) were chemically synthesized by Peptide Specialty Laboratories GmbH (https://www.

peptid.de/). The peptides were dissolved in deionized water to obtain 1 mM stock solution and further dilutions were done with half

MS medium. Fluorescently-labeled peptides TAMRA-flg22Pa and TAMRA-AtPEP1 were synthesized by Peptron (http://www.

peptron.com/) and dissolved in water to a final concentration of 1 mM for all assays. Extracellular ATP (eATP), D-(+)-cellobiose (cello-

biose), (±)-3-Hydroxydecanoic acid (3-OH-C10:0) and chitin were obtained from Sigma-Aldrich. Galacturonan oligosaccharide

mixture DP10-DP15 (OGs) was purchased from Elicityl (https://www.elicityl-oligotech.com/). These chemicals were dissolved in

water to the stock concentrations of 100 mM for eATP, 1 mM for 3-OH-C10:0 and cellobiose, 2 mg/ml for chitin and 5 mg/ml for

OGs. For hormone treatments, (±)-Abscisic acid (ABA) was stored as a 50 mM stock solution in methanol and 1-Aminocyclopro-

pane-1-carboxylic acid (ACC) as a 20 mM stock solution in water. For ethylene biosynthesis inhibitor treatment, Aminoethoxyvinyl-

glycine (AVG) was dissolved in water as a 10 mM stock solution.

Formicroscopic analysis of pFLS2 reporter andMAMPmarker lines under various treatments, six-day-old seedlings were carefully

transferred into liquid half MS medium containing the mentioned chemical molecules using 12-well culture plates (CytoOneTM). The

seedlings were observed under confocal microscopy after 6h treatment, unless otherwise specified, in standard growth condition.

A pool of 10-12 homozygous seedlings from the T3 generation was analyzed for each assay. At least three independent replicates

were performed.

Confocal settings and image processing
Confocal laser scanningmicroscopywas performed on a Zeiss LSM880 inverted confocal scanningmicroscope. Pictures were taken

with a 403water immersion objectives. For more detailed analyses in large area of interest, imaging was performed thanks to Z-scan

with tile-scan (overlap 10%). For green and red fluorophores, the following excitation and detection windows were used: mVENUS/

GFP 488 nm, 500-530 nm; mCITRINE 496 nm, 530 nm; PI 520 nm, 590 nm; tdTomato 550 nm, 580 nm; TAMRA 560 nm, 570-610 nm.

Sequential scanning was used to avoid interference between fluorescence channels. Confocal images after treatments and/or ab-

lations were taken following the ‘‘four identical criteria,’’ that is, using the same position in the roots, the same laser detection inten-

sity, the same laser scanning area, and the same interval and number of slices for Z stack projection.

Laser ablation setup
The sample preparation and manipulation for laser ablation was done as described before (Marhavý et al., 2019). Briefly, six-day-old

seedlings were carefully transferred from half MSmedium plate into a Chambered Coverglass (Nunc Lab-Tek, 2-well format, Thermo

Scientific). In each well 4-5 roots lied alongside the cover glass, and then the entire root parts were covered with a block of solid half

MS medium (approximately equal to 1 mL in liquid volume). Finally, chambers were covered with lid and mounted onto the confocal

microscopy for time-lapse imaging and cell-type-specific laser ablation. Cell ablation experiments were performed on a Zeiss

LSM880 Confocal/Multiphoton (Mai-Tai Spectra-Physics Multiphoton laser). Parameters for ablation were set as below: 40 3 water

immersion objective, scaling dimensions (xyz), laser 800 nm�2%, beam splitter MBS_InVis: MBS 760+, pixel dwell: 0.8 ms. A region

of interest (ROI) was drawn through the cell prior to ablation.

To combine laser ablation-caused cell damage with flg22 treatment in Chambered Coverglass system, we first ablated specific

root cells and then immediately added 500 mL of 3 mM flg22 solution into the chamber to obtain a final concentration of 1 mM

flg22. After 6h treatment, the liquid solution was removed carefully to avoid roots movement, and then confocal images were taken

directly for reporter lines expressing the plasma membrane marker. For the lines devoid of plasma membrane marker, plasma mem-

brane outline and damaged cells can be labeled clearly by adding 50 mL of PI solution (5x) onto the agar block of half MSmedium for

10 min before observation.

Bacterial transformation and infection assay
To obtain the GFP-labeled Ralstonia solanacearum GMI1000 strain, GMI1000-gfp2 (GMI1000::attTn7-gfp2; Gmr), we introduced a

GFP fluorescent tag into the bacterial genome by electroporation transformation method as described before (Smith and Iglewski,

1989). Briefly, GMI1000 was grown in BG broth (1% Bacto peptone, 0.1% casamino acids, 0.1% yeast extract, 0.5% glucose) with

vigorous shaking at 28�C until early log phase (OD600 = 0.4-0.6). 1.5 mL of pre-culture cells were harvested by centrifugation at

13,000 g for 2 min at 4�C, pellet was resuspended with the same volume MOPS-Glycerol (MOPS 1 mM with 15% Glycerol, keep

on ice), re-centrifuged, washed in 1/3 volume of wash medium (MOPS-Glycerol) and finally re-suspended in 1/15 volume (75 ml)

of MOPS-Glycerol. The cell suspension was chilled on ice for 30 min prior to electroporation. 5 mL of delivery vector, pBK-miniTn7-

gfp2 (Koch et al., 2001) and 5 mL of a helper plasmid DNApUXBF13 (Bao et al., 1991), were gentlymixedwith cell suspension and then

transferred to pre-chilled 0.2 cm cuvettes (Bio-Rad). Electroporation was performed using the following settings: capacitance, 25 mF;

voltage, 2.4 kV; resistance, 200 U; pulse length, < 5 msec. 1 mL of SOCmedium was then immediately added and the mix incubated

with shaking for 1 h at 28�C. Finally, the mixture was plated on BG solid medium supplemented with 30 ml/ml gentamycin and incu-

bated at 28�C until colonies have grown.
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For bacterial infection on the roots, two different infection assays were used for both bacteria: drop dipping infection on solid MS

plate and floating hydroponic inoculation. For drop dipping infection, we followed the method as described previously (Digonnet

et al., 2012) with some modifications. In short, six-day-old seedlings were selected for uniform growth and transferred to half MS

agar plates carefully. After incubation overnight in LB (for CHA0) or BG (for GMI1000) medium, bacteria were collected, washed

and resuspended in distil water. 10 mL of bacterial suspension at an optical density of OD600 = 0.1 (108 cfu/ml) was applied to the

seedling by depositing small droplets along the whole root. Infected plates were then grown vertically for one to three days before

microscopic observation according to the experiments. For floating hydroponic infection, four seeds were evenly spread on a small

patch of sterile mesh (2 cm x 2 cm), which was then deposited onto a half MS agar plate for germination. After 3 days, when roots

grew across the holes of mesh, we transferred the seedlings-supporting mesh onto a 12-well cell culture plates, containing 7 mL of

hydroponic solution by well (the seedlings-supporting mesh floating on the solution). Grown for another 4 days, the bacterial suspen-

sion was then added in the hydroponic solution of each well to a final OD600 of 0.1. Roots were infected by bacteria for 6 h to 12 h

before observation under confocal microscope.

For combining CHA0 infection with laser ablation, we used the Chambered Coverglass system similarly to flg22 treatment.

Briefly, after ablation, 500 mL of bacterial suspension at an optical density of OD600 = 0.1 was gently added into the chamber to

avoid roots movement. After 6 h infection, the bacterial solution was removed carefully, and confocal images were taken on Zeiss

LSM 880.

Quantification of CHA0 colonization
For qPCR analysis of bacterial colonization, the experiment was performed as described previously (Garrido-Oter et al., 2018) with

minormodification. In brief, four-day-old seedlings were carefully transferred to solid half MS plate containing CHA0 at final density of

OD600 = 0.002. After inoculation at the indicated time point, three roots for each sample were collected fromplates and brieflywashed

once in sterile water for 5 s to remove non-attached bacterial cells. After removal of excess water with a filter paper (Whatman, UK),

roots were frozen in liquid nitrogen and stored at�80�C until further processing. DNA was extracted using the DNeasy Plant Mini Kit

(QIAGEN, Germany) according to the manufacturer’s instructions. qPCR was performed in a 20 mL reaction mixture containing 10 mL

MESA BLUE qPCR 2X MasterMix Plus for SYBR� Assay (Eurogentec, Belgium), 30 ng DNA template, 0.5 mM forward primer and

0.5 mM reverse primer. PCR was performed by a QuantStudio 3 Real-Time PCR System (Thermo Fisher Scientific, USA) using the

following cycles: 95�C for 2 min, followed by 40 cycles of 95�C for 10 s, 58�C for 30 s, and 72�C for 30 s. Data from three biological

replicates were analyzed following the delta-Ct method, which was used to estimate the relative abundance of bacteria to the abun-

dance of plant DNA. Primers sequence used for qPCR are: 499_500 for CHA0 16S gene and plant housekeeping gene AtACTIN2 for

normalization.

For calculate the number of CHA0 colonization, the experiment was conducted by CFU counting (Saad et al., 2018). Briefly, four-

day-old seedlings were transferred to new half MS agar plates containing CHA0 (OD600 = 0.002). Parts of their roots grown for

indicated colonization time point were cut, gently washed by dipping in distilled water, and then ground in Eppendorf tubes using

TissueLyser II (QIAGEN, Germany) with stainless steel beads. Each sample was resuspended in 500 mL of extraction buffer

(10 mM MgCl2, 0.01% Silwet L-77) to homogenize the plant material. Samples were diluted 4,000-fold, and then spread on LB

agar plates supplemented with 30 ml/ml gentamycin. The CFU were counted after 36h incubation at 28�C until colonies are clearly

visible. Calculated number of CFU was normalized per centimeter of root length (total root length was determined based on images

of root systems before their harvest). The experiment was conducted in three biological replicates, each with three technical repli-

cates per condition; each sample consisted of three roots.

QUANTIFICATION AND STATISTICAL ANALYSIS

For quantifying the nuclear-localized fluorescence intensity of MAMP markers and FLS2 reporter, confocal images were analyzed

with the Fiji package (http://fiji.sc/Fiji). Contrast and brightness were adjusted in the same manner for all images. In short, first, we

set a defined threshold value for the same experiment between control and treatments. For example, all signals below a gray value

threshold of 30 were excluded from quantification to avoid autofluorescence signal and weak non-MAMP responsive signal. Note

that this threshold value is not fixed between different reporters and can be adjusted according to their fluorescent intensity. Second,

after setting the detectable size of pixel to avoid noise signal, the size of the total area with signal (number of pixels) can be deter-

mined, which, multiplied by the average intensity of the pixels for each area, give the total fluorescence intensity for each nucleus,

called ‘‘RawIntDen’’ - raw intensity density (RID). Finally, the overall score of an image is the sum of the RID values of all particles

(nuclei).

Counting of the numbers of MAMP-responsive and/or PRR-positive cells in different root cell types was obtained as follows:

a threshold value was set for removing noise signals. In some cases, for reporter lines or specific cell layers showing weak

MAMP-responsive and/or PRR-positive fluorescence, we elevated the threshold value to separate the basal level of fluorescence

and the weak non-MAMP responsive signals from the strongly induced MAMP-responsive signals. All signals below a given

gray value threshold were excluded from the cell nuclei counting. The score average was obtained from 10-12 images of replicate

roots.
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All statistical analyses were done with the Graphpad Prism 7.0 software (https://www.graphpad.com/). One-way ANOVAwas per-

formed, and Tukey’s test was subsequently used as a multiple comparison procedure. Details about the statistical approaches used

can be found in the figure legends. The data are presented as mean ± SD, and ‘‘n’’ represents number of plant roots.

DATA AND CODE AVAILABILITY

This study did not generate any unique datasets or code.

ADDITIONAL RESOURCES

This study did not generate any additional resources.
Cell 180, 440–453.e1–e6, February 6, 2020 e6
84

https://www.graphpad.com/


Supplemental Figures

(legend on next page)

85



Figure S1. Localized MAMP Responsiveness in Arabidopsis Differentiated Roots, Related to Figure 1

(A) The expression pattern of three additional MAMPmarkers, PER5,WRKY11 andMYB51 in response to 1 mM flg22 treatment. Images taken are corresponding

to the same position as in Figure 1A. Images in differentiated zone were always taken at a distance of 25 endodermal cells after onset of cell elongation. In each

treatment, single confocal section (Single image, left panels) and maximal projections of Z stacks (Max Z, right panels) are presented; median longitudinal and

transverse (xz) section views are shown in upper and bottom panels, respectively. Nuclear-localized mVENUS signals (green) are co-visualized with propidium

iodide (PI, red). MZ, meristematic zone; EZ, elongation zone; DZ, differentiation zone. Scale bar, 50 mm.

(B and C) Fluorescently-labeled peptide 50-TAMRA-flg22 penetrates into roots through the apoplast. 50-TAMRA-flg22 is functional and can activate distinct

MAMP responses in the elongation zone (EZ) and differentiation zone (MZ) of the roots (B). Six-day-old roots were treated with 1 mM 50-TAMRA-flg22 for 6h.

Nuclear-localizedmVENUS signals (green) co-visualized with TAMRA fluorescence (magenta). Representative images of the comparison of 50-TAMRA-flg22 and

50-TAMRA-AtPEP1 movement between WT and sgn3-3 mutant background (C). Transverse and longitudinal view of the endodermal cell layer is indicated

between dotted lines or circles. Note penetration of TAMRA fluorescence (royal LUT in ImageJ software) into the stele of sgn3-3 mutant after 1 h peptide

application. Maximum projections of longitudinal and transverse section views are shown in upper and bottom panel, respectively. Ep, epidermis; Co, cortex;

St, stele. Scale bar, 50 mm.

(D) Comparison of the response pattern of FRK1 and PER5 markers upon stimulation with different MAMPs. The chemicals were used at the following con-

centrations: 1 mM flg22, nlp20, 3-OH-C10:0, elf18 and 100 mg/ml chitin. All images were taken after 6 h treatment unless otherwise specified. Nuclear-localized

mVENUS signals (green) are co-visualized with propidium iodide (PI, red). MZ, meristematic zone; EZ, elongation zone; DZ, differentiation zone. Scale bar, 50 mm.

(E) flg22 responsiveness during lateral root primordium (LRP) formation. Images of stage IV of lateral root development of 8-day-old seedlings of double marker

lines, highlighting plasmamembrane of all root cells through pUBQ10::RCI2A-tdTomato expression (red) in addition to the MAMP responses (green, indicated by

white arrows). The shape of emerged LRP is indicated by dotted circle in the orthogonal view, site of emergence is indicated by a blue arrowhead in longitudinal

maximum projections. Image overlays done as described for Figure 1D. Scale bar, 50 mm.

(F) Quantification of MYB51 and WRKY11 markers in response to different developmental stages of lateral root emergence with or without flg22 application.

Boxplot centers show median (n = 10 roots). Different letters indicate statistically significant differences (p < 0.05, ANOVA and Tukey’s test). RID, see legend

Figure 1C.

(G) Spontaneous, non-induced cell death (asterisks) causes flg22 responsiveness (arrows) in neighboring cortical cell layer. Damaged differentiated epidermal

cells are highlighted by PI staining.
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Figure S2. Laser Ablation-induced MAMP Responsiveness Rely on Cell Damage Extent and Functional FLS2, Related to Figure 2

(A and B) Representative images (A) and quantitative analysis by column scatterplot (B) of PER5 responsiveness after laser ablation of different cell types in

differentiated roots. Laser ablation and all images were at 25 endodermal cells after the onset of cell elongation. Nuclear-localized mVENUS signals for each PRR

reporter (green) co-visualized with plasma membrane marker, pUBQ10::RCIA2A-tdTomato (red). Maximum projections of Z stack of mVENUS signals were

combined with single red-channel images (see Figure 2A). White asterisks indicate laser-ablated cells. Arrows indicate PER5 responsive nuclei. Scale bar, 50 mm.

Each circle in (B) represents individual laser ablation event of one root (n = 12 roots). Graph depicts mean values and SD (error bars). Asterisks indicate significant

differences between means by ANOVA and Tuckey’s test (p < 0.001). ns, not significant. Ep, epidermis; Co, cortex; En, endodermis; St, stele. Scale bar, 50 mm.

(legend continued on next page)
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(C and D) Representative images (C) and quantification by column scatterplot (D) of MAMP responsiveness after laser ablation of different epidermal cell numbers

with or without flg22 for 6 h in differentiated roots. Nuclear-localized mVENUS signals of FRK1 and PER5 reporters (green) co-visualized with the plasma

membrane marker, pUBQ10::RCI2A:tdTomato (red). White asterisk indicates damaged cell by laser ablation. Scale bar, 50 mm. Each circle in (D) represents

individual laser ablation event (n = 12). Data represent mean values and SD (error bars). 1 epi, one epidermal cell; 2 epi, two epidermal cells; etc.

(E and F) Orthogonal views (E) and RID quantification (F) of FRK1 and PER5 responsiveness inWT and fls2mutant background after combining without (-ablation)

or with (+ablation) damage of epidermal cells in the absence or presence of flg22 for 6 h. Scale bar, 50 mm. Boxplot centers in (F) showmedian. Asterisks indicate

significant differences between means (p < 0.001) by ANOVA and Tukey’s test analysis (n = 10 independent ablation events). ns, not significant. RID, see legend

Figure 1C.
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Figure S3. Time-Lapse Images of Ablation-Triggered Flg22 Responses, Related to Figure 2

(A-C) Real-time monitored MAMP responsiveness after laser ablation of different cell types in differentiated root cells. The combination of ablated cell types

shown as following: (A) epidermal cells; (B) epidermal and cortical cells; (C) epidermal, cortical and endodermal cells. Nuclear-localized mVENUS signals of FRK1

and PER5 reporters (green) co-visualized with the plasma membrane marker, pUBQ10::RCI2A:tdTomato (red). Laser ablation and all images were at 25 endo-

dermal cells after the onset of cell elongation. Maximal projections of Z stack of mVENUS signals and plasma membrane outline was merged together for

longitudinal section view. White asterisk indicates damaged cell by laser ablation. Arrows indicate MAMP responsive nuclei. Scale bar, 50 mm.
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Figure S4. FLS2 Expression Patterns in Arabidopsis Roots, Related to Figure 4

(A) Schematic map of two FLS2 promoters with different length and neighboring genome region. The shorter promoter, pFLS2 was cloned from original study

(Gómez-Gómez and Boller, 2000). The longer one, pFLS2long promoter, covers the sequence of pFLS2, then extending to the upstream region of another

neighboring gene At5g46325, a putative pre-tRNA gene. Color box: gene locus; black line: intergenic sequence.

(B and C) The longer promoter pFLS2long, driving an FLS2-mVENUS construct, was shown to rescue MAMP responses in fls2 mutant background. Comple-

mentation analysis of PER5 maker induction (B) and root growth inhibition (C) in response to flg22 treatment. Asterisks in (C) indicate statistically significant

differences (p < 0.001) between means by ANOVA and Tukey’s test analysis. ns, not significant. MZ, meristematic zone; EZ, elongation zone. Scale bar, 25 mm.

(D) Comparison of the expression patterns between the two promoters in different zones of the root. Nuclear-localized FLS2mVENUS signals only (green, upper

panel) or co-visualized with plasma membrane marker (red, bottom panel). For differentiation zone (DZ), longitudinal sections of images were taken at 25 or

40 endodermal cell numbers after the onset of cell elongation, respectively. Dotted circles indicate the stele (St). Scale bar, 25 mm.

(legend continued on next page)
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(E) Localized FLS2 induction during lateral root primordium (LRP) formation without (-) or with (+) flg22. Maximal projections of longitudinal sections were showing

the stage IV of lateral root development of eight-day-old seedlings. Site of emergence is indicated by a blue arrowhead. Arrows indicate FLS2-induced nuclei.

Scale bar, 50 mm.

(F) Activity of pFLS2long promoter under flg22 (1 mM) or ACC (10 mM) induction condition for 6 h in different zones of the root. Scale bar, 25 mm.

(G) FLS2 expression were co-visualized with PER5 expression in cortical cells after laser ablation of adjacent epidermal cells. FLS2 promoter-driven nuclear

tdTomato signal (red) and nuclear MAMP reporter signals (green) are co-localizing (yellow) in the presence of flg22 application for 6 h. Arrows indicate MAMP

responsive or/and FLS2-positive nuclei. Scale bar, 50 mm.

(H) Venn diagrams showing the number of co-localized cells in cortex (yellow) of FLS2-positive (red) and PER5-responsive cells (green) caused by laser-ablation

of epidermal cells. The total cell number for each marker was accumulated from 10 independent ablation events. The relative size of each circle reflects counted

cell numbers.
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Figure S5. Unlocking of Flg22 Responsiveness by Cell Damage Is Independent of Ethylene Signaling, Related to Figures 2 and 4

(A and B) Representative images (A) and quantitative analysis by boxplot chart (B) of PER5 and FRK1 responsiveness without (-) or with (+) flg22 treatment in WT

and ethylene insensitive mutants, ein2-1 and etr1-1, elongating roots (upper panel), spontaneously damaged roots (middle panel) and laser-ablated differentiated

roots (bottom panel). Note MAMP responsiveness in elongation zone is partially or completely dependent on ethylene signaling as MAMP fluorescent signals,

compared toWT, are highly decreased (PER5) or fully abolished (FRK1) in ethylene insensitive mutants after flg22 application for 6 h. Nuclear-localized mVENUS

signals (green) co-visualized with PI counterstaining (red). White asterisks indicate damaged cells. In (B), boxplot centers show median (n = 12 roots). Different

letters (p < 0.001) indicate statistically significant differences between means by ANOVA and Tukey’s test analysis. RID, raw intensity density. Scale bar, 50 mm.

(C) Longitudinal view of maximum projection of MAMP responsiveness in the absence (-) or presence (+) of flg22 in WT and ein2-1 mutant LRP formation site.

Emerged LRP shape is highlighted by dotted circle in the bright-field background (gray). Black arrows indicate responsive nuclei. Scale bar, 50 mm.

(legend continued on next page)
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(D) Maximum projection of FRK1 reporter in elongated cells (upper panel) or laser-ablated differentiated cells (bottom panel) pre-treated with ethylene

biosynthesis inhibitor, 2-aminoethoxyvinyl glycine (AVG) for 2 h. Scale bar, 50 mm.

(E and F) Confocal images (E) and RID quantitative analysis (F) of FLS2 induction without (-ablation) or with (+ablation) laser-damaged epidermal cells in

comparison between WT and ein2-1 differentiated roots. Laser ablations were performed at 25 endodermal cells after onset of cell elongation. White asterisks

indicate damaged cells. Boxplot centers in (F) show median (n = 12 roots). Asterisks (p < 0.001) indicate statistically significant differences between means by

ANOVA and Tukey’s test analysis. RID, see legend Figure 1C. Scale bar, 50 mm.
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Figure S6. Suberin Lamellae Interfere with flg22 Perception in the Endodermis, Related to Figure 5

(A) Suberin plasma membrane marker pGPAT5::mCITRINE-SYP122 expression (green) along the root developmental stages in different backgrounds (WT and

esb1-1mutant) or treated with 1 mMABA (WT background) prior to observation. TheGPAT5 reporter line counterstained with PI (red). Images were taken at 25 or

55 endodermal cell numbers after the onset of cell elongation, respectively.

(B and C) Representative images (B) and quantitative analysis by column scatterplot (C) of co-ablation of epidermal and cortical cells triggers responsiveness to

flg22 in differentiated endodermal cells of WT, but not in the precociously-suberizing esb1-1mutant (B). Nuclear-localized mVENUS signals (green) co-visualized

with PI staining or plasma membrane marker (red). Maximum projections of transverse (left panel) and longitudinal sections (right panel) are shown. Arrows

represent endodermal FRK1-responsive cell nuclei. White asterisks indicate damaged cells by laser ablation, taken at 25 endodermal cells after the onset of cell

elongation. Note images in red dotted boxwere used for Figure 5D. Each circle in (C) represents individual laser ablation event of one root (n = 12 roots). Values are

means ± SD. Individual letters indicate statistically significant differences (p < 0.001, ANOVA and Tukey’s test).

(D and E) Quantification (D) and images (E) of co-ablation of epidermal and cortical cells triggers responsiveness to flg22 in differentiated endodermal cells of non-

treated control, but not in ABA pre-treated roots (E). Each circle in (D) represents individual laser ablation event of one root (n = 12 roots). Values are means ± SD.

Individual letters indicate statistically significant differences (p < 0.001, ANOVA and Tukey’s test).

(F) ABA treatment did not affect MAMP responses in elongating root cells. Six-day-old roots were pre-treated with 1 mM ABA prior to flg22 application for 6h.

Pictures are maximum projections of confocal Z stacks. ABA pre-treatment in (D-F) was performed for 18 h. Scale bar, 50 mm.
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Figure S7. Bacterial Colonization of Arabidopsis Roots in an In Vitro System, Related to Figure 7

(A) Photographs of Col-0 roots infection with non-pathogenic (CHA0) or pathogenic (GMI1000) root bacteria on solid half MS medium plate. Six-day-old roots

were inoculated with water (mock, left), CHA0 (middle) or GMI1000 (right) for the indicated time. Note pronounced root growth arrest in the presence of the

pathogenic bacterium GMI1000. dpi, days post inoculation. Scale bar, 2 cm.

(B) Bacterial colonization on the surface of differentiated epidermal cells in the view of the 3D-stacks. Pictures are maximum projections of confocal Z stacks

taken around the 25th endodermal cell after onset of elongation. Ep, epidermis; Co, cortex; St, stele.

(C) Orthogonal view of confocal images showing colonization and the extent of damage on epidermal cells after inoculation with CHA0 (middle panel) or GMI1000

(bottom panel) for the indicated time, compared to the mock (upper panel). White asterisks indicate damaged cells. Scale bar, 50 mm.

(D) Representative images showing CHA0-gfp2 colonization on differentiated roots of Col-0 and pUBQ10::FLS2 root at 2 dpi. Pictures are maximum projections

of confocal Z stacks. GFP-labeled bacteria (green) were co-visualized with PI staining (red). Scale bar, 50 mm.

(E) Three biological replicates of quantitative measurement of CHA0 abundance in Col-0 and pUBQ10::FLS2 roots at indicated inoculation time point.

Roots inoculated with CHA0-gfp2 strain or mock solvent were collected and their DNA was used for real-time PCR using CHA0 16S primer pair (499_500).

(legend continued on next page)
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Ct values were normalized to Ct values obtained by a primer pair (AtACTIN2) amplifying plant-derived DNA. Values are shown with means ± SD

(n = 3 roots).

(F and G) CFU counting of CHA0 colonization in Col-0 and pUBQ10::FLS2 roots. Four-day-old seedlings were transferred onto half MS plates containing CHA0

(OD600 = 0.002). Three roots were collected for each sample at indicated colonization time point. CFU of CHA0 abundance was normalized to per root centimeter

(cm) (F) and the ratio of bacterial abundance was relatively compared to Col-0 (G). Values are shownwithmeans ±SD (3 biological replicates). Asterisks (*p < 0.05,

**p < 0.01 and ***p < 0.001) indicate statistically significant differences based on ANOVA and Tukey’s test analysis.
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2.4. APPENDICES 

In parallel of our study on the coincidence of damage and MAMPs for localized 

immune responses, I carried out some complementary experiments to assess the 

implication of ethylene for FLS2 increased expression observed after damage. In addition, I 

tested the effect of DAMPs on FLS2 expression. Since the gating of MTI in the unresponsive 

differentiated zone was also observed around lateral roots, I did some preliminary works 

to characterise in details the induction of immunity in these regions. Although these data 

are sometimes still preliminary and were not published in Zhou et al. (2020), I felt that they 

are worth mentioning and complete our previous results. 

2.4.1. FLG22 PEPTIDE INCREASES SLIGHTLY FLS2 EXPRESSION 

Our work provided evidence that damage alone was able to induce FLS2 

expression, which was then responsible for gating of immunity if the differentiated root 

(Zhou et al., 2020, Fig.4). However, we wanted to assess whether flg22 also induces FLS2 

expression and reinforced the gating effect. Data supporting the flg22-driven induction of 

FLS2 expression in the elongation zone can be found in Fig.4E and Fig.S4F (Zhou et al., 

2020). I present here extended results. The tagged FLS2 protein was also visualized in the 

meristematic and elongation zone (App.1A). Its expression was slightly increased after 

treatment with flg22, but only in the elongation zone, confirming the expression analysis. In 

addition, I also tested the impact of flg22 on the FLS2 transcriptional reporter using the 

traditional pFLS2short promoter (Zipfel et al., 2004). Flg22 could induce its activity (App.1B), 

as for the pFLS2long promoter, later generated (Zhou et al., 2020). 
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Appendix 1 : flg22 induces FLS2 expression 

(A) Orthogonal view of accumulation of FLS2-fused protein (FLS2-GFP, Fire LUT) in response to 1 μM flg22 or mock 
after 7h treatment in liquid ½ MS medium. Scale bar, 25μm. 
(B) Flg22 treatment weakly activates the short FLS2 promoter in the meristematic zone (MZ) and the elongation zone 
(EZ). Maximum projection of FLS2short::NLS-3mVenus in response to 1 μM flg22 or mock, 24h treatment using the 
“combined” method. Scale bar, 25 μm. 

2.4.2. ETHYLENE TRANSCRIPTIONALLY ACTIVATES FLS2 

Using ethylene mutants ein2-1 and etr1-1, we previously showed that ethylene 

signalling was not required for damage-induced gating of immune responses. Amongst the 

evidence provided, we controlled that ethylene treatment induces FLS2 expression using 

the FLS2long::NLS-3mVenus reporter (Zhou et al., 2020)(Fig.S5, S4F). In addition, I show here 

the effect of ACC treatment on FLS2short::NLS-3mVenus and FLS2::FLS2-GFP lines. Despite the 

variability in its pattern, pFLS2short promoter was activated by ACC in the elongation zone, 

similarly to pFLS2long promoter. However, it was also induced in the stele of the 

differentiated zone, probably due to difference in experimental conditions (App.2A). By 

contrast, I could not consistently detect an increase of FLS2 protein accumulation in any 

zone (App.2B). A high turnover rate might mask FLS2-GFP accumulation, despite the 

elevated transcription observed in the FLS2short:: and FLS2long::NLS-3mVenus lines. Reversely, 

I tested the impact of the ethylene inhibitors AVG and AgNO3 on FLS2::FLS2-GFP and 

FLS2short::NLS-3mVenus (App.2C, 2D), but FLS2 responses were variable, with either no 

difference between mock and treatment or increased FLS2 expression.  
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Appendix 2: Ethylene modulates FLS2 expression 

(A) ACC triggers the induction of FLS2short::NLS-3mVenus reporter (Fire LUT) in the elongation zone and in the stele of 
the differentiated zone (white arrowheads). Seedlings were treated for 24 h on plate containing 1 μM ACC. Maximum 
projection of z-stacks imaging meristematic (MZ), elongation (EZ) and differentiated (DZ) zones. For the DZ, maximal 
projection of transverse sections views of FLS2 expression pattern co-visualised with cell wall (PI staining, red). Scale 
bar, 25 μm. 
(B) Orthogonal view of accumulation of FLS2-fused protein (FLS2-GFP, Fire LUT) in response to 1μM ACC or mock after 
5.5h treatment in liquid ½ MS medium. Scale bar, 25 μm. 
(C) Orthogonal view of accumulation of FLS2-fused protein (FLS2-GFP, Fire LUT) in the EZ in response to 5 μM AgNO3, 
5 μM AVG or mock after 24h treatment on plate. Scale bar, 25 μm. 
(D) FLS2short::NLS-3mVenus marker (Fire LUT) response in the EZ to 2 μM AgNO3, 2 μM AVG or mock after 24h treatment 
on plate. Scale bar, 25 μm. 

2.4.3. ATPEP1 SLIGHTLY INCREASES FLS2 EXPRESSION IN THE STELE 

Since damages gate the response to flg22 in the differentiated zone, we postulated 

that ablation could be mimicked by DAMPs treatment (Zhou et al., 2020). In parallel to 

combined treatment of flg22 and DAMPs, I also tested whether FLS2 could be directly 

induced by AtPep1. I could detect a slight increase of FLS2 expression in the stele, mostly in 

the elongation and the early differentiated zone (20c after onset of elongation) (App.3). 

Interestingly, combined treatment with AtPep1 and flg22 also increased FRK1 expression 
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in the stele of the differentiated zone compared to single treatment with AtPep1 (Zhou et 

al., Fig.3A). The fact that AtPep1 treatment could modulate FLS2 expression in the stele and 

enhances flg22-responses is surprising considering the non-responsiveness of this tissue 

described in Chapter 3. 

 

 

Appendix 3: AtPep1 induces FLS2 expression in the differentiated stele 

(A) Maximum projection of z-stacks taken in MZ, EZ or DZ of FLS2short::NLS-3mVenus (Fire LUT) seedlings treated for 
24 h with 1 μM AtPep1 (combined method). Scale bar, 50μm. 
(B) Orthogonal view of pictures in (A). Note the increase of FLS2 signal (GreenFireBlue LUT) in the stele (white 
arrowheads). Cell walls are highlighted with PI staining (red). Scale bar, 25 μm. 
MZ, meristematic zone; EZ, elongation zone; DZ, differentiated zone. 

2.4.4. FLS2 EXPRESSION IN CORTICAL CELLS AROUND LATERAL ROOTS CORRELATES WITH 

RESPONSIVENESS TO FLG22 

The differentiation zone is usually “insensitive” to flg22, except after damage or 

around lateral root primordia. We previously showed that FLS2 is induced in cortical cells 

surrounding the primordia (Zhou et al., 2020, Fig.S4E). In addition, I realized a descriptive 

analysis of FLS2 expression across the different stages of lateral root development and 

found that FLS2 promoter and FLS2-GFP recombinant protein were expressed from stage 

IV until stage VIII (App.4A, B). 
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I also assessed the timing of PER5, WRKY11 and MYB51 appearance around lateral 

roots after flg22 treatment. All of them were expressed in cortical cells adjacent to the 

lateral roots and appear after the stage IV of primordia development, which was consistent 

with the expression of FLS2 (App.4C, D, E). Nevertheless, increase of FLS2 or MTI markers 

expression was not observed for all primordia of stage IV or later. Since ethylene regulates 

FLS2 expression (Boutrot et al., 2010; Mersmann et al., 2010), I also described PR4 

(PATHOGENESIS-RELATED 4/HEVEIN-LIKE) and ACS6 (ACC SYNTHASE 6) ethylene markers 

(Poncini et al., 2017). PR4 expression was increased in cortical cells surrounding the 

primordia. However, PR4 signal was also constitutively expressed in cortex in later regions 

(App.4G). In contrast, ACS6 was expressed in young primordia then disappears after stage 

III. However, ACS6 was not found in any cortical cells (App.4F). 

To clearly correlate FLS2 expression with immune transcriptional read-outs 

induction, I used the double reporter lines expressing FLS2::NLS-tdTomato with MTI 

reporters and assessed whether both markers were co-localized in the same cells. From 

stage I to III, most cells neither induce FLS2 nor any of the markers (App.5A’-E’). At later 

stages, FLS2 is induced in more than 80% of the primordia. Treatment with flg22 triggers 

co-expression of PER5, MYB51 and WRKY11, but not ACS6 nor PR4 (App.5). It must be noted 

that cells that express FLS2 did not always induce immune read-outs in response to flg22. 

Reversely, in a few cases, induction of MAMP markers occurred without increased 

expression of FLS2. Taken together, increased MAMP sensitivity around lateral roots is 

imperfectly correlated to FLS2 expression and is independent of ethylene responses. 

Although other ACS genes expressed in the root could be involved (Tsuchisaka and 

Theologis, 2004), we showed that damage-induced increased defence expression in the 

differentiated zone was independent of ethylene (Zhou et al., 2020), suggesting that the 

same mechanism could apply to lateral root emergence sites.  
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Appendix 4 : FLS2 and immune transcriptional read-outs are expressed around the emergence site of lateral roots. 

(A) FLS2-GFP protein fusion (GreenFireBlue LUT) is expressed in cortical cells surrounding primordia from stage IV of 
lateral root development. Cell walls are highlighted with PI (red). (a’) Orthogonal view of pictures of stage VI to VIII. 
Roman numbers, stage of the primordia; white arrowheads, cortex cells expressing FLS2. Scale bar, 25 μm. 
(B) FLS2 promoter (green) is active in cortical cells surrounding primordia from stage IV onwards. Cell wall is highlighted 
by Calcofluor White staining (magenta). Roman number, stage of the primordia; white arrowheads, cortex cells 
expressing FLS2; dashed circle, primordia. Scale bar, 25μm. 
(C-E) PER5::NLS-3mVenus (C), MYB51::NLS-3mVenus (D) and WRKY11::NLS-3mVenus (E) (green) are induced in cortex 
cells surrounding primordia from stage IV onwards  
(F) ACS6::NLS-3mVenus is expressed in the stele and does not correlate with LR emergence.  
(G) PR4::NLS-3mVenus is sometimes induced in cortex cells around LR after flg22 treatment. 
(C-G) Seedlings were treated with 1 μM flg22 for 24h. Cell wall is highlighted by Calcofluor White staining (magenta). 
Roman number, stage of the primordia; white arrowheads, cortical cells expressing immune transcriptional read-outs; 
dashed circle, primordia. Scale bar, 50 μm. 
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Appendix 5 : FLS2 is co-expressed with immune read-outs but not with ethylene reporters 

(A-C) FLS2 expression was co-visualized with PER5 (A), MYB51 (B) and WRKY11 (C) expression in cells surrounding 
emerged lateral root. FLS2 promoter-driven nuclear tdTomato signal (red) and nuclear immune read-out signal (green) 
are co-localizing (yellow) in the presence of 1 μM flg22 application for 6 h. Scale bar, 25 μm. 
(D-E) FLS2 expression was co-visualized with ACS6 (D) and PR4 (E) expression in cells surrounding primordia. FLS2 
promoter-driven nuclear tdTomato signal (red) and nuclear immune read-out signal (green) are not co-localizing. 
Seedlings were treated for 6h with 1 μM flg22. Scale bar, 25μm. 
(A’-E’) Quantification of percentage of lateral roots showing no induction of FLS2 or immune markers expression, only 
induction of FLS2, only induction of immune markers or co-expression of FLS2 and immune markers. Percentages were 
calculated for three different developmental stages (I to III, IV to VIII or emerged lateral roots) and for PER5 (A’), MYB51 
(B’), WRKY11 (C’), ACS6 (D’) and PR4 (E’) transcriptional read-outs. Analysis was performed after application of 1 μM 
flg22 or mock for 6 h in liquid ½ MS.  
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2.5. SUPPLEMENTARY MATERIAL AND METHODS  

2.5.1. PLANT MATERIAL AND GROWTH CONDITIONS 

We used A. thaliana ecotype Columbia for most experiments. FLS2::FLS2-3myc-GFP 

line in ecotype Wassilewskija Ws-0 was offered by Prof.Tomas Boller’s group (Robatzek et 

al., 2006). FLS2short::NLS-3xmVenus was described in (Zhou et al., 2020). MTI and ethylene 

signalling reporter, as well as their combination with FLS2::NLS-tdTomato construct, were 

characterized previously (Marhavý et al., 2019; Poncini et al., 2017; Zhou et al., 2020).  

For all experiments, plant seeds were surface sterilized with chlorin gas for 2,5 hours. Seeds 

were stratified for minimum 2 days at 4°C in the dark and seedlings were grown vertically 

on half-strength Murashige and Skoog (MS) 0.8% agar plates at 22°C in continuous light for 

5 days. 

2.5.2. ELICITOR AND INHIBITOR TREATMENT 

Commercial flg22 peptide (QRLSTGSRINSAKDDAAGLQIA) was obtained from 

EZBioLab, while AtPEP1 (ATKVKAKQRGKEKVSSGRPGQHN) were synthesized by Peptide 

Specialty Laboratories GmbH. 1 - aminocyclopropane-1-carboxylic acid (ACC) was 

dissolved in water as a 20 mM stock solution. 2 - aminoethoxyvinyl glycine (AVG) and 

AgNO3 (Sigma-Aldrich) were conserved as a 10 mM stock solution in water. 

Elicitor and chemical treatments were performed according to one of the following 

protocols. Seedlings were carefully transferred into 6-well culture plates containing liquid 

½ MS medium supplemented with elicitor to the mentioned concentration (“liquid 

treatment”). Alternatively, seedlings grown on small ½ MS petri dishes were submersed 

with 1.5 ml of elicitor solution directly onto the plate, then incubated horizontally before 

analysis (“combined method”). For ACC or ethylene inhibitor treatments, seedlings were 

transferred on ½ MS plates supplemented with the defined concentration of chemicals. 

2.5.3. FIXATION AND STAINING 

For live imaging, plasma membrane outline was labelled by mounting seedlings in 

15 μM (10mg/ml) PI solution. Lateral root imaging was done after fixation using the 

Clearsee procedure as described previously (Emonet et al., 2020; Ursache et al., 2018).  
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2.5.4. MICROSCOPY 

Pictures were taken on a Zeiss LSM880, LSM700 or a Leica SP8 inverted confocal 

scanning microscope, using a 63x oil immersion objective (LSM880), 63x water immersion 

objective (SP8), 40x water immersion objective (SP8, LSM880 and LSM700). For FLS2 and 

immune transcriptional read-outs visualisation, the excitation and detection windows were 

set as follows: GFP/PI (488nm; 500-530nm and 600-650nm); mVenus (514nm; 520-

550nm), calcofluor (405nm, 425-475nm), tdTomato (554 nm, 580-620 nm). 

2.5.5. QUANTIFICATION 

Quantification of FLS2 and immune read-outs co-localization was done as follows. 

Pictures were taken for each primordium found along the roots, then were grouped 

according to the developmental stage of the primordia: from stage I to III, from IV to VIII or 

“emerged” (Péret et al., 2009). Pictures were then classified depending on the induction of 

the two markers into one of the following groups: no induction of FLS2 nor defence marker, 

induction of FLS2 but no induction of defence marker, induction of defence marker but no 

induction of FLS2, combined induction of FLS2 and defence marker. Induction was 

considered positive when at least one nucleus of the cortical cells surrounding the lateral 

root was obviously brighter than the neighbouring nuclei. Combined induction was only 

considered if at least one nucleus expressed strongly both FLS2 and the defence marker. 

Two replicates were combined.  
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3 SPATIALLY RESTRICTED IMMUNE RESPONSES 

ALLOW FOR ROOT MERISTEMATIC ACTIVITY 

DURING BACTERIAL COLONISATION  
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3.1. RATIONAL OF THE STUDY  

How do plants determine which tissues should be protected and which tissues can 

accommodate the presence of commensal bacteria without deploying their full arsenal? In 

the previous chapter, we showed that MTI responses are restricted to the elongation zone, 

but can be gated by damages in differentiated regions (Zhou et al., 2020). However, it is not 

understood clearly why, in the first place, are the elongating cells the most responsive. As 

described previously, a common conception is that the elongation zone is a vulnerable point, 

lacking any physical barriers, but highly colonized by bacteria (Faulkner and Robatzek, 

2012). Roots would therefore need to protect that sensitive region with inducible defences. 

Nevertheless, the molecular mechanism behind this increased responsiveness remains 

obscure. 

It becomes more and more evident that the regulation of PRRs plays a role in the 

spatial confinement of defences. Indeed, FLS2 is expressed at bacterial entry points of the 

root (Beck et al., 2014) and immune responses gating in the differentiated zone is mediated 

by the upregulation of FLS2 (Zhou et al., 2020). However, FLS2 expression pattern does not 

coincide entirely with the pattern of defence, calling into question the strict involvement of 

PRRs in shaping plant immunity. Whether all cells can mount an immune response provided 

they express the appropriate PRRs is indeed unknown. Wyrsch et al. (2015) showed that 

ectopic FLS2 expression, independently of its location, could rescue fls2 mutant. However, 

their study crucially lacks resolution to infer whether MTI responses are strictly cell-

autonomous. Moreover, little is known on the different tissue-specificity of MTI markers. 

Finally, we do not understand whether the restriction of flg22-responses at 

specific location has a biological relevance. We might wonder what the impact on plant 

development would be if defences were no longer restricted to the elongation zone. 

Interestingly, the immune response pattern of plants ectopically expressing FLS2 was never 

assessed, as well as its effect on the response to commensal bacteria. 

The following manuscript, posted on BioRxiv (DOI: https://doi.org/10.1101/ 

2020.08.03.233817) and currently under review in Current Biology, highlights the 

preponderant role of FLS2 expression in shaping flg22-response pattern in the root. By 

expressing FLS2 in different tissues and regions of the roots, we characterised, with cellular 
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resolution, both cell-type specific and non-specific responses and discriminate cell 

autonomous from non-cell autonomous signals elicited by flg22 perception. Our analysis 

also revealed that the central region of the meristem is refractory to immune induction, 

even after overexpression of FLS2 in these tissues. In contrast, the epidermal meristem has 

a strong competency for flg22-mediated responses, but this immune activation is 

incompatible with meristematic activity, leading to meristem collapse and strong root 

growth inhibition. We showed that such super-competent line also triggers strong defences 

in response to commensal bacteria that were innocuous in wild-type plants, revealing the 

importance of correctly localized immune responses to sustain normal growth. 
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Summary (150 words) 

Plants circumscribe microbe-associated molecular pattern (MAMP)-triggered immune 

responses to weak points of the roots. This spatially restricted immunity was suggested to avoid 

constitutive responses to rhizosphere microbiota. To demonstrate its relevance, we combined 

cell-type specific expression of the plant flagellin receptor (FLS2) with fluorescent defence 

markers and mapped immune competency at cellular resolution. Our analysis distinguishes cell-

autonomous and non-cell autonomous responses and reveals lignification to be tissue-

independent, contrasting cell-type specific suberisation. Importantly, our analysis divides the 

non-responsive meristem into a central zone refractory to FLS2 expression, and a cortex that 

becomes highly sensitised by FLS2 expression, causing meristem collapse upon MAMP exposure. 

Meristematic epidermal expression generates super-competent lines that detect native 

bacterial flagellin and bypass the absence of response to commensals, providing a powerful tool 

for studying root immunity. Our precise manipulations and read-outs demonstrate 

incompatibility of meristematic activity and defence and the importance of cell-resolved studies 

of plant immunity.  
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Introduction 

Plant roots host a vast range of microorganisms in their rhizosphere. Amongst those, some can 

act as pathogens, negatively impacting plant growth and reproduction. However, the plant’s 

sophisticated innate immune system keeps the vast majority of pathogens at bay. This MAMP-

triggered immunity (MTI) rests on the recognition of highly conserved microbial molecules, 

recognised by plasma membrane-localised pattern-recognition receptors (PRRs) (Zipfel, 2008). 

One of the most investigated MAMPs is a 22 amino acid fragment of the bacterial flagellin 

protein (flg22). It is detected by the FLAGELLIN SENSING 2 (FLS2) receptor (Felix et al., 1999; 

Gómez-Gómez and Boller, 2000; Gómez-Gómez et al., 1999; Zipfel et al., 2004) and induces a 

signalling cascade including ROS production, calcium signalling, MAPKs (MITOGEN-ACTIVATED 

PROTEIN KINASE) phosphorylation and gene transcription, eventually leading to defence 

responses, such as callose and lignin deposition or phytoalexin production (Lee et al., 2019; Li et 

al., 2016). 

Yet, plant PRRs equally perceive MAMPs from commensal or beneficial microbes, which are part 

of the normal plant rhizosphere. Whereas MTI is associated with growth inhibition (Chinchilla et 

al., 2007; Gómez-Gómez and Boller, 2000), a plethora of publications have established a growth 

promoting action of the soil microbiome (Berendsen et al., 2012). It therefore becomes 

particularly interesting to understand how roots accommodate a rhizosphere community, while 

avoiding a constant activation of PRRs and the growth-defence trade-off that comes with it. 

Many researchers have argued that the growth inhibition can be overcome by the ability of 

commensal microorganisms to supress plant immunity (Yu et al., 2019b). In addition, it was 

recently shown that the root has an inherently dampened MTI until it encounters damage, which 

locally boosts immune responsiveness (Zhou et al., 2020). 

Indeed, root immune responses are generally lower than in the shoot, often because of an 

absence or low abundance of PRRs (Beck et al., 2014; Faulkner and Robatzek, 2012). 

Interestingly, plants restrict their defence to regions considered vulnerable. These coincide with 

regions where protective endodermal barriers are absent or broken, such as in the elongation 

zone and at the lateral root emergence sites. It is also where bacteria are found to preferentially 
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accumulate (Beck et al., 2014; Bulgarelli et al., 2013; De Coninck et al., 2015; Faulkner and 

Robatzek, 2012; Millet et al., 2010; Poncini et al., 2017; Zhou et al., 2020). 

Here, we set out to address the relevance of spatially limited responses. Wyrsch et al. (2015) 

ectopically expressed FLS2 under tissue-specific promoters and their data suggested that all root 

tissues were competent to mount an immune response provided that FLS2 is expressed, 

although the nature of the tissue had a large influence on the strength of the innate immunity 

responses. Yet, the immune read-outs used in this work were at whole-plant or organ-level 

resolution and did not allow the authors to ascertain from which cell-type responses were 

originating, or whether responses were cell-autonomous, regional or systemic. Specifically, 

MAMP-induced ROS production, as well as cytosolic calcium increases, are known to act in a 

paracrine, even systemic fashion (Dubiella et al., 2013; Gilroy et al., 2014, 2016; Marhavý et al., 

2019). Calcium waves were reported to initiate in the root elongation zone and to spread across 

tissues after flg22 treatment (Keinath et al., 2015; Stanley et al., 2018), opening the possibility 

that MAMP responses are induced in cell layers far away from the site of perception. 

To address this issue, we combined new fluorescent markers lines with cell-type-specific FLS2 

receptor lines. These marker lines use a triple mVenus fluorochrome coupled to a nuclear 

localisation signal (prom::NLS-3xmVenus). Combining concatemerisation with nuclear 

concentration generates high sensitivity and allows for a clear cellular assignment, not 

achievable with cytosolic, ER or PM-localised markers. These lines now enable us to observe 

damage and defence responses with cellular resolution, adding a crucial layer of complexity to 

our analyses (Marhavý et al., 2019; Poncini et al., 2017; Vermeer et al., 2014; Zhou et al., 2020). 

We also added fluorescence-based markers that have been used for assessing cytosolic calcium 

changes triggered by flg22 at single cell resolution (Thor and Peiter, 2014). 

This has allowed us to manipulate and quantitatively map defence responses at cellular 

resolution in the root. Our approach revealed the presence of regions refractory to FLS2 

presence, as well as others which are super-competent. We show that inappropriate FLS2 

expression has drastic impact on root development, affecting growth, cell wall composition and 

cell viability. To assess the impact of FLS2 misexpression in response to natural microbiota, we 

use our super-competent lines in the presence of commensal bacteria, normally not detected 
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by wild-type plants. We demonstrate stimulation of FLS2 directly by native, bacteria-derived 

flagellin and reveal the importance of spatial restriction of immune responses in order to 

adequately balance growth and defence. 

Results 

Tissue-specific expression of FLS2 

In order to analyse the ability of the different root tissues to respond to flg22, we used lines 

expressing FLS2 under cell-type-specific promoters in an fls2 mutant background (Wyrsch et al., 

2015). We selected lines expressing FLS2-GFP driven by three different tissue-specific 

promoters: WEREWOLF for epidermis (WER::FLS2), CASPARIAN STRIP DOMAIN PROTEIN 1 for 

endodermis (CASP1::FLS2), and SHORT-ROOT for inner cell layers (SHR::FLS2). As controls, we 

monitored FLS2-GFP driven by the constitutive promoter UBIQUITIN 10 (UBQ10::FLS2) and by 

the native FLS2 promoter (FLS2::FLS2). As described previously, endogenous FLS2 expression 

was observed principally in the differentiated stele (Beck et al., 2014) (Fig.1A) but also weakly in 

all tissues from the elongation to the differentiated zone, as well as in root cap cells (Zhou et al., 

2020) (Fig.1B). WER::FLS2, by contrast, was strongly expressed in the epidermis of the 

meristematic zone (Fig.1), as predicted (Lee and Schiefelbein, 1999), with some weak signal in 

the older cortex (elongation zone) (Fig.S1A). In agreement with its established expression 

(Benfey et al., 1993; Helariutta et al., 2000), we detected SHR::FLS2 in the stele close to the 

meristem (Fig.1), but also faintly in the neighbouring endodermis, suggesting that either FLS2 

proteins or mRNAs move through plasmodesmata (Fig.S1D). CASP1::FLS2 had the predicted 

exclusive expression in differentiated endodermis (Fig.1, S1B) and UB10::FLS2 was detected in 

all tissues throughout the root, from meristem to differentiation zone (Fig.1, S1C). 
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Figure 1: Tissue-specific promoters drive FLS2 receptor expression ectopically 
(A) Tile scan of fls2 roots complemented with GFP-tagged FLS2 receptor under epidermal (WER::), 
endodermal (CASP1::), central cylinder (SHR::) and ubiquitous (UBQ10::) promoters. For comparison, 
endogenous FLS2 expression is shown in FLS2::FLS2-GFP Ws-0 lines. Root shape is highlighted with PI 
staining cell wall (PI, red). Scale bar, 100μm. Developmental regions of the roots are labelled: differentiated 
zone (DZ), elongation zone (EZ), meristematic zone (MZ). (B) Close up view of FLS2-GFP expression at 
selected regions of the complemented lines. FLS2 driven by its endogenous promoter is expressed in all 
tissues in the differentiated zone (DZ). Note that in contrast to previous report, low FLS2 expression is 
observed in epidermis and cortex (white arrow). In the meristem (MZ), WER promoter expresses FLS2 
specifically in epidermis (ep) and root cap (rc), SHR promoter in the stele (st) and endodermis (en). In the 
differentiated zone (DZ), FLS2 is expressed in all tissues under UBQ10 promoter, but is restricted to 
endodermis with CASP1 promoter. FLS2-GFP (BlueGreen) is co-visualized with PI-stained cell wall (red). 
Separated and overlaid channels (right column) are presented. Scale bar, 25μm. ep, epidermis; c, cortex; 
en, endodermis; st, stele; rc, root cap cells. 
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Ectopic FLS2 expression alters MTI response patterns  

We crossed our selection of FLS2 lines with two typical MTI transcriptional markers, PEROXIDASE 

5 (PER5) and MYB DOMAIN PROTEIN 51 (MYB51), and generated homozygous lines at all three 

loci (marker, prom::FLS2 and fls2). As control, we used the two markers in wild-type Col-0 

background. Markers were chosen for their strong response to flg22 and their divergent 

response patterns (Poncini et al., 2017; Wyrsch et al., 2015; Zhou et al., 2020). In addition, we 

developed a pipeline using tissue-specific quantitative analysis, for measuring and comparing 

MTI responses in an unbiased fashion (Fig. S2). For this, we additionally introduced ubiquitous 

nuclear markers (UBQ10::NLS-mTurquoise or UBQ10::NLS-tdTomato) in all our genotypes, which 

allows to call all nuclei as separate, individual 3D Regions-of-Interests (ROIs), even those with 

weak or absent MTI-response. After mock or flg22 treatment and fixation, cell-wall-stained roots 

were imaged at three different zones of the root: Meristem (MZ), Elongation (EZ) and 

Differentiation (DZ). Each nucleus was automatically detected as a 3D object and the obtained 

nuclei object maps were then combined to the cell wall marker channels to manually curate and 

assign each nucleus to a tissue. Once the selected nuclei were assigned, mean intensity for each 

cell type per zone per treatment per genotype were calculated and colour coded for the 

generation of a quantitative MTI-response atlas for each prom::FLS2 line (Fig.S2, values in 

Fig.S4). 

Our cell-specific quantification and microscopic analysis confirmed that PER5 is not expressed in 

absence of flg22 treatment (Fig.2A, 2BC), but that MYB51 presents a basal, flg22-independent 

expression in the epidermis and root cap cells of the undifferentiated tissues (MZ and EZ) and in 

the stele and the cortex of the DZ (Fig.S3A, S3C). In wild-type plants, both MAMP markers are 

strongly induced in the EZ, recapitulating previous observations (Fig.2A and S3A) (Millet et al., 

2010; Poncini et al., 2017; Zhou et al., 2020). Specifically, PER5 is triggered almost exclusively in 

the elongating epidermis and root cap cells (Fig.2B, 2C, 2D). MYB51 induction is restricted to 

these same tissues close to the meristem, but induction expands to cortex and pericycle cells in 

the later root (Fig.S3C, S3D). 
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Figure 2: PER5 marker gene is induced cell-autonomously by flg22 treatment 
(A) Overview of PER5::NLS-3mVenus marker response to flg22 in different FLS2 recombinant lines. Tile scan 
images of 1μM flg22 treated plants versus mock. Pictures were taken with similar settings. Settings were 
always identical between mock and corresponding flg22 treatment. Region of responsiveness is modified 
by the different expression patterns of FLS2. Brackets indicate responsive regions. For SHR, close-up view 
was generated with increased brightness to highlight stellar signal (white arrow). Scale bar, 100μm. (B) 
Maximal projection of transverse sections views of PER5 expression pattern in UBQ10:: and WER::FLS2-GFP 
fls2 compared to WT shown for meristematic zone (MZ), elongation zone (EZ) and differentiated zone (DZ, 
30 cells after start of elongation). Seedlings were treated for 24h with 1μM flg22. Note the refractory region 
in the central cylinder in UBQ10::FLS2 (white arrows). Nuclear localized mVenus signal (yellow) was co-
displayed with propidium iodide cell wall marker (PI, purple). Images were taken with similar settings, but 
corresponding mock and flg22 treatment pictures for each zone separately always have identical 
parameters. Note that epidermal signal in flg22-treated wild-type seedlings is faint (EZ, black arrow), due 
to settings chosen to avoid saturation of signal in the transgenic lines. Compare to Fig.2C, WT. Scale bar, 
25μm. (C) Maximal projection of transverse section views of PER5::NLS-3mVenus expression pattern in 
CASP1:: and SHR::FLS2-GFP fls2 as well as WT and fls2 control. White arrows point at ectopic response in 
the endodermis. Images were acquired as in Fig.2B., with similar settings between genotypes, but with 
identical parameter for corresponding mock and flg22 treatment. Pictures were acquired with increased 
gain compared to Fig.2B due to lower average signal intensity. Scale bar, 25μm. (D) Quantitative map of 
PER5::NLS-3mVenus responses inferred from tissue specific quantification after 24h treatment with 1μM 
flg22. Nuclear signals were quantified in ROI delimited with UBQ10::NLS-mTurquoises2 for all tissue-specific 
promoter lines, while wild-type (WT) signal was quantified with UBQ10::NLS-tdTomato marker. Mean 
intensity is therefore comparable between prom::FLS2-GFP fls2 lines, but not to wild-type. 

For both markers, changing expression of FLS2 had an obvious impact on the pattern of 

responses. Rather than remaining restricted to the elongation zone, PER5 and MYB51 induction 

largely follows the ectopic FLS2 expression pattern. The defence markers extend to the whole 

root in UBQ10::FLS2, while they are restricted to the DZ or the MZ in CASP1::FLS2 and WER::FLS2, 

respectively (Fig.2A and S3A). As expected, the fls2 mutant does not respond to flg22 in any 

tissue. 

PER5 responds only in the differentiated endodermis in the CASP1::FLS2 recombinant line, which 

matches with the very specific expression pattern of CASP1 promoter. For WER::FLS2 line, the 

PER5 response also follows FLS2 expression. We could quantify a strong response in root cap 

cells and the meristematic epidermis, extending until the early DZ, as well as in cortex cells, 

where we could also detect FLS2 protein (Fig.2B, 2C, 2D, S1A). In contrast to PER5, we detected 

MYB51 response to flg22 not only in cells expressing FLS2, but also some degree of induction in 

neighbouring cells (Fig. S3B, S3C, S3D). Intensity ratio between flg22 and mock treated plants 

were calculated and represented graphically in Fig.S5. Non-cell-autonomous responses were 

obvious for MYB51 in the DZ of CASP1::FLS2. Although FLS2 is specifically expressed in the 
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endodermis, we could barely detect any MYB51 responses in this tissue, while the neighbouring 

stele and cortex cells strongly up-regulated MYB51 (Fig.S3C, S3D, S5). Similarly, flg22 treatment 

led to MYB51 expression not only in the epidermis and cortex, but also in central tissues in 

WER::FLS2. Thus, we concluded that MYB51 induction by MAMPs is controlled by non-cell 

autonomous mechanisms, in contrast with the strict cell-autonomy of PER5 and FRK1 (this work 

and Zhou et al., 2020). 

FLS2 expression is insufficient to cause flg22-responses in the vascular meristem 

Intriguingly, some tissues were also completely refractory to flg22-triggered responses. Despite 

a clear presence of FLS2 in the vascular meristem (Fig.1B), flg22 treatment did not trigger PER5 

or MYB51 in SHR and UBQ10::FLS2 lines (Fig.2, S3), except for some weak MYB51 induction in 

meristematic pericycle cells in UBQ10::FLS2 (Fig.S3D, S5). We conclude that flg22-induction of 

MYB51 in the pericycle is due to a non-cell autonomous signal from outer cell layers. Thus, 

central meristematic tissues differ from outer tissue layers in their competence to respond to 

flg22 in the presence of receptor. 

Ca2+ waves are non-cell autonomous responses 

Cytosolic Ca2+ increases are among the earliest responses upon MAMP perception, preceding 

transcriptional changes (Jeworutzki et al., 2010; Seybold et al., 2014). In roots, Ca2+ influx after 

flg22 perception was shown to spread across tissues (Keinath et al., 2015). However, since many 

cells express some degree of FLS2 in wild-type, it is impossible to dissect to what extent such 

waves represent a non-cell autonomous propagation of the Ca2+ signalling, or are due to flg22 

diffusion and direct stimulation of the different tissue layers and regions. We therefore 

introduced the intensity-based Ca2+ reporter R-GECO1 in our transgenic lines (Keinath et al., 

2015). We observed in WER::FLS2 that, like in WT (Movie 1 and 6), calcium signals initiate in the 

epidermis and spread to inner tissues (Fig.3AB, Movies 2 and 7). Since the receptor was not 

expressed in central tissues, this clearly demonstrates the non-cell autonomous nature of FLS2-

stimulated calcium signalling. This spreading of Ca2+ could be observed in all recombinant lines 

tested, with the intriguing feature that wave direction could be manipulated – i.e. in both  
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Figure 3: Ca2+ waves are non-cell autonomous responses 
(A) Ca2+-dependent signal in the prom::FLS2-GFP fls2 lines in response to 1.25μM flg22. Time series of 
UBQ10::R-GECO1 fluorescence: pictures are longitudinal middle sections of roots at the elongation zone 
(EZ) or differentiated zone (DZ). Time 0:00 corresponds to the start of flg22 treatment. White arrows point 
at tissues showing a strong increase in Ca2+ content. Scale bar, 25μm. (B) Normalized R-GECO1 fluorescence 
intensity (ΔF/F) measured in tissue-specific ROIs. Values present the dynamics of Ca2+ cytosolic 
concentration in response to flg22 in the root shown in (A) for each tissue type. Black arrows point at the 
maximum intensity of the trace. Grey background corresponds to flg22 treatment.  
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CASP1::FLS2 and SHR::FLS2 lines, the wave started first in the endodermis then spread to outer 

and inner tissues (Fig.3CD, Movie 8 and 9). Moreover, in these two lines, the wave starts in the 

differentiated zone rather than in the elongation zone (Movies 3 and 4). When FLS2 was 

expressed in all tissues under UBQ10 promoter, all tissues respond almost simultaneously 

(Fig.3E, Movie 5 and 10). Taken together, while transcriptional read-outs are largely cell-

autonomous, with some degree of tissue-specificity, cytosolic calcium increases represent a 

non-cell autonomous signalling branch. This implies that even cells that are neither exposed to 

MAMPs, nor possessing perception capacity, are nonetheless rapidly receiving some sort of 

stress signal in the form of a calcium wave. 

Epidermal meristematic expression of FLS2 leads to flg22 hypersensitivity and meristem 

collapse 

As demonstrated above, FLS2 ectopic expression can profoundly alter the pattern of immune 

responses in the root. To test whether this change affects root development, we assessed root 

length of seedlings transferred on flg22-containing medium. As expected, treated wild-type 

plants showed only a mild reduction in root length. By contrast, the root length of the 

constitutive, overexpressing UBQ10::FLS2 line was strongly reduced with additionally stunted 

shoot development (Fig.4A and 4B). More surprisingly, a strong root length inhibition was also 

observed in the WER::FLS2 line, although this lines expresses FLS2 only in young epidermal and 

root cap cells. SHR::FLS2 and CASP1::FLS2, by contrast, showed root growth similar to wild-type. 

In order to precisely identify the tissue responsible for root growth inhibition, we generated two 

additional prom::FLS2 lines using the RCH1 (RECOGNITION OF C.HIGGINSIANUM) and PRP3 

(PROLINE-RICH PROTEIN 3) promoters (Marquès-Bueno et al., 2015). RCH1 is expressed in the 

whole meristem, while PRP3 is expressed strongly in differentiating root hair cells (Fig.S1E). 

While PER5 induction followed the expression of FLS2 in both lines (Fig. S1GH), only RCH1::FLS2 

presents an increased root growth inhibition (Fig.S1F), whereas PRP3::FLS2 responds as wild-

type (Fig.S1I). Therefore, we conclude that it is the expression of FLS2 in meristematic epidermal 

cell layers that causes hypersensitive root growth inhibition in response to flg22. Indeed, when 

comparing the pattern of PER5 expression between wild-type and WER::FLS2 at high resolution, 

it is evident that only the meristematic epidermal cells show strong PER5 induction in WER::FLS2,   
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Figure 4: Epidermal meristematic expression of FLS2 leads to flg22 hypersensitivity and meristem 
collapse 
(A) Flg22 treatment increases root growth inhibition in WER::FLS2 hypersensitive line. Root length 
quantification of prom::FLS2-GFP fls2 lines transferred on 1μM flg22 for 6dpi. Boxplot centre represents 
the median (n=23 to 28 roots). Different letters indicate statistically significant difference between means 
by Kruskal-Wallis test and Dunn’s multiple comparison. (B) Representative pictures of seedlings transferred 
for 6 days on 1μM flg22. Scale bar, 1cm. (C) Flg22 induces strongly PER5::NLS-3mVenus in the epidermis of 
WER::FLS2-GFP fls2 hypersensitive line. On the right, maximum projection of z-stacks taken in root tips of 
plants treated for 24h with 1μM flg22 or mock. Schematic represents the depth of the z-stack. Pictures 
were taken with identical settings. Scale bar, 25μm. (D) WER::FLS2-GFP fls2 hypersensitivity is specific to 
flg22. WER::FLS2-GFP fls2 and wild-type plants were treated for 24h with either 1μM elf18, 2μg/ml chitin, 
1μM 3-OH-C10:0 or 1μM AtPep1. Maximum projection of z-stacks taken in root tips. PER5 induction is 
highlighted with mVenus (Fire LUT). Parameters were identical for mock and treatment. Scale bar, 25μm. 
(E) Treatment of WER::FLS2-GFP fls2 for 2 days with 1μM flg22 induces meristem swelling and lignin 
deposition. Upper panel shows median projection of calcofluor white stained cell wall in the transition zone 
of the root tip (blue). Note bulky cells of the epidermis (white arrowhead). Lower panel presents maximum 
projection of lignin deposition stained with basic fuchsin (red). Lignin accumulates between cells only in 
WER::FLS2-GFP fls2 after flg22 treatment. Scale bar, 25μm. (F) Cross-section of pictures in (E). Cell wall 
stained with calcofluor white (blue) is co-visualized with lignin stained with basic fuchsin (red). Flg22 
treatment induces massive swelling of cortex cells (white arrowheads) only in WER::FLS2-GFP fls2. Lignin is 
principally deposited between epidermal and cortex cells. Epidermal cells are pushed apart by the swelling 
cortex and are sometimes missing. Scale bar, 25μm. (G) Epidermal view of plasma membrane visualized by 
the construct UBQ10::mScarlet-SYP122 in WER::FLS2-GFP fls2. Cell division is disorganized after 1μM flg22 
treatment. Scale bar, 25μm. (H) Inhibition of monolignol synthesis does not rescue meristem flg22-driven 
increased root growth inhibition of WER::FLS2-GFP fls2. Root growth measured after overnight pre-
treatment with 10uM PA inhibitor followed by 36h 1μM flg22 combined to 10μM PA treatment. Boxplot 
centre represents the median (16 <= n <= 27). Different letters indicate statistically significant difference 
(p<0.05) between means by Kruskal-Wallis test and Dunn’s multiple comparison. (I) Flg22 induces meristem 
swelling despite inhibition of monolignol by PA treatment. Pictures taken from samples quantified in (H). 
Upper panel shows median projection of calcofluor white stained cell wall in the transition zone of root tip 
(blue). Lower panel presents maximum projection of lignin deposition stained with basic fuchsin (red). 
White arrowheads points at examples of bulky cells. Scale bar, 25μm. 

whereas root cap cells show flg22 responsiveness in both lines. This suggests that MTI in 

epidermal cells is the cause of super-competent response (Fig. 4C). Importantly, neither the 

MAMPs elf18, chitin or the LPS fragment 3-OH-C10:0, nor Atpep1 showed enhanced PER5 in 

WER::FLS2 (Fig.4D). This demonstrates that ectopic FLS2 expression does not cause a global 

upregulation of responsiveness to MAMPs, but specifically affect flg22 signalling. 

Interestingly, treatment of WER::FLS2 super-competent line with flg22 induces profound 

morphological changes in the root, not observed in wild-type. After two days of treatment, cells 

reaching the transition zone start to swell and division patterns become disorganized, giving rise 

to bulky meristem shapes (Fig.4E, upper panel, 4G). Virtual cross-sections revealed that cortex 
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cells expand tremendously, dislocating epidermal cells (Fig.4F). Thus, precise spatial regulation 

of FLS2 expression levels is necessary to avoid severe growth inhibition caused by flg22-induced 

disorganized cell expansion in the meristem. 

FLS2 ectopic expression leads to cell-autonomous, flg22-triggered lignin deposition 

MTI is known to modify cell wall composition, such as callose deposition or lignification (Chezem 

et al., 2017; Lee et al., 2019; Millet et al., 2010). Indeed, lignin or suberin depositions are long-

known damage and immune responses (Bernards, 2002; Hijwegen, 1963; Kamula et al., 1994; 

Messner and Boll, 1993; Ranathunge et al., 2008; Thomas et al., 2007), but have not been widely 

adopted in modern studies on MTI (Lange et al., 1995; Mandal and Mitra, 2007), see (Chezem 

et al., 2017; Lee et al., 2019) for exceptions. 

Interestingly, we found that flg22 treatment induced strong lignification from transition to 

differentiated zone in WER::FLS2 (Fig. 4E and S6A). Lignin was deposited between epidermis and 

cortex cells, mainly at the corners (Fig. 4F). In younger regions, lignin was also found between 

epidermis and root cap cells. All other recombinant lines also showed lignin deposition following 

their respective FLS2 expression pattern, except in the stele, matching the absence of PER5 

response in these tissues (Fig.S6B). Interestingly, no lignin deposition could be observed in flg22-

treated wild-type roots (Fig.4E, S6), fitting with previous reports (Chezem et al. (2017). It is 

intriguing to speculate that PER5, ROS-production and other flg22-responsive genes, categorised 

as ”oxidative stress” response genes (Tognolli et al., 2002), are actually part of a lignification 

response that stays below a productive threshold in wild-type, but pivots into a full lignification 

upon flg22-stimulation of FLS2 overexpression lines. 

The stronger root growth inhibition observed in the super-competent WER::FLS2 line could be 

due to the impact of lignin deposition in the transition zone. To test if cell wall reinforcement by 

lignin prevents cell division and elongation, we inhibited lignin formation with the monolignol 

synthesis inhibitor piperonylic acid (PA), expecting to restore root growth (Fig. 4I). Nevertheless, 

even in the absence of lignin, WER::FLS2 still showed root meristem collapse and stronger RGI 

than wild-type (Fig. 4H).  
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Suberin lamellae deposition after flg22 treatment is an endodermis-specific response 

Ectopic lignin deposition occurs in the endodermis as a compensatory mechanism for deficient 

Casparian strip formation, and is often followed by suberin lamellae deposition (Doblas et al., 

2017). We wanted to assess whether the overactivation of MTI could trigger the deposition of 

suberin in cells expressing FLS2. In wild-type untreated plants, suberin is usually present in the 

endodermis only, starting in the late differentiation zone by patches (“patchy zone”), then 

progressing to a fully suberized zone (Andersen et al., 2015, 2018). 

In wild-type, suberin was not induced by flg22 (Fig.5AB). In contrast, lines expressing FLS2 in the 

endodermis, such as CASP1::, SHR:: and UBQ10::FLS2, showed increased endodermal 

suberization, leading to a complete disappearance of the patchy zone (Fig. 5B). Earlier 

suberisation is not simply due to earlier differentiation of endodermal cells due to growth arrest, 

since WER::FLS2 still conserved a normal proportion of patchy and suberized zone despite its 

shorter root length. Reversely, CASP1:: and SHR::FLS2 root growth was not affected by flg22, but 

suberin formed nevertheless much earlier. Therefore, flg22 can induce suberization only when 

expressed in the endodermis. This endodermis-specific suberisation is a nice demonstration of 

a flg22 response that only occurs in a specific cellular context. 

Super-competent WER::FLS2 line can detect native bacterial flagellin 

The strong impact of flg22 on WER::FLS2 root growth and cell wall modification prompted us to 

evaluate whether commensal bacteria would have a similar effects. Indeed, plants that mount 

ectopic defences in sensitive tissues might suffer from the presence of usually harmless bacteria 

and tip the balance between growth and defence. The model commensal/beneficial 

Pseudomonas protegens CHA0 does not induce MTI responses in wild-type plants, except at high 

concentration or if the root is wounded (Zhou et al., 2020). However, when inoculated on 

WER::FLS2 line, a very evident PER5 induction could be observed, although no synthetic flg22 

peptide was added (Fig.6A). This experiment is therefore a first clear example, where a flg22 

response is caused by actual, living bacteria. This flagellin must be released and processed into 

FLS2-binding smaller peptides (Buscaill et al., 2019). 
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Figure 5: Suberin deposition is triggered by flg22 when endodermal cells expressed FLS2 
(A) Quantification of suberized zone length in seedlings treated for 1 day with 1μM flg22 (18 <= n <= 27). 
Data of two replicates were pooled. Roots regions were classified as suberized, patchy and unsuberized 
zones. Error bars represent standard error (SE). Different letters indicate statistically significant differences 
amongst lines for the specified zone (p<0.05). Multiple comparison was performed using ANOVA and 
Tukey’s tests for the suberized zone, whereas Kruskal-Wallis and Dunn’s tests were used multiple 
comparison of patchy and non-suberized zones. (B) Whole root views of suberin lamellae deposition in 
CASP1:: and UBQ10::FLS2-GFP fls2 lines compared to wild-type after 1μM flg22 treatment vs mock. Suberin 
was stained with fluorol yellow. White arrowheads start of patchy zone; yellow arrowheads, start of fully 
suberized zones. Scale bar, 1mm. 

To confirm that the induction of PER5 was caused by native, bacterial flg22, we infected 

seedlings with a CHA0 mutant defective for fleQ, required for the induction of flagellum 

development (Arora et al., 1997; Kupferschmied, 2015), as well as fliC, coding for the flagellin 

protein (Yamaguchi et al., 1984). In contrast to the wild-type strain, ΔfleQ and ΔfliC mutants 

could not trigger any response in WER::FLS2, demonstrating that defences are induced by the 

direct FLS2-mediated detection of bacteria-derived flagellin molecules (Fig.6A). We then 

assessed the impact of CHA0 bacteria on root growth. Surprisingly, despite its induction of PER5, 

CHA0 did not significantly enhance root growth inhibition in WER::FLS2 compared to wild-type 

(Fig.6B). One explanation would be that some commensal bacteria are able to attenuate the 

excessive MAMP-triggered immune responses in WER::FLS2, thus avoiding root growth 

inhibition and deleterious defence responses (Garrido-Oter et al., 2018; Pel and Pieterse, 2013). 

Indeed, Ma et al. (2020) were unable to observe any growth phenotype of WER::FLS2 plants 

grown in non-sterile soil. Interestingly, they reported that 41% of root commensals can suppress 

MAMP-triggered root growth inhibition in mono-associations.  
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Bacterial community members have diverse impact on WER::FLS2 

In order to obtain a more comprehensive picture of how WER::FLS2 affects responses to 

bacteria, we screened a set of 34 bacterial isolates from the At-SPHERE culture collection of 

Cologne (Bai et al., 2015) for both induction of PER5 marker and enhanced root growth inhibition 

in WER::FLS2 compared to wild-type lines. We selected isolates to represent bacteria from all 

phyla, with a bias towards bacteria predicted to possess a flg22 peptide sequence recognised by 

the FLS2 receptor (Fig.6C, Table S1) (Garrido-Oter et al., 2018). Amongst the 17 strains predicted 

to be recognized by FLS2 based on their sequence, only 10 triggered an enhanced PER5 marker 

induction in WER::FLS2. Moreover, five additional strains, without a predicted recognizable flg22 

sequence, had the same effect. This underlines the problematic of predicting flg22 activity from 

sequence and the potential of the WER::FLS2 line to rapidly test experimentally, whether a 

native bacterial flg22 can be detected by the plant. 

Although half of bacterial isolates could induce PER5 marker specifically in the WER::FLS2 line, 

only 5 of them affected WER::FLS2 root growth more strongly than WT, though often with great 

variation (Fig.6C, Table S1). However, Pseudomonas isolate R569 caused strongly enhanced 

PER5 induction (Fig.6D) and root growth inhibition compared to WT (Fig.6E). This effect was very 

robust and was repeatedly observed both in Lausanne and Cologne laboratory growth 

conditions (Fig.S7C). We demonstrated that commercial, synthetized flg22 from Pseudomonas 

aeruginosa as well as from isolate R569 (flg22R569) similarly induced PER5 marker expression and 

inhibited root growth. These effects were abrogated in the fls2 mutant background (Fig.S7B). 

We conclude that the commensal R569 isolate induces MTI responses in the WER::FLS2 line 

through its native flg22 peptide, which then causes an unbalancing of growth and defence not 

observed when the bacterium grows on wild-type roots. 
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Figure 6: WER::FLS2 line detects endogenous bacterial flg22 

(A) CHA0 bacteria trigger a strong induction of PER5::NLS-3mVenus marker (Fire LUT) on WER::FLS2-GFP 
fls2. Mutants ΔfliC and ΔfleQ defective for flagellum lose their ability to induce detectable MTI. ΔfliC mutant 
was confirmed by motility assay (see Fig.S7D). Maximum projection of z-stacks imaging meristematic (MZ) 
and elongation (EZ) zones treated with drop inoculation of bacterial solution of a concentration of OD600 = 
0.01 or mock, respectively. Images were acquired at 1dpi. Acquisition done with identical settings. Scale 
bar, 25μm. (B) CHA0 do not induce consistently increased root growth inhibition in WER::FLS2-GFP fls2. 
Root growth was quantified at 6 dpi on plate inoculated with bacteria at OD600 = 10-3. Different letters 
indicate statistically significant differences (p<0.05). Multiple comparison was performed using ANOVA and 
Tukey’s test. (C) Proportion of natural isolates from At-SPHERE culture collection triggering stronger 
PER5::NLS-3mVenus induction and increased root growth inhibition (RGI) on WER::FLS2-GFP fls2 compared 
to wild-type seedlings (yes), or not (no). Bacteria classified in “variable” presented contradictory results 
between replicates. Bacteria flg22 sequence was predicted to be recognized by FLS2 (flg22 predicted) or 
not (flg22 not predicted). Numbers of bacterial isolates in each category are indicated in colour. Grey 
surfaces indicate identical bacteria strains. (D) Pseudomonas isolate R569 from At-SPHERE culture 
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collection triggers strong PER5::NLS-3mVenus (Fire LUT ) induction on WER::FLS2-GFP fls2. Seedlings were 
imaged after one-day treatment with OD600 = 0.01. Maximum projection of z-stacks at meristematic zone 
(MZ) and elongation zone (EZ). Scale bar, 25μm. (E) Isolate R569 induces a robust increased root growth 
inhibition on WER::FLS2-GFP fls2 compared to wild-type plants. High concentration of bacteria (OD600 = 0.1) 
is deleterious to both genotypes. Root growth was quantified at 6 dpi on plate inoculated with bacteria at 
OD600 = 10-1 to 10-4. Different letters indicate statistically significant differences (p<0.05). Multiple 
comparison was performed using Kruskal-Wallis and Dunn’s test. 

Discussion 

It is not understood why only a restricted subset of root tissues can directly respond to MAMPs 

in the absence of other stimuli (Millet et al., 2010; Poncini et al., 2017; Zhou et al., 2020). The 

combination of tissue-specific receptor expression and cellular resolution read-outs presented 

here provides insights into the consequences of altering the spatial patterns of MTI in roots. Our 

work reveals three important features of MAMP responses. 

First, different MTI responses are highly tissue-specific and varying in cell-autonomy. Suberin, 

for example, is only induced in the endodermis. While PER5 induction is strictly cell autonomous, 

MYB51 and calcium signals are found in cell lacking FLS2 receptor. It will be important to 

describe larger numbers of response genes for a comprehensive view of MTI. Cell-type specific 

transcriptomic analysis can complete our understanding of tissue-specific immune pathways 

(Rich-Griffin et al., 2020). Our prom::FLS2 lines coupled to transcriptional read-outs can now 

help to distinguish cell-autonomous responses from indirect activation by MTI. 

Secondly, we found that the vascular meristem is refractory to flg22 even when expressing FLS2 

receptor. The seemingly contradictory finding in Wyrsch et al. (2015) can be explained by the 

whole-organ read-outs used, as well as use of LBD16::FLS2, thought to be stele-specific, but that 

we found to also slightly express in other tissues (Fig.S1J). Lack of downstream signalling 

components or increased activity of negative regulators could both be responsible for the stele’s 

inability to respond to flg22. The vascular meristem might be particularly vulnerable to an 

activation of defence as it contains early-differentiating phloem providing nutrition and 

hormones to the growing meristem. 

Finally, we observed root regions that can be rendered super-competent by FLS2 expression. 

We speculate that epidermal meristematic cells are not responsive in wild-type (Millet et al., 
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2010; Zhou et al., 2020), because only the outer root cap cells can mount MAMP responses that 

are not detrimental to meristem function. This might be linked to the particular fate of root cap 

cells that enter apoptosis once they reach the transition zone (Fendrych et al., 2014; Kumpf and 

Nowack, 2015) and excrete mucilage and secondary metabolites influencing root microbiota 

(Bulgarelli et al., 2013; Kumpf and Nowack, 2015). By contrast, epidermal cells might only 

maintain a competency to respond, if root cap damages by pathogens or other stresses induce 

FLS2 expression. Indeed, we clearly showed that constitutive expression of FLS2 in the 

meristematic epidermis leads to drastic changes in the root structure upon flg22 treatment in 

ways that could be detrimental to growth. 

Though lignification upon actual bacterial infection is well documented (Lee et al., 2019; 

Nicholson and Hammerschmidt, 1992; Vance et al., 1980), treatment with single MAMP was 

rarely seen to stimulate root lignin deposition (Adams-Phillips et al., 2010; Chezem et al., 2017; 

Robertsen, 1986; Smit and Dubery, 1997). Here we show that strong FLS2 expression reveals the 

capacity of MTI responses to modify cell walls, probably overriding endogenous negative 

feedbacks that prevent this from happening in wild-type. This provides an opportunity to study 

MTI-induced lignification in a simplified and reproducible setting. Interestingly, ectopic corner 

lignification together with defence genes induction are also observed in response to CIF2 

peptide treatment in the endodermis (Alassimone et al., 2016; Doblas et al., 2017; Fujita et al., 

2020, 2020; Pfister et al., 2014), suggesting the developmental SCHENGEN pathway shares 

similarities with MTI responses. Nevertheless, lignification is only partly explaining the severe 

root growth inhibition we observe. Other factors produced in response to flg22 might also 

interfere with meristem function, such as basic coumarins (Stringlis et al., 2019a), which inhibit 

cellulose, resulting in meristem swelling similar to the one observed on WER::FLS2 (Hara et al., 

1973). 

Our work also reveals that overexpression of a single PRR in a competent, but otherwise non-

responsive cell-type, bypasses the absence of visual immune responses to commensal bacteria 

(Garrido-Oter et al., 2018; Millet et al., 2010; Yu et al., 2019a; Zhou et al., 2020). Though bacteria 

can also inhibit MTI (Couto and Zipfel, 2016; Yu et al., 2019b), MAMPs produced by rhizosphere 

bacteria might often be too low in concentration to activate MTI responses in the first place. 
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Therefore, roots might appear largely unresponsive to bacterial presence without additional 

stresses (Zhou et al., 2020). The obvious root growth phenotype triggered by MTI in WER::FLS2 

lines proves to be a powerful tool to investigate the effect of commensals on root immune 

responses. Our super-competent lines have allowed for the first time to directly observe 

stimulation of FLS2 by a native flagellin peptide from an avirulent bacterium. Generally, the 

cocktail of elicitors that bacteria are thought to release prevent assignment of a MAMP response 

to an individual MAMP (Tang et al., 2017). The WER::FLS2 line now generates a cell type that 

responds only to a single MAMP and can test predictions about flg22 peptide detectability, 

release and processing. Extending our approach, the ectopic overexpression of potential PRR 

receptors in the epidermal meristem cells could be used to functionally pair novel receptors and 

ligands.  

It has become evident that immune responses cannot be understood without taking into 

consideration the specificities of different cell type and developmental stages. Our data 

establishes the necessity for the plant to spatially restrict its immune response. This spatial 

allocation of defence capacities might in turn influence the microbial colonization pattern of the 

rhizosphere. The new tools presented will pave the way for a better understanding of bacterial 

community structures in roots. 
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Material and methods 

Plant material 

Arabidopsis thaliana ecotype Columbia Col-0 was used for most experiments. The T-DNA line 

FLS2 was obtained from NASC (SALK_062054C) and originally described in (Zipfel et al., 2004). 

The recombinant WER::FLS2-3myc-GFP, CASP1::FLS2-3myc-GFP, SHR::FLS2-3myc-GFP, 

UBQ10::FLS2-3myc-GFP, LBD16::FLS2-3myc-GFP in fls2 (SAIL691_C04) background, as well as 

FLS2::FLS2-3myc-GFP in Wassilewskija Ws-0 background were provided by Prof. Thomas Boller’s 

group (Robatzek et al., 2006; Wyrsch et al., 2015). The defence marker lines PER5::NLS-3mVenus 

and MYB51::NLS-3mVenus are described in (Poncini et al., 2017). Calcium signalling analysis was 

carried out thanks to the line UBQ10::R-GECO1 kindly shared by Prof. Melanie Krebs’s group 

(Keinath et al., 2015). 

PER5::NLS-3mVenus and MYB51::NLS-3mVenus lines were crossed to the four recombinant lines 

WER::, CASP1::, SHR:: and UBQ10::FLS2-3myc-GFP fls2 lines as well as to the fls2 mutant. In 

addition, UBQ10::R-GECO1 was first crossed to fls2 mutant, then the resulting homozygous line 

was crossed again to the four recombinant lines (WER::/CASP1::/SHR::/UBQ10::FLS2-3myc-GFP 

fls2), so that F1 could be directly used for experiments. For quantification of tissue-specific 

nuclear signal, the constructs UBQ10::NLS-mTurquoise or UBQ10::NLS-tdTomato were 

transformed by floral dipping method in all PER5::/MYB51::NLS-3mVenus marked prom::FLS2-

3myc-GFP fls2, fls2 and wild-type lines (Clough and Bent, 1998). In addition, RCH1::FLS2-GFP, 

PRP3::FLS2-GFP and GRP::FLS2-GFP were transformed in fls2 (SALK_062054C). 
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Plant growth conditions 

For all experiments, seeds were surface-sterilized by gaseous chlorine for 2.5 hours or immersed 

in a solution of 70% EtOH 0.01% Triton-X-100 for 5 min, washed once in 96% EtOH and dried 

under sterile conditions. Seeds were stratified in the obscurity for 2 days, then germinated on 

1% agar plates containing half-strength Murashige and Skoog (½ MS) medium and 500mg/l MES 

(Duchefa). Seedlings were grown vertically for 5 days before analysis (otherwise differently 

specified) in continuous light at 23°C. 

For experiments done in Cologne, seeds were sown on 1% Bacto-Agar supplemented with ½ MS 

with 250mg/l of MES. Seedlings were grown in a light cabinet with short day conditions (10h 

light-14h dark, 21°/19°C, 65% relative humidity). 

Bacterial strains and growth conditions 

Pseudomonas protegens strain CHA0 used in this study is a tobacco root isolate with plant-

beneficial activities (Stutz et al., 1986). CHA0 mutants ΔfliC and ΔfleQ carrying in-frame deletions 

in the fliC and fleQ genes, respectively, were generated using the suicide vector pEMG and the 

I-SceI system (Kupferschmied, 2015; Martínez‐García and Lorenzo, 2011) adapted to P. 

protegens (Kupferschmied et al., 2014) with plasmids and primers listed in Supplemental Table 

S2. The Pseudomonas R569 and other natural commensal bacterial isolates were obtained from 

the At-SPHERE culture collection (Bai et al., 2015). CHA0 strains and commensal isolates were 

routinely cultured at 28°C in, respectively, lysogeny broth (LB) medium (1% tryptone, 0.5% yeast 

extract and 1% NaCl) or half-strength tryptic soy broth (TSB) (Sigma-Aldrich). 

Plant plasmid construction 

Generation of expression constructs was performed with both In-Fusion Advantage PCR Cloning 

Kit (Clontech) and Gateway Cloning Technology (Invitrogen). 

For nuclei labelling with blue fluorochrome, used for quantification, UBQ10::NLS-mTurquoise2 

was generated by triple Gateway recombination reaction using the entry clones pDONR P4-

pUBQ10-P1R (Zhou et al., 2020), pDONR P1-NLS-mTurquoise2-P2 and pDONR P2R-2R3e-nosT-

P3 (Siligato et al., 2016) with the destination vector pK7m34GW,0 containing a kanamycin 

resistance gene for plant selection. For the red version of nuclei labelling, the plasmid 
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UBQ10::NLS-tdTomato was used for its FastRed in plantae selection system. Briefly, pDONR P4-

pUBQ10-P1R (Zhou et al., 2020) and pDONR P1-NLS-tdTomato-P2 were combined with the 

destination vector pFR7m24GW by double Gateway reaction. pDONR P1-NLS-tdTomato-P2 was 

previously generated using in-Fusion cloning to integrate the NLS sequence to pDONR P1-

tdTomato-P2. 

RCH1::FLS2-GFP, PRP3::FLS2-GFP and GRP::FLS2-GFP were generated combining the respective 

entry clones pDONR L4-pRCH1-R1 and L4-pPRP3-R1 (SWELL lines)(Marquès-Bueno et al., 2015), 

or pDONR L4-pGRP-R1 (Andersen et al., 2018), with pDon207 containing the L1-FLS2-3xmyc-

GFP-L2 sequence (Wyrsch et al., 2015), in the destination clone pH7m24GW,3. 

Elicitors and inhibitors treatments 

Commercial flg22Pa peptide from Pseudomonas aeruginosa (QRLSTGSRINSAKDDAAGLQIA) was 

ordered from EZBioLab. Elf18 oligopeptide from Escherichia coli strain GI826 (Ac-

SKEKFERTKPHVNVGTIG), A. thaliana Plant Elicitor Peptide 1, AtPEP1 (ATKVKAKQRGKE 

KVSSGRPGQHN) and flg22R569 peptide (NRLSTGKKINSAKDDAAGMQIA) from the isolate 

Pseudomonas R569 were synthesized by Peptide Specialty Laboratories GmbH. (±)-3-

Hydroxydecanoic acid (3-OH-C10:0) and chitin were obtained from Sigma-Aldrich. All elicitors 

were dissolved in deionized MilliQ sterile water at the respective stock concentration of 1mM 

for flg22Pa, flg22R569, elf18, AtPep1 and 3-OH-C10:0; and 2mg/ml for chitin. For the inhibition of 

monolignol synthesis, piperonylic acid (PA, Sigma-Aldrich) was dissolved in absolute EtOH at a 

concentration of 20mM for stock solution. 

For elicitor treatments, chemicals were diluted in liquid half strength MS medium (½ MS) to the 

indicated concentration. Seedlings were grown vertically for 4 days on small ½ MS petri dishes 

(5.5cm diameter), then 1.5ml of elicitor solution was gently poured over the seedlings to avoid 

damages induced by transfer. Care was taken that all roots were properly submersed. Seedlings 

were incubated horizontally for 24h before live imaging analysis of 5-day-old plants or fixation. 

For root growth analysis, 5day-old seedlings were carefully transferred on new ½ MS agar plates 

containing 1μM flg22Pa or flg22R569 and grown vertically for 6 days in standard growth conditions. 
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For combined treatment with PA and flg22, Col-0 and WER::FLS2 seedlings were grown for 4 

days on ½ MS plates, then were transferred on agar plates supplemented with 10μM PA or 

ethanol as control. To overcome PA degradation by light but still conserve proper root growth 

in control conditions, plates were inserted in black boxes open to the top, allowing roots to grow 

in the obscurity but leaves to reach the light. Roots were hidden from top light using black sterile 

plastic caches. After overnight pre-treatment, seedlings were again transferred on plates 

containing 10μM PA/EtOH with/without 1μM flg22/mock, using the same black boxes. Their 

root tip location was recorded. 48h after the first transfer, root growth was measured and 

seedlings were fixed as described. 

Microscopy settings and image processing 

Imaging was performed on either a Zeiss LSM880, LSM700 or a Leica SP8 inverted confocal 

scanning microscope. Pictures were taken with a 63x oil immersion objective (Zeiss LSM880), 

63x water immersion objective (Leica SP8), 40x water immersion objective (Leica SP8), as well 

as 20x or 10x dry immersion objectives for tile-scan with 10% overlap (Zeiss LSM880 or LSM700). 

The excitation and detection windows were set as following: for visualisation of FLS2 and 

defence markers, on Leica SP8, GFP/PI (488nm, 500-530nm and 600-670nm); GFP/mVenus/PI 

(488nm, 490-508nm; 514nm, 517-560nm and 600-670nm, sequential scan), on Zeiss LSM880, 

GFP/PI(488nm, 500-530nm and 600-650nm respectively), mVenus (514nm, 520-550nm). For 

lignin analysis: on Zeiss LSM880, calcofluor (405nm, 425-475nm), basic fuchsin (561nm, 600-

650nm). For cell-specific quantification: on Zeiss LSM880, DirectRed 23/mVenus/mTurquoise2 

(561nm, 580-700nm; 514nm, 520-590nm; 458nm, 460-500nm; sequential scan) and 

Calcofluor/mVenus/tdTomato (405nm, 415-450nm; 514nm, 520-545nm; 561nm; 570-640nm, 

sequential scan). For calcium analysis: Zeiss LSM880, R-GECO1 (561nm, 580-640nm). For suberin 

staining: on Zeiss LSM700, fluorol yellow (488nm, 500-600nm). 

Images were processed using the Fiji software. For cross-section maximum projection of MAMP-

induced signal (Fig.2B, 2C, S3B, S3C), z-stack pictures were resliced then realigned thanks to the 

Descriptor-based series registration (2d/3d + t) plugin. A maximum projection of the MAMP 

marker channel was then merged to a representative single stack of the PI-stained cell wall 

channel. 
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Fixation and staining 

Fixation and cell-wall staining were performed according to adapted Clearsee protocol (Kurihara 

et al., 2015; Ursache et al., 2018). Briefly, 5-day-old seedlings were fixed for 1h at room 

temperature under vacuum in 4% paraformaldehyde PBS solution, using 6-well plates, then 

washed twice for 1min with PBS. Once fixed, seedlings were cleared in Clearsee solution for at 

least 24h under mild shaking. To visualize cell wall for quantification, clearing solution was 

exchanged with either 0.1% Calcofluor White or 0.1% Direct Red 23 in Clearsee solution. After 

at least respectively 30min and 2h of staining, the staining solution was removed and samples 

rinsed once in fresh Clearsee solution, then washed for 30min in a renewed Clearsee solution 

with gentle shaking before mounting. 

For combined cell wall and lignin staining, fixed and cleared samples were incubated overnight 

in a Clearsee solution supplemented with 0.2% Basic Fuchsin and 0.1% Calcofluor White. Once 

the dye solution removed, samples were rinsed once, washed firstly 30min then at least 1.5h 

before observation. 

Cell-specific quantification 

To realize the complete atlas of defence marker responses, the different prom::FLS2 lines 

analysed were first transformed with UBQ10::nls-mTurquoise2 to delimit nuclei. Alternatively, 

wild-type PER5:: and MYB51::NLS-3Venus lines were transformed with UBQ10::nls-tdTomato, 

which comprise a FastRed rather than a Kanamycin selection. This allowed to quantify directly 

the T1 and skip one generation. After flg22 treatment, seedlings were fixed in Clearsee and their 

cell wall stained with DirectRed23, or Calcofluor White respectively. Z-stack were imaged on half 

section of the roots at 4 different positions, i.e. meristematic zone (MZ), elongation zone (EZ), 

12 cells and 30 cells after the onset of elongation for 3 to 6 roots by treatment (mock and flg22) 

and by genotype. Three channels were acquired sequentially for the nuclei (mTurquoise2 or 

tdTomato), the cell wall (DirectRed23 or Calcofluor White) and the defence markers PER5 and 

MYB51 (mVenus), using the same settings on all pictures for mVenus channel. However, wild-

type UBQ10::NLS-tdTomato and prom::FLS2 UBQ10::NLS-mTurquoise2 were imaged with 

distinct settings due to difference of intensity of the nuclei-labelling constructs. Pictures were 

processed on FiJi software with a custom batch macro automatizing the following pipeline 
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(Schneider et al., 2012). Images were first resliced from the top, then the three channels were 

separated. A Gaussian blur was applied on the nuclear and cell wall marker channels, while the 

PTI marker channel was left untouched to not affect the signal to measure. In a second step, the 

cell wall channel was subtracted to the nuclear channel to reduce the unspecific background 

noise of the UBQ10::nls-mTurquoise2 marker. The “cleaned” nuclear marker channel was 

transform to 8 bits to facilitate further processing. 

We then used the 3D suite to generate a 3-dimensional Region Of Interest (ROI) for each nucleus 

(Ollion et al., 2013). We first applied the plugin 3D iterative thresholding on the 8bits-cleaned-

nuclear marker channel (Gul-Mohammed et al., 2014). In this process, all possible thresholds 

are tested, which will detect objects for all thresholds. Subsequently, the algorithm will define 

the best object segmentation for each of the object, which means that different objects can be 

segmented with different threshold. This is particularly useful to detect objects with variable 

intensity in an uneven background, to which a single intensity threshold would either miss many 

objects or include background noise. We used the following settings: min vol pix = 250, max vol 

pix = 10000, min threshold = 0, min contrast (exp) = 5, criteria method = COMPACTNESS, 

threshold method = STEP, Segment results = All, value method = 10.0, Starts at mean = on. The 

plugin gives as output the 3D threshold delimiting all the future ROIs, i.e. the nuclei to quantify. 

It must be noted that depending on the pictures, some nuclei can be missed, or false positive 

can be added, but all pictures were then manually curated in a later step. The output came as 2-

channels-images, whose last channel is completely black and can be removed by the splitting 

channel function. 

We then use the 3D object counter plugin to define all ROIs, based on the 3D threshold obtained 

previously, and to redirect the analysis on the defence marker channel (Bolte and Cordelières, 

2006). Options were set using the 3D OC Options as following: all parameters were selected, i.e. 

“Volume”, “Nb of Obj. voxels”, “Nb of Surf. voxels “, “Integrated Density”, “Mean Gray Value”, 

“Std Dev Gray Value”, “Median Gray Value”, “Minimum Gray Value”, “Maximum Gray Value”, 

“Centroid” “Mean distance to surface”, “Std Dev distance to surface”, “Median distance to 

surface”, “Centre of mass”, and “Bounding box”. In addition, we ticked both parameters “Close 

original images while processing” and “Show masked image. The maps’ parameters were set as 

139



 
 

follows: dots size = 5, font size = 12, “Show numbers” and “White numbers” were ticked. 

Importantly, the “Results Table Parameters” should be set on: “Store results within a table 

named after the image”, which allows to keep track of the files in batch mode. Finally, the 

measures were “Redirected to” the defence marker channel. After setting all the parameters, 

the analyse “3D Object Counter” was run. Threshold was set to 1 and minimum size filter to 10. 

The following maps and result tables were asked to be shown: objects, centroids, statistics, 

summary. 

The process gives in output four different files. The “Centroid map” shows the centre of each 

ROI by a dot, numbered accordingly. The “Object map” is the representation of all ROIs, each of 

them being numbered. Our macro merges this map to both the cell wall marker channel and the 

nuclei channel for later identification of nuclei. The 3D Object counter also provides a .csv file 

called “Statistics” with all parameters measured for each nucleus. The last file provided is the 

“Masked image”, which represent the defence marker channel masked by the threshold. 

To terminate the quantification, each data set was manually curated to assign a tissue 

(epidermis, cortex, endodermis, stele or root cap) to each nucleus. A maximum of around 20 

nuclei by tissue type and by picture were identified. “Mean Gray Values” was extracted and use 

for analysis. Mean nuclear intensity for each genotype, treatment, root region and tissue were 

calculated and colour coded using the heatmaply() function in R (heatmaply library). Atlas maps 

were drawn according to these coloured values. Fold changes for MYB51 induction were 

calculated and colour-coded using the same procedure. 

Ca2+ imaging on roots and quantification 

For calcium responses analysis, UBQ10::R-GECO1 samples were mounted as follows. Seedlings, 

once at a time, were glued to a large (60mm) coverslip previously sprayed with medical adhesive 

(Adapt Medical Adhesive Spray, Hollister). A silicon isolator (Grace Bio-Labs Press-to-seal silicon 

isolator, No PSA, 20mm diameter, Sigma) was then quickly placed around the seedling and 600µl 

of sterile germination medium (0.75mM CaCl2, 1mM KCl, 0.25mM Ca(NO3)2•4H20, 1mM 

MgSO4•7H20, 0.2mM KH2PO4, 50μM NaFe(III)EDTA, 50μM H3BO3, 5μM MnCl2•4H20, 10μM 

ZnSO4•7H20, 0.5μM CuSO4•5H20, 0.1μM Na2MoO3, pH adjusted to 5.6 with NaOH) was dropped 

on the root. The drop was spread with a pipet tip to cover the whole surface delimited by the 

140



 
 

silicon isolator and the seedling let to rest for at least 20min. For full root imaging, tile scans 

combined to time laps were performed under Zeiss LSM880 confocal laser scanning microscope 

with 20x objective as described above. As few tiles as possible were selected to limit time 

acquisition, no averaging was done, and pinhole was entirely open. Images were taken 

continuously, with an average time interval of 5 to 7 seconds. Acquisition of baseline signal was 

performed for 5min, then 7.5μl of 100μM flg22 diluted in water was added to the germination 

medium solution. Acquisition was continued for at least 20min. For tissue-specific imaging and 

quantification, small z-stack (~ 8 slices) with 5μm intervals were taken on half a root in the 

elongation zone for wild-type and WER::FLS2 samples, or in the differentiated zone for 

CASP1::/SHR::/UBQ10::FLS2. 

R-GECO1 signal was quantified for each tissue on the z-stack acquisition. ROIs delimiting a tissue 

type were drawn manually on the most appropriate stack (i.e. that presents a clear surface view 

if possible), using maximum projection of 2 stacks when necessary. 

Fractional fluorescence changes ΔF/F were calculated for each ROI from background corrected 

intensity values as (F-F0)/F0, where F0 is equal to the average fluorescent intensity of the baseline 

of the measure, on 4 min from t=0. 

Suberin staining 

To highlight suberin lamellae, seedlings were fixed and stained with the methanol-based fluorol 

yellow staining protocol as described in (Fujita et al., 2020). Samples were imaged using the Zeiss 

LSM700 as described above.  

Bacterial root inoculation assays  

PTI assays were performed by drop inoculation on agar plates. Briefly, 2μl of bacterial 

suspension (cells centrifuged and resuspended in fresh LB or 50% TSB for CHA0 and R569, 

respectively) of OD600 = 0.01 was added to the tip of 5-day-old seedlings. Once the drop dried, 

seedlings were grown vertically in standard conditions for 1 to 3 days. For the fast screening of 

bacterial isolates, roots were observed under a Leica DM 5500B epifluorescence microscope 

(GFP lamp). Representative pictures of roots were imaged using confocal scanning microscopy 

(Leica SP8) after a short wash in deionized H2O. 
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Root growth inhibition assays were completed on agar plates inoculated with bacteria at 

mentioned concentrations. Briefly, bacterial cultures were grown as previously described in 50% 

TSB, then centrifuged and resuspended in fresh medium. OD600 was measured and adjusted to 

100x the desired concentration. 500μl of concentrated bacterial inoculum was then added to 

50ml of semi solid ½ MS medium afore cooled down to around 30°C. Inoculated media were 

gently mixed by inverting several times, then poured in square petri dishes. Five-day-old 

WER::FLS2 and wild-type Col-0 seedlings previously grown on mesh (15mm x 100mm, on top of 

the plate), were transferred with sterile forceps on the inoculated plates. Seedlings were 

selected for similar root size, the ones being obviously too long or too short removed from the 

mesh with sterile toothpicks. After transfer, root tip locations were marked for keeping track of 

growth, then plants were grown in standard conditions for 6 days. One day post-inoculation, 

root tip positions were again recorded, and all seedlings that completely stopped to grow were 

dismissed from the analysis. This ensured that only seedlings that recovered properly from the 

transfers were considered. Plates were scanned at 6 dpi and root growth measured using Fiji 

plugins “Simple Neurite Tracer” (Frangi et al., 1998). 

Swimming assay 

Overnight culture of CHA0 and DfliC adjusted to OD600 = 0.1. Ten microliters of this bacterial 

suspension were spotted at the centre of a NA plate. Bacterial motility was observed after 24 

hours of incubation at 25 °C. 

Statistical analysis 

Statistical analyses were done using R3.6.0 or Graphpad Prism 7.0 software 

(https://www.graphpad.com/). For multiple comparison, ANOVA followed by Tukey’s Honestly 

Significant difference (HSD) test were applied when linear model assumptions were met. On the 

contrary, Kruskal-Wallis test followed by Dunn’s multiple comparison test were performed. For 

analysis of suberization along the roots, comparisons were performed for each zone separately, 

and different letters indicates significant differences for a given zone (a, b, c or a’, b’, c’ or a’’, 

b’’, c’’). 
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Supplemental Figure S1: Expression pattern of prom::FLS2 complementing fls2. 
(A) WER::FLS2-GFP expression. WER promoter expressed principally FLS2 in epidermal cells, but some weak 
signal can be observed in cortex (black arrowheads). Picture of wild-type plants taken with identical setting 
(EZ-wt) is showed for comparison (cortical cell, white arrowhead). (B) CASP1::FLS2-GFP is expressed 
exclusively in endodermal cell line in early and later differentiated zones (15 cells respectively 30 cells after 
onset of elongation). (C) UBQ10::FLS2-GFP is expressed in all tissue types in every region of the root. (D) 
SHR::FLS2-GFP is expressed strongly in the stele of the meristem then decreases in intensity in later regions. 
Some weak signal can be detected in endodermal cells (black arrowheads). Picture of wild-type plants taken 
with identical setting (DZ-wt) is shown for comparison (endodermal cells, white arrowheads). Close-up view 
of dashed squared box is found in (a). FLS2-GFP (visualized by ICA and Thermal LUTs) is merged with cell 
wall stained by PI (white). White arrowheads point at endodermal cells expressing weakly FLS2. (E) RCH1 
promoter expresses FLS2 in the meristem, PRP3:: in the root hair cells and GRP:: in the pericycle cells. FLS2-
GFP (green) is co-visualized with PI-stained cell wall (magenta). (F) Flg22 treatment increases root growth 
inhibition in WER:: and RCH1::FLS2-GFP fls2 hypersensitive line only. Root length quantification of 
prom::FLS2-GFP fls2 lines treated with 1μM flg22 for 2 days. Boxplot centre represents the median (5 <= n 
<= 14). Different letters indicate statistically significant difference between means by 2-ways ANOVA and 
Tukey’s multiple comparison. (G) Maximal projection PER5::NLS-3mVenus marker (Fire LUT) in RCH1::FLS2-
GFP fls2 compared to WT shown for MZ. Seedlings were treated for 24h with 1μM flg22. Images were taken 
with identical settings. White arrow, epidermal signal. (H) Maximal projection PER5::NLS-3mVenus marker 
(Fire LUT) in PRP3::FLS2-GFP fls2 compared to WT shown for MZ. Seedlings were treated for 24h with 1μM 
flg22. Images were taken with identical settings. (I) Maximal projection PER5::NLS-3mVenus marker (Fire 
LUT) in GRP::FLS2-GFP fls2 compared to WT shown for the DZ. Seedlings were treated for 24h with 1μM 
flg22. Images were taken with identical settings. (J) LBD16 promoter expresses FLS2-GFP in all tissues in the 
differentiated zone (DZ). Note that in contrast to previous report, FLS2 is present in epidermis, cortex and 
endodermis (white arrows) in addition to the stele. Meristematic zone (MZ), elongation zone (EZ), 
differentiation zone (DZ). Scale bar, 25μM.  
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Supplemental Figure S2: Quantification procedure 
(A) Z-stack images with 3 channels (red: cell wall, blue: UBQ10::NLS-mTurquoise/tdTomato, yellow: 
PER5/MYB51::NLS-3mVenus) were taken from 4 different regions of the root (meristematic zone, 
elongation zone, 12 cells and 30 cells after onset of elongation), for 3-6 seedlings by treatment by genotype. 
(B) Each Z-stacks are resliced to get cross-section view. The three channels are separated (C) and a Gaussian 
blur filter is applied on the cell wall and the MTI marker channel (D). Blurred cell wall channel is then 
subtracted from blurred nuclear marker channel to remove non-nuclear background (E). The obtained 
cleaned nuclear channel is then converted to 8-bit and a 3D iterative thresholding is performed to delimit 
ROI for each nuclei (F). The 3D object counter plugin is then used to measure the mean signal intensity of 
each nuclei delimited by the obtained ROIs in the MTI marker channel. The plugin gives as output a .csv file 
with the measured values, a masked image of the PTI marker channel and an object map, delimiting the 
identified nuclei (G). The object map is then coupled to the original cell wall marker to define the tissue 
origin of each nuclei (H). Each map was then reviewed manually to assign 20 nuclei for each cell type and 
to complete .csv files (I). Average of the mean signal intensity of each nuclear tissue-specific signal were 
calculated, transformed into log10 and colour coded using the heatmaply() function in R (J). Boxplots were 
generated to represent signal variability (K). 
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Supplemental Figure S3: MYB51 marker is induced non cell-autonomously by flg22 treatment 
(A) Overview of MYB51::NLS-3mVenus response to 1μM flg22 after 1 day in different prom::FLS2-GFP fls2 
lines. MYB51 zone of responsiveness follows FLS2 expression pattern. Tile scan images were taken with 
similar settings. Settings are always identical between mock and corresponding flg22 treatment. Brackets 
indicate zone of responsiveness. Scale bar, 100μM. (B) Maximal projection of transverse sections views of 
MYB51 expression pattern in UBQ10:: and WER::FLS2-GFP fls2 compared to WT shown for meristematic 
zone (MZ), elongation zone (EZ) and differentiated zone (DZ, 30 cells after start of elongation). Seedlings 
were treated for 24h with 1μM flg22. Nuclear localized mVenus signal (yellow) was co-displayed with 
propidium iodide cell wall marker (PI, purple). Images were taken with similar settings, while corresponding 
mock and flg22 treatment pictures for each zone separately have identical parameters. Pictures were 
acquired with low gain compare to Fig.S2C due to strong average intensity of UBQ10:: and WER::FLS2-GFP 
fls2 responses, explaining the faint signal in WT (white arrowheads). Scale bar, 25μm. (C) Maximal 
projection of transverse sections views of MYB51::NLS-3mVenus expression in CASP1:: and SHR::FLS2 as 
well as WT and fls2. MYB51 expression pattern stay conserved (epidermis-cortex-stele), but intensity is 
increased in neighbourhood of cells expressing FLS2, such as in cortex in CASP1::FLS2-GFP fls2 or stele in 
SHR::FLS2-GFP fls2 (white arrowheads). Imaged were acquired as Fig.S2B., with similar settings between 
genotypes, while corresponding mock and flg22 treatment pictures have identical parameters. Due to 
lower average signal intensity, pictures were acquired with increased gain compare to Fig.2B. Scale bar, 
25μM. (D) Quantitative map of MYB51::NLS-3mVenus responses inferred from tissue-specific 
quantification after 24h treatment with 1μM flg22. Nuclear signals were quantified in ROI delimited with 
UBQ10::NLS-mTurquoises2 for all tissue-specific promoter lines, while wild-type (WT) signal was quantified 
with UBQ10::NLS-tdTomato marker. Mean intensity is comparable between prom::FLS2-GFP fls2 lines but 
not to wild-type. Note the constitutive signal present in untreated seedlings. 
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Supplemental Figure S4: PER5 and MYB51 tissue-specific quantification values 
Boxplots for mean intensity of PER5::NLS-3mVenus (A-F) and MYB51::NLS-3mVenus (A’-F’) marker 
calculated from tissue-specific nuclear signals for (A) wild-type plants, (B) fls2 mutant, (C) WER::FLS2-GFP 
fls2, (D) CASP1::FLS2-GFP fls2, (E) SHR::FLS2-GFP fls2 and (F) UBQ10::FLS2-GFP fls2. Boxplot centre 
represents the median. MZ, meristematic zone; EZ, elongation zone; 15c, 15 cells after onset of elongation; 
30c, 30 cells after onset of elongation; rc, root cap; epi, epidermis; cor, cortex; endo, endodermis; ste, stele.  
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Supplemental Figure S5: Tissue-specific quantification of MYB51 fold change  
Log2 transformed fold change of intensity of MYB51::NLS-3mVenus in WT, fls2 and the different 
prom::FLS2-GFP fls2 lines. Pattern of induction of MYB51 changed between the different lines but increased 
signal is not restricted to tissue expressing FLS2 (stars). Note that MYB51 can be induced in the stellar 
meristem in UBQ10::FLS2 but not in SHR::FLS2 (!). MZ, meristematic zone; EZ, elongation zone; 15c, 15 cells 
after onset of elongation; 30c, 30 cells after onset of elongation; rc, root cap; epi, epidermis; cor, cortex; 
endo, endodermis; ste, stele.  
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Supplemental Figure S6: Lignin deposition is a cell-autonomous process 
(A) Maximum projection showing lignin deposition stained by basic fuchsin in the meristematic zone (MZ) 
and the differentiated zone (DZ) of the different prom::FLS2-GFP fls2 lines after 1 day treatment with 1μM 
flg22. While neither wild-type nor fls2 roots show lignin deposition outside of the xylem and the 
endodermal Casparian strip barrier, WER:: and UBQ10::FLS2-GFP fls2 lines deposit lignin in both MZ and 
DZ. In contrast, CASP1:: and SHR::FLS2-GFP fls2 lignified heavily the DZ only. Black arrowheads, Casparian 
strip. White arrowheads, ectopic lignin deposition. Scale bar, 25μM. (B) Cross section of z-stack presented 
in (A). Cell wall stained with calcofluor (blue) is co-visualized with lignin stained with basic fuchsin (red). 
WER::FLS2-GFP expression drives lignin deposition between cortex and epidermal cells in DZ, and between 
epidermal cells and root cap in MZ. This pattern is also observed in UBQ10::FLS2, but extends to cortex and 
endodermis in DZ. Both CAPS1:: and SHR:: deposit lignin ectopically between cortex and endodermal cells 
after flg22 treatment. White arrowheads, ectopic lignin. Black arrowheads, Casparian strip. Scale bar, 
20μM.  
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Supplemental Figure S7: Flg22 from bacterial isolate Pseudomonas R569 is recognized by WER::FLS2 
(A) flg22R569 triggers a strong induction of PER5::NLS-3mVenus marker (Fire LUT) on WER::FLS2-GFP fls2 
compared to wild-type plant, but the detection is abolished in the fls2 mutant. Maximum projection of z-
stacks imaging meristematic (MZ) and elongation (EZ) zones treated for 1 day with 1uM flg22R569. 
Acquisition done with identical settings. Scale bar, 25μm. (B) flg22R569 inhibits root growth weakly on wild-
type (WT) and strongly on WER::FLS2-GFP fls2 in the same extent than commercial flg22 for P. aeruginosa. 
Seedlings were transferred for 7 days on plates containing 1uM flg22, flg22R569 or mock. Boxplot centre 
represents the median. Different letters indicate statistically significant difference (p<0.05) between means 
by 2-ways ANOVA and Tukey’s multiple comparison tests. (C) Bacterial isolate R569 induces stronger root 
growth inhibition on wild-type seedlings (WT) than on WER::FLS2-GFP fls2. Replicate carried out in Cologne 
with different growth conditions (see material and methods). Five-days old seedlings were transferred for 
11 days on plate containing bacteria at a concentration of OD600 = 0.01. Boxplot centre represents the 
median. Different letters indicate statistically significant difference (p<0.05) between means by ANOVA and 
Tukey’s multiple comparison tests. (D) Motility assay for CHA0 and its ΔfliC mutant. 
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Supplemental Tables 

 

Number 

At- SPHERE Phylum Class Order Family Genus 

flg22 

predicted3 

MTI 

WER>WT 

RGI 

WER>WT 

Root 1464 Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae  no no no 

Root 227 Actinobacteria Actinobacteria  Actinomycetales  Microbacteriaceae   no no/yes no 

Root 935 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium no no no 

Root 444D2 Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus no  yes no 

Root 342 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Caulobacter no -a no 

Root 700 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae  no - no 

Root 105 Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae  no - no 

Root 1471 Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae  no -a no 

Root 482 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium no no no 

Root 954 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium no no no 

Root 142 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium no no no 

Root 50  Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas yes no no 

Root 1294 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas yes no no 

Root 710 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas yes no no 

Root 241 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas yes no/yesb no 

Root 1497 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingopyxis yes no no 

Root 214 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingopyxis yes yes no/yes 
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a not tested: bacteria did not grow in drop inoculation experiment 
b induction of PER5 in differentiated zone for both WT and WER::FLS2-GFP fls2 
c Garrido-Oter et al. (2018) 

Root 154 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae  yes yes no/yes 

Root 83 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter yes no no 

Root 170 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter yes yes no/yes 

Root 565  Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter yes yesb no 

Root 473 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Variovorax yes no no 

Root 568 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  no no no 

Root 1221  Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  yes no/yes no 

Root 29 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  yes no no 

Root 16D2 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  yes no/yes no 

Root 209 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  yes yes no 

Root 401 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas no no no 

Root 562 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas no yes no 

Root 9 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas no yes yes 

Root 569 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas no yes yes 

Root 68 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas yes yes no 

Root 71 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas yes yes no 

Root 179 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Rhodanobacter no nob no 
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Supplemental Table S2: Primers and plasmids used for bacterial mutagenesis. 

Name Sequence / plasmid characteristicsa Reference 

 

Primers 

  

   

fleQ-1 CGGGATCCATTGAAGAAACCCGTGAGGC Peter Kupferschmied (2015) 

fleQ-2 CCCAAGCTTTAAAATCACCGCCAGGTCGCG Peter Kupferschmied (2015) 

fleQ-3 CCCAAGCTTTGACGCCGGTTTTTCAAGTCTTTG Peter Kupferschmied (2015) 

fleQ-4 GGAATTCATTTCATGGCCATCGTCTTCGCG Peter Kupferschmied (2015) 

fliC-1 ATAACAGGGTAATCTGAATTatgaatcagctagagcctgt this study 

fliC-2 ccagctattacatgacgaattcctcgttg this study 

fliC-3 attcgtcatgtaatagctggctaagctttggc this study 

fliC-4 CCGGGTACCGAGCTCGAATTtcaggccttggcact this study 

fliC_check_F gacttcgcagatccgtgg this study 

fliC_check_R aactgcggtcgaagcttg this study 

 

Plasmids 

  

pEMG Expression vector; oriR6K, lacZα with two flanking I-

SceI sites; KmR, ApR 

Martínez‐García, E., and  

Lorenzo,V. de (2011) 

pSW-2 oriRK2, xylS, Pm::I-sceI; GmR Martínez‐García, E., and  

Lorenzo, V. de (2011) 

pME8323 pEMG::ΔfleQ; suicide plasmid for the in-frame 

deletion of fliC (PPRCHA0_1656) 

Peter Kupferschmied (2015) 

pME11121 pEMG::ΔfliC; suicide plasmid for the in-frame 

deletion of fliC (PPRCHA0_1651) 

this study 

a: Gmr, gentamicin resistance; Kmr, kanamycin resistance.  
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Supplemental Videos Titles 

Movie 1: Treatment of UBQ10::R-GECO1 in WT background with 1.25uM flg22 – overview 

Movie 2: Treatment of UBQ10::R-GECO1 WER::FLS2-GFP fls2 with 1.25uM flg22 – overview 

Movie 3: Treatment of UBQ10::R-GECO1 CASP1::FLS2-GFP fls2 with 1.25uM flg22 – overview 

Movie 4: Treatment of UBQ10::R-GECO1 SHR::FLS2-GFP fls2 with 1.25uM flg22 – overview 

Movie 5: Treatment of UBQ10::R-GECO1 UBQ10::FLS2-GFP fls2 with 1.25uM flg22 – overview 

Movie 6: Treatment of UBQ10::R-GECO1 in WT background with 1.25uM flg22 – zoom in 

elongation zone 

Movie 7: Treatment of UBQ10::R-GECO1 WER::FLS2-GFP fls2 with 1.25uM flg22 – zoom in 

elongation zone 

Movie 8: Treatment of UBQ10::R-GECO1 CASP1::FLS2-GFP fls2 with 1.25uM flg22 – zoom in 

differentiated zone 

Movie 9: Treatment of UBQ10::R-GECO1 SHR::FLS2-GFP fls2 with 1.25uM flg22 – zoom in 

differentiated zone 

Movie 10: Treatment of UBQ10::R-GECO1 UBQ10::FLS2-GFP fls2 with 1.25uM flg22 – zoom in 

differentiated zone 
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3.4. APPENDICES 

Although the above manuscript described the spatial regulation of flg22-driven 

immunity using only three recombinant lines, we first started which a much broader set of 

promoters, that we refined as the project progressed. For length restriction, this work will 

not be published, but will be presented in the following section in addition to 

complementary experiments that did not fit in the final manuscript. 

3.4.1. GENERATION OF NEW TISSUE-SPECIFIC PROM::FLS2-GFP LINES 

As the project started, we wanted to use cell-type specific promoters to drive FLS2 

in different tissues. Not all recombinant lines published by Wyrsch et al. (2015) fit this 

criterion. Thus, LBD16 (LATERAL ORGAN BOUNDARIES-DOMAIN 16) and PGP4 (P-

GLYCOPROTEIN 4) promoters, which should express FLS2 in the stele and the epidermis, 

respectively, displayed weak unspecific FLS2 expression in all root tissues and were 

discarded (Emonet et al., 2020). The SCR (SCARECROW) promoter drove FLS2 expression 

principally in the meristematic endodermis, as expected (Fukaki et al., 1998), but also 

faintly in the cortex (App.6A). Similarly, the ELTP (ENDODERMAL LIPID TRANSFER 

PROTEIN) promoter expressed FLS2 in the endodermis and in the cortex to a lesser extent 

(App.6B) (Barberon et al., 2016).  

To extend our prom::FLS2 lines collection, I selected tissue-specific promoters 

from previously available collections (Marquès-Bueno et al., 2015) (App.6C). GLYCIN-RICH 

PROTEIN (GRP) promoter was chosen to express FLS2 in the xylem pole pericycle cells 

(Andersen et al., 2018). Our list of endodermal promoters was completed with GLYCEROL-

3-PHOSPHATE SN-2-ACYLTRANSFERASE 5 (GPAT5) and SCHENGEN 3 (SGN3), which are 

active in suberized and early endodermis, respectively (Beisson et al., 2007; Pfister et al., 

2014). PEP promoter was chosen to express FLS2 in the cortex (Mustroph et al., 2009). In 

addition, I picked PIN-FORMED 2 (PIN2) and PROLIN-RICH PROTEIN 3 (PRP3) as specific 

epidermal promoter. Finally, FLS2 was also expressed under the meristematic promoters 

Q12, WUSCHEL RELATED HOMEOBOX 5 (WOX5) and RCH1 (Lee et al., 2006; Marquès-Bueno 

et al., 2015; Narusaka et al., 2004; Sarkar et al., 2007). Most of them expressed FLS2 as 

planned (App.6C). WOX5 and Q12 promoters expressed FLS2 in the quiescent centre, RCH1 

had a broad expression pattern in the complete meristem. PIN2 expressed FLS2 in the cortex 
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and the epidermis, but its signal was less regular than other promoters so was not displayed 

here. 

To compare the expression pattern of defences between the different recombinant 

lines and the normal expression of FLS2, we used wild-type plant background as controls. 

However, a more appropriate control would have been to express FLS2-GFP under its own 

promoter. The FLS2::FLS2-GFP line published was complementing the Ws-0 background, a 

fls2 mutant. Therefore, I also cloned the FLS2 promoter (short version) with FLS2-GFP in 

fls2 Col-0 background. In contrast to FLS2::FLS2-GFP Ws-0 line, FLS2short::FLS2-GFP was 

lowly expressed in T2, mostly in the root cap cell and in the elongating and early 

differentiating epidermis (App.6D). Some very faint signal could be observed in the stele. 

Unfortunately, most signal disappeared in T3, probably due to silencing. However, even 

with low expression, FLS2short::FLS2-GFP could complement both fls2 SAIL691_C04 and 

SALK_062054C mutants (App.6E). 
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Appendix 6 : Creation of new tissue-specific prom::FLS2-GFP fls2 lines. 

Expression patterns of SCR::FLS2-GFP fls2 (A) and ELTP::FLS2-GFP fls2 (B) lines (FLS2-GFP, green). Cell walls are 
highlighted with PI staining (magenta). Pictures on the right are visualized by ICA LUT to increase contrast (A, B).  
(A) SCR promoter expressed principally FLS2 protein in endodermal cells, but some faint signal can be observed in 
cortex (black arrowheads). Picture of wild-type plants taken with identical setting (MZ-wt) is showed for comparison 
(cortical cell, white arrowheads). Scale bar, 25 μm. 
(B) ELTP promoter expressed FLS2 in endodermal cells, but some weak signal can be observed in cortex (black 
arrowheads). Scale bar, 25 μm. 
(C) Expression pattern of newly generated prom::FLS2-GFP fls2 lines (FLS2-GFP, green). Cell walls are highlighted with 
PI staining (magenta). Scale bar, 50 μm. 
(D) Maximum projection and single slice pictures of FLS2::FLS2-GFP fls2 T2 line (FLS2-GFP, GreenFireBlue LUT). Scale 
bar, 25 μm. 
(E) FLS2::FLS2-GFP can complement fls2 SAIL and SALK lines. Root length quantification of T3 lines transferred on 1 μM 
flg22 for 6 dpi. Boxplot centre represents the median (5<=n<=15). Different letters indicate statistically significant 
difference between means by Kruskal-Wallis test and Dunn’s multiple comparison. 
MZ, meristematic zone; EZ, elongation zone; DZ, differentiated zone.  
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3.4.2. INFLUENCE OF FLS2 EXPRESSION ON MTI MARKERS 

I crossed a subset of our new prom::FLS2 lines to PER5::NL-3xmVenus and 

MYB51::NLS-3mVenus transcriptional read-outs in fls2 background, so that the T1 could be 

readily analysed. At first, I also crossed all original prom::FLS2 lines to PR4::NLS-3mVenus, 

which is slightly induced by flg22 (Poncini et al., 2017, Ch.6.Fig.2B). However, the effect was 

not robust, so I did not pursue the analysis. The complete analysis of defence patterns of 

ELTP:: and SCR::FLS2 lines is displayed in Appendix 7, and the one of newly made 

RCH1/PRP3/GRP/PEP::FLS2 lines in Appendixes 8, 9 and in our manuscript (Emonet et al., 

2020). Due to some failed crosses, not all combinations are presented here. Since lines 

received from Thomas Boller’s group were in fls2 SAIL background, whereas the new lines 

are in fls2 SALK background, I also crossed both fls2 mutants with the immune markers as 

controls. Both lines did not respond to flg22 (Emonet et al., 2020; data not shown for fls2 

SALK). 

Briefly, all recombinant lines confirmed the conclusion discussed earlier, i.e. PER5 

induction is strictly cell-autonomous whereas MYB51 can be induced in a non-systemic, 

regional fashion (App.7, 8, 9). The restriction of PER5 induction in trichoblasts in 

PRP3::FLS2 (App.8D) further supports the cell-autonomy of PER5. Briefly, ELTP::FLS2, 

PEP::FLS2 and PRP3::FLS2 shifts the expression of PER5 and MYB51 in the differentiated 

zone (App.7AC, 8BD, 9ACD). Expressing FLS2 under the SCR promoter drives PER5 and 

MYB51 responses in the elongating and differentiated zones, despite SCR expression being 

stronger in the meristematic endodermis, confirming the refractory ability of the central 

meristem. However, MYB51 can be slightly induced by flg22 in the root cap cells and the 

early elongating epidermal cells, most probably due to non-cell-autonomous signalling 

coming from the elongation zone (App.7D). The total absence of PER5 and MYB51 response 

in GRP::FLS2 lines suggests that pericycle cells at the xylem pole might also be refractory to 

FLS2-driven responses. Consequently, the induction of MYB51 signal observed in the stele 

of SHR::FLS2, SCR::FLS2 and PEP::FLS2 (Emonet et al., 2020, Fig.S3; App.7D, 9D) might come 

from the perception of flg22 either in central tissues of the stele, in the endodermis or the 

cortex.  
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Flg22-triggered PER5::NLS-3mVenus induction is restricted to the differentiated endodermis and cortex cells in 
ELTP::FLS2-GFP fls2 (A) and in elongating cortex cells and differentiated endodermal and cortical cells in SCR::FLS2-GFP 
fls2 (B). In response to flg22, MYB51::NLS-3mVenus is strongly induced in the differentiated zone, particularly in cortical 
cells in ELTP::FLS2-GFP fls2 (C); and in the elongation and the differentiated zone, in epidermis (EZ), cortex (EZ-DZ) and 
pericycle cells (DZ) in SCR::FLS2-GFP fls2.  
Maximum projections of z-stack pictures of immune transcriptional read-outs (Fire LUT) of 1 μM flg22-treated plants 
versus mock. Pictures were taken with identical settings between mock and corresponding flg22 treatment, but 
different settings across root zones to reveal weak inductions.  
Maximal projections of transverse sections views of PER5 or MYB51 expression patterns are shown on the right panel. 
Nuclear localized mVenus (yellow) signal was co-displayed with propidium iodide cell wall marker (PI, purple). MZ, 
meristematic zone; EZ, elongation zone; DZ, differentiated zone (30 cells after start of elongation). Scale bar, 50 μm 
for maximum projections, 25 μm for cross sections.  

 

Appendix 7 : FLS2 expression under ELTP and SCR promoters affects the pattern of immune responses 
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Appendix 8 : Effect of ectopic FLS2 expression on PER5 transcriptional read-out 

(A-C) PER5::NLS-3mVenus response to flg22 in the meristem-specific RCH1::FLS2-GFP fls2 (A), the differentiated 
epidermis-specific PRP3::FLS2-GFP fls2 (B) and the xylem-pole pericycle-specific GRP::FLS2-GFP fls2 (C) lines compared 
to WT. Note the induction of PER5 in the meristematic and elongating epidermis with RCH1 promoter, the expression 
shift to the differentiated region with PRP3 promoter and the absence of response with GRP promoter. Maximum 
projection of z-stack pictures of mVenus signal (Fire LUT) in response to 1μM flg22 versus mock for 24h. Pictures were 
taken with identical settings between mock and corresponding flg22 treatment, but different settings across root zones 
to reveal weak induction. 
(D) Maximal projections of transverse sections views of PER5::NLS-3mVenus are shown for RCH1::/PRP3::/GRP::FLS2-
GFP fls2 samples compared to WT, treated with 1 μM flg22 or mock. Note that the induction of PER5 signal is exclusively 
restricted to cell expressing FLS2. Transverse sections of pictures shown in (A-C). Signal intensity is only comparable 
between mock and flg22 treatment for a specific position. Nuclear localized mVenus (yellow) signal was co-displayed 
with propidium iodide cell wall marker (PI, purple). 
MZ, meristematic zone; EZ, elongation zone; DZ, differentiated zone (30 cells after start of elongation). Scale bar, 
25 μm.  
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Appendix 9 : Effect of ectopic FLS2 expression on MYB51 transcriptional read-out 

(A-C) MYB51::NLS-3mVenus response to flg22 in the differentiated epidermis-specific PRP3::FLS2-GFP fls2 (A), the 
xylem pole pericycle-specific GRP::FLS2-GFP fls2 (B) and the cortex-specific PEP::FLS2-GFP fls2 (C) lines compared to 
WT. Note PER5 induction shift to the differentiated region with PRP3, the absence of response with GRP and the weak 
induction in DZ with PEP promoters. Maximum projections of z-stack pictures of mVenus signal (Fire LUT) in response 
to 1 μM flg22 versus mock for 24h. Pictures were taken with identical settings between mock and corresponding flg22 
treatment, but different settings across root zones to reveal weak induction. 
(D) Maximal projections of transverse sections views of MYB51::NLS-3mVenus are shown for PRP3::/GRP::/PEP::FLS2-
GFP fls2 samples compared to WT, treated with 1 μM flg22. Note that the induction of MYB51 signal is not restricted 
to cell expressing FLS2. Transverse sections of pictures shown in (A-C). Signal intensity is only comparable between 
mock and flg22 treatment for a specific position. Nuclear localized mVenus (yellow) signal was co-displayed with 
propidium iodide cell wall marker (PI, purple). MZ, meristematic zone; EZ, elongation zone; DZ, differentiated zone (30 
cells after start of elongation). Scale bar, 25μm.  
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3.4.3. CELL-SPECIFIC QUANTIFICATION DEVELOPMENT – TRIAL WITH DAPI STAINING 

The development of the cell-specific quantification came from the realization that 

usual protocols, which rely on a single threshold based on the image to quantify, bias the 

results and identify only nuclei that show some fluorescence. For PER5 marker, which lacks 

constitutive signal, it would be impossible to delimit nuclei on the control treatment. 

Therefore, we needed a generic marker of nuclei to attribute a Region Of Interest (ROI) to 

each single nucleus. 

To quickly delineate all nuclei, we first use a DAPI staining protocol optimised for 

Clearsee fixation based on driselase digestion and methanol fixation (Material and 

methods) (App.10A). However, driselase often completely digested the root tip of our 

samples. Only meristems that were highly lignified could survive to the treatment. 

Therefore, we opted for the transformation with transgenic nuclear markers. 

3.4.4. GENERATION OF SYNTHETIC UNIVERSAL REPORTER OF DEFENCE 

Defence markers having distinct tissue-specificities make it difficult to assess 

whether a specific cell is inducing MTI responses using a single transcriptional read-out. 

Therefore, I wanted to generate a synthetic reporter of defence, which could be induced in 

all tissues without preferences. To do so, I cloned the synthetic 4CRM promoter identified 

by Lehmeyer et al. (2016) upstream of the fluorescent nuclear reporter NLS-3mVenus. The 

4CRM sequence is a four-time repetition of the 35bp tripartite cis-regulatory module (CRM) 

identified in the DJ1E promoter. It responds specifically to pathogens and salicylic acid. To 

avoid repetitive sequences and silencing, I cloned a new variant of the promoter, named 

4CRMmod, where sequences between the regulatory modules are modified (Table S2).  

However, the 4CRMmod::NLS-3mVenus line showed patchy and variable cytosolic 

signal in T1, so I did not characterise it further. 4CRM::NLS-3mVenus displayed constitutive 

signal in the differentiated epidermis, cortex and central cells of the stele and in the 

elongating epidermis (App.10B). Flg22 treatment activates preferentially the expression of 

4CRM in the root cap cells and slightly in epidermal cells of the elongation zone, as for PER5 

reporter. Although this new reporter responds to flg22, it does not provide any advantages 

compared to other reporters because of its constitutive signal. Therefore, we did not use it 

for further analysis. 
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Appendix 10 : Combination of DAPI staining with Clearsee protocol and synthetic defence promoter generation 

(A-B) Examples of combined DAPI and DirectRed23 staining using adapted Clearsee protocol. MYB51::NLS-3mVenus 
(A) and root tip of UBQ10::FLS2-GFP fls2 PER5::NLS-3mVenus line (B) treated for 24 h with 1 μM flg22. Note that only 
highly lignified root tips survive the driselase treatment. Co-visualisation of nuclei stained by DAPI in all tissues (blue), 
cell wall stained by DirectRed23 (red) and mVenus immune reporter signal (yellow). Scale bar, 50 μm. 
(C) 4CRM::NLS-3mVenus response (Fire LUT) to 1 μM flg22 or mock for 22 h. 4CRM promoter is induced by flg22 in the 
meristematic (MZ) and elongation zones (EZ). Note the strong constitutive signal in the differentiated zone (DZ). Scale 
bar, 25 μm. 

3.4.5. LIGNIN DEPOSITION AFTER CO-INCIDENCE OF DAMAGE AND FLG22 PERCEPTION 

We previously showed local deposition of lignin following FLS2 expression in 

plants expressing FLS2 ectopically (Emonet et al., 2020). Since damage can induce local 

accumulation of FLS2 (Zhou et al., 2020), I also tested whether ablation leads to lignin 

deposition after flg22 treatment. Ablation was done on FLS2short::NLS-3mVenus lines to keep 

track of the ablated regions once seedlings fixed and stained. When combined with flg22 

incubation for 24h, I could observe a faint lignin deposition around the wounded region 

(App.11). However, fuchsin coloration could be sometimes observed around damaged sites 

without flg22 treatment and, reversely, some damaged sites lacked clear lignin deposition 

in presence of flg22. Lignin deposition might be too low to induce consistent staining. 

Increasing the damage size or the incubation time might therefore heighten lignin 

deposition. It is compelling that Basic Fuchsin staining was also observed without 
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application of flg22. This suggests that damage might be sufficient to induce lignification by 

itself, or that Basic Fuchsin can also stain damaged cell wall. Interestingly, Ride (1975) 

already reported lignin deposition in response to wounding induced by Botrytis fungal 

infection, but not after wounding alone. 

Appendix 11 : Lignin deposition after co-incidence of damage and flg22 perception 

Laser ablation of epidermal cells in FLS2short::NLS-3mVenus line induces inconsistently localized lignin deposition in 5-
day-old differentiated roots. Nuclear-localized mVenus signals of FLS2 promoter marker (yellow) co-visualized with cell 
wall stained by Calcofluor White (blue) and Basic Fuchsin-stained lignin (red). Ablated and control samples were treated 
with 1 μM flg22 overnight. FLS2 marker signal indicates proximity with laser-ablated cells. White arrowheads designate 
lignin-positive cell, black arrowheads specify lignin-negative cells. Scale bar, 25 μm. 

3.4.6. WER::FLS2 RESPONDS STRONGLY TO THE PATHOGEN PSEUDOMONAS SYRINGAE 

STRAIN DC3000 

In addition to the commensal bacteria P. protegens strain CHA0, I also tested root 

responses to the pathogen P. syringae strain DC3000. DC3000 inoculation induces PER5 

expression only in WER::FLS2 whereas wild-type plants do not respond (App.12A). 

Surprisingly, heat-killed bacteria did not trigger PER5 expression. The most plausible 

explanation is that bacterial concentration was too low (OD600 = 0.01). Alternatively, boiling 

could have denaturated proteins required for flagellin processing or living bacteria might 

be required for flg22-driven MTI induction. Two very recent studies highlight that effector-

triggered immunity increases the effect of MAMP-triggered immunity (Ngou et al., 2020; 

Yuan et al., 2020b). It would therefore be interesting to test whether P. syringae mutants 

lacking effectors have increased or impaired responses to flg22 on the WER::FLS2 line. 
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3.4.7. SCREEN OF COMMENSAL BACTERIAL CULTURE COLLECTION FOR DIFFERENTIAL ROOT 

GROWTH INHIBITION 

Amongst the commensal bacteria screened, we identified four supplementary 

strains that, similarly to the Pseudomonas R569, induces PER5 expression and increases 

root growth inhibition. The Pseudomonas R9 was closely related to R569 and showed robust 

results in Lausanne and Cologne’s growth conditions (App.12B), whereas the 

Sphingomonadaceae R214 and R154, as well as the Achromobacter R170 increased relative 

RGI only in Cologne’s conditions (App.12C). 

Appendix 12 : WER::FLS2 responds strongly to commensal and pathogenic bacteria 

(A) WER::FLS2 responds strongly to the pathogen P. syringae strain DC3000. Maximum projection of z-stack pictures 
of PER5::NLS-3mVenus signal (Fire LUT) in response to inoculation for 24 h with 2 μl of fresh or heat-killed (HK) 
P. synrigae culture at OD600 = 0.01. MZ, meristematic zone; EZ, elongation zone. Scale bar, 25 μm. 
(B) R9 isolate induces a robust increased root growth inhibition on WER::FLS2-GFP fls2 compared to wild-type plants. 
(C) R154, R214 and R170 isolates increase root growth inhibition on WER::FLS2-GFP fls2 only in Cologne’s conditions 
compared to wild-type plants. (B,C) Root growth was quantified at 11 dpi on plates inoculated with bacteria at 
OD600 = 10- 2 or 10-4. Experiment was performed in Cologne’s growth conditions. Boxplot centre represents the median. 
Different letters indicate statistically significant differences (p<0.05). Multiple comparison was performed using ANOVA 
and Tukey’s HSD test.   
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3.5. SUPPLEMENTARY MATERIAL AND METHODS 

If not specified, plant material, bacterial strains and methods were identical to the 

ones used in Emonet et al. (2020). 

3.5.1. PLANT MATERIAL AND GROWTH CONDITIONS 

The lines ELTP::FLS2-3myc-GFP, SCR::FLS2-3myc-GFP and WER::FLS2-3myc-GFP in 

fls2 (SAIL691_C04) background were offered by Prof. Thomas Boller’s group. New FLS2 

expressing constructs EXP7 / GL2 / GRP / GPAT5 / PEP / PRP3 / Q12 / RCH1 / SGN3 / 

WOX5::FLS2-3myc-GFP were transformed in fls2 (SALK_062054C) background, and 

FLS2short::FLS2-GFP in fls2 (SAIL691_C04) background. Similarly, the 4CRM::NLS-3mVenus 

and 4CRMmod::NLS-3mVenus lines were generated through transformation with 

Agrobacterium by floral dipping method (Clough and Bent, 1998). The marker lines 

PER5::NLS-3mVenus and MYB51::NLS-3mVenus (Poncini et al., 2017) were crossed to 

prom::FL2-GFP lines. 

3.5.2. BACTERIAL STRAIN AND GROWTH CONDITIONS 

The DC3000 P. syringae was kindly provided by Prof. Christoph Keel’s group. At-

SPHERE strains were genotyped using primers listed in Table S1 (Bai et al., 2015). 

3.5.3. PLASMID CONSTRUCTION 

Generation of expression constructs was performed with classical cloning or 

Gateway Cloning Technology (Invitrogen). New prom::FLS2-3myc-GFP constructs were 

generated combining the destination vector pH7m24GW,3 with pDon207 containing L1-

FLS2-3xmyc-GFP-L2 (Wyrsch et al., 2015) and the respective entry clones using LR 

reaction: pDONR L4-pGL2-R1, L4-pQ12-R1, L4-pRCH1-R1, L4-pPEP-R1, L4-pPIN2-R1, L4-

pPRP3-R1, L4-pWOX5-R1 (SWELL lines)(Marquès-Bueno et al., 2015), or pDONR L4-

pFLS2short-L1 (Zhou et al., 2020), L4-pGPAT5-L1 (Naseer et al., 2012), L4-pGRP-R1 

(Andersen et al., 2018), L4-pSGN3-L1 (5583bp before ATG) (Pfister et al., 2014). 

For the generation of the universal synthetic markers of defence, sequences for 

4CRM and 4CRMmod were ordered from Invitrogen (Table S2). The 4CRM sequence, flanked 

by HindIII and EcoRI restriction sites, was then digested with the corresponding enzymes 
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and ligated to the expression construct prom::NLS-3mVenus (pJV121) previously digested 

at the promoter site  and containing the Basta resistance cassette. The 4CRMmod sequence 

was surrounded by KpnI HindIII and EcoRI XmaI (Table S2) restriction sites. After digestion 

with KpnI and XmaI restriction enzymes, the 4CRMmod promoter was ligated to the entry 

clone pUC L4-KpnI-XmaI-R1. The final expression clone was obtained with LR reaction 

combining pUC L4-KpnI-4CRMmod-XmaI-R1 and pEN L1-NLS-3xmVenus-L2 to the 

destination vector pFR7m24GW containing the FastRed selection cassette. 

3.5.4. PLANT GENOTYPING 

Primers used for fls2 genotyping are listed in Table S1. For fls2 SAIL691_C04, we 

used the following combination: oAE22-oAE21 (WT) and oAE22-oLAB12 (mutant); for fls2 

SALK_062054C, oAE5-oAE17 (WT) and oAE5-oAE3 (mutants). For fls2 SAIL691_C04 lines 

complemented with FLS2::FLS2-GFP, primers oAE22 must be replaced by oAE74 or oAE75 

to avoid to amplify the construct. 

3.5.5. ADAPTED DAPI STAINING 

DAPI staining was performed as follows. Samples were first fixed 1 hour in 4% PFA 

0.05% Tween in PBS, then washed three times 10 min in 0.05% Tween in 1xPBS (PBST) 

with light shaking. The solution was then replaced by 100% methanol for 10 min, then the 

samples were twice rehydrated in PBST for 10 min. Next, seedlings were digested in 2.5% 

driselase solution for 1 hour at 37°C, then rinsed twice in PBST, followed by clearing for 2 

days in Clearsee solution. After staining for 30 min in 0.1% DirectRed23, samples were 

rinsed and washed twice (30 min each) in Clearsee solution. Seedlings were then mounted 

in a mix of 200 μl of 1:100 DAPI solution (10mg/ml stock solution) combined to 700 μl 

Citifluor, then kept overnight in the dark at 4°C. 

3.5.6. LASER ABLATION SETUP 

Laser ablation was done as previously described (Marhavý et al., 2019; Zhou et al., 

2020). Once cells ablated, 500 μl of 3 μM flg22 solution was immediately added into the agar 

(final concentration: 1 μM). After 24 h treatment, FLS2::NLS-3mVenus was visualized to 

ensure proper ablation, then seedlings were fixed stained as described previously.  
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3.7. SUPPLEMENTAL TABLES 

Supplemental Table 1: Primers for fls2 genotyping and 4CRM cloning 
 

Code Sequence (5'-3') Description Type 

oAE017 GTCTTGGCCTTTTCACATCC T-DNA genotyping fls2 SALK_062054C LP F 

oAE005 AAGCGACTTAAGGCTTGCAG T-DNA genotyping fls2 SALK_062054C RP R 

oAE003 ACTTAATCGCCTTGCAGCAC T-DNA genotyping fls2 SALK_062054C LB F 

oAE021 ACATGTCCGGTACTATCGCAG T-DNA genotyping fls2 SAIL_691C4 LP F 

oAE022 TCCATCAAGACAGCTAATGAGC T-DNA genotyping fls2 SAIL_691C4 RP R 

oLAB012 
GCCTTTTCAGAAATGGATAAATAG 
CCTTGCTTCC LB1 for SAIL lines F 

oAE074 ATGGGTCAAGATGAGGTTGTCC fls2 SAIL genotyping for complemented lines LP F 

oAE075 GCTTCGGTTTGGGCAATCTC  fls2 SAIL genotyping for complemented lines F 

oAE102 AACMGGATTAGATACCCKG amplification 16S for bacteria identification F 

oAE103 ACGTCATCCCCACCTTCC amplification 16S for bacteria identification R 
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Supplemental Table 2: Synthetic promoter 4CRM and 4CRMmod sequences 

 
(A) Sequence for 4CRM promoter 
(B) Sequence for 4CRMmod promoter 
(C) Comparison of 4CRM and p4CRMmod sequences  
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4 INTERACTIONS BETWEEN THE RHIZOSPHERE AND 

WER::FLS2 IMMUNE SUPER-COMPETENT LINE 
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4.1. CONTRIBUTIONS 

Gnotobiotic experiments (FlowPot and calcine clay systems) presented in this 

chapter were done in collaboration with the group of Prof. Paul Schulze Lefert during a 

short-term internship in the Max Planck Institute for Plant Breeding Research. Bacterial 

community design was carried out together with Ruben Garrido-Oter. FlowPot and calcined 

clay systems were assembled, and roots collected with the help of Ka-Wai Ma. Bioinformatic 

analyses was done by Rui Guan. I performed all other experiments. 
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4.2. INTRODUCTION 

4.2.1. BACTERIAL MICROBIOME: KEEPING FRIENDS CLOSE 

Bacteria represent a large part of the dense root microbial community. For 

comparison, the rhizosphere contains 106 to 109 bacteria by gram of soil, whereas the 

phyllosphere (i.e. microbial community on the leaf surface) bacterial content reaches only 

106 to 107 cells by cm2 (Bulgarelli et al., 2013; Lindow and Brandl, 2003). In contrast to other 

phyla, the bacterial community composition has been intensively studied during the past 

decades, revealing a very conserved structure across plant species. The development of 

metagenomic technics, culture collections and the reconstitution of synthetic communities 

in controlled laboratory conditions also improved our understanding of the function of 

specific taxa (Bai et al., 2015; Busby et al., 2017).  

The bacterial community is particularly appropriate to understand how plants 

balance growth and defence, because it is mostly composed of commensal and beneficial 

strains. Indeed, very few root-associated bacterial pathogens (Erwinia, Rhizomonas and 

Ralstonia spp. mostly) are reported in comparison with fungi (Koike et al., 2003). Moreover, 

bacteria are required to keep in check opportunistic pathogens. Indeed, fungi or oomycetes, 

isolated from healthy asymptomatic plants, have a strong detrimental impact on plant 

growth if bacteria are absent from the community (Durán et al., 2018). Interestingly, it is 

precisely PRRs recognizing bacteria-derived MAMPs, such as flg22 and elf18, that are 

absent or lowly expressed in the roots, suggesting that plants limit their immune responses 

to bacteria (Millet et al., 2010). More than for any other phyla, roots must keep their immune 

responses under control to retain bacteria in close proximity. 

4.2.2. PLANTS ACTIVELY RECRUIT THEIR BACTERIAL MICROBIOME 

The soil contains an extremely rich community of bacteria, with estimates going 

from 10000 to 50000 different species by gram of soil (Dance, 2008; Roesch et al., 2007). 

However, this variety drops down in the rhizosphere, indicating that only a fraction of the 

soil bacteria can effectively colonize roots (Bulgarelli et al., 2012; Lundberg et al., 2012). 

Root exudates, constituted of mucilage, sugars, amino acids, organic and inorganic ions, and 

many secondary metabolites, play a major role in the recruitment of the root microbiota. 

Indeed, accessible organic nutrients are limited in the soil, and organotrophic bacteria are 
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inevitably attracted by the accumulation of rhizodeposits (Bulgarelli et al., 2013). Moreover, 

root border-like cells are characterized by high secretory activity and provide an additional 

source of carbon once dead (Bulgarelli et al., 2013; Kumpf and Nowack, 2015). Interestingly, 

40% of the rhizosphere bacteria of A. thaliana can be recruited on wooden splinters, 

suggesting that a large part of the microbiome is actually constituted of lignocellulosic 

matrix-associated saprophytic microbes, non-specific to Arabidopsis (Bulgarelli et al., 

2012). 

Although the taxonomic structure of the rhizosphere at the phyla level is robust 

and determined by root compartments, subtle differences in root assemblage are 

principally defined by, in order, soil types, plant species/genotypes and plant age (Durán et 

al., 2018; Hacquard, 2016; Hacquard et al., 2017; Lundberg et al., 2012; Thiergart et al., 

2020). Interestingly, root microbiome is different between seedlings and mature plants, 

Actinobacteria and Bacteroidetes decreasing and increasing, respectively, over time 

(Chaparro et al., 2014). Accordingly, root exudates also change depending on plant age. 

Young plants produce principally sugars and sugar alcohols, whereas older plants excrete 

amino acids and phenolics compounds (Chaparro et al., 2013). 

4.2.3. PLANT GENOTYPES INFLUENCE THE MICROBIOME COMPOSITION 

Mutants and transgenic lines with altered exudates production also recruit 

different rhizosphere communities. Arabidopsis lines overexpressing the sorghum CYP79A1 

gene produce higher amount of aliphatic glucosinolates and their microbiome differs in the 

relative abundance of Alphaproteobacteria and Acidobacteria (Bressan et al., 2009). 

Similarly, the abcg30 mutant recruits more PGPRs than wild-type plants due to increased 

phenolics and reduced sugars excretion (Badri et al., 2009). Coumarins have well-known 

antimicrobial properties and were recently shown to alter the rhizosphere composition 

(Stringlis et al., 2019a). Indeed, the scopolectine biosynthesis mutant f6’h1 (feruloyl-coa 6-

hydroxylase1) was less colonized by bacteria able to hydrolyse coumarins (Stringlis et al., 

2018b) but hosted more coumarin-sensitive Pseudomonas strains (Voges et al., 2019). 

Plant nutritional status also affects the bacterial community. Thus, mutants 

defective in the phosphate starvation response have an atypical bacterial microbiota 

structure (Castrillo et al., 2017). Plants subjected to iron deficiency have increased 
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scopolectine exudation, leading to changes in the microbiome composition (Stringlis et al., 

2018b). 

Mutants with disrupted hormonal pathways also present an altered microbiome. 

The immune-compromised quadruple mutant dde1 ein2 pad4 sid2, lacking all three 

phytohormonal signalling pathways (SA, JA and ET), hosts a bacterial assemblage with 

lower alpha-diversity compared to wild-type plants. Salicylic acid was shown to have the 

strongest impact (Lebeis et al., 2015). Moreover, the rhizosphere structure in the JA-

signalling myc2 mutant was also shown to be significantly different from wild-type plants 

(Carvalhais et al., 2013, 2015). 

4.2.4. MTI AS SELECTIVE PRESSURE FOR THE RECRUITMENT OF AN ADAPTED MICROBIOME 

It was recently proposed that MAMP-triggered immunity could be used by the 

plant to select for non-immunogenic microbial interactors. In this way, non-adapted 

microbes would be detected and induce a strong immune response, preventing their 

establishment in the rhizosphere, while adapted ones would escape recognition or suppress 

defences, and successfully colonize the roots.  

This concept is supported by the fact that only a subfraction of the microbiota 

harbours recognizable MAMP epitopes. Indeed, 6.25% of Arabidopsis bacterial isolates 

possess the predicted detectable flg22 sequence and 2.55% the elf18 sequence (Garrido-

Oter et al., 2018; Hacquard et al., 2017). By contrast, the CSP elicitor binding to CORE 

receptor, absent of the Arabidopsis genome, is expressed by most Arabidopsis root bacteria 

(Hacquard et al., 2017; Wang et al., 2016). MAMPs have sometimes diverged from their 

canonical sequences and escaped recognition by their cognate receptors (Felix et al., 1999; 

Gómez-Gómez et al., 1999; Hind et al., 2016; Pfund et al., 2004; Sun et al., 2006) (see Chapter 

5). Interestingly, McCann et al. (2012) used this property to discover new elicitors by 

computational analysis, searching the microbiome for variable regions within very 

conserved bacterial genes. Species-specific microbiome could also be shaped by MTI 

responses, since many PRRs are specific to a given plant family. Thus, the EFR and LORE 

receptors are only found in Brassicacea, while FLS3 is specific to Solanaceae (Hind et al., 

2016; Ranf et al., 2015; Zipfel et al., 2006). 
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Likewise, plants could be preferentially colonized by bacteria able to suppress MTI 

(see Chapter 5) (Yu et al., 2019b). Thus, on 28 commensal strains tested, Yu et al. (2019a) 

not only found that the majority (23 strains) did not induce immune transcriptional read-

outs, but they also observed that 42% of their samples could supress flg22 responses. 

Similarly, 41% of the tested At-RSPHERE bacterial culture collection could inhibit flg22-

mediated root growth inhibition in mono-association (Garrido-Oter et al., 2018; Ma et al., 

2020). Small synthetic communities (SynComs), composed of five of these suppressive 

strains, also suppress part of the immune transcriptional responses induced by flg22. 

Moreover, the mutants P. capeferrum strain WCS358, which lost their suppressive ability, 

were shown to colonize less well the rhizosphere (Yu et al., 2019a). 

Induction or suppression of MTI responses also appears to affect the rhizosphere 

composition. For example, flg22 treatment slightly changes the bacteria relative 

abundances in a simple, non-suppressive synthetic rhizosphere community. In addition, 

plants grown with a suppressive SynCom were more susceptible to opportunistic 

pathogens, which reach a higher relative abundance in the community (Ma et al., 2020). 

We only start to understand how MTI influences the recruitment and the 

composition of the rhizosphere microbiota. In the previous two chapters, we showed that 

defence activation was spatially controlled by plant roots and that ectopic immune 

responses can impact meristem activity (Emonet et al., 2020; Zhou et al., 2020). However, 

we do not know if super-competent lines, as WER::FLS2, are also affected in non-sterile soil, 

which contains a complex consortium of microorganisms including MTI suppressive and 

non-eliciting bacteria. It is indeed not understood whether spatially restricted defences are 

necessary for maintaining plant growth in natural conditions. Moreover, ectopic PRR 

expression effect on bacterial community structure was not investigated so far. Therefore, 

using natural soil as well as different gnotobiotic systems (i.e. environment where all 

microorganisms are known and controlled), I assessed the effect of natural and synthetic 

bacterial communities on the growth of plants expressing FLS2 ectopically. In addition, I 

analysed the microbiome composition of WER::FLS2 using 16S rRNA gene amplicon 

surveys.  
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4.3. RESULTS 

4.3.1. ECTOPIC EXPRESSION OF FLS2 DOES NOT AFFECT GROWTH ON NATURAL SOILS 

To observe the biological impact of FLS2 misexpression in natural conditions, I 

grew several prom::FLS2  lines on non-sterile, peat-based soil for four weeks. In contrast to 

seedlings inoculated on plates with single bacteria, all recombinant lines grew similarly, and 

none presented a significant difference in shoot or root weight (Fig.1A and 1B). When 

WER::FLS2 and wild-type plants were grown on natural CAS soil in Cologne (Fig.S1A), 

WER::FLS2 plants had surprisingly higher biomass than wild-type, but this effect was also 

sometimes observed on plates due to difference in seed quality.  

 

 

 

Figure 1: Ectopic expression of FLS2 does not affect growth on non-sterile soil 

(A) Shoot fresh weights and (B) root weights are not significantly different between wild-type plants and prom::FLS2-
GFP fls2 lines grown on non-sterile peat-based soil. Fresh weights were measured at 4 weeks. Multiple comparison 
was performed using Kruskal-Wallis and Dunn’s test. No statistically significant difference was found between all 
samples (p-value < 0.05). 
(C-E) WT and WER::FLS2-GFP fls2 plants have similar root fresh weight (C), root length (D) and shoot fresh weight (E) 
when grown on non-sterile coarse sand. Binary comparisons were performed using Student t-tests. Ns, non-significant. 
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Roots of plants grown on natural soil are difficult to wash without breaking them. 

It is therefore possible that small differences in root length or weight are overlooked. 

Moreover, shoot weight is not the ideal proxy to assess flg22-mediated growth inhibition 

since flg22 does not alter WER::FLS2 shoot growth on plate (Emonet et al., 2020). To find a 

substrate enabling easy root harvesting, I grew wild-type plants and WER::FLS2 lines in 

parallel on several soil types: fine compost soil, fine and coarse sands and clay pellet 

substrate (Serami), used separately or in combination (Fig.S1C). Roots were easily washed 

in sand substrates or Serami, but not in fine soil. Moreover, Arabidopsis grew badly on that 

medium. The mix of substrates did not provide any advantage compared to pure one. 

Then, I measured root fresh weight for fine sand, coarse sand and Serami (Fig.S1B). 

There was no significant difference between wild-type and WER::FLS2 for the three 

substrates, confirming previous results (Emonet et al., 2020). Despite variability in growth 

and required nutrient supplementation, the ease with which roots can be isolated from sand 

makes it a promising candidate to replace peat-based soil. As plants growing in coarse sand 

looked healthier than in fine sand, I analysed in more details their root development. Root 

fresh weight (Fig.1C), root length (Fig.1D) or shoot fresh weight (Fig.1E) were similar 

between wild-type and WER::FLS2. Taken together, despite its increased sensitivity to flg22 

on plates, WER::FLS2 grows as wildtype on any non-sterile substrate, suggesting that the 

rhizosphere community must be adapted to escape or suppress immune response. 

Alternatively, differences in development might be too small to be detected on mature 

plants. 

4.3.2. SINGLE BACTERIA INOCULATION IN GNOTOBIOTIC SYSTEM DOES NOT INCREASE ROOT 

GROWTH INHIBITION OF WER::FLS2 

The Pseudomonas strain R569 was previously shown to induce a strong root 

growth inhibition on WER::FLS2 (Emonet et al., 2020). I reasoned that, in contrast to a 

complex natural microbiota, the inoculation of soil substrate with this single strain should 

affect WER::FLS2 more strongly than wild type. Accordingly, this phenotype should be 

rescued with an assemblage of bacteria. In collaboration with the group of Prof. P. Schulze-

Lefert, I used two different methods for the controlled inoculation of a single bacterial strain 

and a synthetic community on sterile substrate: the FlowPot (Kremer et al., 2018) and the 
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calcined-clay systems. The FlowPot system has the advantage to rely on sterilized natural 

soil, allowing better plant growth and inoculation with fungi. However, roots are more 

difficult to harvest. In contrast, plants grown in calcined clay can be easily collected, but the 

system is more artificial.  

Using these two methods, wild-type plants, WER::FLS2 line and fls2 mutants (only 

for FlowPot) were inoculated with a mock, the single bacterial isolate R569 or a complex 

synthetic community (SynCom) of 97 distinguishable strains of the At-SPHERE culture 

collection. Inoculation with the SynCom tends to increase shoot and root biomass in the 

FlowPot system (Fig.2A and 2B), as previously reported (Durán et al., 2018). However, no 

significant difference between the three genotypes was observed for the three treatments, 

for both systems (Fig.2A, 2B, 2D, 2E, S2B). Therefore, WER::FLS2 development is not 

affected in presence of the R569 isolate on soil, despite the strong effect observed on 

seedlings grown on plates. Nevertheless, shoot biomass of all genotypes were non-

significantly reduced after R569 treatment on calcined clay (Fig.2D). This difference 

becomes significant when shoot biomasses are combined by magenta box (Fig. S2C). 

Similarly, R569 causes stronger leaf necrosis than mock or SynCom treatment in FlowPots 

(Fig.2C). Although WER::FLS2 was more affected than wild-type in the first replicate, this 

results could not be reproduced in a second replicate done in Lausanne. Taken together, 

growth is increased when plants are inoculated with a complex SynCom, while inoculation 

with the isolate R569 tends to be deleterious for all genotypes, in opposition with our 

results on plates (Emonet et al., 2020).  

One of the main differences between plants grown on soil or on plates is their 

developmental stage. To test whether the increased competency of WER::FLS2 seedlings 

was dependent on age, I grew 1-week-old seedlings on calcined clay in 6-well plates and 

inoculate them with mock, R569 and flg22 as positive control. However, seedlings had 

variable germination rates. After six days of treatment, root lengths were not significantly 

different between mock, R569 and flg22 treatment (Fig.S2D). In view of the strong effect of 

flg22 on plates, these results were surprizing. Flg22 might be adsorbed by the clay so that 

only few peptides reached the root. 

189



 
 

 

Figure 2: Bacterial inoculation in gnotobiotic system does not increase root growth inhibition on WER::FLS2 

(A-B) Inoculation of WT, WER::FLS2-GFP fls2 and fls2 lines with the single strain R569 or a complex 97-members 
SynCom in FlowPot axenic system. SynCom inoculation tends to increase shoot (A) and root (B) biomass in all 
genotypes. Root and shoot weights were combined by FlowPot. No significant difference was observed across 
genotypes. Samples were harvested five weeks after inoculation.  
(C) Inoculation with a single strain of R569 bacteria induces necrotic symptoms on WT and WER::FLS2-GFP fls2. Same 
experiment as in (A) and (B). Examples of healthy plants, light and strong symptoms are represented. 
(D-E) Inoculation of WT and WER::FLS2-GFP fls2 line with the single strain R569 or a complex 97-members SynCom in 
calcined clay axenic system. Inoculation with the single strain R569 tends to decrease shoot biomass (D) but does not 
affect root weight (E). Samples were harvested seven weeks after inoculation. Root and shoots weights were measured 
individually.  
(A, B, D, E) Multiple comparisons were performed using Kruskal-Wallis and Dunn’s test. Different letters indicate 
statistically significant differences (p<0.05).  
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4.3.3. MICROBIOME COMPOSITION IS NOT SIGNIFICANTLY AFFECTED BY WER::FLS2 

Since R569 and SynCom inoculations did not affect WER::FLS2 growth, I analysed 

whether WER::FLS2 could, in turn, modify the rhizosphere community composition to avoid 

strong MTI responses. The SynCom used in the previous experiments was designed to 

represent the natural microbiome of A. thaliana plants. Moreover, the 97 selected strains 

represent different Operational Taxonomic Units (OTU) with distinct 16S RNA sequences 

(Table S1), whose relative abundance could be assessed by 16S sequencing. Bacterial DNA 

was collected from three compartments: input culture, matrix (i.e. soil not touching the 

root) and root. Three biological replicates were inoculated in parallel with separately grown 

SynComs. Examining between samples variation, bacterial communities cluster according 

to compartments (Fig.3A), as previously observed (Bulgarelli et al., 2012; Lundberg et al., 

2012). The input community was highly different from the matrix and root communities, 

but the three biological replicates were grouped together, indicating that replicates were 

comparable (Fig.3B). However, the bacterial communities were similar between genotypes 

(Fig.3C). Therefore, ectopic FLS2 expression is not sufficient to alter the root bacterial 

community. 

Principal-component analyses (PCoA) can overlook little differences in 

community composition. Thus, I compared the relative abundance of single OTUs 

previously shown to increase root growth inhibition of WER::FLS2 (Chapter 2). 

Interestingly, R569 abundance tends to decrease slightly, but not significantly, in the root 

compartment of WER::FLS2 compared to wild-type and fls2 mutant (Fig.3D). By contrast, 

R569 relative abundance in matrix is similar between the three genotypes. R569 

colonization might be impaired in WER::FLS2 due to strong flg22-driven immune responses 

or because of competition with more adapted bacteria. However, the relative abundance of 

isolates Pseudomonas R9, Achromobacter R170 and Sphingomonadaceae R154 did not 

significantly change between genotypes (Fig.3E, 3F, 3G). 
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Figure 3: WER::FLS2 does not affect the microbiome composition significantly 

(A-C) Analysis of the community structure of plants inoculated with a complex SynCom in a FlowPot system. Community 
structure was determined using principal-component analysis. The first two dimensions of the PCoA are plotted based 
on Bray-Curtis distances. Samples are colour-coded according to compartments (A), replicates (B) and genotypes (C).  
(D-G) Relative abundances of strains R569 (D), R9 (E), R154 (F) and R170 (G) in the synthetic community inoculated on 
WT (Col-0), fls2 mutant or WER::FLS2-GFP fls2 (WER). Input represents samples of start inoculum solution. Multiple 
comparison analyses were performed using Kruskal-Wallis and Dunn’s test. Different letters indicate statistically 
significant differences (p<0.05).  
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4.4. DISCUSSION 

4.4.1. RHIZOSPHERE BACTERIA SUPRESS MTI RESPONSES IN WER::FLS2 

Ectopic expression of FLS2 was not only shown to alter the spatial pattern of 

immune responses, but could also drastically impact root growth in response to flg22 or 

commensal bacteria if driven in the meristematic epidermis. However, none of the tested 

prom::FLS2 lines, including WER::FLS2, showed any growth phenotype on any non-sterile 

substrates tested, suggesting that the natural bacterial community can either prevent or 

supress MTI responses induction.  

We had originally planned to assess the suppressive ability of the root community 

by inoculating WER::FLS2 plants with the Pseudomonas strain R569, which had a strong 

effect on plates, and a synthetic community representing the microbiome constitution. 

Unfortunately, the fact that inoculations in mono-association with R569 could not induce 

root growth inhibition (RGI) in all gnotobiotic systems prevents us to conclude that the 

rhizosphere community can effectively suppress MTI responses.  

However, Ma et al. (2020) used WER::FLS2 to identified bacteria that reduce flg22-

mediated RGI. Many of their suppressive candidates were part of our 97-members SynCom 

and may have supressed WER::FLS2 line’s strong response, potentially explaining why 

WER::FLS2 growth was similar to wildtype in FlowPot and calcined clay systems. Flg22-

response suppression was also observed independently in the Sphingomonadales R1497, 

also included in our SynCom (Garrido-Oter et al., 2018). Interestingly, the inhibitory effect 

of suppressive strains was reported to be dominant, so that a combination of both 

suppressive and non-suppressive bacteria can inhibit flg22-responses (Ma et al., 2020). 

Consequently, the absence of WER::FLS2 response to a complex bacterial community might 

be due to suppression by the plant microbiota. 

Many mechanisms could be responsible for MTI response suppression, and will be 

discussed in Chapter 5. However, this shows that the very strong competency of WER::FLS2 

can be easily overridden by the combined effects of the root microbiota, indicating that 

bacteria play a large role in the avoidance of MTI over-activation. 
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4.4.2. IMPACT OF THE CULTURE SYSTEM 

Although strong root growth inhibition could be observed after inoculation of 

Pseudomonas R569 on agar plates, the same phenotype could not be recapitulated in any 

gnotobiotic system. These contradicting results highlight the importance of growth 

conditions and experimental methods to study plant immune responses. Why R569 bacteria 

cannot increase root growth inhibition on WER::FLS2 was nevertheless puzzling.  

Difference in root development could be too subtle to be detected. Indeed, R569 

inoculation on plate reduces the growth of the primary root but also seem to increase the 

number of lateral roots. However, root biomass is also affected by R569 on plates and 

should be an accurate proxy for root growth inhibition (data not shown). The difference 

might also be compensated over the plant development, the root being desensitised after 

prolonged exposure to bacteria, as observed for flg22 (Smith et al., 2014). Although I tried 

to analyse younger seedlings grown on calcined clay (Fig.S2D), the initial growth variability 

prevents to draw any conclusion. The experiment should be repeated on a more reliable 

substrate to rule out the influence of plant age. 

Alternatively, depending on conditions, Pseudomonas R569 might partially 

supress, or avoid, flg22-triggered immune responses. By contrast to our observation, Ma et 

al. (2020) characterized R569 as a “suppressive strain”. They reported that R569 reduces 

flg22 and Atpep1-driven growth inhibition. Therefore, it would be judicious to use a strictly 

non-suppressive strain, like Pseudomonas R9, which was also shown to induce strong root 

growth inhibition on WER::FLS2 (Emonet et al., 2020). 

Finally, the substrate might prevent the proper perception of flg22. Indeed, even 

flg22 treatment on calcined clay did not affect wild type nor WER::FLS2 growth. Many 

parameters could impair flg22 recognition: MAMPs could stay stuck against soil particles 

and be too lowly abundant to reach the root. Bacteria might also form biofilms where they 

no longer produce any flagellin proteins (Castiblanco and Sundin, 2016).  

Taken together, it appears that the natural substrate used for synthetic community 

reconstruction must be carefully chosen. Ideally, it should allow an easy root phenotyping 

and could be suitable for microscopic analysis of MTI reporters. Such system should meet 

the following criteria: 1) permit a robust and reproducible growth 2) allow the retrieval of 
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perfectly clean roots with minimum damages, ensuring unbiased weight and length 

measurement, and microscopic image acquisition, 3) be easily sterilized, 4) be easily 

colonized by bacteria, 5) reproduce root growth inhibition in response to flg22 and 6) 

reproduce bacterial-triggered root growth inhibition. A summary of the different tested 

substrates is found in Table 1. 

Table 1: Summary of the characteristics of the different tested substrates  
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References 
0.5MS + MES ok ok ok oka  ok ok no ok Chapter 3; 5 

0.5MS ok ok ok oka  ok ok  no ok Chapter 5 

Calcined clay - 6WellPlate no ok ok ok no no no wetd Chapter 4 

Calcined clay - MagentaBox ok ok ok ok 
 

no no wetd Chapter 4 

FlowPot ok no ok ok 
 

no ok wetd Chapter 4 

Peat-based soil ok no ok ok 
 

no ok ok Chapter 4 

Serami ok ok okc 
   

no ok Chapter 4 

Fine soil no no okc 
   

ok ok Chapter 4 

Fine sand no ok okc 
   

ok ok Chapter 4 

Coarse sand no ok okc 
   

ok ok Chapter 4 

Mix fine + coarse sand okb ok okc 
   

ok ok Chapter 4 

a maximum 5 strains 
b not optimal 
c not yet tested but should be possible 
d growth conditions very humid 

So far, none of the tested substrates ticked all the boxes, but sand might be 

promising after some optimisation. This natural substrate would also permit to establish an 

adapted sand-specific microbial culture collection. Miebach et al. (2020) proposed also a 

zeolite-clay system for bacterial inoculation, although zeolite might be difficult to wash from 

the roots. Alternatively, hydroponic culture is frequently used for microbial inoculation, 

notably for root exudates analysis (Korenblum et al., 2020), but conditions might be very 

different from plants grown on soil. Recently, hydrogel-based transparent soil, a porous 

medium more similar to soil than hydroponic systems, was proposed for root phenotyping 
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(Ma et al., 2019). Transparent soil allows root imaging directly in the substrate and could 

be used as an intermediary step between agar plate culture and sterile soil system. 

4.4.3. THE RHIZOSPHERE COMMUNITY STRUCTURE IS HARDLY IMPACTED BY PRRs 

LOCALISATION 

According to the idea that MTI recruits an adapted microbiota (Hacquard et al., 

2017), we speculated that expressing FLS2 ectopically might alter the composition of the 

microbiome. However, our 16S analysis revealed no significant difference between wild-

type plants, fls2 mutants and WER::FLS2 lines. The R569 isolate, however, tends to have a 

lower relative abundance in the rhizosphere of WER::FLS2 compared to wildtype. Though 

non-significant, it corroborates the impaired colonization of CHA0 bacteria observed on the 

UBQ10::FLS2 line, which also displays a super-competency to flg22 (Zhou et al., 2020). 

Unfortunately, the relative abundance of three other bacteria, which we characterised 

previously as capable to induce both immune read-outs and relative root growth inhibition 

(Emonet et al., 2020, Ch.3. Ap.12BC), was not altered in WER::FLS2. It must be noted that, 

compared to R569, these isolates had already variable effects on plates, some of them 

inducing WER::FLS2 root growth inhibition only in Cologne’s conditions but not in 

Lausanne. This result highlights the robustness of our 97-member SynCom composition, 

probably caused by the large number of selected bacteria. Indeed, the more diverse the 

bacterial community, the more resilient it is to perturbation and pathogen invasion (van 

Elsas et al., 2012; Hacquard et al., 2017; Kennedy et al., 2002). A smaller SynCom might have 

rendered the effect of mis-localized MTI responses more visible. 

Such weak effect on the microbiome composition might be explained by several 

hypotheses. The first suggestion stems from the fact that our SynCom contains suppressive 

bacteria that will inhibit MTI responses. Consequently, WT and WER::FLS2 lines, if equally 

affected, will both fail to mount part of their immune responses and will recruit similar 

community. Ma et al. (2020) indeed observed that, whereas flg22-treatment can shift the 

relative abundances of 5-member non-suppressive SynComs, suppressive SynCom 

community structures were unaffected. 

Alternatively, changing the expression pattern of a single PRR might not be 

sufficient to affect the bacterial community. Indeed, FLS2 is constitutively expressed in wild-
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type roots, so that altering its expression pattern might not drastically impact the global 

root assemblage (Beck et al., 2014; Faulkner and Robatzek, 2012; Robatzek et al., 2006; 

Zhou et al., 2020). It would be interesting to overexpress several PRRs in the super-

competent meristematic epidermis to clearly unbalance immune responses, especially with 

PRRs not endogenously expressed in roots. Expressing EFR, normally restricted to the shoot 

(Faulkner and Robatzek, 2012; Millet et al., 2010), in the root meristem might have more 

chances to alter the microbiota composition. Interestingly, interfamily transfers of PRRs 

were shown to confers resistance to pathogens (EFR in Solanaceae or Medicago, CORE in 

A. thaliana or LORE in tobacco) (Lacombe et al., 2010; Pfeilmeier et al., 2019; Ranf et al., 

2015; Wang et al., 2016), suggesting that non-endogenous PRRs may also inhibit the growth 

of non-adapted commensals. 

Finally, the lack of resolution of OTUs sequencing analyses may overlook local 

changes in community composition. Indeed, microbial community is not homogeneous 

(Cardinale et al., 2015) and FLS2 ectopic expression might have altered its composition only 

on restricted regions of the root. Nevertheless, the spatial resolution of metagenomic 

analyses can be improved when roots are sampled according to developmental regions (tip, 

root hair region or mature parts for example) (Bulgarelli et al., 2013; DeAngelis et al., 2009). 

It would be extremely interesting to assess the repartition of bacteria along the root in 

response to FLS2 expression in different tissues. This would require a growth system 

allowing easy retrieval of clean roots. However, separation of the roots from the soil may 

alter the repartitions of bacteria, so that in situ confocal imaging might be convenient to 

avoid artefacts. Microfluidic systems prove to be useful to observe the accumulation of 

Bacillus subtilis at the root tip (Massalha et al., 2017b). The rhizosphere community 

composition could also be visualized in hydrogel-based transparent soil (Ma et al., 2019). 

Moreover, many bacteria and fungi can be visualized by fluorescent tags to follow their 

colonization routes (Czymmek et al., 2007; Eynck et al., 2007; Götz et al., 2006; Hartmann 

et al., 2019; Massalha et al., 2017b; Miebach et al., 2020; Oburger and Schmidt, 2016; 

Rothballer et al., 2005). Simultaneous imaging of several strains would be crucial to 

decipher the repartition of bacteria in a community context. However, fluorochrome optical 

properties might limit the number of bacteria assessed at the same time and this technique 

requires the bacteria to be transformable. Alternatively, bacterial strains could be 
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monitored with Fluorescent In Situ Hybridization (FISH), labelling bacteria based on 

distinct DNA probes. FISH was used to characterize the spatial structure of the lettuce 

microbiome (Cardinale et al., 2015). Interestingly, the authors also used the shape of 

bacteria to differentiate between strains of the same family. 

Assessing the biological impact of spatial confinement of defences revealed to be 

more challenging than expected. Finding a system reproducing the results obtained in agar 

will be crucial to investigate the impact of ectopic PRRs on the growth-defence trade-off. 

Moreover, it would be difficult to assess the fine scale interactions occurring at the root 

surface by usual metagenomic analysis. Combination of gnotobiotic conditions, reduced 

synthetic community inoculation and high-resolution imaging will allow to decipher the 

spatial structure of rhizosphere community and assess the role of localized immune 

responses. 
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4.5. MATERIAL AND METHODS 

4.5.1. PLANT MATERIAL AND GROWTH CONDITIONS 

All experiments were performed with A. thaliana Columbia Col-0 ecotype. 

Prom::FLS2-GFP fls2 (SAIL691_C04) were previously described (Emonet et al., 2020; 

Wyrsch et al., 2015). For natural soil analyses, plants were grown for four weeks on non-

sterile peat substrate (GO PP7, Jiffy, Netherland), Serami (100% untreated clay, Serami 

GmbH, Germany), coarse (1-1.7 mm) and fine (0.3-0.9 mm) quartz sand (Carlos Bernasconi 

SA, Bern, Switerland), fine sieved soil (Substrate 167, Ricoter, Aarberg, Switzerland), or a 

mix of selected soils to the ratio 1:1, in Percival chambers under short day conditions 

(10h/14h light/dark). In Cologne, plants were grown on Cologne Agricultural Soil (CAS) in 

greenhouse. FlowPot and calcined clay systems were grown in light cabinet under short day 

conditions (10h/14h light/dark, 21°/19°C, 65% relative humidity). 

4.5.2. SHOOT AND ROOT BIOMASS ANALYSIS 

Shoots were collected with scissors, briefly dried with absorbing paper to remove 

water on leaves, then weighted. Roots were gently washed in a water bath to remove as 

much soil as possible without breaking them, dried with paper and weighted. 

4.5.3. BACTERIAL SYNTHETIC COMMUNITY PREPARATION 

Commensal bacterial strains were obtained from the At-SPHERE culture collection 

(Bai et al., 2015). The synthetic communities were designed to encompass OTUs with 

specific 16S RNA sequences. A list of the 97 strains selected is found in Table S1. 

For FlowPots inoculation, bacteria were cultured separately, directly from glycerol 

stock, in 96-deep well plates filled with 800 μL/well of half strength Tryptic Soy Broth (50% 

TSB) medium for seven days at 26° and 150 rpm. Bacteria were then again sub-cultured for 

five days in 1 ml fresh media at ratio 2:5 (400 μl bacteria culture + 600 μl fresh media). 

Three biological replicates of the SynCom were prepared. After incubation, deep well plates 

were centrifuged for 10 min at 4000 rpm, supernatants were discarded with the pipet and 

pellets were resuspended in 200 μl of 10 mM sterile MgCl2 (for FlowPot) or CaCl2 (for 

calcined clay system), then all 200 μl bacterial cultures were pooled together in a single 50 

ml falcon tube. Optical density at 600 nm was measured and the concentration of the start 
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culture adjusted to OD600 = 0.5. For single inoculation with Pseudomonas R569, bacteria 

were first grown on 50% solid TSB then cultured in 10x 4 ml liquid 50% TSB until they 

reached saturation (5 days). 

The same process was applied for calcined clay inoculation with SynCom. 

However, for timing reason, bacteria were sub-cultured twice, once for 9 days and once for 

3 days, then pooled together as described previously. 

4.5.4. FLOW-POT SYSTEM 

FlowPot axenic growth system was set up following the modified protocol from 

Kremer et al. (2018). Briefly, 4,5 L of soil was obtained by mixing sieved peat to vermiculite 

in a ratio of 2:1, then wet with MilliQ water and autoclaved (25 min, liquid program). Soil 

was then leaved in the oven for 24 h, then moisten again with MilliQ water, autoclaved for 

25 min and leaved in the oven for 24 h, then let rest on the bench at room temperature. 

FlowPot were mounted as follows, with sterile material. FlowPots, made of sterile 50 ml 

syringes with screw-end (Jensen Global, cat. no. JG50CC-LL), cut in half, were filled firstly 

with a single layer of sterile Soda-glass beads (2.5-3 g/FlowPot) (Sigma-Aldrich, cat. no. 

Z265926), then sterile soil until the top. The FlowPot was then closed with previously 

sterilized fibre glass mesh (8x8cm, product number 4.926.992, Windhager) and a cable 

binder. Five to six FlowPots were then fitted in a sterile Microbox (Combiness, USA, model 

TPD1600 with XXL with filter) whose bottom was covered by a tip holder placed upside 

down. The open box was then placed in a Sunbag (2boxes/bag) (Sigma-Aldrich, cat. no. 

B7026) closed with autoclaving tape. Boxes were then autoclaved for 45 min, then closed 

bags were let at room temperature for three days. On a clean bench, pots were then flushed 

with 50ml of previously autoclaved MilliQ water, using a syringe connected by a sterile 

tygon tube. FlowPots were then put back in their boxes, closed with the lid. Boxes were let 

stand overnight at room temperature on a clean bench. The next days, FlowPots were again 

flushed with 50 ml sterile ½ MS solution supplemented with 200 μl of bacterial start culture 

or mock. Around 20 sterile and pre-vernalized Col-0, fls2 or WER::FLS2-GFP fls2 seeds were 

sown by pot and the boxes closed. Samples for each genotype and treatment were separated 

in different boxes. In total, 72 FlowPots were inoculated with either mock, R569 bacteria 

alone, or one of the three biological replicates of the SynCom. A 2 ml-sample of start 
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inoculum (before dilution) was collected, centrifuged, its supernatant discarded then freeze 

at - 80°C. Plants were grown for five weeks in a light cabinet. After a week, extra seedlings 

were removed under sterile conditions to let only three seedlings by FlowPot. For 

phenotyping analyses, shoots were cut and weighted, then roots were carefully cleaned in 

sterile water with forceps and, after excess of water removed, weighted. Roots were then 

collected in Lysing Matrix E tubes and deep-frozen in liquid nitrogen for microbiome 

analysis (root samples). Additionally, residual soil that was not in contact with the roots 

were collected for each FlowPot (matrix samples). 

4.5.5. CALCINED CLAY  

Calcined clay with 5% vermiculite (80 g /magenta box) was washed several times 

with tap water (until the washing water turned clear), autoclaved (210°C, 20min) then 

dried for 2,5 weeks until completely dehydrated. Calcined clay was then mixed with 2/3 of 

volume of sterile soil (see FlowPot protocol) and used to fill pre-sterilized magenta boxes 

to one third of their volume before autoclaving. Magenta boxes were then dried for 1 day in 

an oven (80°C), then inoculated with 70 ml of sterile ½ MS supplemented with 1ml of 

bacterial start culture. Sterile and vernalized seeds were added at each corner of the box, 

then grow for seven weeks. After one weeks, extra seedlings were trimmed under sterile 

conditions to let only four seedlings by Magenta box. For analysis, shoots and roots were 

collected. Roots were washed in sterile water and samples weighted.  

4.5.6. SIX-WELL PLATE CALCINED CLAY SYSTEM 

For small scale inoculations in 6-well plates, each well was filled with 5 ml of sterile 

calcined clay. Then, 2.5 ml of ½ MS solution was pipetted in each well and the plates were 

shaken slightly sideway to distribute the solution (using a sterile cover whose inside was 

covered by an aluminium foil), before one seed by well was sown. After closing the lid with 

some micropore tape, seeds were vernalized for two days in the fridge, then grown for six 

days before seedling inoculation with R569 bacteria or flg22 treatment. For bacterial 

inoculation, R569 strain was grown overnight in 50% TSB, then the culture pelleted and 

washed with MgCl2. Bacterial culture was then diluted in ½ MS to OD600 = 0.05 (start 

culture). Finally, 200 μl of start culture was inoculated in each well. For flg22 treatment, 200 
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μl of 125 μM solution was added at the base of each seedlings. Plants were grown for six 

more days before harvesting and root length analysed. 

4.5.7. DNA EXTRACTION AND LIBRARY PREPARATION 

Microbial community profiling was performed as described previously with some 

modifications (Durán et al., 2018). Briefly, total DNA was extracted using the FastDNA Spin 

Kit for Soil (MP Biomedicals, Solon, USA). Sample were homogenized in Lysis Matrix E tubes 

using Precellys 24 Tissue (Lyser Bertin Technologies, Montigny-le-Bretonneux, France) and 

DNA eluted in 80 μl nuclease-free water. DNA concentration was quantified using Quant-iT 

PicoGreen dsDNA Assay kit (Invitrogen), diluted to 3,5 ng/μl and used for 2-steps PCR 

amplification. V5-V7 sequence of bacterial 16S rRNA was first amplified in triplicate 

(primers 799F - 1192R), then the amplicons digested by Antarctic phosphatase and 

Exonuclease I (New England BioLabs GmbH, Frankfurt,Germany) to remove primer 

sequences, single-stranded DNA and to degenerate enzymes. In a second PCR, 3 μl of PCR 

products were then barcoded with reverse primers including barcodes and Illumina 

adaptors (Table S2). Then, gel purification was carried out to remove plant-specific bands 

and primer dimers using QIAquick Gel extraction kit (Qiagen). After DNA fluorescent 

quantification with Picogreen, 100 ng of each PCR products were pooled together. The 

library was then purified twice with Agencourt AMPure XP (Beckman COULTER). DNA 

concentration was finally measured with Quantus Fluorometer and adjusted to 18 ng/μl. 

Paired-end Illumina sequencing was performed in-house with MiSeq sequencer and custom 

sequencing primers. 

4.5.8. 16S rRNA GENE PROCESSING AND BETA-DIVERSITY ANALYSIS  

Paired 16S rRNA amplicon sequencing reads were joined (join_paired_ends QIIME, 

default), then demultiplexed and quality filtered (split_libraries_fastq, QIIME, with max. 

barcode errors 1 and phred score of 30). Finally, demultiplexed sequences were 

concatenated. Reference-based OTU clustering was then performed using the UPARSE-REF 

algorithm and chimera removed. OTU table was then normalized using the cumulative-sum 

scaling (CSS) method (Paulson et al., 2013) and fold changes compared to input calculated. 

Bray-Curtis distances between samples were used for principal coordinate analysis (PCoA, 

cmdscale function in R). 
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4.5.9. STATISTIC ANALYSES 

Statistical analyses were carried out using R 3.6.0 or Graphpad Prism 7.0 softwares 

(https://www.graphpad.com/). Binary comparisons were performed with Student T-test. 

For multiple comparisons, ANOVA followed by Tukey’s HSD tests were applied when linear 

model assumptions were met. On the contrary, a Kruskal-Wallis test followed by Dunn’s 

multiple comparison test was performed.  
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4.7. SUPPLEMENTAL FIGURES AND TABLES 

 

Supplemental Figure 1: Ectopic expression of FLS2 does not affect growth on various non-sterile substrates 

(A) WER::FLS2-GFP fls2 has more biomass than WT and fls2 plants when grown on non-sterile natural CAS soil 
(Cologne). Fresh weight was measured at six weeks. Different letters indicate statistically significant differences 
(p<0.05). Multiple comparison was performed using Kruskal-Wallis and Dunn’s test. 
(B) Root fresh weight is not significantly different between WT plants and WER::FLS2-GFP fls2 lines grown on non-
sterile Serami, coarse sand and fine sand substrates. Root weight was measured at four weeks. Different letters indicate 
statistically significant differences (p<0.05). Multiple comparison was performed using Kruskal-Wallis and Dunn’s test. 
(C) Representative pictures of plants grown on different substrates. Note the variability among replicates.  
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Supplemental Figure 2: Bacterial inoculation in gnotobiotic systems does not cause stronger root growth inhibition 
of WER::FLS2 

(A) Representative pictures of FlowPots five weeks after inoculation. Note that plants inoculated with the complex 
SynCom are bigger than WT, and that plants inoculated with R569 have more lesions.  
(B-C) Inoculation of WT and WER::FLS2-GFP fls2 lines with the single strain R569 or a complex 97-members SynCom in 
calcined clay axenic system. Root and shoots weights were combined by Magenta box. Inoculation with the single strain 
R569 decreases shoot biomass (C) but does not affect root weight (B). Samples were harvested seven weeks after 
inoculation. Multiple comparison was performed using ANOVA followed by Tukey’s HSD test for (B) and Kruskal-Wallis 
followed by Dunn’s test for (C). Different letters indicate statistically significant differences (p<0.05). 
(D) WT and WER::FLS2-GFP fls2 one-week-old seedlings were treated with 10 μM flg22 or inoculated with R569 (final 
OD600 = 4 x 10-4) on sterile calcined clay in 6-well plates. None of the treatment induced a significant difference between 
WT and WER::FLS2-GFP fls2. Note the high variability even before inoculation. Multiple comparison was performed 
using Kruskal-Wallis and Dunn’s test. Different letters indicate statistically significant differences (p<0.05).   
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Supplemental Table S1: Composition and taxonomy of the 97-member complex SynCom 

Isolate ID OTU Kingdom Phylum Class Order Family Genus 

Root137 OTU_139 Bacteria Actinobacteria Actinobacteria Actinomycetales Cellulomonadaceae Cellulomonas 
Root101 OTU_168 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae Janibacter 
Root181 OTU_153 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae  
Root456 OTU_232 Bacteria Actinobacteria Actinobacteria Actinomycetales Intrasporangiaceae  
Root1464 OTU_238 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Agromyces 
Root4 OTU_66 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Agromyces 
Root81 OTU_112 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Agromyces 
Root166 OTU_248 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Microbacterium 
Root322 OTU_87 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Microbacterium 
Root53 OTU_219 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Microbacterium 
Root61 OTU_116 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Microbacterium 
Root112D2 OTU_37 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae  
Root1293 OTU_82 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae  
Root227 OTU_202 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae  
Root332 OTU_131 Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae  
Root135 OTU_137 Bacteria Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium 
Root265 OTU_59 Bacteria Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium 
Root236 OTU_159 Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Aeromicrobium 
Root495 OTU_74 Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Aeromicrobium 
Root122 OTU_43 Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 
Root1257 OTU_264 Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 
Root140 OTU_157 Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 
Root190 OTU_233 Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 
Root79 OTU_129 Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 
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Root472D3 OTU_62 Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae  
Root614 OTU_122 Bacteria Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae  
Root918 OTU_53 Bacteria Actinobacteria Actinobacteria Actinomycetales Promicromonosporaceae 
Root1295 OTU_86 Bacteria Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae Streptomyces 
Root1310 OTU_189 Bacteria Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae Streptomyces 
Root264 OTU_58 Bacteria Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae Streptomyces 
Root431 OTU_101 Bacteria Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae Streptomyces 
Root107 OTU_173 Bacteria Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae  
Root420 OTU_201 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 
Root901 OTU_21 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 
Root935 OTU_41 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 
Root11 OTU_120 Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus 
Root920 OTU_222 Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus 
Root147 OTU_254 Bacteria Firmicutes Bacilli Bacillales Bacillaceae  
Root444D2 OTU_121 Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus 
Root52 OTU_218 Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus 
Root1279 OTU_64 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas 
Root1472 OTU_170 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Caulobacter 
Root342 OTU_197 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Caulobacter 
Root1277 OTU_60 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae  
Root700 OTU_161 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae  
Root123D2 OTU_235 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Afipia 
Root105 OTU_171 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae  
Root685 OTU_93 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae  
Root483D1 OTU_15 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 
Root670 OTU_103 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae  
Root102 OTU_127 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium 
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Root157 OTU_223 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium 
Root172 OTU_13 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium 
Root552 OTU_165 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium 
Root554 OTU_9 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium 
Root100 OTU_229 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae  
Root491 OTU_77 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Agrobacterium 
Root564 OTU_50 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Agrobacterium 
Root1203 OTU_52 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium 
Root1204 OTU_91 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium 
Root1212 OTU_115 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium 
Root149 OTU_247 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium 
Root708 OTU_39 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium 
Root231 OTU_267 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium 
Root278 OTU_32 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium 
Root274 OTU_231 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae  
Root672 OTU_102 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium 
Root241 OTU_130 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 
Root50 OTU_230 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 
Root710 OTU_200 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 
Root1497 OTU_221 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingopyxis 
Root154 OTU_142 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae  
Root170 OTU_245 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter 
Root565 OTU_97 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter 
Root83 OTU_110 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter 
Root219 OTU_203 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 
Root267 OTU_61 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 
Root70 OTU_147 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 
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Root411 OTU_96 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Variovorax 
Root1217 OTU_117 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  
Root1272 OTU_63 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  
Root209 OTU_126 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  
Root404 OTU_150 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  
Root405 OTU_123 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  
Root189 OTU_199 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Herbaspirillum 
Root418 OTU_100 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Janthinobacterium 
Root1280 OTU_45 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 
Root562 OTU_57 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 
Root569 OTU_33 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 
Root68 OTU_178 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 
Root9 OTU_95 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 
Root65 OTU_269 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Pseudoxanthomonas 
Root179 OTU_18 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Rhodanobacter 
Root480 OTU_107 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae  
Root604 OTU_69 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae  
Root690 OTU_35 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae  
Root76 OTU_174 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae  
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Supplemental Table S2: List of barcodes used for MiSeq Sequencing 

Sample 
ID 

Barcode 
Sequence LinkerPrimerSequence ReversePrimer 

fp.13 TCCCTTGTCTCC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.14 ACGAGACTGATT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.15 ACCGGTATGTAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.16 TGCATACACTGG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.17 TGGTCAACGATA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.18 ATCGCACAGTAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.19 GTCGTGTAGCCT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.20 TACAGCGCATAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.21 ATCCTTTGGTTC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.22 AGTCGAACGAGG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.23 ACCAGTGACTCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.24 CCAATACGCCTG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.25 GCAACACCATCC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.26 AGTCGTGCACAT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.27 AGTTACGAGCTA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.28 TTGCGTTAGCAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.29 TACGAGCCCTAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.30 TGTCGCAAATAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.31 ACAATAGACACC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.32 TCTCTACCACTC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.33 CGATCGAACACT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.34 ATTGCAAGCAAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.35 AGCGCTCACATC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.36 TCGACCAAACAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.37 TGTGTTACTCCT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.38 TGCACAGTCGCT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.39 TTCTAGAGTGCG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.40 ACACCTGCGATC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.41 ATTCCTCTCCAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.42 CATCGACGAGTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.43 CACCACAGAATC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.44 GGTCTTAGCACC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.45 TATCGCGCGATA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.46 CTCTACGAACAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.47 CTCCTCCCTTAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.48 CGTGTTATGTGG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.49 ATTAGCAGCGTA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.50 CAAGTTTCCGCG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.51 CCTTGTTCACCT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.52 AACCAGCAGATT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.53 CTAGAGCTCCCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.54 CACGCAGTCTAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.55 ACAAACATGGTC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.56 TCGAAACATGCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 
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fp.57 TTCCCACCCATT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.58 AGCAGAACATCT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.59 GAAACATCCCAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.60 CTGTCAGTGACC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.61 CGGATCTAGTGT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.62 TTCTCCATCACA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.63 ATTTAGGACGAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.64 GGTTTAACACGC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.65 AGACAGTAGGAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.66 GCAGATTTCCAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.67 AGATGATCAGTC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.68 TATCACCGGCAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.69 CCAGATATAGCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.70 GGTCTCCTACAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.71 ACAGCTCAAACA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.72 ATAGCGAACTCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.73 AACCGCATAAGT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.74 CTTGAGAAATCG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.75 CAGTCGTTAAGA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.76 CTTCCAACTCAT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.77 AATAGCATGTCG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.78 AAGTCACACACA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.79 CACACAAAGTCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.80 GTTCCTCCATTA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.81 CATCAAGCATAG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.82 CAAGCCCTAGTA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.83 CCTCTGAGAGCT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.84 ACAAGAACCTTG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.85 TCATTCCACTCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.86 ACCATCCAACGA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.87 ATGCCGGTAATA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.88 TCAACCCGTGAA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.89 TCTGTAGAGCCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.90 TCGGATCTGTGA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.91 ACTACCTCTTCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.92 CTATCCAAGTGG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.93 AGCCAGTCATAC AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.94 GAGTTAGCATCA AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.95 TAAGACTACTGG AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

fp.96 GTCTCCTCCCTT AGATCGGAAGAGCACACGTCTGAACTCCAGTCA AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 
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5 MODULATION OF MTI BY COMMENSALS 
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5.1. INTRODUCTION 

5.1.1. MECHANISMS OF MTI AVOIDANCE AND SUPPRESSION BY THE MICROBIOME 

To survive along the root, rhizosphere microorganisms had to adapt to their host 

and develop several strategies to escape plant immune responses. Indeed, a large part of 

the commensals isolated from plant roots does not induce immune transcriptional read-

outs (Emonet et al., 2020; Yu et al., 2019a; see Chapter 4).  

AVOIDING MAMP-DRIVEN INDUCTION OF IMMUNE RESPONSES 

A first effective bacterial strategy is to remain incognito and to evade the 

recognition by PRRs (Yu et al., 2019b). As previously discussed, bacteria present only a 

selection of MAMPs amongst the full palette of recognizable elicitors described until now. 

For instance, only a small percentage of Arabidopsis rhizosphere bacteria produces flagellin 

peptides that are effectively recognized by FLS2 (Garrido-Oter et al., 2018; Hacquard et al., 

2017). The selective pressure induced by MTI responses led also to variation in MAMP 

sequences. Many studies reported flg22 variants, both in pathogens such as R. solanacearum 

or adapted commensals like Sinorhizobium meliloti, which completely fails to induce 

immune response in Arabidopsis (Felix et al., 1999; Gómez-Gómez et al., 1999; Hind et al., 

2016; Lopez-Gomez et al., 2012; Pfund et al., 2004; Sun et al., 2006; Trdá et al., 2014; Yu et 

al., 2019b).  

In addition to sequence variation, bacteria can protect their flagellin monomers by 

glycosylation to avoid recognition by FLS2. In turn, plants secrete glucosidases to degrade 

this sugar shield and access the flg22 peptide (Buscaill et al., 2019). Similarly, some fungi 

secrete Ecp6 or Avr4 effectors that bind to chitin and eventually strengthen the fungal cell 

walls (van den Burg et al., 2006; Jonge et al., 2010). Piriformospora indica produces the β-

glucan-binding lectin FBG1. It was proposed that FBG1/ β-glucan complexes compete with 

free β-glucan fragments to bind the β-glucan receptors with higher affinity and block the 

induction of downstream responses (Wawra et al., 2016). MAMPs can also be directly 

degraded by bacteria, notably by AprA extracellular alkaline proteases (Bardoel et al., 

2011). Ma et al. (2020) also report that two strains of the At-SPHERE collection can degrade 

flg22 peptides by an unknown mechanism. 
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Interestingly, bacteria stop to produce flagellin proteins when switching to biofilm 

mode, which could be a mean to evade immune recognition (Castiblanco and Sundin, 2016; 

Engl et al., 2014). Biofilms, which consist of aggregate of non-motile bacteria, are produced 

when bacteria reach the surface of the root (Ramey et al., 2004) and are required for host 

attachment and virulence, for example by xylem-colonizing pathogens (Castiblanco and 

Sundin, 2016; Mishra et al., 2012).  

ACTIVE SUPPRESSION OF MTI RESPONSES 

A second strategy used by bacteria is to directly suppress MAMP-triggered 

immune responses. The ability to inhibit immune responses was long described for 

pathogens and contributes to their virulence. However, there is increasing evidence that 

root commensal and beneficial microbes also modulate MTI. Millet et al. (2010) showed that 

the PGPR Pseudomonas simiae strain WCS417R and the pathogen P. syringeae strain 

DC3000 inhibit flg22-responses. Similarly, the beneficial bacteria Bacillus subtillis FB17 

suppresses callose deposition and CYP71A12, MYB51 and WRKY11 expression 

(Lakshmanan et al., 2012). Partial transcriptomic downregulation of flg22-responsive genes 

was also observed after inoculation with P. simiae WCS417R (Stringlis et al., 2018c), the 

Rhizobium isolate R129E (Garrido-Oter et al., 2018) and a synthetic bacterial community 

suppressing flg22-triggered root growth inhibition (RGI) (Ma et al., 2020). Interestingly, 

PER5, FRK1 and RBOHD were part of the flg22-transcriptional responses down-regulated 

by the RGI-suppressive community. By contrast, a cluster of defence genes, containing 

MYB51 and CYP71A12, is induced by both RGI-suppressive and non-suppressive bacterial 

community, suggesting that bacteria might specifically target a subset of the immune 

responses. This partial suppression could explain why some bacteria induce PER5 immune 

transcriptional read-out, but do not cause stronger root growth inhibition on WER::FLS2 

(Emonet et al., 2020). 

MTI suppression is very often achieved by the injection of effectors, targeting 

component of the immune signalling pathway, and requires the expression of the type III 

secretion system (T3SS). Countless mechanisms have been described for pathogen 

infections and are reviewed by Asai and Shirasu (2015), Couto and Zipfel (2016) and 

Toruño et al. (2016). Effectors directly targeting MTI signalling are also found in beneficial 
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microbes such as Pseudomonas (P. simiae WCS417, P. defensor WCS374, other P. fluorescens 

strains, etc.) and Rhizobia (Loper et al., 2012; Stringlis et al., 2019b; Yu et al., 2019b). Thus, 

the rhizobial effector NopM suppresses ROS burst, while NopL blocks the signal 

transduction of the MAPK cascade (Bartsev et al., 2004; Xin et al., 2012).  

However, many commensal bacteria lack a functional T3SS and therefore rely on 

other mechanisms to suppress MTI (Levy et al., 2018; Teixeira et al., 2019). Rhizosphere 

bacteria can, for example, modulate plant hormonal pathways. Thus, B. subtillis FB17 and 

Piriformospora indica suppress flg22-responses dependent on jasmonic acid (JA) signalling 

(Jacobs et al., 2013; Lakshmanan et al., 2012). Similarly, P. syringae inhibition of flg22 

responses was independent of T3SS, but required the production of the phytotoxin 

coronatine, which mimics JA-Ile, the active form of jasmonic acid (Millet et al., 2010).  

Bacterial surface components can also modulate plant-bacteria interactions. 

Lipopolysaccharides (LPS) are anchored in the outer leaflet of the outer membrane of most 

gram-negative bacteria. LPS are different between species and are composed of a relatively 

conserved lipid A domain and a core oligosaccharide domain, decorated with variable O-

antigens (Kutschera and Ranf, 2019). LPS are potent virulence factors in animals and part 

of the lipid A moiety, composed of 3-OH-FAs, is recognized as MAMPs by the LORE receptor 

(Kutschera et al., 2019; Ranf et al., 2015). O-antigens are very variable and adapt to changing 

environmental conditions. In animal, LPS structure alteration was shown to avoid immune 

recognition, but this process was so far not reported in plants (Ranf, 2016). However, LPS 

suppress the oxidative burst in symbiosis between Rhizobium and legumes by an unknown 

mechanism, which was speculated to rely on specific recognition of LPS by receptors (Albus 

et al., 2001; Gibson et al., 2008; Scheidle et al., 2005; Tellström et al., 2007).  

Interestingly, biofilm components per se can be used to suppress MTI. Biofilms are mainly 

composed of exopolysaccharides (EPS). Aslam et al. (2008) showed that EPS produced by 

M. meliloti block flg22 responses through chelation of calcium ions. 

Finally, it was recently proposed that the PGPRs Pseudomonas simiae WCS417R 

and Pseudomonas capeferrum WCS358 produce gluconic acid, which acidifies their growth 

medium and inhibits flg22-triggered immune responses. Indeed, two WCS358 mutants, 
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ΔpqqF and ΔcyoB, impaired in gluconic acid production, failed to suppress flg22-induced 

responses (Yu et al., 2019a). 

5.1.2. PSEUDOMONAS PROTEGENS STRAIN CHA0 AS MODEL FOR COMMENSAL 

COLONIZATION 

The P. protegens strain CHA0 is among the best characterized root beneficial 

bacteria with plant-protecting activity. It was shown to supress soil-borne diseases (Haas 

2003), mainly by production of the antifungal compounds 2,4-diacetylphloroglucinol 

(DAPG) and pyoluteorin (PLT) (Keel et al., 1990, 1992; Maurhofer et al., 1992, 1992). CHA0 

also improves plant growth by gluconate-mediated solubilization of phosphate in limiting 

conditions (de Werra et al., 2009). In addition, CHA0 infects larvae of the plant pest insects 

Galleria mellonella (Flury et al., 2017), colonizes the gut of Pieris brassicae and competes 

with their microbiota using their type VI secretion system (Vacheron et al., 2019). CHA0 

bacteria can colonize A. thaliana, where they live as commensals at the surface of the root. 

They usually fail to induce immune transcriptional read-outs except in the elongation zone 

and around damaged root tissues if inoculated at high concentration (Emonet et al., 2020; 

Zhou et al., 2020). 

We have previously shown that CHA0 native flagellin is detected by the WER::FLS2 

super-competent line, induces strong PER5 responses but does not affect root growth, 

suggesting that CHA0 can inhibit at least a subset of flg22-induced responses by an 

unknown mechanism (Emonet et al., 2020). Most studies investigating the suppression of 

MTI rely on the combination of bacterial inoculation with flg22 treatment (Yu et al., 2019a; 

Ma et al., 2020). However, this approach overlooks MTI avoidance mechanisms and relies 

on very strong concentration of artificially applied MAMPs. Here, we use the WER::FLS2 

super-competent line in mono-association with bacteria to bypass such limitation. The 

WER::FLS2 line has also the advantage, that any effect observed specifically in this line, 

reveals a FLS2-dependent response, rather than the effect driven by multiple MAMPs. We 

took advantage of the large collection of CHA0 mutants available to screen for components 

involved in the suppression of root growth inhibition (RGI response) or PER5 

transcriptional responses, induced specifically by native flagellin.  
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5.2. RESULTS 

5.2.1. SELECTION OF CHA0 CANDIDATE MUTANTS IMPAIRED IN FLS2-RESPONSES 

SUPPRESSION 

In collaboration with the group of Prof. Christophe Keel, we selected a set of 

sixteen CHA0 mutants possibly affecting MTI responses (Table S1). We focused on 

mutations in components potentially involved in direct suppression of immune responses, 

but we also included candidates that could affect more generally the virulence and the 

colonization capacity of CHA0. 

Many factors are important CHA0 colonization capacities, from toxin and enzyme 

secretion to bacterial cell envelop components. We first selected mutants with defects in 

secondary metabolism or global regulators that could affect virulence. The mutant 

ΔphlABCD is impaired in biosynthesis of DAPG, a major toxic compound produced by CHA0 

on roots. It was shown to reduce root growth and to induce defences (Flury et al., 2017). 

Similarly, the ofaABC genes control the biosynthesis of cyclic lipopeptide orfamides. These 

metabolites affect cell membranes and have a broad-spectrum toxicity on microorganisms 

or insects (Flury et al., 2017), but their impact on plants was never tested. We also included 

a mutant defective for the global regulator gacA, involved in the general production of 

secondary metabolites (Laville et al., 1992).  

In addition to mutant for secondary metabolites, we included bacteria deficient for 

the formation of the cell envelop. LPS modification and virulence in response to Mg2+ is 

controlled by the two-component system sensors phoQ/phoP (Kupferschmied, 2015). In 

addition to both single mutants ΔphoQ and ΔphoP, we also analysed the mutants Δwzx, 

Δobc3 and ΔwbpL, lacking either short OSA type O-antigens (dominant LPS surface 

structure), long Fcl-type O-antigens, or both, respectively. Indeed, the gene wbpL encodes a 

glycosyltransferase initiating the “capping” of LPS (Kupferschmied et al., 2016). 

Colonization can also be affected by bacteria motility and their ability to form 

biofilms. The fleQ gene controls both flagella biogenesis and exopolysaccharides synthesis 

and contributes to the switch between the two modes of growth (Arora et al., 1997; 

Hickman and Harwood, 2008). The ΔfleQ mutant is indeed aflagellate and was included in 

our analysis (Jain and Kazmierczak, 2014). In addition, we selected the septuple mutant 
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ΔpgaABCD ΔpslA ΔalgD ΔpelD defective for the synthesis of all known exopolysaccharides 

(C.Terrettaz, unpublished). To specifically target flagellin synthesis, we finally pick an 

insertion mutant fliC::pEMG that produces non-functional flagellin (Kupferschmied, 2015). 

To test if pH-mediated suppression of MTI responses (Yu et al., 2019a) was also 

involved in the suppression of relative root growth inhibition by CHA0, we included in our 

selection four mutants impaired in gluconate synthesis. Δgcd is defective for the glucose 

dehydrogenase enzyme required for the oxidation of glucose into gluconic acid. Since this 

reaction requires as cofactor the pyrroloquinoline quinone, we also analysed the insertion 

mutant pqqF:Tn5 (Schnider et al., 1995; de Werra et al., 2009). The Δgcd mutant has 

pleiotropic effects including increase of the DAPG synthesis and pyoverdine siderophores. 

To rule out their effect, we included the double mutants Δgcd ΔphlACBD and Δgcd pvd::Tn 

(Bangera and Thomashow, 1999).  

Finally, we took advantage of the screen to include more miscellaneous mutations 

that might have a role in plant colonization. Type VI secretion system is used by CHA0 to 

compete with other bacteria when infecting insect gut. Mutants for T6SS are less virulent 

on insects (Vacheron et al., 2019). T6SS were identified in phytopathogens but also in 

commensals. It was shown to be involved in interbacterial competition or for the external 

secretion of compounds such as siderophores, but no direct injection of effectors in plant 

cells could be so far demonstrated (Bernal et al., 2018). To test whether T6SS modulates 

MTI, we analysed the mutant ΔT6SS, defective in the core apparatus of the T6SS, and the 

mutant ΔvgrG1b-mod, affecting a gene module encoding a spike, an effector and an 

immunity protein required for T6SS function (Vacheron et al., 2019). We finally tested the 

mutant ΔrebB1-3, encoding putative puncturing pistons called R-bodies. Although its 

function is still unknown, rebB1-3 is highly expressed when CHA0 is inoculated on plant 

roots, but had no impact on virulence to insect (Flury et al., 2016). 
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5.2.2. P.PROTEGENS CHA0 DOES NOT INHIBIT PER5 INDUCTION 

We first assayed all bacteria with a quick screen for PER5 induction in WER::FLS2 

compared to wild type plants, using a stereomicroscope and confocal imaging for 

confirmation. Both lines were drop-inoculated with CHA0 mutants and observed at 24h, 

48h and 72h. Binocular observations were qualitative and unprecise, but confirmed that 

wild-type plants did not respond in the meristematic zone (with the exception of some 

discrete cells) to CHA0 nor any mutants (Fig1A). As expected, Pseudomonas R569, as 

positive control, induced consistently PER5 over 3 days in WER::FLS2 (Fig.1AB). CHA0 wild-

type strain triggered a detectable and specific PER5 induction in WER::FLS2 lines until 3 dpi 

and most mutants retained this ability (Fig.1AB). This indicates that the absence of root 

growth inhibition previously observed in CHA0 was not linked to late PER5 suppression 

(Emonet et al., 2020). 

 

Figure 1: Mutants screen for defects in PER5 transcriptional read-out induction 

(A) Summary graph of PER5::NLS-3mVenus responses to the mutant strains of CHA0, assessed in the meristematic zone 
by binocular. Coloured values are subjective. Only ΔfleQ mutants fails to induce PER5 on WER::FLS2-GFP fls2 (black 
arrowhead). 
(B) PER5::NLS-3mVenus marker (Fire LUT) is induced by CHA0 and R569 on WER::FLS2-GFP fls2 at 3 dpi. Maximum 
projection of z-stacks pictures of seedlings treated with drop-inoculation of bacterial solution (OD600 = 0.01) or mock, 
respectively. Images were acquired in the meristematic (MZ) and elongation (EZ) zones. Acquisition was done with 
identical settings. Scale bar, 25 μm.  
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Only the aflagellate mutant ΔfleQ failed to induce PER5 (Fig.1A) (Ch.3; Emonet et 

al., 2020). However, the insertion mutant fliC::pEMG, mutated in the gene coding for 

flagellin, could still activate PER5 expression (Fig.1A). It could be that, although the fliC 

protein was non-functional due to the transposon insertion, this mutant still contained the 

flg22 epitope. We later confirmed that the complete deletion mutant ΔfliC avoids MTI 

induction (Emonet et al., 2020). 

5.2.3. CHA0 MUTANTS IMPAIRED IN pH REGULATION TEND TO LOSE FLS2-SPECIFIC RGI 

SUPPRESSION 

Different MTI outcomes can be independent, such as ROS burst and MAPK cascade. 

Moreover, commensal bacteria were several times shown to inhibit only a sector of flg22-

triggered responses (Garrido-Oter et al., 2018; Stringlis et al., 2018c; Ma et al., 2020). 

Therefore, we assessed their effect on root growth compared to Pseudomonas CHA0 and 

R569 (Fig.S1). 

R569 treatment inhibits wild-type root growth, but drives a stronger inhibition on 

WER::FLS2 (Fig.2A, S1A, S1C). The difference between wild-type and WER::FLS2 root 

growth inhibition (RGI) is defined as the “relative RGI” and represents the direct effect of 

the native flagellin of these bacteria. By contrast, CHA0 generally inhibits root growth of 

wild-type and WER::FLS2 to the same extent (relative RGI = 0) (Fig.S1A 1st part, S1C 2nd 

part), indicating that it can suppress part of FLS2 signalling. However, it should be noted 

that, depending on replicates, CHA0 can sometimes induce a small relative RGI (Fig. 2A, S1C 

1st part), but weaker than for R569 treatment. 

Highly concentrated bacterial treatments (OD600 = 1 to 0.1 for wild-type strains) 

usually completely stop root growth and prevents wild-type and WER::FLS2 comparison. 

Therefore, different bacterial concentrations were tested until root growth was only slightly 

affected in both plant genotypes. A start inoculum of OD600 = 10- 2 (Fig.S1A, S1B) or 10-4 

(Fig.S1C, S1D) was appropriate for most mutants. However, mutants for Δwzx, Δgcd pvd::Tn 

and ΔrebB1.3 strongly inhibit root growth for both genotypes even when inoculated with a 

start concentration of OD600 =10-4 (Fig. S1C). Therefore, short O-antigen (Δwzx), pH 

regulation coupled to siderophore synthesis (Δgcd Δpvd::Tn) and R-bodies (ΔrebB1.3) might 

be required to generally avoid/suppress MTI responses. 
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We then looked for mutants that induce a stronger root growth inhibition on 

WER::FLS2 than on wild-type (increased relative RGI). To better visualize the relative RGI, 

the differential root growth for each bacterial/mock treatment was calculated, i.e. the 

difference between the root growth of WER::FLS2 and the mean root growth of wild-type 

plants (differential growth = WER - mean (WT)) (Fig.2B, S1B, S1D). It is then possible to 

visually compare the differential growths between mock and bacterial inoculation to assess 

the relative RGI. Since the differential growth of mock treatment should be close to zero, the 

differential growth gives an estimate of the relative RGI. A summary of all replicates is found 

in Table 1. It must be noted that most results had a strong variability. 

Table 1: Summary of root growth inhibition screen 

Each column represents a biological replicate. Numbers indicate the concentration of bacteria used (e.g. -2 represents 
OD600 = 10-2). Colours correspond to difference of relative RGI between CHA0 and mutants: yellow, relative RGICHA0 = 
relative RGImutant; green, relative RGICHA0 < relative RGImutant; red, relative RGICHA0 > relative RGImutant; light grey, RGI 
induced by the mutant is too strong to compare WT and WER::FLS2-GFP fls2 lines. Mutants causing stronger relative 
RGI failed to suppress FLS2-dependent RGI response (green) and represent the best candidates. Mutants showing very 
strong inhibition of root growth on both genotypes (light grey) might be defective for genes generally inhibiting 
immune responses and were not included in the count of “Increased RGI” responses. Square, only half of the seedlings 
of the replicate shows the effect; star, significant difference calculated between differential growths of CHA0 and 
mutants (p<0.05). Multiple comparison performed with Kruskal-Wallis and Dunn’s test. 

Although most differences in differential growth were not significant, a slight trend 

was visible for mutants impaired in pH regulation (three mutants out of four, i.e. pqqF::Tn , 

Δgcd and Δgcd ΔphlABCD) (Fig.2AB, S1AB, Table 1). This supports data from Yu et al. (2020), 

indicating that low pH supresses flg22-responses. As control, ΔfleQ mutant, lacking flagellin, 

is not recognized by FLS2 and do not cause a relative RGI (WT root growth smaller than 
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WER::FLS2 root growth, as in mock) (Fig.2AB). Moreover, ΔofaABC (Fig.S2B) and ΔpgaABCD 

ΔpslA ΔalgD ΔpelD mutants (Fig.S1D) have also a tendency to increase the relative RGI. 

Cyclic lipopeptide orfamides and exopolysaccharides might therefore be involved in flg22-

response suppression by CHA0. The ΔwbpL mutant, impaired in O-antigen capping of LPS, 

also increases the relative RGI (Fig.S1B). Taken together, the impact of the different 

mutations was rather weak, but mutants impaired in pH regulation were the most 

promising candidates. 

Figure 2: CHA0 mutants defective in gluconate synthesis induce stronger RGI and modulate PER5 expression on 
WER::FLS2-GFP fls2. 

(A) Gluconate-synthesis defective mutants pqqF::Tn5, Δgcd and Δgcd ΔphlACBD tend to induce stronger root growth 
inhibition in WER::FLS2-GFP fls2 compared to WT plants. ΔfleQ mutant reduce the relative RGI compared to CHA0. 
Root growth was measured at 6 dpi on plates inoculated with bacteria at OD600 = 10-4.  
(B) Differential growth calculated from data in (A) as follows: WERvalues – mean (WTvalues). Dotted line, CHA0 reference 
value. Mutants impaired in pH regulation have decreased differential growth compared to CHA0. Different letters 
indicate statistically significant differences (p<0.05). Multiple comparison was performed using Kruskal-Wallis and 
Dunn’s test (A and B). 
(C) Induction of PER5::NLS-3mVenus (Fire LUT) on WER::FLS2-GFP fls2 is increased in meristem with mutants Δgcd and 
Δgcd ΔphlACBD. pqqF::Tn5 reduces the induction of PER5. Maximum projection of z-stacks imaging in meristematic 
(MZ) and elongation (EZ) zones treated with drop inoculation of bacterial solution (OD600 = 0.01) or mock, respectively. 
Images were acquired at 3 dpi. See Fig.S2 for results at 1 dpi. Acquisition done with identical settings. Scale bar, 25 μm.  
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Mutants impaired in pH regulation were not obviously different from CHA0 for 

PER5 transcriptional read-out induction when analysed at the binocular (Fig.1A). 

Therefore, we used confocal imaging to detect slight changes (Fig.2C, S2A). CHA0 and pH 

mutants induced PER5 similarly at 1 dpi. (Fig.S2A). However, after 3 dpi, PER5 signal 

expression was slightly increased in WER::FLS2 after inoculation with Δgcd and Δgcd 

ΔphlACBD mutants, compared to CHA0 wild-type strain (Fig.2C). Surprisingly, pqqF:Tn5 

inoculation lead to reduced PER5 induction compared to CHA0. A preliminary quantification 

of the global fluorescence tends to support these observations, particularly at 2 dpi (only 

five seedlings/treatment quantified) (Fig.S2B). 

5.2.4. PSEUDOMONAS SIMIAE WCS417R AND PSEUDOMONAS CAPEFERRUM WCS358 

PARTIALLY INHIBIT PER5 INDUCTION 

Since the difference observed with CHA0 mutants defective in pH regulation was 

very weak, the experiments were repeated with bacterial strains reported to strongly 

inhibit MTI responses. We used P. simiae strain WCS417 and P. capeferrum strain WCS358, 

which supress flg22 responses by acidification, and the two associated WCS358 ΔcyoB and 

ΔpqqF mutants impaired in gluconic acid synthesis (Yu et al., 2019a). 

Surprisingly, WCS417 and WCS358 induced PER5 expression in the WER::FLS2 line at both 

1 and 3 dpi (Fig.3A), indicating they do not completely inhibit immune responses mediated 

by FLS2, like previously described for CHA0. At 1dpi, both ΔcyoB and ΔpqqF mutants display 

the same phenotype than the wild-type strain WCS358. However, after 3 days, ΔcyoB 

inoculation caused a stronger PER5 induction than WCS358, supporting the fact that 

bacteria defective in pH regulation failed to suppress MTI responses. By contrast, ΔpqqF 

abolished PER5 induction. Interestingly, this phenocopies perfectly the CHA0 pqqF:Tn5 

mutant, suggesting that pyrroloquinoline quinone is required for the induction of the PER5 

gene. 
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Figure 3: WCS417R and WCS358 cause attenuated PER5 induction and a reduced relative root growth inhibition 
compared to R569 

(A) WCS417R and WCS358 induce PER5::NLS-3mVenus marker (Fire LUT) only in WER::FLS2-GFP fls2, but to a lesser 
extent than R569 at 1 and 3 dpi. Mutants of WCS358 ΔcyoB and ΔpqqF trigger increased, respectively, decreased PER5 
responses compared to wild-type strain WCS358. Maximum projection of z-stacks imaging of meristematic (MZ) and 
elongation (EZ) zones treated with drop-inoculation of mock or bacterial solution (OD600 = 0.01). Images were acquired 
at 1 and 3 dpi. Acquisition done with identical settings. Scale bar, 25 μm. 
(B) WCS417R and WCS358, as well as the mutants ΔcyoB and ΔpqqF, induce a relative RGI similar to CHA0 but weaker 
than R569 effect. Root growth was measured at 6 dpi on plates inoculated with bacteria (OD600 = 10-4). 
(C) Differential growth calculated from data in (B). Seedlings inoculated with WCS417R, WCS358 and associated 
mutants have similar differential growth than after CHA0 treatment. Different letters indicate statistically significant 
differences (p<0.05). Multiple comparison was performed using Kruskal-Wallis and Dunn’s test (B, C). 
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5.2.5. P. SIMIAE WCS417R AND P. CAPEFERRUM WCS358 PARTIALLY SUPRESS RELATIVE RGI 

INDEPENDENTLY OF GLUCONATE SYNTHESIS 

We also assessed the effect of P. simiae strain WCS417 and P. capeferrum strain 

WCS358 on root growth of wild-type and WER::FLS2 lines. When inoculated in agar plates 

for 6 days, WCS417R, WCS358 and the two mutants ΔcyoB and ΔpqqF induced a small 

relative root growth inhibition similar to the effect of CHA0 strain, and much weaker than 

the positive control with R569 (Fig.3B, 3C). In that sense, none of the two genes mutated 

seem to be required, in these conditions, for the inhibition of FLS2-specific RGI, which 

seemingly contradicts results reported by Yu et al. (2019a). Though WCS417R and WCS358 

were shown to inhibit flg22-mediated CYP71A12 activation, their effect on seedling growth 

inhibition was not tested. Therefore, it is possible that these bacteria only modulate a 

specific subset of MTI responses including CYP71A12, MYB51 and PER5.  
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5.3. DISCUSSION 

5.3.1. VARIABILITY OF RESULTS – NOTE OF CAUTION 

Flg22-sensitivity of the super-competent WER::FLS2 line is an effective tool to 

easily screen bacterial strains for immune transcriptional read-out activation and root 

growth inhibition. Screening a collection of CHA0 mutants, we looked for genes involved in 

native flagellin-response suppression. However, root growth inhibition in response to 

bacteria was extremely variable, even when using the same concentration (OD600) of 

bacteria, making the results difficult to interpret. Large differences between technical 

replicates within the same experiment were often observed. This results in very different 

outcomes when comparing the relative root growth inhibition induced by mutants and 

wild-type bacteria (see Table 1). Moreover, this makes it difficult to choose the most 

appropriate bacterial starting concentration. 

CHA0 had also variable effects on WER::FLS2 root growth inhibition. Indeed, 

depending on replicates, the differential growth induced by CHA0 was either null 

(inhibition in WER::FLS2 equal to WT, no RGI) or negative (inhibition in WER::FLS2 > WT, 

small RGI), making the comparison of mutant phenotypes difficult. These differences 

eventually caused a strong variability between replicates (Table 1). 

Overall, it must be kept in mind that most data presented here illustrate tendencies 

rather than robust results and must be interpreted with caution. It would be worth adapting 

experimental conditions to minimize variability. Moreover, mutation in CHA0 might affect 

the bacterial intrinsic growth ability. It should be crucial to test the growth rate of each 

mutant separately to ensure that the observed effect really reflects bacterial suppression 

ability. It would be also interesting to monitor bacterial growth directly on root to assess 

the impact of wild-type and WER::FLS2 immune responses on the different mutants. 

5.3.2. LIPOPOLYSACCHARIDE AND EXOPOLYSACCHARIDE SYNTHESIS MUTANTS 

Despite the strong variability encountered across experiments, we could observe 

some weak phenotypes for two out of three mutants in LPS capping. While the ΔwbpL 

mutant, impaired in all types of O-antigen, only reduces the relative RGI between WT and 

WER::FLS2, the mutant Δwzx, defective for short O-antigen, induces an extreme root growth 
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inhibition on both wild-type and WER::FLS2 plants. By contrast, the mutant Δobc3, defective 

only in long O-antigen, causes the same effect than wild-type CHA0 strains. 

O-antigen LPS defective mutants are often described as less viable pathogens that 

are more sensitive to ROS (Berry et al., 2009; Clifford et al., 2013; Kutschera and Ranf, 2019; 

Li et al., 2014a; Petrocelli et al., 2012). They are also more easily prone to cell lysis, which 

should cause increased MAMP release and consequently boosts ROS burst. Indeed, the 

Xylella fastidiosa mutant wzy, impaired in O-antigen polymerisation, induces stronger 

immune responses and ROS production in grapevine (Rapicavoli et al., 2018). The same 

mechanism could explain the severe growth inhibition observed in the CHA0 Δwzx mutant 

lacking short O-antigens. A second possibility could be that short O-antigens hide several 

MAMPs at the bacterial surface, like in animals (Ranf, 2016). Consequently, the Δwzx mutant 

would be recognized by both wild-type and WER::FLS2 plants, which will cause strong RGI. 

However, these hypotheses do not explain why CHA0 without any O-antigen 

capping (ΔwbpL) triggers only a mild increase in relative root growth inhibition, specific to 

native flagellin perception. O-capping might be important for general features of bacterial 

development that could compensate the strong impact of short O-antigen absence. Indeed, 

defect in O-capping in Pseudomonas aeruginosa was shown to affect biofilm formation (Lau 

et al., 2009). Altered biofilms could compromise the effect of mutation in short-O antigens, 

for example preventing efficient bacterial colonization. 

Since the mutant for all known exopolysaccharides ΔpgaABCD ΔpslA ΔalgD ΔpelD 

also induced a relative RGI slightly stronger than wild-type CHA0 strains, biofilms might be 

important to avoid or inhibit flg22-triggered immunity. Pathogens impaired in 

exopolysaccharides production were shown to be less virulent and to induce stronger 

immune responses (Araud-Razou et al., 1998; Denny, 1995; Kemp et al., 2004; Yu et al., 

1999). For example, R. solanacearum mutants with defective production of the N-acetyl-

galactosamine-rich major EPS polymer could infect tomato roots but could not invade their 

xylem. It was suggested that EPS polymers prevent the agglutination and the direct 

attachment of bacteria onto the cell wall, thus avoiding the induction of defences (Araud-

Razou et al., 1998).  
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5.3.3. GLUCONATE SYNTHESIS AFFECTS PER5 INDUCTION 

Yu et al. (2019) recently showed that flg22-responses suppression by commensals 

was dependent on acidification. Using Pseudomonas CHA0, we could observe that mutants 

defective in gluconate synthesis (Δgcd and Δgcd ΔphlABCD) increased slightly PER5 

induction. Accordingly, the WCS358 mutant ΔcyoB also increased the activation of the PER5 

transcriptional read-out, suggesting that production of gluconic acid might indeed be 

required to reduce native flagellin-responses. 

However, for both CHA0 and WCS358 strains, the corresponding mutants 

pqqF::Tn5 and ΔpqqF strongly reduced PER5 induction, which contrasts with the increase 

of CYP71A12 and MYB51 defence markers observed by Yu et al. (2019). Pyrroloquinoline 

quinone (PQQ) was shown to be important for bacterial growth (Shen et al., 2012; Velterop 

et al., 1995). Reduced induction of PER5 could be simply due to fewer bacteria present 

around the root. However, Yu et al (2019) found that both ΔcyoB and ΔpqqF were growing 

even better than wild type bacteria on root exudates. However, they observed that the 

mutation of pqqF impaired WCS358 rhizosphere colonization. The effect was much less 

pronounced for ΔcyoB mutants. This could suggest that ΔpqqF mutants are more sensitive 

to plant defences. Interestingly, PQQ was shown to protect bacterial cells against oxidative 

damages. Bacteria producing PQQ had also a higher tolerance to hydrogen peroxides 

 (Misra et al., 2012). Consequently, plants might kill more easily the ΔpqqF mutants 

and hinder plant colonization. This might explain the weak activation of immune read-outs 

compared to other mutants, less sensitive to the plant arsenal. Alternatively, the ΔpqqF 

mutant overproduces the antibiotic pyoluteorin (Schnider et al., 1995). This might have an 

undescribed effect on plant roots. 

This nevertheless does not explain why WCS358 ΔpqqF can strongly induce 

CYP71A12 and MYB51 (Yu et al., 2019a). We have previously mentioned that different 

transcriptional read-outs have distinct patterns of induction (Poncini et al., 2017; Zhou et 

al., 2020). Therefore, PER5 might respond differently to WCS358 ΔpqqF than CYP71A12 and 

MYB51. Indeed, WCS417R and WCS358 also failed to suppress WRKY11 (Yu et al., 2019a). 
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5.3.4. IS ACIDIFICATION RESPONSIBLE FOR SUPPRESSION OF ROOT GROWTH INHIBITION? 

Mutants impaired in gluconate synthesis had variable effects on root growth. 

Three out of the four “pH mutants” slightly increased the relative RGI compared to CHA0, 

included ΔpqqF, which contrasts with its effect on PER5 induction. Moreover, Δgcd pvd::Tn 

also strongly reduced root growth of both wild type and WER::FLS2. The pvd::Tn mutation 

prevents the synthesis of the pyoverdine siderophore, suggesting an important role for 

pyoverdine in the suppression of plant immune responses. By contrast to PER5 induction, 

WCS358 ΔcyoB and ΔpqqF strains induced the same relative RGI than wildtype strains. 

Why so many discrepancies? Firstly, it should be remembered that the PER5 

transcriptional read-out assays, the RGI assays as well as the experiments performed by Yu 

et al. (2019a) were done in different experimental conditions: drop-inoculation on roots, 

bacterial inoculation inside agar plate or liquid culture with flg22 treatment, respectively. 

Moreover, the three methods highlight responses at different time points. Drop-inoculation 

ensures that bacteria form a thick colony at the root surface. Patches of bacteria were indeed 

easily visible at the microscope. It might therefore be easier for bacteria to modify locally 

the rhizosphere environment. By contrast, bacteria growing inside the agar might have 

increased difficulties to acidify their medium. Interestingly, Yu et al. (2019a) grew seedlings 

in liquid culture supplemented with 5g/l of sucrose, a dimer of fructose and glucose. This 

last sugar is the substrate of the bacterial glucose dehydrogenase enzyme (gcd gene) that 

produces gluconic acid to acidify the growth medium. Therefore, the ability of Pseudomonas 

to inhibit flg22-responses might be dependent of sucrose availability, questioning its 

biological relevance in plantae.  

The variability observed might also come from the comparison of three different 

strains of bacteria. P. protegens CHA0 might have a stronger ability to produce gluconate 

compared to WCS358. This could be easily verified by an in vitro assay. Finally, it has to be 

noted that Yu et al. (2019a) only analysed the induction of transcriptional read-outs, but 

never assessed the inhibitory effect of acidification directly on root growth. Therefore, 

gluconate-mediated inhibition of flg22-responses might only affect MYB51, CAP71A12 and 

PER5 expression. Overall, inhibition of immune responses only mildly relies on pH 

alteration and probably depends on the amount of glucose present in the environment.  
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Low pH was previously shown to induce calcium influx and to desensitise the plant 

to flg22 responses (Westphal et al., 2019). Indeed, acidification induces transcriptional 

changes overlapping with MTI responses, such as increased expression of WRKYs and 

calcium-dependent genes (Lager et al., 2010). Therefore, pH-mediated inhibition of immune 

responses might only operate when plants are pre-inoculated with bacteria decreasing the 

pH, then treated with flg22. This could explain why the effect of CHA0 and WCS “pH 

mutants” was small on RGI assay since successive treatment with flg22 was not used. 

In summary, despite a strong variability dependent on experimental conditions, 

we could highlight some genes potentially implicated in the suppression of native flagellin-

responses (PER5 induction and RGI), involved in gluconate synthesis, biofilm formation or 

LPS capping. Therefore, the super-competent line WER::FLS2 made possible the analysis of 

the direct suppression of flg22-triggered immunity without relying on co-treatment with 

flg22, and proved to be a useful tool to assess the regulation of MTI. 
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5.4. MATERIAL AND METHODS 

If not specified, plant material, bacterial strains, methods and statistical analyses 

were identical to the ones used in Emonet et al. (2020). 

5.4.1. BACTERIAL STRAINS AND GROWTH CONDITIONS 

Pseudomonas protegens CHA0 and its mutants were offered by Prof. Christoph 

Keel. An exhaustive list and references are found in Table S1. Pseudomonas R569 was 

obtained from At-SPHERE culture collection (Cologne) (Bai et al., 2015). P. simiae WCS417 

and P. capeferrum WCS358, as well as the corresponding mutants ΔcyoB and ΔpqqF, were 

kindly provided by Prof. Corné Pieterse (Yu et al., 2019a). For selection, WCS bacteria were 

inoculated on ½ TSB plates supplemented with 150 mg/ml of rifampicin acid and incubated 

at 28°C for minimum 24h. For experiments, bacteria were routinely cultured without 

antibiotics at 28°C on half-strength tryptic soy broth (TSB).  

5.4.2. BACTERIAL ROOT INOCULATION ASSAYS 

Infection assays were performed as described previously, with the drop 

inoculation method for microscopy analyses or in agar plate for root growth assays (Emonet 

et al., 2020). For RGI assays, plates were scanned at 6 dpi and root growth measured using 

Fiji plugins Simple Neurite Tracer (Frangi et al., 1998). 

5.4.3. QUANTIFICATION OF PER5 SIGNALLING 

Images were processed using the Fiji software. Quantification of PER5 induction 

was done on five roots by genotype and by treatment. Raw Intensity Density was measured 

on the complete picture and the mean calculated.  
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5.5. SUPPLEMENTAL FIGURES AND TABLES 

 

Supplemental Figure 1: Mutant screen for increased RGI highlights candidate genes involved in LPS capping and 
exopolysaccharide synthesis 

(A and C) CHA0 mutants influence root growth of WT and WER::FLS2-GFP fls2. Growth was measured at 6 dpi on plate 
inoculated with bacteria at OD600 = 10-2 (A) and 10-4 (C). Note the strong growth inhibition on both genotypes caused 
by Δwzx, Δgcd pvd::Tn and ΔrebB1.3. Vertical line separates two different experiments.  
(B and D) Differential growth calculated from data in (A) and (C), respectively. Note the reduction of differential growth 
for pH-related mutants Δgcd, Δgcd ΔphlACBD, pqqF::Tn5 (B); EPS/LPS mutants, ΔwbpL (B) and ΔpgaABCD ΔpslA ΔalgD 
ΔpelD (D) and secondary metabolism mutant ΔofaABC (B). Dotted line, CHA0 reference value. Different letters indicate 
statistically significant differences (p<0.05). Multiple comparisons were performed using Kruskal-Wallis and Dunn’s 
tests (B 1st part, D) or ANOVA and Tukey’s HSD tests (B 2nd part). 
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Supplemental Figure 2: Mutants screen for defects in PER5 transcriptional read-out induction 

(A) Mutants pqqF::Tn5, Δgcd and Δgcd ΔphlACBD induce PER5::NLS-3mVenus (Fire LUT) similarly on WER::FLS2-GFP 
fls2 and WT at 1 dpi. Same experiment than Fig.2C. Maximum projections of z-stacks pictures of seedlings treated with 
drop-inoculation of bacterial solution (OD600 = 0.01) or mock, respectively. Images were acquired at 1 dpi in the 
meristematic (MZ) and elongation (EZ) zones. Acquisition was done with identical settings. Scale bar, 25 μm. 
(B) Preliminary quantification of PER5::NLS-3mVenus signal from the experiment in (B). Fluorescence of five 
seedlings/treatment was measured. Multiple comparisons were performed using Kruskal-Wallis and Pairwise Wilcoxon 
Rank Sum Tests. Different letters indicate significant differences (p<0.05). 
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Table S1: List of CHA0 mutants and references 

Name Mutant Group Mutant phenotype Remark Reference 

CHA1241 ΔphlABCD 2nd. 
metabolites 

Defective for 2,4-diacetylphloroglucinol (DAPG) 
biosynthesis 

Major toxic compound produced on roots; affects root 
growth, induces plant defences 

Flury et al. (2017) 

CHA5101 ΔofaABC 
2nd. 
metabolites 

Defective for the biosynthesis of cyclic 
lipopeptide orfamide 

Affects cell membranes, broad-spectrum toxic effects 
on microorganisms, insects, unknown for plants Flury et al. (2017) 

CHA5234 
ΔpgaABCD ΔpslA 
ΔalgD ΔpelD 

EPS 
Defective for all four known EPS: Psl, alginate, 
Pel and PNAG 

Exopolysaccharides, possible involvement in biofilm 
formation and host colonization 

C. Terrettaz, 
unpublished 

CHA5128 fliC::pENG flagella 
Defective for flagellin FliC (with Flg22 epitope), 
flagella negative 

Motility, MAMP, immune defence inducer Kupferschmied (2015) 

CHA5161 ΔwbpL LPS/OPS Defective for the initiating glycosyltransferase 
WbpL 

No short (OSA-type) and no long (Fcl-type) O-antigens = 
no capping 

Kupferschmied et al. 
(2016) 

CHA5182 Δobc3 LPS/OPS 
Defective for entire cluster specifying long LPS 
O-polysaccharide 

No long LPS O-antigen: similar to Rhizobium O-antigen, 
unknown role in plant interaction, phage receptor 

Kupferschmied et al. 
(2016) 

CHA5206 Δwzx LPS/OPS Defective for flippase Wzx No short OSA type O-antigen 
Kupferschmied et al. 
(2016) 

CHA0178 pqqF::Tn pH 
Defective for pyrroloquinoline quinone, 
cofactor of Gcd 

Results in reduced medium acidification Schnider et al. (1995) 

CHA1196 Δgcd pH Defective for glucose dehydrogenase (glucose 
to gluconate) 

Results in reduced medium acidification; secondary 
effects on DAPG and Pvd 

de Werra et al. (2009) 

CHA1242 Δgcd ΔphlABCD pH Defective for glucose dehydrogenase and DAPG 
Reduced medium acidification and lack of major broad-
spectrum toxic compound 

M. Péchyne Tarr, 
unpublished 

CHA5273 Δgcd pvd::Tn pH 
Defective for glucose dehydrogenase and 
pyoverdine (Pvd) 

Reduced medium acidification and lack of major 
siderophore (iron chelator) 

M. Péchyne Tarr, 
unpublished 

CHA5221 ΔrebB1.3 R bodies Defective for R-bodies, putative membrane 
puncturing pistons 

Function unknown, no role in insects, highly expressed 
on plant roots 

Flury et al.(2016); P. 
Vesga unpublished 

CHA5105 ΔfleQ 
regulation/ 
flagella Defective for flagella and EPS regulator FleQ 

Regulator of flagella biogenesis and EPS synthesis, c-di-
GMP-dependent 

M. Péchyne Tarr, 
unpublished 

CHA5133 ΔphoQ 
regulation/ 
TCS sensor 

Defective for TCS sensor PhoQ 
Sensor of TCS controlling LPS modification systems and 
virulence in response to Mg2+ 

Kupferschmied (2015) 

CHA5255 ΔgacA 
regulation/ 
TCS sensor 

Defective for global regulator GacA (response 
regulator of TCS) 

Defective for multiple traits, including production of 
secondary metabolites 

new by C. Terrettaz; 
Laville et al. (1992) 

sAE119 ΔphoP regulation/ 
TCS sensor 

Defective for TCS sensor PhoP Sensor of TCS controlling LPS modification systems and 
virulence in response to Mg2+ 

Kupferschmied (2015) 

CHA5086 ΔvgrG1b module+ T6SS 
Defective for the T6SS VgrG1b spike, effectors, 
adaptors, + Reduced virulence, function unknown Vacheron et al. (2019) 

CHA5175 ΔT6SS T6SS 
Defective for the type VI secretion core 
apparatus 

Reduced virulence, cellular injection of toxic effectors Vacheron et al. (2019) 
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Supplemental Table S2: Primers for Pseudomonas capeferrum WCS358 genotyping 

Code Sequence (5'-3') Description Type 

oAE144 CGGTTTACAAGCATAACTAGTGCGGC Genotyping WCS358 bacteria F 

oAE145 CTCGTTTCACGCTGAATATGGCTC Genotyping WCS358 bacteria R 

oAE146 CGATCCTGATCATCATCGCGCTG Genotyping WCS358 ΔcyoB bacteria F 

oAE147 GGTTCATGCCTTCGTACTTGTCGAC Genotyping WCS358 ΔcyoB bacteria R 

oAE148 TCAAAGCCGAACCGCTGTATGC Genotyping WCS358 ΔpqqF bacteria F 

oAE149 CAGGTCATTCAGCCTGTCGGATTG Genotyping WCS358 ΔpqqF bacteria R 
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6 INTERPLAY BETWEEN FLG22, ATPEP1 AND ETHYLENE-

MEDIATED IMMUNE RESPONSES 
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6.1. INTRODUCTION 

Immunity induced by biotrophic pathogens used to be considered as a mechanism 

distinct from damage responses: the first one depends on salicylic acid signalling while the 

second requires the antagonist jasmonic acid pathway (Pieterse et al., 2012). However, the 

more we understand the complexity of immune responses, the more we realize that both 

MAMP- and DAMP-responses are intricately connected, using the same core machinery 

leading to very similar outputs (Tang et al., 2017). DAMP-triggered immunity is now often 

described as a means to amplify MAMP-induced responses, especially for secondary danger 

signals like AtPeps or systemin. MAMPs and DAMPs were postulated to accumulate until a 

threshold is attained, upon which leading to the induction of immune responses (Gust et al., 

2017). 

Recently, our work showed that damage is required for gating the induction of MTI 

in the differentiated part of the root (Zhou et al., 2020), strengthening the idea that both 

types of signal should contribute to determine where and when immune responses occur. 

6.1.1. ATPEP SIGNALLING REINFORCES MAMP-TRIGGERED IMMUNITY THROUGH THE 

ETHYLENE PATHWAY 

AtPep signalling plays a preponderant role in the amplification of MAMP-triggered 

immunity. Indeed, flg22 and elf18 treatment induce a massive transcription of the 

precursors PROPEP2 and PROPEP3 (Huffaker et al., 2006). Although their activation and 

secretion are not fully understood, AtPep2 and AtPep3 then activate PEPR1 and PEPR2 

receptors and amplify the immune responses. Moreover, PROPEPs expression is promoted 

by SA, JA and ethylene signalling (Liu et al., 2013). 

Ethylene biosynthesis relies on the conversion of S-adenosyl-methionine (SAM) in 

1-amino-cyclopropane-1-carboxylic acid (ACC) by the rate-limiting enzyme ACS (ACC 

SYNTHASE). ACC is then oxidatively cleaved by ACC oxidases to form ethylene. Ethylene is 

perceived by and inactivates its cognate receptor ETR1, which in turn leads to the 

deactivation of the kinase inhibitor CTR1. This derepresses the downstream target EIN2, 

which signals through the EIN3/EILs transcription factors families (Adie et al., 2007). 
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Interestingly, MAMP and AtPep immune responses are linked by the ethylene 

signalling pathway (Liu et al., 2013; Tintor et al., 2013). Flg22 was shown to directly induce 

ethylene synthesis by MPK3/6-mediated phosphorylation and stabilization of ACS2 and 

ACS6 (Han et al., 2010; Liu and Zhang, 2004). Moreover, MPK3/6 also activate the 

transcription factor WRKY33, which increases ACS2/6 transcription (Li et al., 2012) and 

interacts with several members of the ETHYLENE RESPONSE FACTOR family such as ERF6 

and ERF104 (Bethke et al., 2009; Meng et al., 2013). Ethylene signalling then enhances the 

transcription of PROPEP1 and PROPEP2. Elf18 induction of PROPEP2 was shown to be 

reduced in ein2 mutant, indicating its dependency to ethylene, whereas elf18-driven 

PROPEP3 was independent (Tintor et al., 2013). Ethylene-driven immune responses are 

also compromised in the pepr1/pepr2 mutant (Liu et al., 2013). 

PEPR1 activation also triggers the production of ethylene, which could further 

enhance MTI. Ethylene is indeed required for both constitutive and flg22-induced FLS2 

expression. Interestingly, EFR receptor expression is not modulated by ethylene (Boutrot 

et al., 2010; Mersmann et al., 2010; Tintor et al., 2013). 

6.1.2. RATIONAL OF THE STUDY 

Previous studies support that damage responses are particularly important in 

roots and rely on ethylene signalling. Indeed, AtPep1 treatment induces a very strong 

induction of several immune transcriptional read-outs in roots, and particularly markers of 

ethylene signalling such as ACS6 and PR4/HEL (Bertini et al., 2012; Poncini et al., 2017). 

Moreover, our group showed that single-cell ablation on seedling roots induces locally ACS6 

and PR4 transcriptional reporters, as well as ROS and calcium signalling. However, read-

outs for SA or JA signalling were surprisingly non-responsive (Marhavý et al., 2019). We 

also observed that FLS2 expression was locally increased after cell ablation (Zhou et al., 

2020), suggesting a possible correlation between wounding, ethylene signalling and MTI.  

To investigate the link between MAMP, ethylene and Atpep1 pathways, we 

compared flg22 and Atpep1 responses, as well as their dependency on ethylene. However, 

this project started before we actually demonstrated that FLS2 induction at damage sites 

was independent of ethylene and cannot be mimicked by DAMPs (Zhou et al., 2020), and 

that PEPR1/2 were not responsible for the single-cell damage-induced ethylene signalling 
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(Marhavý et al., 2019). Although this chapter is mainly composed of exploratory works and 

preliminary data, it can complete our map of immune responses and deepen our 

understanding of MTI at cellular resolution. Moreover, it highlights the difference in 

ethylene dependency between AtPep1 and flg22-triggered immune responses in the roots.  
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6.2. RESULTS  

6.2.1. FLG22 AND ATPEP1 INDUCE IMMUNE AND ETHYLENE RESPONSES WITH DIFFERENT 

PATTERNS 

To investigate the link between flg22 and AtPep1-triggered immunity in the root, 

I first characterized their respective immune response patterns using our set of 

fluorescently labelled transcriptional markers. AtPep3 was also used in some experiments. 

Similar analyses were previously carried out by Poncini et al. (2017). However, since 

different experimental setups can greatly influence stress markers, I wanted to repeat their 

experiments in our growth conditions and to describe the immune patterns with a true 

cellular resolution rather than looking globally at root zones. I selected read-outs reported 

to respond strongly to flg22, i.e. PER5, MYB51, WRKY11, ZAT12, as well as ethylene 

responsive reporters PR4 and ACS6.  

As previously described, I observed that flg22 induces immune responses mostly 

in the elongation zone (Millet et al., 2010; Poncini et al., 2017; Zhou et al., 2020). The flg22-

driven expression of PER5 and MYB51 was extensively characterized in Chapter 2 and 3 

(Emonet et al., 2020; Zhou et al., 2020) and will not be further described here. The WRKY11 

transcription factor is constitutively expressed in all tissues, although stronger signal can 

be observed in the epidermis, the differentiated stele and the root cap cells (Fig.1A). Flg22 

slightly induces WRKY11 in the epidermis and cortex of the elongation zone. ZAT12 is 

involved in oxidative stress response and is constitutively expressed in all tissues (Fig.1B). 

However, in my hands, it was unresponsive to flg22, which contradicts Poncini and 

colleagues’ data (2017). 
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Figure 1: flg22 and AtPeps induce MTI and ethylene markers with different expression patterns 

Expression patterns of WRKY11::NLS-3mVenus (A) and ZAT12::NLS-3mVenus (B) (Fire LUT) in response to 1 μM flg22, 
1 μM AtPep1 or 1 μM AtPep3.  
(A) Flg22 induces weakly WRKY11 in the early DZ, mostly in epidermis. AtPeps increase WRKY11 expression principally 
in the stele of the DZ. White arrowheads, increased WRKY11 signal. 
(B) None of the treatments significantly affects ZAT12 marker gene. 
Seedlings were treated for 24 h in liquid medium. Settings are identical between samples. MZ, meristematic zone; EZ, 
elongation zone, eDZ, early differentiated zone (= 10 cells after the onset of elongation); DZ, differentiated zone (20 or 
30 cells after the onset of elongation). Scale bar, 50 μm. 

By contrast to flg22, I noticed that AtPep1 induces a much broader expression of 

immune read-outs, that were generally no longer restricted to the elongation zone. 

Moreover, the strength of induction was greater than that for flg22, confirming previous 

data (Poncini et al., 2017). AtPep1 induces MYB51 in the epidermis and cortex of the 

meristem, in all tissues in the elongation zone, and the induction is principally restricted to 

the stele in the differentiated regions (Fig.4B). AtPep1-driven PER5 pattern was 

surprisingly restricted to the elongation zone, but in all tissues (Fig.4A). However, some 

weak signal can be found in the differentiated stele (data not shown). AtPep1 and AtPep3 
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induce WRKY11 mostly in the elongating and differentiated stele (Fig.1A). Finally, ZAT12 

was not induced by AtPep1 nor AtPep3 (Fig.1B). 

The difference between flg22 and AtPep1 responses was even more pronounced 

for ethylene markers. PR4 was constitutively expressed in the root cap cells and the 

differentiated endodermis (Fig.2A). Some weak signal could sometimes be observed in the 

elongating and differentiated epidermis and cortex (not shown). PR4 constitutive 

expression was very sensitive to experimental conditions, leading to variable induction 

upon flg22 treatment: PR4 signal increases in root cap cells and sometimes appears earlier 

in the endodermal cell compared to control treatment, but the effect was not robust across 

experiments. In contrast, AtPep1 strongly activates PR4 in the endodermis and cortex of the 

differentiated zone, and to a lesser extent in the elongating epidermis (Fig.2A). However, 

Poncini et al. (2017) observed a severe AtpPep1-dependent induction of PR4 in all tissues 

of the elongation zone and in the differentiated endodermis, while flg22 triggered PR4 

mostly in root cap cells. ACS6 is constitutively expressed in the differentiated stele and some 

faint signal can be observed in epidermal and cortical cells (Fig.2B). Flg22 treatment hardly 

increases ACS6 expression in the vasculature (Fig.2b’). However, AtPep1 and AtPep3 

drastically increase ACS6 expression, confirming previous reports (Marhavý et al., 2019; 

Poncini et al., 2017). 

Taken together, I noticed that flg22 induces MTI responses mostly in the 

elongation zone, principally in the epidermis, which correlates with the restricted 

expression of FLS2 and the non-responsiveness of the stele described previously (Beck et 

al., 2014; Emonet et al., 2020; Millet et al., 2010; Zhou et al., 2020). Surprisingly, although 

ethylene signalling should be induced by flg22 (Bethke et al., 2009; Li et al., 2012; Meng et 

al., 2013), flg22 only mildly induces ethylene transcriptional read-outs. By contrast, AtPep1 

induces particularly severe MTI and ethylene responses in the differentiated stele, where 

PEPR1 and PEPR2 are strongly expressed (Ortiz-Morea et al., 2016; Safaeizadeh and Boller, 

2019).  
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Figure 2: flg22 and AtPeps induce MTI and ethylene markers with different expression patterns 

Expression patterns of PR4::NLS-3mVenus (A) and ACS6::NLS-3mVenus (B) (Fire LUT) in response to 1 μM flg22, 1 μM 
AtPep1 or 1 μM AtPep3.  
(A) AtPep1 strongly induces PR4 reporter in the endodermis. Black arrowheads, constitutive signal, white arrowhead, 
weak induction of PR4 by flg22 in MZ. 
(B) Flg22 induces ACS6 only faintly in the differentiated stele, see close up view of DZ in (b’) with increased exposure. 
AtPeps trigger ACS6 activation strongly in the stele (EZ and DZ). AtPep3 have weaker effect than AtPep1. White 
arrowhead, weak induction of ACS6 by flg22 in DZ. 
Seedlings were treated for 24 h in liquid medium. Settings are identical between samples. MZ, meristematic zone; EZ, 
elongation zone, eDZ, early differentiated zone (= 10 cells after the onset of elongation); DZ, differentiated zone (20 or 
30 cells after the onset of elongation). Scale bar, 50 μm. 

6.2.2. ETHYLENE SIGNALLING IS INVOLVED IN FLG22-DRIVEN PER5 INDUCTION  

Flg22-induced ethylene is a common feature of immune responses above ground. 

To assess whether MTI transcriptional read-outs are dependent on ethylene production in 

the root, I assessed PER5 induction after treatments with a combination of flg22 and the 

ethylene inhibitor AgNO3. Silver ions can replace a copper co-factor in the ETR1 receptor, 

which modifies the binding site for ethylene and prevents ethylene sensing (McDaniel and 

Binder, 2012; Rodrı́guez et al., 1999). 
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The inhibition of ethylene perception slightly reduces flg22-mediated induction of 

PER5 marker, suggesting that ethylene might be partially required for PER5 transcriptional 

induction (Fig.3). Zhou et al. (2020) previously showed that PER5 and FRK1 induction was 

reduced after flg22 treatment in the etr1-1 and ein2-1 mutants. Moreover, treatment with 

the ethylene inhibitor 2-aminoethoxyvinyl glycine (AVG) almost completely abolishes FRK1 

induction (Zhou et al., 2020). AVG directly inhibits the ACC SYNTHASE enzymes involved in 

ethylene biosynthesis (McDaniel and Binder, 2012; Rodrıǵuez et al., 1999). Similarly, it was 

reported that flg22-mediated induction of MYB51, CYP71A12 and WRKY11 read-outs was 

reduced in the ein2-1 mutant, suggesting they are also partially dependent on ethylene 

(Millet et al., 2010). 

 

Figure 3: Inhibition of ethylene signalling 
modulates flg22-dependent PER5 expression 

Inhibition of ethylene perception reduces flg22-
dependent expression of PER5::NLS-3mVenus (Fire 
LUT). Maximum projection of z-stacks of seedlings 
treated on plate, for 24 h in total, with 2 μM AgNO3 
and 6 h with 1 μM flg22. 
MZ, meristematic zone; EZ, elongation zone. Scale 
bar, 50 μm. 

 

 

 

6.2.3. INHIBITION OF ETHYLENE SIGNALLING INCREASES RESPONSE TO ATPEP1 IN THE STELE 

I then investigated the ethylene dependency of AtPep1-mediated responses. 

Similarly, I treated seedlings with AtPep1 and AVG or AgNO3 and analysed the expression 

patterns of PER5 and MYB51. Since AtPep1 enhances the expression of ACS6, suggesting that 

the ethylene pathway might be involved in root immune responses, I expected to observe 

decreased PER5 and MYB51 transcriptional read-outs. Surprisingly, I noticed a slight 

increase of PER5 expression, particularly in the elongating stele (Fig.4A). MYB51 response 

was more variable, but generally, after the co-treatment, MYB51 expression tends to 

increase in the vascular tissues and slightly decrease in the epidermis (Fig.4B). Therefore, 

ethylene might have opposite effect depending on cell-types.  
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Figure 4: Inhibition of ethylene signalling modulates AtPep1-dependent PER5 and MYB51 expression 

Inhibition of ethylene perception increases AtPep1-dependent expression of PER5::NLS-3mVenus (A) and MYB51::NLS-
3mVenus (B)(Fire LUT) in the stele (black arrowheads). Maximum projection of z-stacks of seedlings treated on plates 
for 24 h in total, with 2 μM AgNO3/AVG and 6 h with 1 μM AtPep1. Right panels show longitudinal section views (5-
slices maximum projection) of pictures taken in EZ. Cell walls are stained with PI staining (red), transcriptional read-
outs are in green (GreenFireBlue LUT). White arrows point at unequal PI staining in response to AtPep1. 
MZ, meristematic zone; EZ, elongation zone; DZ, differentiated zone (20 cells after the onset of elongation). Scale bar, 
50 μm. 
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As a side note, AtPep1 might also influences the structure of the vascular cell wall 

(Fig.4A, 4B, right panels). I noticed an increased in propidium iodide staining in the stele of 

the elongation zone. Some cell corners are indeed more strongly stained than in control 

conditions. Interestingly, PI accumulates in lignified tissues over time (Kian Hematy, 

personal communication). Moreover, AtPep1 treatment was reported to induce lignin 

deposition in the stele of Arabidopsis seedlings (Engelsdorf et al., 2018). The increased PI 

staining that we observed must therefore be due to lignin deposition. Moreover, this 

irregular staining seems to increase when roots were co-treated with ethylene inhibitors. 

Since lignin deposition was generally correlated with PER5 induction (Emonet et al., 2020), 

it can be hypothesized that ethylene suppresses or competes with AtPep1-driven lignin 

deposition. 

6.2.4. ACC INDUCES MYB51 BUT HAD WEAK OR NO EFFECT ON PER5 AND WRKY11 

EXPRESSION 

To better understand the effect of ethylene on MTI markers, I analysed PER5, 

MYB51 and WRKY11 expression after ACC treatment. MYB51 promoter was strongly 

induced by ACC in the epidermis, particularly in dividing and elongating regions (Fig.S1A). 

By contrast, treatment with ACC had no effect on WRKY11 expression (Fig.S1B) but induced 

PER5 only in sporadic epidermal cells of the early differentiating zone and was, therefore, 

not sufficient to mirror flg22 treatment (Fig.S1C). Therefore, although some downstream 

responses overlap between ACC and flg22 signalling, both treatments have clear 

specificities. 

The absence of response of WRKY11 and the mild increase in PER5 signal suggest 

that ethylene does not mirror flg22- and AtPep1-mediated transcriptional read-outs. By 

contrast, ethylene is sufficient to activate MYB51 in the absence of flg22 or AtPep1. 

However, these results seemingly contradict the enhancement of PER5 and MYB51 signal 

observed in the stele after AtPep1 and ethylene inhibitors treatments. These data might be 

reconciled if we consider that ethylene is only able to suppress PER5 and MYB51 expression 

driven by AtPep1, but not their constitutive expression. It could be informative to test the 

combined impact of ACC and AtPep1 to confirm the stele-specific inhibitory effect of 

ethylene. 
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6.2.5. PR4 IS PARTIALLY DEPENDENT OF ETHYLENE SIGNALLING 

I also monitored the ethylene-dependency of the AtPep1-driven induction of PR4 

(Fig.S1D). Ethylene signalling inhibition tends to slightly decrease Atpep1-driven PR4 

expression in the early differentiated zone, i.e. PR4 signal appears further from the root tip. 

PR4 induction is therefore not fully dependent on ethylene signalling as a response to 

AtPep1. Indeed, ethylene and jasmonic acid act synergistically for the expression of several 

defence-related genes including PR4 (Adie et al., 2007; Bertini et al., 2003; Potter et al., 

1993). However, I could show that PR4 is strongly induced by ACC treatment, and that co-

treatment with AgNO3 impairs this process (Fig.S1E). 
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6.3. DISCUSSION 

Using immune transcriptional read-outs, I characterized in parallel the effect of 

flg22 and AtPep1. Their patterns of responses appeared to be very different, restricted to 

the elongation zone for flg22 and extending to the differentiated zone for AtPep1, as 

previously reported (Millet et al., 2010; Poncini et al., 2017). Since PRRs have a strong 

impact on the localization of immune responses (Emonet et al., 2020; Zhou et al., 2020), the 

difference observed between flg22 and AtPep1-responses is likely due to the distinct 

expression patterns of FLS2 and PEPR1/2. PEPR2 is restricted to the stele and PEPR1 is 

ubiquitous (Ortiz-Morea et al., 2016), which could reflect the broad expression of AtPep1 

immune responses. Similarly, AtPep1 strongly induces FRK1 in the stele (Zhou et al., 2020).  

Interestingly, flg22-responses are very different: we indeed showed that the 

vasculature was insensitive to flg22, even in presence of ectopic FLS2 expression. Flg22 

could only induce MYB51 in the pericycle cells when FLS2 was expressed in the endodermis, 

indicating it was the consequence of non-cell autonomous signalling (Emonet et al., 2020). 

It will be very interesting to test whether the immune responses induced by AtPep1 are free 

from this vasculature-specific suppression, or whether they originated from a signal 

transmitted by adjacent tissues. Indeed, the strongly cell-autonomous PER5 marker is not 

induced by AtPep1 in the differentiated vasculature, which tends to support the fact that 

AtPep1 induces MYB51 and WRKY11 expression non-cell autonomously. However, if the 

first case proves to be true, it will be an elegant way for the plant to protect itself against 

xylem-invading pathogens, like many cell-wall degrading bacteria or fungi (Digonnet et al., 

2012; Eynck et al., 2007), while staying unresponsive to harmless endophytes that would 

only display MAMPs (Wyrsch et al., 2015). 

Flg22-responses must involve ethylene signalling, as shown by the reduced 

induction of PER5 and FRK1 after ethylene inhibition (this work; Zhou et al., 2020). 

Moreover, MYB51, WRKY11 and CYP71A12 are partially dependent on ethylene, while 

callose deposition in response to flg22 is completely abolished in etr1-3, ein2-1 and ein3-1 

mutants (Millet et al., 2010). However, in my hands, flg22-mediated induction of ACS6 and 

PR4 was very weak. Ethylene markers could be specific to the differentiated zone and might 

not be induced in the younger part of the roots. Indeed, even AtPep1 treatment fails to 
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strongly induce ACS6 and PR4 in the meristematic zone. Other ACS genes might be involved 

in the tip of the root. Indeed, ACS2 is upregulated by flg22 and is expressed in the root 

elongation and meristematic zone (Li et al., 2012; Tsuchisaka and Theologis, 2004). ACS8 is 

also constitutively expressed in the root cap cells (Tsuchisaka and Theologis, 2004). 

Alternatively, ethylene produced in the differentiated zone in response to flg22 could 

influence immune responses in the root tip by non-cell autonomous signalling. 

AtPep1 should also induce the production of ethylene, as seen by the strong 

induction of ACS6 and PR4 markers. However, the opposite effect of ethylene in the central 

and peripheral tissues observed for AtPep1-responses was at first surprising. An opposing 

effect in the epidermis and the stele of the roots was also observed for brassinosteroid (BR) 

signalling. Vragović et al. (2015), using ribosomal pulldown and BR1 ectopic expression, 

showed that BRs induced a delay in differentiation in outer root tissues, but early 

differentiation in the central cylinder. The same methods could be used to investigate the 

tissue-specific ethylene dependency of AtPep1-responses, since there is so far not enough 

data to conclude the exact role of ethylene production in response to AtPep1. 

If proven, the negative effect of ethylene on MYB51 and PER5 expression in the 

stele could function as a regulatory loop to avoid overactivation of MTI in response to 

AtPeps. We previously suggested that roots keep their defences low, particularly in the early 

vasculature, to avoid deleterious consequences on growth (Emonet et al., 2020). Such a 

mechanism of upregulation of an inhibitor was previously reported for FLS2. Flg22 

perception induces the activation of SITE-1 PROTEASE (S1P) that cleaves RALF propeptides 

to suppress innate immunity (Stegmann et al., 2017). Interestingly, the negative effect of 

ethylene on stelar immune markers was not observed in response to flg22, suggesting 

AtPep1 induces a specific response. It would be worth to test whether PER5 expression and 

lignification can be differentially modulated by ethylene, depending on their induction by 

AtPep1 or flg22. For example, one of the differences between AtPep1 and flg22 signalling, 

in leaves, is the requirement for jasmonate perception. Indeed, coi1-1 and coi1-16 mutants, 

lacking the COI1 (CORONATINE-INSENSITIVE 1) jasmonic acid receptor, are compromised 

in AtPep1-dependent ethylene production but still synthesize ethylene in response to flg22 

(Flury et al., 2013; Holmes et al., 2018). 
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Increased expression of MYB51 and PER5 in the stele due to AtPep1 treatment and 

ethylene inhibition could be due to defective endodermal barriers. Indeed, our group 

observed that Casparian strip integrity was compromised in the endodermal-specific etr1 

mutant (CASP1::etr1-1) (Feng Zhou, personal communication). The dominant negative etr1-

1 mutation renders plants insensitive to ethylene, which mirrors the AgNO3 inhibitory 

effect. In this regard, AgNO3 and AVG treatments might have increased the root permeability 

to AtPep1 and cause stronger induction of MYB51 and PER5 in the stele. However, I could 

not observe an AtPep1-dependent increase of PER5 expression in the stele of the sgn3-3 

mutant, despite its compromised endodermal barriers (Fig.S2, preliminary data). Moreover, 

AVG treatment does not seem to affect PI permeability in previous data (Zhou et al., 2020; 

Fig.S5D). This should refute this hypothesis, although more comprehensive analyses must 

be carried out to confirm these results. 

Overall, we showed that, although flg22 and AtPep1 induce very similar 

downstream signalling cascades, their responses do not spatially overlap in the root. 

Whether this is due entirely to PRR expression patterns or to other regulatory mechanisms 

still needs to be elucidated. We also described the dependency of MAMP- and DAMP-

responses on ethylene signalling. However, the observed effects were often weak and 

variable, so that further experiments should be realized before drawing any conclusions. 

Nevertheless, our preliminary experiments highlighted ethylene as a potential tissue-

specific modulator of MAMP- and DAMP-triggered immunity. 
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6.4. MATERIAL AND METHODS 

6.4.1. PLANT MATERIAL AND GROWTH CONDITIONS 

All experiments used A. thaliana ecotype Columbia Col-0. Reporter lines are 

characterised in Poncini et al. (2017). Seeds were surface-sterilized, stratified and 

germinated as described previously (Emonet et al., 2020). 

6.4.2. ELICITOR AND INHIBITOR TREATMENTS 

Elicitors and chemicals used, as well as elicitor treatments, were previously 

described in Chapter 2, section 2.5.1. For combined treatments with ethylene inhibitors, 

seedlings were transferred on ½ MS plates containing AVG or AgNO3 to the indicated 

concentration, then elicitor treatment was carried out following the “combined method” 

previously described. Timing of treatments is described in figure legends. 

6.4.3. MICROSCOPY ANALYSIS 

Imaging was carried out on a Zeiss LSM700 or a Leica SP8 inverted confocal 

scanning microscope. Pictures were taken with a 63x water immersion objective (SP8) or 

40x water immersion objective (SP8 and LSM700). For marker visualisation, the excitation 

and detection windows were set as follows: on LSM700, mVenus/PI (488nm, 500-530nm 

and 600-670nm); on SP8, mVenus/PI (514nm, 510-530nm, 600-670nm, sequential scan). 

Images were processed with the Fiji software.  
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6.6. SUPPLEMENTAL FIGURES  

 

Figure S1: Ethylene induces only specific MTI transcriptional read-outs 

(A-C) ACC treatment induces MYB51::NLS-3mVenus (A) in all regions of the roots. (B) WRK11::NLS-3mVenus and (C) 
PER5::NLS-3mVenus are not or faintly induced by ethylene treatment, respectively. Maximum projections of z-stack 
images of seedlings treated on plate for 24 h with 5 μM ACC. Settings are identical between samples.  
(D) Inhibition of ethylene perception inconsistently reduced AtPep1-dependent expression of PR4::NLS-3mVenus (Fire 
LUT). Induction of PR4 in the stele seems to appear later after treatment with inhibitors (eDZ). Maximum projections 
of z-stack images of seedlings with combined 24 h treatment with 2 μM AgNO3 /AVG and 1 μM AtPep1. 
(E) 5 μM ACC treatment induces strongly PR4::NLS-3mVenus transcription in the endodermis. The effect in inhibited 
by 2 μM AgNO3 treatment. Picture taken in DZ. 
MZ, meristematic zone; EZ, elongation zone, eDZ, early differentiated zone (= 10 cells after the onset of elongation); 
DZ, differentiated zone (20 or 30 cells after the onset of elongation). Scale bar, 50 μm.  
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Figure S2: sgn3 mutants does not affect the ethylene-dependent response to AtPep1 

Preliminary experiment (one replicate) showing that combined treatment with AtPep1 and ethylene inhibitors 
increases PER5::NLS-3mVenus (Fire LUT) expression in the stele of the EZ both in WT and sgn3 mutants. Despite the 
endodermis being permeable to AtPep1 in sgn3, note the absence of response in the stele (star). Maximum projections 
of z-stack images of seedlings treated on plate, for 24 h in total, with 2 μM AgNO3/AVG and with 1 μM AtPep1 for 8 h. 
MZ, meristematic zone; EZ, elongation zone. Scale bar, 50 μm. 
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7 COMPARISON OF CIF2- AND FLG22-INDUCED 

LIGNIFICATION OF THE ENDODERMIS  
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7.1. CONTRIBUTIONS 

The project described in this chapter was carried out in collaboration with Yan Ma 

and Damien De Bellis. Here are our respective contributions. Electron microscopy pictures 

were done by Damien De Bellis, who fixed and prepared samples, which I had previously 

treated. Preliminary image analysis was done by Damien. Transcriptomic analysis was 

designed together with Yan Ma. I did preliminary assays while the actual experiment and 

RNA extraction was done together with Yan. The Genome Technology Facility (GTF) carried 

out the library preparation, the sequencing and the first steps of bioinformatics analysis. I 

did preliminary qPCR assays on selected genes. Bioinformatic analyses and graphical 

displays were made by Yan. Analysis and discussion of the results was done together with 

Yan. 

I generated CRISPR mutants and carried out all confocal imaging (lignin deposition 

in CASP1::FLS2-GFP fls2 lines, fluorescent transcriptional read-outs, etc.) and their 

subsequent analyses. Satoshi Fujita and Robertas Ursache designed and provided the triple 

gRNA CRISPR system vectors.  
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7.2. INTRODUCTION 

7.2.1. LIGNIN IN CASPARIAN STRIP AND ECTOPIC COMPENSATORY LIGNIN 

One of the features of root endodermis is the Casparian strip (CS), a finely localized 

ring-like impregnation of its cell wall which forms an apoplastic diffusion barrier between 

the outer tissues and the central cylinder (Caspary, 1865; Geldner, 2013). Though the exact 

composition of the CS was a long-standing debate, it has now been clearly demonstrated 

that it is made of lignin (Naseer et al., 2012). CASPARIAN STRIP DOMAIN PROTEINS 1-5 

(CASPs) are transmembrane domain proteins highly important for the precise localization 

of the CS and define a plasma membrane region called the Casparian Strip Domain (CSD) 

(Roppolo et al., 2011). These proteins are thought to form a scaffold for lignin polymerizing 

proteins such as PEROXIDASE 64 (PRX64), the dirigent protein ESB1 (ENHANCED SUBERIN 

1) and the NADPH oxidase RBOHF (RESPIRATORY BURST OXIDASE PROTEIN F) (Barbosa 

et al., 2019; Hosmani et al., 2013; Lee et al., 2013).  

Lignin is essentially composed of an intricate polymer of cinnamyl alcohols, also 

called monolignols, derived from the phenylpropanoid pathway. Their polymerisation 

occurs in the apoplast and is thought to be a spontaneous process. However, such oxidative 

coupling requires the dehydrogenation of monolignols, forming resonance-stabilized 

radicals. This mechanism can be catalysed by peroxidases or laccases, depending on the cell 

types (Barbosa et al., 2019). Deposition of the CS lignin requires enzymes precisely localized 

at the CSD. Five peroxidases, including PRX64, were recently shown to be necessary for CS 

lignification, since their quintuple mutant (prx3, 9, 39, 72, 64) completely lacks CS (Rojas-

Murcia et al., 2020). Surprisingly, a nonuple mutant for laccases (lac1, 3, 5, 7, 8, 9, 12, 13, 16) 

does not cause any defects in the CS, despite their expression in the endodermis and the 

localisation of LAC1, 3, 5 and 13 at the CSD (Rojas-Murcia et al., 2020). Peroxidases requires 

H2O2 for their activity, which is provided by the oxidation of oxygen in superoxide by 

NADPH oxidases (NOX) followed by dismutation by superoxide dismutases (SOD). CS 

lignification was shown to rely mainly on the NADPH oxidase RBOHF (Lee et al., 2013). In 

addition, the putative manganese SOD MSD2 is also implicated (Rojas-Murcia, 2019). 

Mutations in genes required for CS deposition cause various phenotypes, from 

intermittent strips described as “string-of-pearls” in casp1 and esb1 mutants (Hosmani et 
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al., 2013; Roppolo et al., 2011) to delayed formation of the CS in prx64 and rbohf (Lee et al., 

2013). Interestingly, these mutants not only show defects in the formation of the Casparian 

strip, but also induce compensatory lignin deposition at the corners of the endodermis. This 

phenomenon is also observed in myb36, a mutant of the transcription factor required for 

Casparian strip formation, which completely lacks CS (Kamiya et al., 2015). In addition to 

compensatory lignin, casp1 casp3, esb1, rbohf and myb36 mutants also show increased 

deposition of suberin lamellae below the primary cell wall (Fujita et al., 2020; Hosmani et 

al., 2013). 

7.2.2. COMPENSATORY LIGNIN IS DEPENDENT ON THE SCHENGEN PATHWAY  

This compensatory lignin was recently shown to be dependent of a 

receptor/peptide signalling pathway (SCHENGEN pathway) whose function ensures the 

proper sealing of the CS during root development. Plants with dysfunctional SGN3 

(SCHENGEN3, also called GASSHO1 - GSO1) LRR-receptor kinase display intermittent CS 

and CASP1, without inducing any compensatory mechanisms (Pfister et al., 2014). 

Moreover, sgn3 mutation can abolish the ectopic lignin and suberin deposition observed in 

casp1 casp3 and esb1 mutants. SGN3 was identified in a screen for apoplastic permeability 

of the CS with three other mutants named schengen 1, 2 and 4 in tribute to the Schengen 

area of free movement. While SGN4 was actually allelic to RBOHF, SGN1 encodes a receptor 

like kinase (RLK) and SGN2 encodes the TPST tyrosylprotein sulfotransferase (Alassimone 

et al., 2010; Doblas et al., 2017; Lee et al., 2013; Pfister et al., 2014). Moreover, TPST was 

shown to sulphate the small peptide ligands CIF1 and CIF2 (CASPARIAN STRIP INTEGRITY 

FACTOR 1 and 2) of the receptor SGN3, a process necessary to increase the peptide activity, 

which otherwise reduces the SGN3 signalling significantly. Indeed, cif1 cif2 double mutant 

phenocopies sgn3, indicating that CIF1 and CIF2 function in the same pathway. 

The SGN3 pathway monitors the integrity of CS by assessing its ability to block 

apoplastic diffusion from within the stele (Fig.1) (Alassimone et al., 2016; Doblas et al., 2017; 

Fujita et al., 2020; Pfister et al., 2014). In wild-type plants, CIF2 and CIF1 peptides are 

produced in the stele and diffuse through the gaps of the developing Casparian strip to reach 

the SGN3-SGN1 receptor complex situated on the outer side of the CSD (Fig.1A)(Doblas et 

al., 2017). SGN3 is localised as a ring slightly broader than the CSD. However, its 
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downstream receptor-like kinase target, SGN1, is polarly localized to the cortex-facing 

plasma membrane and excluded from the CSD. The SGN3 receptor and the SGN1 kinase only 

co-localized at a very restricted region at the outer border of the CS (Alassimone et al., 2016; 

Fujita et al., 2020). Therefore, CIF1/2 peptides will only induce the SGN3/SGN1 signalling 

module as long as the CS is interrupted (Fig.1A). The signalling events then lead to lignin 

deposition that can seal the gaps of the immature Casparian strip. Once the CS is sealed, the 

CIF1/2 peptides can no longer diffuse and activate the receptors, halting the signalling 

(Fig.1B). When the integrity of the CS is impaired, the CIF peptides are not blocked and SGN3 

is continuously stimulated, leading to compensatory lignin deposition in endodermal 

corners. Similarly, when plants are exogenously treated with CIF1/2 peptides, the 

SGN1/SGN3 module is constantly activated, inducing ROS production at the outer edge of 

the CSD, which diffuse to the cell corners (Fig.1C). This leads to polymerisation of 

monolignols and strong lignification of the cortex-endodermal corners (Fig.1D) (Doblas et 

al., 2017; Fujita et al., 2020). 

 

Figure 1: The SCHENGEN pathway ensures CS integrity.  
Scheme representing four states of the SCHENGEN pathway. (A) CS formation in early differentiating zone. CIF1/2 
peptides diffuse from the stele through the gaps of the developing CS and bind to the SGN3/SGN1 complex at the outer 
side of the CSD. This results in (B) CS sealing and halting of CIF1/2 peptides. The SCHENGEN pathway is no longer 
activated. In case of exogenous CIF2 treatment (C), the peptide stimulates the SGN3/SGN1 complex at the outer side 
of the CS, which leads to (D) compensatory lignin deposition at the cell corners. Modified illustration from Hiroko 
Uchida. 
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7.2.3. SIMILARITY BETWEEN MTI AND SCHENGEN PATHWAYS 

Interestingly, downstream components of the SCHENGEN pathway are analogues 

to MAMP-triggered immune signalling (Alassimone et al., 2016; Fujita et al., 2020). Firstly, 

SGN3 is an LRR receptor protein whose closest homologues are the receptors PEPR1 and 

PEPR2, recognizing AtPeps (Creff et al.). Moreover, SGN3 requires SERK1 and SERK3/BAK1 

as co-receptors for its activation (Okuda et al., 2020). BAK1 is also a co-receptor for the LRR-

RK FLS2, EFR, PEPR1 and PEPR2 (Chinchilla et al., 2007; Heese et al., 2007; Schulze et al., 

2010). SGN3 interacts and phosphorylates SGN1, which belongs to the RLCK VII subfamily, 

whose many members, like BIK1, associate and function with PRRs (Alassimone et al., 2016; 

Ranf et al., 2014). SGN1 in turn phosphorylates both NADPH oxidases RBOHF and RBOHD 

(Fujita et al., 2020). By comparison, BIK1 induces the phosphorylation of RBOHD 

downstream of FLS2 signalling (Kadota et al., 2014; Li et al., 2014). After endogenous 

activation by CIF1/2, RBOHF and RBOHD produce very localized H2O2 that can be visualized 

by electron microscopy at the outer side of the CSD (Lee et al., 2013). However, when plants 

are exogenously treated with CIF2, ROS production extends until the first endodermal-

cortex corner (Fujita et al., 2020). ROS is also produced in response to MAMPs, though its 

cellular localization remained unexplored. Finally, both SCHENGEN and MTI pathways 

induce the phosphorylation of MAPK3 and MAPK6. MAPK phosphorylation occurs 

independently of NADPH oxidases for MTI signalling, which seems to also be the case for 

the SCHENGEN pathway (Fujita et al., 2020; Xu et al., 2013). 

RNA profiling of CIF2 responses also revealed the induction of genes related to 

defence responses in addition to the more expected increased in suberin and lignin 

biosynthesis genes (Fujita et al., 2020). Interestingly, the transcription factor MYB15, which 

is involved in pathogen- and flg22-induced lignification (Chezem et al., 2017), is also 

strongly induced after CIF2 treatment (Fujita et al., 2020). Taken together, the parallels 

between CIF2- and MAMPs-induced lignification are particularly striking and lead to the 

idea that the SCHENGEN pathway might be a neofunctionalization of the more evolutionary 

ancient MTI pathway into a developmental process, regulating barriers formation (Fujita et 

al., 2020). 
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Lignin deposition is also observed in response to pathogens and flg22 in leaves 

and seedlings of A. thaliana (Ch.1; Chezem et al., 2017; Lee et al., 2019). However, flg22-

driven lignification is not naturally observed in roots but can be obtained after ectopic 

overexpression of FLS2 in these tissues (Emonet et al., 2020). Interestingly, this induced 

lignification mostly occurs at cell corners, a phenomenon that resembles CIF2-induced 

lignin deposition. Whether the immunity-related lignification mechanism is equivalent to 

the one observed in a developmental context is still unclear, but current evidence suggests 

that they share a common basis. Interestingly, in addition to the involvement of MYB15 

transcription factors for both flg22- and CIF2-induced lignin deposition, pathogen-

mediated lignification in the leaves depends on CASP-LIKE PROTEINS L1D1 and L4D1 

(CASPL1D1 and CASPL4D1). This suggests that this deposition of lignin possibly uses an 

analogous mechanism to the Casparian strip formation (Lee et al., 2019). Although CASP1-

5 are not required for compensatory lignin formation (I. Barbosa, personal communication), 

it is probable that some of their CASPLs homologues could be involved. Whether flg22 and 

CIF2 induce a common pathway for lignification or trigger their own specific signalling is so 

far unknown. 

7.2.4. THE ENDODERMIS AS A MODEL TO STUDY SPECIFICITY  

How to compare pathways without being influenced by the identity of the different 

tissues in which they occur? The ectopic expression of FLS2 in the endodermis, using the 

specific endodermal promoter CASP1 to drive FLS2 in a fls2 mutant background, can bypass 

such limitation. Indeed, CASP1::FLS2 line deposits lignin only at the endodermal cell corner 

in a cell-autonomous fashion (Emonet et al., 2020), allowing the direct comparison of lignin 

deposition triggered by two distinct inputs in the same cell type.  

Since CIF2 and flg22 pathways share many components including co-receptor, 

RBOHD and MAPKs, we wanted to investigate whether these developmental and biotic 

signals induce a common “lignin deposition program”. In addition, using the endodermis as 

a model cell type provides a powerful tool to elucidate how specificity can be achieved by 

different inputs despite the convergence of their signalling cascade. Indeed, the SCHENGEN 

pathway is also required for endodermal-specific fusion of CASP1 into a ring around the 

endodermis, a process which is not expected to occur as a MTI response (Pfister et al., 2014). 
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Moreover, it is easier to compare both pathways in the endodermis, where all signalling 

components are present, than to reproduce the SCHENGEN pathway in another cell type. 

Drapek et al. (2018) previously generated a CS in the subepidermis layer of WER::SHR lines 

treated with CIF2, but the barrier was not completely functional. Here, we compared 

compensatory lignification driven by CIF2 treatment with flg22-mediated lignification 

using specific endodermal expression of CASP1::FLS2 in fls2 background.  
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7.3. RESULTS 

7.3.1. LIGNIN DEPOSITION IN RESPONSE TO CIF2 AND FLG22 HAVE UNMATCHING PATTERNS 

Corner lignin deposition after CIF2 or flg22 treatments might look similar at first 

sight, but a careful comparison was necessary to determine if both outputs were indeed 

identical. I took advantage of the CASP1::FLS2 line and analyse its cell wall modifications 

side by side with wild-type plants after CIF2 or flg22 treatments. Results show differences 

of lignin deposition patterns induced by CIF2 and flg22 ligands. In regions closer to the root 

tip (15 cells after the onset of elongation), both treatments induced lignification restricted 

to the endodermis-cortex corners (Fig.2A, left panel). However, at a later stage (20 cells), 

flg22-driven lignification expands beyond the corners into the cell boundary between 

endodermis and cortex (Fig.2A, right panel). It could be noted that, although the 

concentrations of both peptides were identical, flg22-induced responses were consistently 

stronger. Moreover, flg22 does not induce lignin deposition in wild-type roots, confirming 

previous data (Chezem et al., 2017; Emonet et al., 2020). 

 

Figure 2: CIF2- and flg22-induced lignin in CASP1::FLS2-GFP fls2 differ in location 

(A) Lignin accumulation patterns at endodermis, view as median position at 15 and 20 cells after the onset of elongation, 
with 1 μM CIF2, 1 μM flg22 or mock treatment. Lignin accumulates at outer corners after CIF2 treatment in both 
genotypes and after flg22 treatment in CASP1::FLS2-GFP fls2 only. Note that flg22 can induce lignin all along the outer 
border of the endodermis. Lignin and cellulosic cell walls are stained with Basic Fuchsin (RedHot LUT) and Calcofluor 
White (cyan), respectively. White arrowheads indicate sites of excess lignification on the cortex-facing (outer) side. 
“Inner” designates the stele-facing endodermal side, “outer”, the cortex-facing side. Scale bar, 5 μm. 
(B) CASP1-driven FLS2-GFP localizes all around the plasma membrane of the endodermis and is excluded from the CSD 
(white arrowheads). Transversal and longitudinal views of CASP1::FLS2-GFP fls2 line. FLS2-GFP (GreenFireBlue LUT) is 
co-visualized with PI-stained cell wall (red). Picture on the right is a zoomed in view from the selection in dashed box. 
Scale bars, 25 μm. 

277



 

In contrast to the native SGN3 receptor, CASP1::FLS2 is not restrictively localized 

around the CSD, but can be found all around the plasma membrane of the endodermis 

(Fig.2B). This could explain why the pattern of lignin deposition is broader in response to 

flg22. Pericycle-endodermal boundaries are not lignified in the early differentiated regions, 

though the FLS2 receptor is expressed on both sides. Since flg22 is blocked by the mature 

Casparian strip, the peptide cannot penetrate to the inside of the endodermis, justifying the 

polarity of lignin deposition I observed (Fig.2A). 

7.3.2. ROS PRODUCTION COINCIDES WITH LIGNIN DEPOSITION PATTERN IN CASP1::FLS2 

To further characterize the difference between flg22- and CIF2-induced 

lignification, I assessed H2O2 production using ROS-triggered cerium precipitation, followed 

by visualisation via transmission electron microscopy (TEM). According to previous work 

from our lab, CIF2-induced lignification in wild-type plants goes hand in hand with 

restricted local ROS production at the cortical side of the CSD until the endodermal-

endodermal-cortex cell corner (see Fig.4 by Fujita et al., 2020) . By contrast, flg22 treatment 

on CASP1::FLS2 induces ROS production in the same sites (Fig.3A, 3C), but also in the 

endodermal-cortex cell walls (Fig.3A, 3B). ROS were nevertheless not uniformly produced 

in the whole endodermal-cortex boundary. Notably, ROS also accumulate at the next closest 

endodermal-cortex-cortex corner (Fig.3A, 3D). It should be noted that, in contrast to CIF2 

treatment (Fujita et al., 2020), the Casparian strip domain is not extended after flg22 

treatment (Fig.3C). As a side note, we could observe that in some samples, ROS staining 

displays a diffused pattern (Fig.3D, left panel), but in others, it forms a sharp line close to 

the plasma membrane, maybe due to the restriction of its diffusion by the newly formed 

lignin layer (Fig.3D, right panel). Overall, ROS production localization matches the pattern 

of lignification observed with fuchsin staining. Flg22-induced ROS production is less 

localized than the CIF2-induced one and extends to the endodermal-cortex side.  
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Figure 3: ROS production is diffuse and less localized in CASP1::FLS2-GFP fls2 

(A) Overview of endodermal cells in CASP1::FLS2-GFP fls2 after 24h treatment with 1 μM flg22. Boxes in dotted lines 
correspond to the zoom-in regions in (B) (blue and yellow boxes) and in (C) (black boxes). Scale bar, 1 μm. 
(B) In situ H2O2 detection on inner and outer border of the endodermis. Scale bar, 500 nm. 
(C) In situ H2O2 detection at Casparian strips after treatment with 1 μM flg22. Scale bar, 500 nm. 
(D) Specific examples of ROS production after flg22 treatment in CASP1::FLS2-GFP fls2. Scale bar, 500 nm. 
White arrows indicate ROS production sites at the Casparian strip, black arrows, ROS production outside of the CS 
domain; brackets, Casparian strips (CS); cor, cortex; en, endodermis; ste, stele. 

7.3.3. RBOHF, RBOHD AND MYB15 ARE IMPLICATED IN FLG22-DRIVEN LIGNIN DEPOSITION 

Lignin cellular localisation is generally affected by the localisation of the 

polymerizing enzymes. Since flg22-induced lignin was not as precisely localized as the 

SCHENGEN-dependent compensatory lignin, I investigated whether different NADPHs were 

involved in this process.  
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I used the CRISPR-Cas9 system (Ursache, Fujita et al., manuscript in preparation) 

to generate single mutants of RBOHF, RBOHF, MYB15 and RBOHA in CASP1::FLS2-GFP fls2 

background. All four genes were shown to be induced in transcriptomic data obtained from 

CIF2-treated seedlings (Fujita et al., 2020). The list of the different mutant alleles obtained 

by CRISPR (Fig.S1, Table S2) and their predicted effect on proteins (Table S3) can be found 

in Section 7.7. Large deletions were found easily in rboha and myb15 and were conserved 

from T1 to T2 generation. In contrast, the CRISPR-induced deletions in rbohd and rbohf 

were often lost at T2 generation. Nevertheless, CRISPR-driven mutagenesis worked well 

enough for me to obtain single point mutations or few base-pair deletions. All experiments 

related to Figure 4 were done in CASP1::FLS2 fls2 background.  

Flg22-driven lignification was generally slightly reduced in rbohd and in rbohf 

compared to wild type, especially at 15 cells after the start of elongation. At 20 cells, the 

difference was less visible. By contrast, lignin deposition induced by flg22 was identical to 

wild-type lines in rboha mutant (Fig.4A, S2A for 2nd independent allele). As negative 

controls, rboha, rbohd and rbohf in fls2 background were insensitive to flg22 treatment and 

had identical phenotypes to the corresponding mutants in CASP1::FLS2 background (Fig.S3). 

RBOHD is described as the main player in the signalling cascade of the MAMP-triggered 

immunity (Zhang et al., 2007). It is interesting to note that in the endodermis, RBOHD is not 

fully required and that other NOXs, probably RBOHF, can take over its role. It will be 

particularly important to assess lignin content of the double mutant rbohf rbohd in 

CASP1::FLS2 fl2 background to confirm their redundancy.  

Mutations in rbohd and rboha did not impact the CS, starting around 8-10 cells 

after the onset of elongation. However, rbohf mutants in both CASP1::FLS2 fls2 and fls2 

background had delayed CS formation with mock treatment (CS starts roughly around 15-

20 cells)(Fig.4A, S2A). Indeed, at 15 cells after the start of elongation, wild-type plants 

already possess a fused Casparian strip, while rbohf displayed a dotted CS or no lignin at all 

(Fig.4A). This replicates the phenotype observed for rbohf-2 single mutant in Col-0 wild-

type background (Lee et al., 2013). Interestingly, treatment with flg22 could partially rescue 

the delayed CS phenotype in CASP1::FLS2 fls2 rbohf and triggers compensatory lignin 

(Fig.4A, B, S2A). Fig.4A (2nd bottom panel) shows that flg22 induced patch-like accumulation 
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of lignin at the CSD already at 15 cells after the onset of elongation. With variability between 

replicates, these patches seem to fuse around 20 cells or later and form a CS that resembles 

wild type, and can have an identical (Fig.4B) or weaker lignin deposition intensity (Fig.4A, 

S2). However, this CS is not regular and presents some holes in the centre (Fig.4A, B). This 

“ladder” phenotype was previously seen in esb1 and casp 5x mutants (Hosmani et al., 2013, 

I. Barbosa, personal communication). It is also observed in response to flg22 in wild type, 

rbohd, rboha and myb15 mutants (Fig. 4A, S2) and might be simply correlated to strong 

induction of compensatory lignin. Indeed, in contrast to esb1, which displays an abnormal 

CS structure by electron microscopy, lignin deposition induced by flg22 at the CS looks 

similar to CIF2-response (Fig.3C) (Fujita et al., 2020; Hosmani et al., 2013). This “ladder” 

phenotype might be due to different affinities of Basic Fuchsin staining for freshly deposited 

and older lignin. Nevertheless, rbohf tends to display a lignin pattern which looks bulkier 

than other mutants (Fig.4B). It would be crucial to analyse the permeability phenotype by 

propidium iodide assay in these conditions to assess if the barrier function can be restored. 

Overall, RBOHF is required for the proper formation of the CS, but might be partially 

replaced by the activation of other NOXs through the flg22-triggered immunity pathway. 

In addition, though myb15 mutants were able to lignify in response to flg22, the 

strength of the Basic Fuchsin signal was slightly lower compared to wild-type plants, with 

some variation depending on replicates (compare Fig.4A, Fig.S2A and Fig.S2B). 

Interestingly, MYB15 is also strongly induced after CIF2-treatment (Fujita et al., 2020), and 

compared to Col-0, myb15 mutant shows a decreased ectopic lignin deposition after CIF2 

treatment (Yan Ma, personal communication). MYB15 is therefore important for lignification 

in root and shoot of A. thaliana (Chezem et al., 2017; Lee et al., 2019).  

In summary, both CIF2 and flg22-induced lignin deposition seems to rely on a common basis 

involving RBOHF, RBOHD and MYB15, despite their slightly different localisation. 
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Figure 4: RBOHD, RBOHF and MYB15 are required but not sufficient for flg22-induced lignification 

(A) Lignin accumulation in WT, rbohD, rbohF, rbohA and myb15 single mutants, in CASP1::FLS2-GFP fls2 background, 
with 1 μM flg22 or mock treatment for 24 h. Pictures are shown as surface and median views at 15 and 20 cells after 
the onset of elongation. Lignin and cell walls are stained with Basic Fuchsin (RedHot LUT) and Calcofluor White (cyan), 
respectively. One independent line is presented by mutant, see Figure S2 for other independent lines and Figure S3 for 
controls in fls2 background. 
(B) Zoom in on lignin patterns in CASP1::FLS2-GFP fls2 and CASP1::FLS2-GFP fls2 rbohf lines in response to flg22 at 20 
cells after the onset of elongation. Images of flg22 treatment are duplicated with lower gain to visualise bulky 
deposition of lignin (white arrows). 
Black arrowheads, CS lignin; white arrowheads, compensatory lignin. Scale bars, 5 μm.  
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7.3.4. COMPARISON OF MTI AND SCHENGEN UPSTREAM PATHWAYS 

CIF2 INDUCES DEFENCE MARKERS IN THE ENDODERMIS 

To confirm the capacity of the SCHENGEN pathway to induce genes involved in 

immunity (Fujita et al., 2020), I subjected PER5::NLS-3mV and MYB51::NLS-3mV lines to 

CIF2 treatment. PER5 expression was increased in the cortex and endodermal cells of the 

differentiated zones (Fig.5A). Similarly, MYB51 was also induced by CIF2 treatment in the 

differentiated cortex, endodermis and pericycle cells (Fig.5B). The SGN3 receptor was 

previously shown to localize at the plasma membrane of endodermal and cortex cells 

(Pfister et al., 2014), explaining why only such tissues induce PER5 cell-specific markers. In 

contrast, the non-cell autonomous MYB51 marker has, as expected, a broader pattern of 

induction (Fig.5B) (Emonet et al., 2020). This corroborates the finding that CIF2 can induce 

many defence-related genes, as shown in the early time points of the transcriptomic 

analysis of CIF2-induced responses carried out in our group (Fujita et al., 2020) 

FLG22 DOES NOT AFFECT MARKERS OF THE SCHENGEN PATHWAY IN WILD-TYPE 

BACKGROUND 

I assessed whether flg22 treatment could induce markers of the SCHENGEN 

pathway. Our recently published transcriptomic analysis of CIF2-induced responses 

underlined a set of strongly induced genes that were related to lignin production. Therefore, 

I tested PER15 (PEROXIDASE 15), PER49 (PEROXIDASE 49) and MYB15 transcriptional read-

outs generated previously in our lab in wild-type background (Andersen, unpublished). 

Figure 5 (next page): CIF2 induces immune transcriptional read-outs but flg22 has almost no impact on SCHENGEN 
markers in wild-type plants. 

(A-B) CIF2 treatment induces PER5::NLS-3mVenus (A) and MYB51::NLS-3mVenus (B) in the differentiated cortex and 
stele of wild-type plants. Maximum projection of PER5 and MYB51 signal (GreenFireBlue LUT) in meristematic (MZ), 
elongation (EZ) and differentiated (DZ) zones. Maximal projection of transverse sections views is provided for the DZ, 
cell walls are stained with PI (red). (A) White arrowheads, cortex cells with PER5 signal, black arrowheads, endodermal 
cells with PER5 signal. (B) White arrowheads, cortex cells with MYB51 signal, black arrowheads, pericycle cells with 
PER5 signal. Scale bar, 25 μm. 
(C) Flg22 treatment does not affect markers of the SCHENGEN pathway such as PER49::, PER15:: and MYB15::NLS-
3mVenus (GreenFireBlue LUT). Single pictures and maximum projections of normal and transverse section views of 
markers in response to 1 μM flg22 in the differentiated zone. Cell walls are stained with PI (red). Scale bar, 25 μm. 
(D) PER49::NLS-3mVenus marker (GreenFireBlue LUT) responds to flg22 in the EZ and the MZ in 3 out of 8 independent 
lines. Scale bar, 50 μm. 
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These three SCHENGEN markers were constitutively expressed in the endodermis, 

but none of them was reproducibly induced upon flg22 treatment (Fig.5C). Only a weak 

PER49 induction could be observed in the meristematic and elongation zones in three out 

of eight independent T2 lines (Fig.5D). This suggests that SCHENGEN markers are either 

independent of flg22, or only endodermis specific. Flg22-responses, when elicited in wild-

type plants, only affect the elongation zone and do not cause lignification (Emonet et al., 

2020; Millet et al., 2010; Poncini et al., 2017; Zhou et al., 2020), which could explain the 

absence of SCHENGEN marker responses. It would be interesting to transform them in 

CASP1::FLS2 background, where the MTI pathway is strongly induced by flg22 in the 

endodermis and where lignin can be deposited. In that case, SCHENGEN markers of 

lignification should have more chance to be activated. 

7.3.5. FLG22 AND CIF2 INDUCES VERY SIMILAR TRANSCRIPTOMIC CHANGES 

To compare flg22 and CIF2 transcriptional responses, we then performed a 

transcriptomic analysis reproducing the time frame and experimental conditions of the 

SCHENGEN-RNAseq profiling previously done in our lab (Fujita et al., 2020). Briefly, we 

used two plates of densely sown seedlings per genotype (CASP1::FLS2 and fls2), per 

treatment (mock and 1 μM flg22) and per time points (30 min, 120 min and 480 min) and 

carried out the experiment in triplicate on three different days. A flg22 peptide 

concentration of 1 μM was used instead of 100 nM since it induced lignin deposition more 

representative of the pattern we usually saw (data not shown). Five-day old seedlings 

grown on mesh were transferred at time point zero in parallel onto fresh mock or 1 μM 

flg22-containing plates, then roots were harvested and snap frozen after 30 min, 120 min 

or 480 min. Extracted RNA was send to the Genome Technology Facility (GTF) who carried 

out the library preparation and RNA sequencing with a procedure identical to Fujita et al. 

(2020). 

Before sending RNA for sequencing, I quickly assessed the expression level of a set 

of markers genes for MTI and SCHENGEN pathways using real-time polymerase chain 

reactions (qPCR) (Fig.S4). I observed that both PER5 and MYB51 markers were strongly 

induced by flg22 at 30 min after flg22 treatment, whereas FRK1 was expressed slightly later, 

at the 120 min time point. In contrast, the commonly used PR1 (PATHOGENESIS-RELATED 
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GENE 1) defence marker was unaffected by flg22, which was consistent with the absence of 

PR1 induction by salicylic acid and flg22 in Arabidopsis roots (Marhavý et al., 2019; Poncini 

et al., 2017). Like MTI markers, PER15, PER49 and MYB15 expressions were highly 

upregulated upon flg22 treatment, with fold changes ranging between 20 to 150 (Fig. S4). 

As for CIF2 treatment, MYB15 was induced at early time points (30 min and 120 min) while 

PER15 and PER49 were upregulated later. In contrast to wild-type plants (Fig.5C, D), flg22 

clearly induces SCHENGEN markers in CASP1::FLS2 background. As a side note, it would be 

interesting to test if PER15, PER49 and MYB15 are also upregulated downstream of the FLS2 

pathway in other tissues, using prom::FLS2 lines. 

Preliminary RNAseq analysis was carried out by the Genome Technology Facility 

(GTF). We obtained 1317 genes differentially expressed comparing mock and flg22 

treatments in all genotypes and time points using a standard cut-off (adjusted P-value <= 

0.05 AND logFC >= 1 or logFC <= 1). PCA analysis revealed that samples were clustered by 

time points (Fig.S5A). Within each time point, flg22-treated CASP1::FLS2 samples diverged 

from the respective mock treatment, as well as from both treatments on fls2 (Fig.S5B, 30 

min; Fig.S5C, 120 min, Fig.S5D, 480 min). We then compared our dataset to RNAseq data 

obtained by Fujita et al. (2020) (analysis done by Y.Ma). Consistent with our qPCR data, we 

observed that flg22-induced transcripts patterns were highly similar to the ones obtained 

after CIF2 treatment (Fig.6). Genes usually activated by the SCHENGEN pathway, such as 

laccases (Fig.6B), peroxidases (Fig.6D) and suberin-relate genes (Fig.6C), were induced 

after both CIF2 and flg22 treatments. This indicates that both CIF2 and flg22 responses 

share some common outputs. In contrast, CASPs genes were only significantly induced (or 

inhibited for CASP5) after CIF2 treatments (Fig.6A), suggesting that unique genes for each 

pathway can also be found. 
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Figure 6: Comparative expression profiles of the “usual suspects” involved in lignification and suberisation of the 
endodermis in response in CIF2 vs flg22 (heat maps made by Yan Ma). 

Comparison of fold changes of selected genes (P < 0.05 and log2(fold change) ≥ 1 or ≤ -1 in at least one time point in 
one genotype) involved in Casparian strip formation and lignification, such as CASPs (A), laccases (B) and peroxidases 
(D); or in suberisation (C). Fold changes in response to 100 nM CIF2 treatment on WT (blue label) or sgn3 (grey label) 
plants are compared to fold changes in response to 1 μM flg22 treatment on CASP1::FLS2-GFP fls2 (yellow label) or fls2 
(grey label) plants, at indicated time points (30, 120, 480 minutes). Degree of the fold changes is indicated by a colour 
code. Significant differences are shown by stars.  

Though a significant proportion of differentially expressed genes were common to 

both pathways, many were identified for a particular time point as specific to one or the 

other treatment. However, a gene categorized as specific to the flg22 pathway in an early 

time point could become common or specific to CIF2 at a later time point. In addition, 

common genes were generally transcribed more strongly for flg22 than for CIF2 treatment. 

This might be due to the stronger concentration used for flg22 (1 μM) compared to CIF2 

(100 nM), but also to the stronger expression of CASP1::FLS2 compared to SGN3 (Emonet et 

al., 2020; Pfister et al., 2014). As a general observation, flg22-responses peaked earlier than 

CIF2-responses and their amplitude was stronger, which made it difficult to identify unique 
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response markers for each pathway. Therefore, several methods were used to normalize 

and compare the two datasets, and to minimize bias, which permitted the identification of 

common or specific gene sets for both pathways (analysis done by Y.Ma). 

With this process, Y.Ma identified the top 10% of most differentially expressed 

genes after CIF2 or flg22 treatments and went back to the original data to compare their 

logFC in WT or sgn3 in response to CIF2 (blue and grey label) and in CASP1::FLS2 and fls2 

in response to flg22 (yellow or light grey label), for individual time points (Fig.7A-D). Here 

we present the top 20 candidate genes that are preferentially up- or down-regulated after 

CIF2 treatment (Fig.7A, B) and after flg22 treatment (Fig.7C, D). The uniquely CIF2-induced 

genes include several WRKY transcription factors (WRKY41, WRKY30, WRKY71) and some 

peroxidases (PER62, PER71). Interestingly, many SWEET genes (SWEET 1, SWEET3, 

SWEET11, SWEET12) were also specifically downregulated after CIF2 treatments. On the 

other hand, flg22-specific markers encompass many receptors (e.g. cysteine-rich RLK 

CRK31 or G-type lectin S-receptor-like serine/threonine-protein kinase), some being 

described as disease resistance proteins (TIR-NBS-LRR and TIR-NBS class). Ethylene-

related genes (ERF105) and oxidative enzymes (PER52, PER38, CYP715A1, LAC1) were also 

induced more strongly after flg22 treatment than after CIF2. This analysis also allowed to 

pinpoint genes that were upregulated in one treatment and downregulated in the other, 

providing good candidates for pathway-specific markers. It is interesting to note that 

different peroxidases and laccases are specifically induced in each pathway, in addition to 

the other common ones. It would be relevant to test whether they also harbour distinct 

localisation patterns, which could explain the more restricted lignin deposition induced by 

CIF2. Taken together, our transcriptomic analysis allowed us to identify not only a strong 

overlap between CIF2 and flg22 responses, but also many specific response markers for 

each pathway. 
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Figure 7: Specific genes induced by CIF2 and flg22 (heat map made by Yan Ma) 

(A) Top 20 genes specifically upregulated in response to CIF2 treatment. 
(B) Top 20 genes specifically downregulated by CIF2 treatment. 
(C) Top 20 genes specifically upregulated by flg22 treatment. 
(D) Top 20 genes specifically downregulated by flg22 treatment. 
Genes selected among the ones with P < 0.05 and log2(fold change) ≥ 1 or ≤ -1 in at least one time point in one genotype. 
Fold changes in response to CIF2 treatment on WT (blue label) or sgn3 (grey label) plants are compared to fold changes 
in response to flg22 treatment on CASP1::FLS2-GFP fls2 (yellow label) or fls2 (light grey label) plants, at indicated time 
points. Degree of the fold changes is indicated by a colour code. Significant differences are shown by stars.   
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7.4. DISCUSSION 

7.4.1. MTI AND SCHENGEN PATHWAYS TRIGGER A COMMON STRESS-INDUCED SIGNALLING 

MODULE 

Our analysis revealed that the lignin deposition pattern induced by immune 

responses shares many features with the developmental lignin deployed by the SCHENGEN 

pathway to seal the Casparian strip. Indeed, CIF2 and flg22, when applied exogenously, 

induce surprisingly similar lignin deposition at cell corners. In wild-type condition, 

SCHENGEN-driven lignification is however restricted at the CSD to fuse the patches of the 

nascent Casparian strip (Doblas et al., 2017). Remarkably, it is only in stressful conditions, 

for instance in several previously described mutants in which the CS integrity is impaired 

(Barberon, 2016), that the CIF2-driven lignin localization is most comparable to the flg22-

response. This might suggest that the developmental SCHENGEN pathway is more related 

to stress responses than expected. 

Indeed, MTI and SCHENGEN pathways induce lignin deposition with analogous 

mechanisms. They both trigger ROS production and rely on the redundant use of RBOHF 

and RBOHD (this work; Fujita et al., 2020). Although flg22 triggers immune responses 

predominantly through RBOHD (Zhang et al., 2007), it still induced lignification in the rbohd 

single mutant (Fig.4). This suggests that flg22 signalling uses NADPH oxidases other than 

RBOHD in the endodermis. It would be interesting to test whether flg22-induced 

lignification also depends on both RBOHF and RBOHD in other root tissues (e.g. epidermis, 

stele…), by introducing specific prom::FLS2 constructs in the rbohd and rbohf single and 

double mutant backgrounds. Moreover, like the SCHENGEN pathway, flg22 also induces 

suberin deposition in the endodermis of CASP1::FLS2 (Ch.2; Emonet et al., 2020). However, 

suberin deposition is not occurring outside of the endodermis, even in lines expressing FLS2 

in the epidermis or the stele. Taken together, this supports a model where the MTI pathway 

can branch on the endodermis-specific SCHENGEN signalling, using RBOHF and inducing 

suberin deposition. 

The RNAseq profiling of both treatments further supports the similarity of MTI and 

SCHENGEN pathways. Indeed, most of the very strongly induced genes were common to 

both treatments and encompass many lignification-related genes, such as laccases, 
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peroxidases or MYB15 (Chezem et al., 2017; Fujita et al., 2020; Lee et al., 2013; Rojas-Murcia 

et al., 2020), and suberisation-related genes like MYB41 or GPAT genes (Barberon, 2016; 

Barberon et al., 2016; Beisson et al., 2007; Kosma et al., 2014). Moreover, many defence-

related genes were also induced by both treatments (PER5, MYB51, FRK1), which could be 

confirmed by qPCR and MAMP-response fluorescent reporters. This strong similarity 

suggests that MTI and SCHENGEN pathways might induce a common “defence and stress-

related cell wall modification” module. 

It is therefore tempting to speculate that developmental processes such as the 

Casparian strip integrity control have evolved from neofunctionalization of defence and 

stress-related signalling to induce lignin deposition. Plants start to interact with other 

microorganisms long before land colonization and the appearance of structural lignin, such 

as vasculature. Even streptophyte algae host a microbiome encompassing beneficial and 

potentially pathogenic bacteria (Knack et al., 2015). Interestingly, streptophyte algae were 

reported to contain lignin-like components that may be used for cell-wall strengthening in 

response to pathogens (Delwiche et al., 1989; Sørensen et al., 2011; Vries et al., 2018). Genes 

involved in the phenylpropanoid pathway are also induced in the liverwort Merchantia 

polymorpha in response to oomycete infection (Carella et al., 2019). Therefore, immunity 

and stress-induced lignification evolved long before the appearance of roots and their 

Casparian strip. Given the close homology of the SGN3 receptor to the PEPR1 and PEPR2 

receptors, the regulation of compensatory lignin deposition by the SCHENGEN pathway 

might be derived from MTI. Indeed, stimulation of PEPR1 and PEPR2 by their ligand AtPep1 

induces strong lignin deposition in the root, particularly in the stele where both receptors 

are expressed (Engelsdorf et al., 2018). Endogenous DAMPs are often considered as 

phytocytokines due to their autocrine and paracrine abilities, and can be seen as 

immunomodulatory hormones rather than elicitors (Gust et al., 2017). CIF2 peptide could 

potentially originate from such phytocytokines. One could imagine that the evolution might 

have taken advantage of an ancestral stress-response pathway to tune it as a highly specific 

integrity-sensing signalling process.  
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7.4.2. SPECIFIC LOCALISATION OF SCHENGEN AND IMMUNE RESPONSES 

Despite their strong similarities, the SCHENGEN pathway and the endodermal-

specific MTI signalling displayed some specific outcomes, notably regarding the precise 

localisation of lignin deposition. Although both pathways induce lignification of the 

endodermis, flg22-triggered lignin extends further that the first endodermal-cortex corner 

in CASP1::FLS2, and could reach the next corner as well as the cortex-endodermal cell wall. 

H2O2 production was also following the same pattern. 

Interestingly, several examples show that local deposition of lignin is dependent 

of the strict localisation of ROS production (Barbosa et al., 2019). Most peroxidases, laccases, 

SOD and NADPH oxidases so far shown to be involved in CS formation are found within the 

CSD (Lee et al., 2013; Rojas-Murcia et al., 2020). Endogenous CIF2-induced lignin is also 

precisely localized at the interplay of SGN3, SGN1 and RBOHF (Alassimone et al., 2016; 

Doblas et al., 2017; Fujita et al., 2020). Other developmental lignin depositions involve co-

localisation of polymerising enzymes. In protoxylem, LAC4 and LAC17 are targeted to the 

spiral patterned secondary cell wall of tracheary elements, where they are required for local 

lignin deposition (Schuetz et al., 2014). Therefore, the difference in lignin patterns that we 

observed between flg22 and CIF2 treatment must be due to the distinct localisation of ROS 

production. Our transcriptomic analysis revealed a number of peroxidases and laccases 

preferentially induced by CIF2 or flg22 that could specifically influence ROS production. 

However, CIF2 and flg22 lignification partly relies on RBOHD, localised all around 

the plasma membrane. This suggests that ROS production site is not determined by the 

localisation of NADPH oxidases alone, but rather by their local activation by LRR receptors. 

Indeed, SGN3 is precisely restricted around the CSD (Fujita et al., 2020; Pfister et al., 2014) 

while CASP1-driven FLS2 is localized non-specifically at the plasma membrane (Beck et al., 

2014; Emonet et al., 2020; Wyrsch et al., 2015). ROS produced at the CSD will likely diffuse 

no further than the first endodermal corner, explaining the more contained lignin 

deposition induced by CIF2. This underlines the importance of the receptor complexes 

localisation for determining lignin patterns. 

Given that SGN3 is closely associated with the CASPs proteins, it can be asked 

whether FLS2 also requires a scaffold to form a lignin polymerizing complex. Lee et al. (2019) 
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observed that the amiCASPL1D1 and caspl1d4 single and double mutants had reduced lignin 

deposition in response to avirulent pathogens and were consequently more susceptible. 

Lignin deposition in the abscission zone is also correlated with the induction of CASPLs 

genes, though their involvement is not yet characterized (Lee et al., 2018). Interestingly, five 

CASPL genes (1B1, 1B2, 1C1, 1C2 and 1D2) are induced in response to flg22 and CIF2 in our 

transcriptomic analyses, generally at the later time point (Fig.S6). No specificity can be 

clearly inferred from these data, but CASPL1C1 appears to be preferentially induced by CIF2. 

Therefore, it could be worth assessing CASPLs expression and localisation patterns and 

compare their responses to CIF2 and flg22 peptides. For example, CASPL1B1, driven by the 

CASP1 promoter, was shown to localize all around the plasma membrane but accumulated 

slightly at the CSD (Roppolo et al., 2014). However, expressed under their endogenous 

promoter, CASPL1B1 and CASPL1B2 were correlated with cells producing suberin, though a 

clear role in suberin deposition could not be demonstrated (Champeyroux et al., 2019). 

Since both CIF2 and flg22 increase suberisation of the endodermis (Emonet et al., 2020), 

CASPLs upregulation could be also involved in that process. Little is known about CASPLs 

functions, but they are probably involved in cell wall modification related to stress. 

7.4.3. SPECIFICITY AT THE HEART OF THE ENDODERMIS 

Although both CIF2 and flg22 treatments activate an overlapping “stress module” 

transcriptional machinery, we also found preferences for specific genes in one or the other 

pathway. In that sense, even if both receptor complexes activate some of the same 

downstream targets, such as MAPK3/6 and RBOHF/D (Fujita et al., 2020), they might 

somehow activate different responses. Although only a few genes displayed opposite 

behaviours in response to CIF2 or flg22, we found a number of genes that were responsive 

to both pathways but with a strength of induction/repression that was different between 

CIF2 and flg22. A possible explanation could be that, despite both peptide-receptor 

complexes can induce the same actors, their respective affinities for specific downstream 

components might be slightly different, which would cause quantitatively different 

responses. Therefore, despite a very strong conservation of downstream components 

between both the immune and the SCHENGEN pathways, their different roles might be 

achieved by subtle different outputs. 
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It would be interesting to use either, specific genes with opposite responses to 

flg22 and CIF2, or genes with large difference in induction, to design ratio-metric markers 

for MTI vs SCHENGEN pathways. These markers would enable us to visualise and determine 

whether an endodermal cell is in “defence mode” or in “developmental mode” and provide 

a readout of specificity. This work is currently carried out by Y.Ma. We could then easily 

assess the status of the endodermis and investigate what could influence it. It would be 

informative to alter common or specific components of one or the other pathway and assess 

whether they control the status of the cell. For example, MAPK3 and 6 are involved in 

numerous functions, but how they trigger distinct outputs remains elusive (Andreasson and 

Ellis, 2010; Suarez Rodriguez et al., 2010). Being able to visualize in vivo how targeted 

mutations of MAPKs can affect the ability of the endodermis to induce CIF2- or flg22-specific 

responses, would greatly enhance our understanding of specificity control. 

Moreover, the SCHENGEN pathway is not only involved in sealing the CS, but also 

plays a role in the actual formation of the CS. Indeed, CASP1 proteins localized correctly but 

failed to fuse in the sgn3 mutant, so that the CS stays in the form of a string-of-pearl (Pfister 

et al., 2014). Moreover, CASPs genes are induced specifically by CIF2 but are not affected by 

flg22. EM visualisation of the CS after CIF2 treatment also highlights an extension of the CS, 

which is not observed after flg22 treatment (Fujita et al., 2020). There are therefore several 

cues indicating that at least part of the SCHENGEN pathway has a developmental outcome 

that is not found in response to flg22. Whether these responses depend on the CIF2-specific 

candidate genes identified in our transcriptomic analysis must be investigated. 

Interestingly, the induction of “immune lignin” by FLS2 activation could partly 

rescue the CS delay in rbohf mutant, suggesting that the MTI pathway might be able to 

compensate the role of the SCHENGEN pathway in the CS formation. It is particularly 

surprizing that FLS2, which is even excluded from the CSD (Fig.2B), can produce lignin that 

is deposited at the CS. It is possible that ROS produced downstream of FLS2 by RBOHD is 

sufficiently close to the CS to make up for the malfunction of RBOHF. It would be therefore 

very interesting to induce this flg22-dependent lignin deposition in other CS mutants, such 

as casp1 or esb1, and see if these genes are required for the partial rescue of CS formation 

in rbohf. The Casparian strip is completely missing in prx3, 9, 39, 72, 64 (prx 5x) but the 
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quintuple mutant still displays compensatory lignin, which is dependent on CIF1 and CIF2. 

(Rojas-Murcia et al., 2020). I would predict that flg22-driven lignification would not be able 

to rescue the CS in the cif1 cif2 prx 5x mutant and that flg22 would only induce 

compensatory lignin deposition. However, it would be essential to assess whether the other 

functions of the SCHENGEN pathways can be carried out by flg22-induced lignification, 

notably by introducing CASP1::CASP1-GFP in the sgn3 CASP1::FLS2 fls2 background and to 

assay CASP domain integrity.  

Taken together, CIF2 and flg22 responses will prove useful to understand how 

specificity is achieved inside a single cell using the endodermis as a model system. Moreover, 

comparison of the two signalling mechanisms may provide new insight on the evolution of 

developmental pathways in general and on the formation of the Casparian strip in particular. 
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7.5. MATERIAL AND METHODS 

If not specified, plant material, chemicals, methods and statistical analyses were 

identical to the ones used in Emonet et al. (2020) and Chapter 3, Section 3.5. 

7.5.1. PLANT MATERIAL 

CRISPR mutants rbohf, rbohd, rboha and myb15 were generated by CRISPR Cas-9 

system in both fls2 and CASP1::FLS2-3myc-GFP fls2 backgrounds as described further. 

PER15::NLS-3mVenus, PER49::NLS-3mVenus and MYB15::NLS-3mVenus were generated in 

our lab by Tonni G. Andersen (unpublished).  

7.5.2. GENERATION OF CRISPR LINES 

Plasmids for CRISPR-Cas9 mediated mutations were generated using Gateway and 

Golden-Gate cloning systems. I used a protocol established in our lab for three sgRNA 

cloning based on a set of Gateway binary vectors for Agrobacterium-mediated 

transformation generated in Prof. Holger Puchta’s group (Fauser et al., 2014) and modified 

for FASTRed selection (Ursache, Fujita et al., unpublished). Three 20nt-protospacer 

sequences for each targeted gene were designed using Benchling and CRISPR-P software 

(Fig.S1 and Table S1). Protospacers were chosen targeting the first two exons of the gene of 

interest. In order to obtain deletions that could be visualised by PCR amplification, each 

sgRNA was separated from the next one by around 100 to 600 base pairs. 

The protospacer sequences were obtained by oligo annealing then ligated into the 

three vectors pRU41, pRU42 and pRU43 previously linearized with the BbsI restriction 

enzyme. They contain respectively the Arabidopsis promoter pU6, pU3 and pU6 upstream 

of the insertion site for the protospacer sequence. Assembly of the three sgRNAs-containing 

vectors was obtained by Golden-Gate reaction with the pEntry (L1-BSaI-L2) vector pSF278. 

The entry vector obtained was then combined by single Gateway LR reaction to the 

destination vector pUBQ::CAS9-FR containing the spCas9 endonuclease gene from 

Streptococcus pyogenes and a selective marker based on the fluorescence-accumulating 

seed technology (FAST) expressing the seed-oil body protein OLE1 tagged with the red 

fluorescent protein RFP (Shimada et al., 2010). 
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Generated expression vectors were then transformed in fls2 mutant and 

CASP1::FLS2-GFP fls2 line by floral dipping method with Agrobacterium tumefaciens GV3101 

strains. 

7.5.3. gDNA EXTRACTION AND SELECTION OF CRISPR-CAS9 INDUCED MUTANTS 

Plants expressing the CRISPR-Cas9 constructs were selected by hand-picking red-

fluorescent T1 seeds under a Leica MZ16 stereomicroscope. Leaf samples from 2- or 3-

week-old plants were collected and gDNA extracted by cetyltrimethylammonium bromide 

(CTAB) protocol routinely used in our lab.  

T1 plants were first screened for large deletion by PCR amplification of targeted 

regions (see primers list in Table S1). Samples harbouring deletions were sequenced with 

the Illumina-Sanger method. Since only a few lines had a deletion, I kept around 20 lines (1 

to 27) for genotyping at T2. T2 seeds were then screened against the presence of the 

CRISPR-Cas9 cassette (pick black seeds) to avoid further mutation. gDNA extraction and 

PCR amplification were performed before Sanger sequencing on a selection of lines. Eight 

seedlings were sequenced by line in order to find homozygous mutations.  

7.5.4. ELICITOR TREATMENT 

CIF2 peptide (DYGHSSPKPKLVRPPFKLIPN) were ordered from EZBioLab and 

synthesized from the Protein & Peptide Chemistry Facility of the University of Lausanne, 

respectively. For comparison of CIF2 and flg22 responses, five-day-old seedlings were 

treated for 24 h on ½ MS agar plates containing 1μM of CIF2 or flg22 peptides. If not 

specified, flg22 treatment was performed as previously described (Emonet et al., 2020). 

7.5.5. H2O2 PRODUCTION IN SITU ANALYSIS USING TRANSMISSION ELECTRON MICROSCOPY 

Detection of H2O2 production in the endodermis was done by cerium chloride 

method as described previously (Fujita et al., 2020). Briefly, four-day-old seedlings were 

grown on ½ MS small petri dishes (5.5 cm diameter), then 1.5 ml of ½ MS solution with or 

without 1 μM flg22 was gently poured over the seedlings and incubated 24 hours 

horizontally. After treatment, seedlings were incubated in 50 mM MOPS pH7.2 buffer 

including 10 mM CeCl3 for 30 min, then washed twice in MOPS buffer for 5 min and fixed for 

1 h in 2.5% glutaraldehyde (EMS, Hatfield, PA) in 100 mM phosphate buffer (pH 7.4) at 
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room temperature. Post-fixation of seedlings was done in osmium tetroxide 1% (EMS) with 

1.5% potassium ferrocyanide (Sigma, St. Louis, MO) in phosphate buffer for 1 h at room 

temperature. Subsequently, samples were rinsed twice in deionised water, and dehydrated 

in ethanol solution (Sigma) at gradient concentrations (30% 40 min; 50% 40 min; 70% 40 

min; two times (100% 1 h). Infiltration with Spurr resin (EMS) was performed at gradient 

concentrations [Spurr 33% in ethanol, 4 h; Spurr 66% in ethanol, 4 h; Spurr two times 

(100% 8 h)]. Finally, the resin was polymerized for 48 h at 60°C in an oven. Ultrathin 50 nm 

thick sections were cut transversally at 1 ± 0.1 mm from the root tip on a Leica Ultracut 

(Leica Microsystems GmbH, Vienna, Austria) and placed on a copper slot grid 2 × 1 mm 

(EMS) coated with polystyrene film (Sigma). Micrographs were taken with the FEI CM100 

(FEI, Eindhoven, The Netherlands) transmission electron microscope at an acceleration 

voltage of 80 kV and 11,000 × magnification (pixel size of 1.851 nm, panoramic of 17 × 17 

pictures), exposure time of 800 ms, using a TVIPS TemCamF416 digital camera (TVIPS 

GmbH, Gauting, Germany) and the software EM-MENU 4.0 (TVIPS GmbH, Gauting, 

Germany). Same beam intensity was used for all pictures, which were panoramic aligned 

with the software IMOD (Kremer et al., 1996). 

7.5.6. SAMPLE PREPARATION FOR RNAseq ANALYSIS 

For each sample, two ½ MS agar plates were sown with 100 ml (in total) of fls2 or 

CASP1::FLS2-GFP fls2 seeds, on a sterile mesh. In total, 36 plates by genotypes were 

prepared, for a total of three replicates (12 plates by replicates and by genotypes). 

CASP1::FLS2-GFP fls2 and fls2 lines (12 plates each) were grown for 5 days, then transferred 

quickly, always both treatments in parallel, onto fresh medium containing 1 μM flg22 or 

mock. After 30 min, 120 min and 480 min incubations, roots were cut off and quickly 

collected, then immediately frozen in liquid nitrogen. Three replicates were realized on 

three different days. RNA was extracted with a TRIzol-adapted ReliaPrep RNA extraction kit 

(Promega). 

7.5.7. RNAseq LIBRARY PREPARATION AND SEQUENCING 

Libraries were prepared by the Genome Technology Facility (GTF), following the 

exact same protocol than Fujita et al. (2020). Briefly, RNA quality control was performed on 

a Fragment Analyzer (Advanced Analytical Technologies, Inc., Ankeny, IA, USA). 1,000 ng of 
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total RNA was used to prepare RNA-seq libraries with the Illumina TruSeq Stranded mRNA 

reagents (Illumina; San Diego, California, USA) on a Sciclone liquid handling robot 

(PerkinElmer; Waltham, Massachusetts, USA) using a PerkinElmer-developed automated 

script. The resulting library was used for cluster generation with the Illumina TruSeq SR 

Cluster Kit v4 reagents and sequenced on the Illumina HiSeq 2500 using TruSeq SBS Kit v4 

reagents. The Illumina Pipeline Software version 2.20 was used to process sequencing data. 

7.5.8. RNAseq DATA PROCESSING AND ANALYSIS 

Lausanne Genomic Technologies Facility performed the data processing using 

their in-house RNA-seq pipeline, as described in Fujita et al. (2020). Briefly, purity-filtered 

read trimming for adapters and low-quality sequences was done with Cutadapt (v. 1.8) 

(Martin, 2011) and removal of reads matching ribosomal RNA sequences with fastq_screen 

(v. 0.11.1). Low complexity reads were filtered with reaper (v. 15-065)(Davis et al., 2013). 

Cleaned reads were aligned against A.thaliana TAIR10 genome using STAR (v. 2.5.3a) 

(Dobin et al., 2013) and read counts per gene locus were obtained with htseqcount (v. 0.9.1) 

(Anders et al., 2015) using A. thaliana TAIR10 Ensembl 39 gene annotation. RSeQC (v. 2.3.7; 

Wang et al., 2012) was used to evaluate the quality of the data alignment. 

Statistical analysis was performed for genes in R (3.5.3). Genes with low counts 

were filtered out according to the rule of one count per million (cpm) in at least one sample. 

Library sizes were scaled using TMM normalization and log-transformed into counts per 

million or CPM (EdgeR package version 3.24.3; Robinson et al., 2010). Data was corrected 

for the experimental batch effect using removeBatchEffet function (limma).  

Statistical quality controls were performed through pairwise sample correlations, 

clustering and sample PCA using batch corrected normalized data. Differential expression 

was computed with limma-trend approach (Ritchie et al., 2015) by fitting all samples into 

one linear model. The experimental batch factor was added to the model. Moderated t-test 

was used for each pairwise comparisons treated vs untreated per time point. Differential 

expression of untreated CASP1::FLS2-GFP fls2 vs fls2 per time point was assessed by 

moderated F-test. The adjusted p-value is computed by the Benjamini-Hochberg method, 

controlling for false discovery rate (FDR or adj.P.Val).  
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RNAseq results were compared to data from Fujita et al. (2020). Interaction tables 

were generated for each time point of Fujita’s RNAseq data using the same statistical model 

and significance was tested using moderated F-test for each time point independently. 

Interaction lists were then compared, and, for each time point, genes were considered 

significant if the adjusted P-value was equal or below 0.05 and the log2 fold (log2FC) change 

was ≥ 1 in any comparison. Genes responsive in control genotypes were excluded. 

Candidates were compared with their original log2FC at all time points with all controls. 

Heatmaps were constructed using ggplot2 package in R. 

7.5.9. qPCR 

RNA samples from RNAseq analysis were reverse transcribed with PrimeScript RT 

Master Mix (Takara), following manufacturer’s instructions. The MESA BLUE SYBR Green 

kit (Eurogentech) was used to performed qPCR on an Applied Biosystems QuantStudio3 

thermocycler. All transcripts were normalized to Clathrin adaptor complexes medium 

subunit family protein (AT4G24550) expression. Primers are listed in Table S1.  
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7.7. SUPPLEMENTAL FIGURES AND TABLES 

Supplemental Figure 1: CRISPR alleles and mutations 

Alleles identified for rbohd (A), rbohf (B), rboha (C) and myb15 (D) in fls2 and CASP1::FLS2-GFP fls2 background. Gene 
structures are represented with the three sgRNA sequences (black arrows, numbers represent base pairs after 
transcriptional start). PAM sites are displayed in blue. See Table S1 for correspondence of allele numbers with mutant 
lines. Vertical lines with letters correspond to different types of proteins obtained from mutations (see Table S2). All 
genes are at the same scale. Red, homozygous insertions or deletions; orange, heterozygous insertions or deletions; 
green; base mismatches.  
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Supplemental Figure 2: Independent alleles for CRISPR rbohf, rbohd, rboha and myb15 

(A) Supplementary alleles completing Fig.4. Lignin accumulation in WT, rbohd, rbohf, rboha and myb15 single mutants 
in CASP1::FLS2-GFP fls2 background, with or without 1 μM flg22 treatment.  
(B) Lignin accumulation in WT and myb15 single mutants, in CASP1::FLS2-GFP fls2 background, with or without 1 μM 
flg22 treatment. Replicate showing clear reduction in lignin deposition in response to flg22 treatment.  
Pictures are shown as surface or median views 15 or 20 cells after the onset of elongation. Lignin and cell walls are 
stained with Basic Fuchsin (red) and Calcofluor White (cyan), respectively. White arrowheads, corner lignification; black 
arrowheads, lignin deposition at CS. Scale bar, 5 μM. 
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Supplemental Figure 3: Controls in fls2 background for CRISPR-induced rbohf, rbohd, rboha and myb15 mutants 

Lignin accumulation in WT, rbohD, rbohF, rbohA and myb15 single mutants, in fls2 background as control of Fig.5A, 
with or without 1 μM flg22 treatment. Pictures are shown as surface and median views 15 or 20 cells after the onset 
of elongation. Lignin and cell walls are stained with Basic Fuchsin (red) and Calcofluor White (cyan), respectively. Black 
arrowheads, lignin deposition at CS. Scale bar, 5 μM. 
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Supplemental Figure 4: Flg22 induces transcription of immune and SCHENGEN markers genes 

qPCR analyses on samples collected from RNAseq experiments. CASP1::FLS2-GFP fls2 and fls2 mutant lines were 
treated for 30 min, 120 min and 480 min with 1 μM flg22 or mock as control. Immune markers PER5 (A), MYB51 (B) 
and FRK1 (C) as well as SCHENGEN markers PER49 (E), PER15 (F) and MYB15(G) are induced by flg22 treatment. Note 
that the PR1 immune marker gene (D) is unaffected. 

Supplemental Figure 5 (next page): Transcriptomic data of flg22-treated CASP1::FLS2-GFP fls2 and fls2 cluster 
according to time points and treatments 

(A) PCA analysis of all batch corrected RNAseq samples all time points confounded. Analysis includes all genes (19810 
genes) with P < 0.05 and log2(fold change) ≥ 1 or ≤ -1 in at least one time point in one genotype. Samples separate by 
time points then by treatment, flg22-treated CASP1::FLS2-GFP fls2 clusters away from other samples. 
(B-D) PCA analysis of batch-corrected samples taken at the 30min (A), 120min (B) or 480min (C) time points shows a 
clear separation of flg22-treated CASP1::FLS2-GFP fls2 from other samples (fls2 treated with mock or flg22, 
CASP1::FLS2-GFP fls2 treated with mock). Figures generated by the Genome Technology Facility (GTF) 
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Supplemental Figure 6: CASPL genes are induced by CIF2 and flg22 treatment 

Fold change inductions of CASPL1B1, CASPL1B2, CASPL1C1, CASPL1C2 and CASPL1D2 in sgn3 and wild-type lines in 
response to CIF2 treatment, in fls2 and CASP1::FLS2-GFP fls2 lines in response to flg22 treatment. Data extracted from 
transcriptomic analyses.  
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Supplemental Table 1: Primer list 

Code Name Sequence (5'-3') Description F/R 

oAE104 oAE104_rbohf_1_F ATTGAGTACCGCCGCTAATCAAAG CRISPR rbohf sgRNA_1 fw F 
oAE105 oAE105_rbohf_1_R AAACCTTTGATTAGCGGCGGTACT CRISPR rbohf sgRNA_1 rv R 
oAE106 oAE106_rbohf_2_F GTCAAGTTGATGCACTTCCGACGG CRISPR rbohf sgRNA_2 fw F 
oAE107 oAE107_rbohf_2_R AAACCCGTCGGAAGTGCATCAACT CRISPR rbohf sgRNA_2 rv R 
oAE108 oAE108_rbohf_3_F ATTGGCAACCGCCATTAATGTCAT CRISPR rbohf sgRNA_3 fw F 
oAE109 oAE109_rbohf_3_R AAACATGACATTAATGGCGGTTGC CRISPR rbohf sgRNA_3 rv R 
oAE110 oAE110_rbohd_1_F ATTGTTGCCACCAAGACGGCCGCA CRISPR rbohd sgRNA_1 fw F 
oAE111 oAE111_rbohd_1_R AAACTGCGGCCGTCTTGGTGGCAA CRISPR rbohd sgRNA_1 rv R 
oAE112 oAE112_rbohd_2_F GTCAAGACATCAGGGACGACTCGG CRISPR rbohd sgRNA_2 fw F 
oAE113 oAE113_rbohd_2_R AAACCCGAGTCGTCCCTGATGTCT CRISPR rbohd sgRNA_2 rv R 
oAE114 oAE114_rbohd_3_F ATTGGAGAGCATCGCTAGCGACCG CRISPR rbohd sgRNA_3 fw F 
oAE115 oAE115_rbohd_3_R AAACCGGTCGCTAGCGATGCTCTC CRISPR rbohd sgRNA_3 rv R 
oAE116 oAE116_rboha_1_F ATTGGAAGTCACCGAACCATCGAG CRISPR rboha sgRNA_1 fw F 
oAE117 oAE117_rboha_1_R AAACCTCGATGGTTCGGTGACTTC CRISPR rboha sgRNA_1 rv R 
oAE118 oAE118_rboha_2_F GTCAACAGAGTCGCCGTACAACAG CRISPR rboha sgRNA_2 fw F 
oAE119 oAE119_rboha_2_R AAACCTGTTGTACGGCGACTCTGT CRISPR rboha sgRNA_2 rv R 
oAE120 oAE120_rboha_3_F ATTGTTTGCCAGCTGCGGCCGCGG CRISPR rboha sgRNA_3 fw F 
oAE121 oAE121_rboha_3_R AAACCCGCGGCCGCAGCTGGCAAA CRISPR rboha sgRNA_3 rv R 
oAE122 oAE122_myb15_1_F ATTGCTCGCCAGTTACTATGTCCA CRISPR myb15 sgRNA_1 fw F 
oAE123 oAE123_myb15_1_R AAACTGGACATAGTAACTGGCGAG CRISPR myb15 sgRNA_1 rv R 
oAE124 oAE124_myb15_2_F GTCAATCAGCTTACACCAAATACT CRISPR myb15 sgRNA_2 fw F 
oAE125 oAE125_myb15_2_R AAACAGTATTTGGTGTAAGCTGAT CRISPR myb15 sgRNA_2 rv R 
oAE126 oAE126_myb15_3_F ATTGTCGAATGACCTAGAAGTGGC CRISPR myb15 sgRNA_3 fw F 
oAE127 oAE127_myb15_3_R AAACGCCACTTCTAGGTCATTCGA CRISPR myb15 sgRNA_3 rv R 
oAE128 oAE128_rbohf_gen_F AAGCAGAGAGTTTCACAGCGCG Genotyping CRISPR rbohf F 
oAE129 oAE129_rbohf_gen_R GCATTGAGCGAAATCGGAGCG Genotyping CRISPR rbohf R 
oAE130 oAE130_rbohd_gen_F ACTCGGACACCAACTCGGACAC Genotyping CRISPR rbohd F 
oAE131 oAE131_rbohd_gen_R ACCTCTTCTTCTGTTACTCGCCCATC Genotyping CRISPR rbohd R 
oAE132 oAE132_rboha_gen_F ACCAGAGGTTGATGATGAATCGAAGTG Genotyping CRISPR rboha F 
oAE133 oAE133_rboha_gen_R AGCAGCATATTCATCAGCTTGTCTCC Genotyping CRISPR rboha R 
oAE134 oAE134_myb15_gen_F AGAGCTCCATGCTGTGAGAAGATGG Genotyping CRISPR myb15 F 
oAE135 oAE135_myb15_gen_R ATCGAACCAGAAGTCCATCTCACTGTC Genotyping CRISPR myb15 R 

oAE150 oAE150_rbohd_gen2_F CTGTGGTTTTCTTGGCCAAATCTAGTGAG 
Genotyping CRISPR rbohd - 
for 1st gRNA 

F 

oYMa13 oYMa13_PER49_qPCR_F AGTGGCGAAATCAGGAAGAAT qPCR PER49 (AT4G36430) F 
oYMa14 oYMa14_PER49_qPCR_R CACAACGCAAATAACACGAAATAAA qPCR PER49 (AT4G36430) R 
oYMa15 oYMa15_MYB15_qPCR_F AGCCCTCCCTAAGCAAGC qPCR MYB15 (AT3G23250) F 
oYMa16 oYMa16_MYB15_qPCR_R GTTATCGGTTCTTCCAGGCA qPCR MYB15 (AT3G23250) R 
oYMa17 oYMa17_PER5_qPCR_F GAGCACACACCATAGGACAA qPCR PER5(AT1G14550) F 
oYMa18 oYMa18_PER5_qPCR_R CAGATTACCATCACCTCCCAC qPCR PER5(AT1G14550) R 
oYMa19 oYMa19_MYB51_qPCR_F GGTGAAGGTGGATGGCGAA qPCR MYB51 (AT1G18570) F 
oYMa20 oYMa20_MYB51_qPCR_R TGAAGGGCGTGAAGAGAGATG qPCR MYB51 (AT1G18570) R 
oYMa21 oYMa21_FRK1_qPCR_F GCCAACGGAGACATTAGAG qPCR FRK1 (AT2G19190) F 
oYMa22 oYMa22_FRK1_qPCR_R CCATAACGACCTGACTCATC qPCR FRK1 (AT2G19190) R 
oYMa23 oYMa23_PR1_qPCR_F CTCTTGTAGGTGCTCTTGTTCTTCC qPCR PR1 (AT2G14610) F 
oYMa24 oYMa24_PR1_qPCR_R GCAACCCTCTCGTCCCACT qPCR PR1 (AT2G14610) R 
oYL558 YL558_PER15_qPCR-1_ S ACAACCAAGGTCTCGATCTCAC qPCR PER15 (AT2G18150) F 
oYL559 YL559_PER15_qPCR-1_AS CAAGTTAGCAGCGTAGGATTGC qPCR PER15 (AT2G18150) R 
oMB78 oMB78_Clathrin_QPCR_F AGCATACACTGCGTGCAAAG qPCR Clathrin (AT4G24550) F 
oMB79 oMB79_Clathrin_QPCR_R TCGCCTGTGTCACATATCTC qPCR Clathrin (AT4G24550) R 

F, forward primer; R, reverse primer  
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Supplemental Table 2: Correspondence CRISPR alleles and line numbers 

CRISPR 
Mutant Background 

Line 
number Allele numbera 

Chimeric 
productb 

Reference 
codec 

rbohd CASP1::FLS2-GFP fls2 #4-2 #2 (biallelic #1 and #3) a AE185 
rbohd CASP1::FLS2-GFP fls2 #4-2-3 #4 a AE186 
rbohd CASP1::FLS2-GFP fls2 #4-2-4 #3 a AE187 
rbohd CASP1::FLS2-GFP fls2 #4-4 #6 (biallelic #7 and #8) b/c AE188 
rbohd CASP1::FLS2-GFP fls2 #4-4-7 #8 c AE189 
rbohd CASP1::FLS2-GFP fls2 #4-4-xd #7 b AE190 
rbohd CASP1::FLS2-GFP fls2 #5-6 biallelic #1 and #9 a AE191 
rbohd CASP1::FLS2-GFP fls2 #5-6-4 #9 d AE192 
rbohd CASP1::FLS2-GFP fls2 #5-6-xd #1 a AE193 
rbohd fls2 #8-4-1 #1 a AE194 
rbohd fls2 #8-6-1 #9 d AE195 
rbohd fls2 #8-6-5 #5 a AE196 
rbohd fls2 #8-7-2 #10 e AE197 
rbohf CASP1::FLS2-GFP fls2 #2-1 #1 f AE198 
rbohf CASP1::FLS2-GFP fls2 #2-2 #2 g AE199 
rbohf CASP1::FLS2-GFP fls2 #3-6 #3 g AE200 
rbohf fls2 #2-3 #2 g AE201 
rbohf fls2 #3-1 #6 h AE202 
rbohf fls2 #7-5 #5 g AE203 
rbohf fls2 #7-7 #4 g AE204 
rboha CASP1::FLS2-GFP fls2 #3-1 #1 i AE205 
rboha CASP1::FLS2-GFP fls2 #8-1 #4 k AE206 
rboha fls2 #2-5 #2 i AE207 
rboha fls2 #7-1 #3 j AE208 
myb15 CASP1::FLS2-GFP fls2 #4-1 #1 l AE209 
myb15 CASP1::FLS2-GFP fls2 #4-8 #2 m AE210 
myb15 CASP1::FLS2-GFP fls2 #14-1 #3 n AE211 
myb15 fls2 #1-1 #4 o AE212 
myb15 fls2 #1-2 #5 p AE213 
a Refers to Fig.S1 
b Chimeric products described in Table S3 
c Seed stock reference number 
d Homozygous line in selection 
Lines in grey were analysed in this thesis  
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Supplemental Table 3: CRISPR mutation effects on proteins RBOHF, RBOHD, RBOHA and MYB15 

Gene Product Description Frameshift Chimeric product 
RBOHD a early stop codon 255bp after TSS out of frame 39 amino acids protein product 

 b early stop codon 483bp after TSS out of frame 80 amino acids protein product 

 c early stop codon 464bp after TSS out of frame 107 amino acids protein product 

 d early stop codon 414bp after TSS out of frame 91 amino acids protein product 

 e early stop codon 585bp after TSS out of frame 148 amino acids protein product 

RBOHF f early stop codon 1013bp after TSS out of frame 174 amino acids protein product 

 g early stop codon 590bp after TSS out of frame 33 amino acids protein product 

 h 6bp deletion (starting 923bp after TSS) in frame 144th and 145th QS amino acids 
replaced by H 

RBOHA i 145bp deletion (starting 242bp after TSS)  
causes early stop codon 459bp after 
transcription start 

out of frame 43 amino acids chimeric product 

 j 438bp deletion (starting 238bp after TSS) in frame chimeric protein lacking 146 amino 
acids  
has three mutated amino acids  
(RYY->SCL) 

 k 21 bp deletion (starting 250bp after TSS), 
187bp deletion (starting at 358bp after 
TSS),  
cause early stop codon at position 588 
after TSS 

in frame 
then out of 
frame 

chimeric protein of 65 amino acids 
2nd splicing variant loses TSS site 

MYB15 l 726bp deletion (384bp after TSS),  
remove splicing sites,  
cause early stop codon 1267bp after TSS 

in frame chimeric protein of 86 amino acids 
2nd splicing variant loses TSS site 

 m 231bp deletion (388bp after TSS),  
remove 1st splicing sites,  
loses sequence 2nd splicing site, 
causes early stop codon 622bp after TSS 

in frame chimeric protein of 36 amino acids  
2nd splicing variant loses TSS site 

 n 232bp deletion (381bp after TSS), 
remove 1st splicing sites 

in frame 
with end of 
second exon 

chimeric protein lacking 51 amino 
acids 
2nd splicing variant loses TSS site 

 o 245bp deletion (379bp after TSS), 
remove 1st splicing site, 
lose 2nd splicing site, 
cause early stop codon 642bp after TSS 

out of frame chimeric protein of 39 amino acids 
2nd splicing variant loses TSS site 

 p 8 bp deletion (381bp after TSS) and  
410bp deletion (443bp after TSS), 
cause early stop codon 405bp after TSS 

out of frame chimeric protein of 38 amino acids 
2nd splicing variant loses TSS site 

TSS, Transcription Start Site; bp, base pair. 
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8 CONCLUDING REMARKS AND PERSPECTIVES 
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The analysis of MAMP-triggered immunity using cellular resolution methods 

opened new perspectives for understanding the plant-microbiota interactions and 

highlighted the crucial importance of spatially targeted defences. This work investigates 

different aspects of the intricate links between rhizosphere microorganisms and plant 

immunity: from the fine characterisation of tissue-specific immune responses to the 

broader impact of FLS2-dependent MTI on the microbiome structure, making a detour via 

the connection between the immune and developmental facets of lignification. This chapter 

hopes to provide a broader context to the content of this thesis and emphasizes future 

perspectives. 

8.1. THE LOCAL COMPONENT OF IMMUNITY 

As discussed previously, the soil is a very heterogenous environment, in terms of 

both substrate nature and biodiversity. Roots also have a complex structure, made of 

different cell-types with distinct functions and features. It is therefore no wonder that 

immune responses are highly intricate and variable. Immunity has long been studied at a 

global scale, mostly focusing on the final output of single plant-pathogen interactions. Thus, 

the local component of immune responses has been overlooked, although it could provide 

valuable information to understand and reconstruct mechanisms observed at a global scale. 

In line with recent publications, we provide evidence that each tissue has a specific 

immune response characterized by the activation of its own set of transcriptional read-outs. 

How this specification is regulated is so far unknown. Hormonal control could be involved 

in the local regulation of responses, since we noticed tissue-specific dependency to 

ethylene. Moreover, immune signalling might branch out to cell-specific developmental 

pathways. For instance, suberin lamellae are a well-known feature of the endodermis, and 

flg22-induced suberisation was only observed in this same tissue. Interestingly, an analysis 

of tissue-specific transcriptomic responses to flagellin was carried out for the epidermis, 

the cortex and the periderm, and highlighted the connection between cell identity and 

tissue-specific immunity networks (Rich-Griffin et al., 2020). Tissue-specific or single-cell 

transcriptomic approaches could be used to establish cell-type specific immune markers. 

Understanding which genes are activated in which tissue could decipher whether cell types 
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have specific roles in immune responses. For example, biosynthesis of the phytoalexins 

coumarin and camalexin is thought to occur in cortex and phloem, respectively, based on 

the expression of regulatory or biosynthetic genes and could represent tissue-specific 

functions (Koprivova et al., 2019; Schmid et al., 2014; Stringlis et al., 2019a). Different cells 

might after all be partly specialized for defences. 

Immune responsiveness is also variable across the root and specific regions have 

different competency to induce immune responses. This is partly because of their 

propensity to express PRR receptors, but also due to their intrinsic properties. We indeed 

report that the central meristem was refractory to the induction of flg22-responses, calling 

the dogma of strict cell autonomy of immune responses into question. It is tempting to 

speculate that this feature might be specific to meristematic tissues, which may favour 

growth over defence. Similarly, we could suggest that super-competent tissues might 

surround and protect refractory cell-types. It would be particularly interesting to assess 

tissue competencies in other organs, like apical meristems. Leaves also display variation in 

the expression pattern of FLS2 (Beck et al., 2014). Since we showed that defence 

competency is not always correlated with receptor expression, it would be informative to 

look for other non- or weak-responsive zones. Moreover, little is known about MTI 

responses in flowers and seed pods. Recently, Lee et al. (2018) observed that cutin protects 

the abscission zone of flower against pathogens. One could imagine that expression of 

defences might be particularly well regulated in a context where new organs are developing 

while surface integrity is disturbed. Coming back to the root, we also do not know if the 

defence compartmentation observed in A. thaliana is conserved across developmental 

stages or across species. Since microorganisms interact with plants even before the 

colonization of land, it would be worth assessing defence expression patterns in more 

archaic species, from the Bryophyta division for example. Indeed, it is unknown whether the 

propensity to restrict immune responses is conserved in primitive root structures. 

The absence of response in root meristem expressing FLS2 is compelling in the 

sense that it was not caused by the absence of Pattern Recognition Receptors, but rather by 

a potential inhibition of MTI responses. However, we do not understand how the meristem 

avoids immune responses. Downstream components of MTI signalling are usually 
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ubiquitously expressed, but it would be worth confirming that all of them are actually found 

in the meristem. Meristem-specific transcriptome profiling could help deciphering whether 

part of the pathway is still induced or whether the inhibition is total. Moreover, the 

suppression of MTI responses might occur at a very early step, since we observed that 

meristematic pericycle cells, refractory to FLS2, can still induce weak responses when 

stimulated by non-cell autonomous signalling. Several inhibitors such as BIR1/2, ANX1/2 

or RALF23 are known to regulate the FLS2/BAK1 complex formation and could be strongly 

activated in the meristem. Reversely, stabilization of the complex could be impaired if 

stimulating components such as FER, IOS1 or LLG1 were inactivated or missing (see 

Chapter 1). It would be interesting to assess their expression level in the meristem and to 

generate tissue-specific KO mutants by CRISPR (Decaestecker et al., 2019). Recycling of 

FLS2 was also shown to be crucial to sustain a strong immune response and might be 

impaired in the meristem (Mersmann et al., 2010; Robatzek et al., 2006). Finally, immune 

responses in the root tip might be inhibited by antagonistic auxin and brassinosteroid 

signallings, which are important for meristem development (Naseem et al., 2015; Wang, 

2012). BRZ1 was indeed shown to supress FLS2 signalling, and is activated in the central 

zone of the meristem (Jaillais and Vert, 2016). 

Cellular resolution coupled to tissue-specific expression of PRRs also allowed us to 

distinguish purely local responses, such as PER5, FRK1 activation or lignin and suberin 

deposition, from non-cell autonomous responses at small scale (MYB51) or on longer 

distance (calcium signalling) (Emonet et al., 2020; Zhou et al., 2020). This opens new 

possibilities to investigate the mechanisms of signal propagation. We could now assess 

whether calcium and ROS signals are responsible of the regional induction of MYB51, using 

inhibitors and mutants. For example, to test the implication of RBOHD in non-cell 

autonomous signalling, we could complement the rbohd mutant with cell-type-specific 

RBOHD, e.g. PRP3::RBOHD. By inducing flg22 responses only in these cells expressing 

RBOHD, using PRP3::FLS2 background for example, we could monitor whether the induction 

of MYB51 is still occurring in neighbouring tissues. Calcium/ROS waves are thought to 

propagate through plasmodesmata (Choi et al., 2016). We could now test their implication 

using callose-mediated plasmodesmata closure with the inducible icals3m vector system 

(Sevilem et al., 2013). 
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Increased resolution for immune responses will reveal its full potential only if 

combined with the development of precise microbial tracking strategies. Indeed, we 

observed that current genomic methods are not suitable to detect local changes in the 

microbiome. Very little is known about what governs the spatial organisation of the 

microbiota along the root. Indeed, only a couple of infection strategies of some specific 

pathogens and random examples of commensal colonization sites have been described so 

far (see Chapter 1). Improving techniques to follow bacterial colonization promises to help 

understanding what type of bacteria colonizes which part of the root, or how dynamic is the 

structure of the community in space and time. These methods would also permit to dissect 

the bidirectional interactions between plant and bacteria. Preliminary experiments indeed 

showed that endodermal damage attracts strongly Pseudomonas protegens CHA0 bacteria, 

probably because of nutrient leakage (Feng Zhou, personal communication). However, 

whether these colonizers stay at the wounded locus even in presence of a strong immune 

response is not known. Similarly, it would be interesting to test if bacteria are also attracted 

around passage cells, which were reported to channel nutrient fluxes towards the stele 

(Andersen et al., 2018). Some of these questions will be soon investigated in our group, 

where we plan to characterize microbiota root colonization using labelled bacteria 

combined to gnotobiotic systems, assessing interactions with single bacteria or small 

synthetic bacterial communities to visualize what is actually happening at the root surface.  

8.2. REGULATION OF MTI RESPONSES IN THE ROOT IS HIGHLY DYNAMIC 

The induction of immune responses is tissue-dependent, but is also highly dynamic 

and can be modulated by both plants and their microbiota. We indeed showed that immune 

responses are usually restricted to the elongation zone but can be gated in the differentiated 

zone by damages or the development of lateral roots. This allows the plant to reduce 

considerably the unwanted activation of defence in response to harmless bacteria. 

However, the link between damage and FLS2 expression is still unexplained. Since DAMPs 

alone could not reproduce laser ablation, we suggested the involvement of a mechanical 

signal. Moreover, cortex cell surrounding the primordia have increased sensitivity to flg22 

(Zhou et al., 2020). This may not depend on cell damage since lateral root emergence usually 
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causes only mechanical constraints (Vilches-Barro and Maizel, 2015). It would be 

interesting to test whether FLS2 induction can be dependent on the cell wall integrity 

system pathway (Rui and Dinneny, 2020). Plant mechano-sensors such as the Ca2+-

permeable stretch-sensitive channel MCA1 involved in touch-sensing and cell wall damage 

responses could be implicated (Denness et al., 2011; Nakagawa et al., 2007).  

This work also highlighted that MTI responses can be largely affected by bacteria. 

We observed that many rhizosphere commensals evade flg22 detection, while some others 

induce immune transcriptional read-outs but prevent root growth inhibition. Whether this 

absence of response is due to direct MAMP signalling suppression, modification of 

environmental pH, LPS or biofilm formation needs to be further investigated. Nevertheless, 

the use of super-competent plants as the WER::FLS2 line will be advantageous to isolate 

responses induced by native bacterial MAMPs. As previously discussed, these lines could be 

used to reconstitute bacterial MAMP repertoires and validate sequence-based predictions 

of MAMP detectability. The group of Prof. Jeffery Dangl is now using WER::FLS2 high 

sensitivity to screen flg22 variants for RGI induction. Interestingly, most bacterial epitopes 

recognized as MAMPs are either intracellular or buried inside proteins (Albert et al., 2020; 

Buscaill et al., 2019). Super-competent lines might be useful to investigate how and when 

MAMPs are released, a process so far elusive. Finally, the strong root growth inhibition 

induced by flg22 on WER::FLS2 makes this line a very powerful tool to easily screen 

numerous bacterial strains. This feature was used by the group of Prof. Paul Schulze-Lefert 

to select bacteria that suppress flg22-induced root growth inhibition (Ma et al., 2020). 

Manipulation of MTI by bacteria must also be considered in the broader context of 

the microbial community. Indeed, we observed that even highly sensitive plants as 

WER::FLS2 line develop as wild-type when grown with complex bacterial communities 

(non-sterile natural soil or SynCom), suggesting the microbiota supresses immune 

responses. We previously discussed how individual bacteria could inhibit MTI responses. 

However, in a microbial assemblage, bacteria not only combine their individual effects, but 

they also potentiate or counteract the contribution of other species. For example, it was 

recently shown that the Variovorax genus degrades auxin produced by other members of 

the rhizosphere community and suppresses the root growth inhibition associated with their 
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colonization (Finkel et al., 2020). Similarly, bacteria suppressive of flg22-mediated root 

growth inhibition have a dominant effect on non-suppressive bacteria (Ma et al., 2020). 

Bacteria were also shown to compete or inhibit other bacterial strains, or fungi and 

oomycetes (Durán et al., 2018; Helfrich et al., 2018; Teixeira et al., 2019). This will affect the 

constitution of the microbiome community and the final plant growth. Although we did not 

observe significant changes in the composition of the WER::FLS2 rhizosphere, it would be 

interesting to investigate smaller communities, or even tripartite interactions. These 

reductionist approaches might ease the analysis of bacterial responses to localized 

defences. 

8.3. MAMP-TRIGGERED IMMUNE RESPONSES INFLUENCE PLANT 

DEVELOPMENT  

Immunity is traditionally associated to plant development by the concept of the 

growth-defence trade-off. This was illustrated in this work by the ability of WER::FLS2 line 

to tip the balance in favour of defence, leading to meristem collapse. However, the molecular 

mechanisms behind this process was not elucidated. 

Meristem collapse, including cell swelling and lignin deposition, was surprisingly 

reminiscent of the morphological changes observed upon activation of the cell wall integrity 

(CWI) system. Indeed, inhibition of cellulase by isoxaben (ISX) treatment or knock-out 

mutant of CESA (CELLULOSE SYNTHASE A) genes induced a similar phenotype (Cano-

Delgado et al., 2000; Caño‐Delgado et al., 2003; Ellis et al., 2002; Hématy et al., 2007). 

However, Engelsdorf and colleagues (2018) suggest that pattern-triggered immunity 

pathway and CWI signalling act independently to induce stress responses, even if CWI 

signalling can compensate the loss of AtPep-triggered responses. The altered development 

induced by flg22 in WER::FLS2 might therefore be a general stress response. Similarity can 

be found in PTI and CWI pathways. Thus, cell swelling is, in both cases, not caused by 

lignification. Indeed, treatment with ISX and the lignin synthesis inhibitor AIP triggers cell 

swelling without lignin deposition (Caño‐Delgado et al., 2003; Ellis et al., 2002). It might be 

interesting to finely compare MTI and CWI effects to assess whether flg22-driven 
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lignification and meristem collapse are independent of the activation of the CWI system. It 

should be noted that cell swelling was particularly evident in the elongation zone. It is 

therefore tempting to speculate that sustained cell growth is required for the swelling 

phenotype. Indeed, other tissue-specific prom::FLS2 lines, even if they induce strong 

immune responses and lignin deposition, do not alter cell morphology. Ethylene was 

previously shown to inhibit root cell elongation by up-regulation of auxin synthesis 

(Swarup et al., 2007). It would be worth investigating whether ethylene, potentially 

produced by the induction of MTI, could explain the cell swelling and meristem collapse 

observed in WER::FLS2.  

This work also highlighted that MTI responses can drastically affect the cell wall 

composition. We provided strong evidence that flg22 induces lignin deposition in roots, 

when FLS2 receptor is ectopically overexpressed. In addition, we also observed that 

endodermal-specific immune responses trigger suberin deposition (Emonet et al., 2020). As 

previously discussed, the induction of cell wall modification in the endodermis was 

particularly similar to the compensatory lignin induced by the SCHENGEN pathway, which 

prompted us to do a comparative analysis of flg22- and CIF2-induced responses. Such 

project is currently carried out in our lab by Yan Ma. One of the most interesting questions 

is whether the induction of MTI responses could replace the SCHENGEN pathway and 

complement the sgn3 mutation. Yan Ma is now expressing FLS2 under the SGN3 promoter, 

in the sgn3 fls2 background. To properly mimic the SCHENGEN pathway, it would be ideal 

to express the flg22 peptide from the inside of the central cylinder, using a stele-specific 

inducible promoter. Flg22 was in the past successfully expressed in plant cells, indicating 

the feasibility of the process (Wyrsch, 2015). This would be a fantastic way to demonstrate 

that very specific responses induced by developmental problems could have easily evolved 

from general stress signalling through tinkering the precise positioning of its different 

components. 

  

322



 
 

8.4. FINAL REMARK 

MAMP-triggered immunity is the core of defence responses against plant threats 

and proved to be a successful strategy for plants to thrive. However, the more we study its 

components and signalling cascades, the more we realize the complexity and interplays of 

these pathways. Roots, readily accessible and simple to image, are an advantageous model 

to investigate the local facet of MTI. The various approaches used in this thesis illustrate 

how high-resolution immune markers, tissue-dependent expression of PRRs, single-cell 

laser ablation and inoculation with fluorescently labelled bacteria can improve our 

understanding of microbiome-induced immune responses. Cell-type specific analyses 

promise to shed light on the hidden world of the rhizosphere.  
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