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CLINICAL AND POPULATION SCIENCES

Preparing for a Second Attack: A Lesion 
Simulation Study on Network Resilience After 
Stroke
Mitsouko van Assche, PhD*; Julian Klug , MD*; Elisabeth Dirren, MD, PhD; Jonas Richiardi , PhD†; Emmanuel Carrera , MD†

BACKGROUND: Does the brain become more resilient after a first stroke to reduce the consequences of a new lesion? Although 
recurrent strokes are a major clinical issue, whether and how the brain prepares for a second attack is unknown. This is due 
to the difficulties to obtain an appropriate dataset of stroke patients with comparable lesions, imaged at the same interval 
after onset. Furthermore, timing of the recurrent event remains unpredictable.

METHODS: Here, we used a novel clinical lesion simulation approach to test the hypothesis that resilience in brain networks 
increases during stroke recovery. Sixteen highly selected patients with a lesion restricted to the primary motor cortex were 
recruited. At 3 time points of the index event (10 days, 3 weeks, 3 months), we mimicked recurrent infarcts by deletion of 
nodes in brain networks (resting-state functional magnetic resonance imaging). Graph measures were applied to determine 
resilience (global efficiency after attack) and wiring cost (mean degree) of the network.

RESULTS: At 10 days and 3 weeks after stroke, resilience was similar in patients and controls. However, at 3 months, although 
motor function had fully recovered, resilience to clinically representative simulated lesions was higher compared to controls 
(cortical lesion P=0.012; subcortical: P=0.009; cortico-subcortical: P=0.009). Similar results were found after random 
(P=0.012) and targeted (P=0.015) attacks.

CONCLUSIONS: Our results suggest that, in this highly selected cohort of patients with lesions restricted to the primary motor 
cortex, brain networks reconfigure to increase resilience to future insults. Lesion simulation is an innovative approach, which 
may have major implications for stroke therapy. Individualized neuromodulation strategies could be developed to foster 
resilient network reconfigurations after a first stroke to limit the consequences of future attacks.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Does the brain become more resilient to further events, 
following a first stroke? Despite major progress in 
secondary prevention, recurrent strokes are frequent, 

occurring in up to 20% of patients within 3 months of 
onset.1 In stroke animal models, the behavioral impact 
of a second lesion decreases with time,2 suggesting that 
resilience to new events—defined here as the capac-
ity of the brain to resist, overcome, or thrive in the face 

of adversity3—progressively builds up during recovery. 
In humans, it is still debated whether the occurrence of 
an ischemic event limits the consequences of a second 
event.4–6 If proven to be true, the hypothesis that resilience 
increases within days or months after stroke to circum-
vent the impact of a potential recurrent stroke may lead 
to major physiological and clinical implications.3 Under-
standing how and why the brain reorganizes in a certain 
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configuration after stroke could help promote neuromodu-
latory therapeutic strategies that will aim not only at restor-
ing function but also at promoting network configuration 
that minimizes the effects of a potential recurrent stroke. 
Investigating resilience after a first stroke in humans is, 
however, challenging. This is due to the difficulties to 
obtain an appropriate dataset of patients with comparable 
lesions, imaged at the same interval after stroke onset. 
Furthermore, timing and localization of the recurrent event 
remain unpredictable in a given patient.

See related article, p 2048

To circumvent our inability to predict a new event, we 
evaluated resilience in brain networks by simulating recur-
rent lesions through node deletions in a population of 
patients with similar infarcts restricted to the primary motor 
cortex. In previous studies, node deletion has been key 
to determine that brain networks of healthy subjects are 
organized to optimize the balance between integration and 
segregation.7–10 By deleting nodes randomly or accord-
ing to their importance in the network, it was also possible 
to demonstrate that brain networks architecture confers 
robustness despite vulnerability of central nodes.11,12 Dele-
tion of contiguous nodes was only recently considered as 
a method to represent strokes with their anatomic char-
acteristics, in terms of size and location.13,14 In humans, 
this method seems a particularly promising alternative to 
empirical studies to study resilience after stroke, given the 
unpredictable nature of the second clinical event.

Here, we tested the hypothesis that resilience in brain 
networks increases during stroke recovery. For that pur-
pose, we considered resilience as the network capacity to 
maintain information capacity after a second attack, based 
on the measure of the global efficiency (Eglob). Resilience 
was investigated by simulating 2 types of attacks. In one 
classical approach, nodes of whole-brain networks were 
serially deleted, randomly or based on their importance 
in the network. We then simulated clinically representa-
tive lesions and evaluated their impact on network reor-
ganization. Operationally, we used lesion simulation in a 
population of stroke patients with a lesion restricted to 
the primary motor cortex and contralateral hand pare-
sis at 3 time points (TPs) within 3 months of onset. All 
patients had a detailed motor examination and functional 
connectivity analyses (resting-state functional magnetic 
resonance imaging and graph measures) at each TP.

METHODS
The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

Participants
We included 16 consecutive stroke patients (6 women; age 
73±12 years) with a small lesion restricted to the primary motor 
cortex and isolated contralateral hand paresis. These patients 
were prospectively recruited out of the 1656 patients admitted 
to our stroke center during the study period. Exclusion criteria 
were (1) left-handedness, (2) significant carotid or intracra-
nial artery stenosis (>50%), (3) history of stroke or psychiat-
ric disease. Sixteen healthy subjects, matched for age, gender, 
and cardiovascular risk factors (6 women; 70±10 years) were 
included. This cohort was used in a recent study with the dis-
tinct aim of investigating surrogates of motor recovery focusing 
on the peri-infarct within 3 weeks after stroke.15 This previous 
study did not include graph analysis in whole-brain networks, 
nor lesion simulation. Detailed measures of motor function 
and imaging data were obtained on the same day at 3 TPs in 
patients: TP1: <10 days; TP2: 3 weeks; and TP3: 3 months 
poststroke and at 1 TPs in healthy subjects. Consent was 
obtained according to the Declaration of Helsinki. The study 
was approved by the Geneva Ethical Committee.

Behavior Assessment
Hand motor function was evaluated by measuring hand dex-
terity (9-hole pegboard task) and isometric grip strength 
(JAMAR dynamometer, Asimow Engineering, Co, Los 
Angeles, CA). A 2-point discrimination task applied to the 
index fingers was used to exclude sensory deficits. For sub-
sequent analysis of dexterity and grip strength, performance 
of the paretic hand was normalized by the one of the nonpa-
retic hand (paretic hand/unaffected hand). Owing to the non-
normality of the data, Wilcoxon tests were used to examine 
changes in hand motor function.

Imaging Acquisition
Every patient was scanned 3 times, whereas healthy subjects 
were scanned once. Images were acquired on a 3T magnetic 
resonance imaging (MRI; MAGNETOM Prisma, Siemens 
Healthcare, Erlangen, Germany; 64-channel head-coil) the 
same day as behavioral testing. Acquisition of resting-state 
functional images was performed using a gradient echo pla-
nar imaging sequence (echo time/repetition time=30/1200 
ms, voxel size=3 mm isotropic, 400 volumes, total acquisition 
time 8 minutes). Continuous eye-tracking was used to check 
wakefulness. Respiratory movements were recorded using 
a transducer at the level of maximum respiratory expansion 
(BioPac Inc, Santa Barbara). T1-weighted anatomic scans 
were acquired with an MPRAGE (Magnetization Prepared 
- Rapid Gradient Echo) sequence (echo time/repetition 
time=2.27/2300 ms, voxel size=1.0 mm isotropic), together 
with T2-weighted (echo time/repetition time=108/6090 ms, 
voxel size=0.4×0.4×4.0 mm) and DWI images (echo time/
repetition time: 52/4300 ms, voxel size=1.4 × 1.4 × 4.0 mm). 
Finally, the protocol included brain MR angiography (time of 
flight) and precerebral Doppler ultrasound to rule out intra-
cranial or precerebral stenosis.

Nonstandard Abbreviations and Acronyms

AUC	 area under the curve
Eglob	 global efficiency
TP	 time point

D
ow

nloaded from
 http://ahajournals.org by on O

ctober 30, 2023

https://www.ahajournals.org/journal/str/10.1161/STROKEAHA.122.038488


CL
IN

IC
AL

 A
ND

 P
OP

UL
AT

IO
N 

SC
IE

NC
ES

van Assche et al Network Resilience After Stroke

2040    June 2022� Stroke. 2022;53:2038–2047. DOI: 10.1161/STROKEAHA.121.037372

Imaging Data Analysis
Imaging Data Preprocessing
Data were preprocessed using SPM12 and in-house MATLAB 
scripts according to an established pipeline (https://miplab.epfl.
ch/index.php/software/wFC) with additional signal cleaning.16 
First, functional images were realigned for each subject. Then, 
anatomic T1 images were coregistered to the mean functional 
image of the corresponding subject and segmented into gray 
matter, white matter, and cerebrospinal fluid maps. We used the 
Brainnetome atlas, which provides a parcellation of the human 
brain in 246 regions and includes a fine-grained parcellation 
of the motor cortex, to atlas the gray matter of each subject in 
native space.17 The resulting map was coregistered to the mean 
image of the functional data of the corresponding participant.

Extraction of Brain Signals
The first 5 volumes were discarded to account for magnetization 
equilibrium. Time courses were linearly detrended at each voxel, 
averaged for each region of the atlas, and scaled by the signal 
mean of the given region. The 6 motion parameters, their first 
derivatives, and the average signal of cerebrospinal fluid were 
regressed out. Additionally, respiratory movements were corrected 
using RETROICOR. To correct for remaining outlying spikes, time 
courses were winsorized to the fifth and 95th percentiles. They 
were then filtered into 4 frequency sub-bands using a wavelet 
transform (cubic orthogonal B-spline). We focus here on scale 4 of 
this decomposition (frequency range 0.03<f<0.06 Hz). We further 
checked for undesirable motion effects by computing the mean 
framewise displacements for all subjects and TPs.18 There was 
no difference in motion across TPs (Friedman test; χ2[2]=0.462, 
P=0.794), and no volumes were removed. Connectivity matrices 
were derived by computing pairwise Pearson correlation coeffi-
cients between the 246 regions of the Brainnetome atlas. Six 
regions of interest, for which signal drop-out was observed in at 
least one subject, were removed, yielding a total of 240 regions 
of interest. Finally, we flipped left and right hemisphere regions of 
interests data within the connectivity matrices level for patients 
with right lesions (n=4).

Graph Construction
Graphs were constructed following 4 steps. First, each connec-
tivity matrix was normalized by its total connectivity strength, 
and this full graph was used to calculate global connectivity 
strength. In the next step, each connectivity matrix was thres-
holded using an absolute threshold w>0 to remove negative 
weights (Figure 1). A proportional (edge density) thresholding t 
was then applied, from t=0 (no connection) to t=1 (all connec-
tions retained) with a density increment of 0.1. This procedure 
allows filtering connectivity weights according to the strongest 
weights in a cumulative manner. Thus, this approach precludes 
the use of an arbitrary threshold and allows examining graph 
properties over a range of edge density values instead. Finally, 
each matrix was binarized before computing all other graph 
metrics. To derive efficiency and cost in the network, we used 
the brain connectivity toolbox.19

Graph Metrics
The whole network efficiency was estimated using the mea-
sure of global efficiency (Eglob).

8,11,20 This metric provides a 
measure of information transfer across all nodes of the net-
work. It quantifies the extent to which nodes communicate with 

distant nodes. It is proportional to the inverse of the shortest 
path length.21
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where Ei is the efficiency of node i, V is the set of all nodes 
in the network, and N is the number of nodes. (i, j) is a link 
between nodes i and j, (i, j ∈ V), dij is the shortest path length 
(distance) between i and j.

As global efficiency depends on network density, we 
checked the density range in which graphs remained con-
nected in each subject. As a result, we retained the density 
range 0.3 to 1 for subsequent analyses rather than selecting 
arbitrary thresholds. We then derived the area under the curve 
(AUC) over the selected density range for Eglob:

AUC E E ( )glob glob( ) = ∫ δ
0 3

1

.

The resilience of the network was determined as the mea-
sure of network efficiency (Eglob) after lesion simulation.

The total wiring cost or density of the network was esti-
mated using the mean node degree of the network which can 
be estimated as the number of edges connected to each node, 
averaged over all nodes of the network. AUC(mean degree) 
was computed in the same fashion as AUC(Eglob)

For better readability of the manuscript, we will use the terms 
Eglob and mean degree instead of AUC(Eglob) and AUC(mean 
degree) in the next sections.

Statistical Analysis
General Strategy
To investigate changes in resilience after stroke, we compared 
global efficiency (Eglob) in whole-brain functional networks at 
3 TPs within 3 months of stroke in 16 patients with a lesion 
restricted to the primary motor network. We evaluated the 
impact of different simulated lesions (node deletion), begin-
ning with random and targeted attacks in the whole-brain net-
work and then using attacks mimicking cortical and subcortical 
strokes that can be observed in clinical practice. For both the 
spontaneous evolution and the impact of simulated attack, we 
first used a linear mixed model to capture the global evolution 
along time points. T tests were then used to compare measure-
ments between individual TPs and between patients and con-
trols. Finally, we evaluated whether changes in resilience were 
correlated with changes in total wiring costs of the network.

Spontaneous Changes in Global Network Efficiency 
and Mean Degree During Recovery
Eglob and mean degree were measured at each of the 3 TPs in 
patients (10 days, 3 weeks, 3 months) and in controls. To evalu-
ate changes in global efficiency over time in patients, we first 
used a linear mixed model with Eglob as the dependent variable, 
TP, lesion volume, and lesion side as fixed effects and subjects 
as a random effect. Significance was evaluated by using the 
Satterthwaite approximations for df.22 Within patients, longitu-
dinal comparisons between Eglob at the 3 TPs were then per-
formed using paired t tests with false discovery rate corrections 
(Benjamini-Hochberg procedure) for multiple comparisons.23 
Between patients and controls, comparisons between the Eglob 
for patients at each TP and the Eglob for controls at their single 
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TP were performed by a t test, with false discovery rate correc-
tion. Mean degree was analyzed analogously.

Impact of Lesion Simulation on Resilience in Brain 
Networks

Random and Targeted Attacks. We first deleted nodes in 
random order. Global efficiency was recalculated after each 
node deletion (ie, 1–240 node deletions) and then averaged 
at each density threshold (30%–100%) for each patient. AUC 
were then derived as described above, resulting in one value 
per patient at each TP and in one single value per control. We 
then performed a similar analysis with nodes deleted based 
on their importance within the network (targeted attack, ie, by 
decreasing order of node degree). For comparison between 
TPs in patients and between patients and healthy controls, 
we first used a linear mixed model using the same fixed and 
random effects as described above followed by t tests with 
false discovery rate correction for multiple comparisons.

Clinically Representative Attacks. We mimicked 3 typi-
cal representative strokes (cortico-subcortical, subcortical, 
and cortical lesions; Figure 2) by deleting nodes included in 
lesion masks corresponding to lesions of 3 patients admit-
ted to our stroke center.24,25 We chose infarction in the ter-
ritory of the middle cerebral artery (MCA) because it is the 
most frequently affected by ischemic strokes. The 3 lesion 
masks were manually outlined on the T2 MRI and the result-
ing masks normalized to Montreal Neurological Institute 
space with the Clinical Toolbox.26 As a result, the subcorti-
cal and cortical masks included 13 nodes each (respective 
volumes: 13.3 cm3 and 10.2 cm3), and the cortico-subcortical 
mask comprised 54 nodes (volume: 99.0 cm3). Eglob was com-
puted after node deletion and the AUC was computed over 

the density spectrum as described above. For comparison 
between TPs in patients and between patients at each time 
point, we first used a linear mixed model using time points, 
attack type, lesion volume, and lesion side as fixed effects 
with an interaction term between time points and attack type, 
and subjects, as a random effect. We then performed t tests 
to compare AUC between TPs and healthy controls using 
false discovery rate corrections for multiple comparisons as 
described above.

Correlation Between Wiring Cost of Resilience of 
the Networks
To determine the price of changes in resilience between time 
points 2 and 3, we correlated the changes in resilience (Eglob) 
and the changes in total wiring cost (mean degree).

RESULTS
Changes in Motor Behavior
Hand dexterity improved from TP1 to TP2 (9-hole peg 
test; median laterality ratio at TP1: 1.18 (interquartile 
range, 1.06–1.71); at TP2: 1.03 (interquartile range, 
0.94–1.27) P=0.01). At TP2, patients had fully recov-
ered with no differences from healthy controls (median 
laterality ratio in controls=1.06 [interquartile range, 
0.98–1.1]; P=0.98). There was no change in hand 
dexterity between TP2 and TP3 (P=1.0). Grip strength 
remained stable over time (JAMAR dynamometer; TP1–
TP2: P=0.41; TP2–TP3: P=0.06) and was not different 
from controls at any TP (TP1: P=0.14; TP2: P=0.21; 
TP3: P=0.38).

Figure 1. Pipeline of graph construction.
(1) Fully connected graph containing positive and negative connectivity weights. (2) Application of an absolute thresholding w>0 to retain positive 
weights only. (3) Sparsely to densely connected graphs are obtained by means of proportional thresholding by step of incremental steps of 0.1. 
(4) Binarization of connectivity matrices leads to unweighted graphs.
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Changes in Global Efficiency and Mean Degree 
During Recovery
There was a statistically significant difference in Eglob 
between TPs (mixed model, F=8.534; P=0.007). Eglob 
was similar between TP1 to TP2 (PBH=0.941) and 
between patients and controls at TP1 (PBH=0.222) and 
TP2 (PBH=0.222). However, Eglob increased from TP2 
to TP3 (PBH=0.017) and was higher in patients at TP3 
compared to controls (PBH=0.006; Figures 3 and 4).

Mean degree increased significantly during recovery 
(mixed model, F=5.406, P=0.028). Mean degree was 
similar between TP1 to TP2 (PBH=0.934) and between 
patients and controls at TP1 (pBH=0.246) and TP2 
(PBH=0.246). However, Eglob increased from TP2 to TP3 
(PBH=0.030) and was higher in patients at TP3 com-
pared to controls (PBH=0.009; Figure S1).

Impact of Lesion Simulations on Network Resilience

Random Failure
There were significant changes in Eglob over time after 
random attacks (mixed model, F=5.360, P=0.028). Eglob 
did not differ after random attacks between patients and 
controls at TP1 (PBH=0.279) nor TP2 (PBH=0.279). How-
ever, patients displayed higher Eglob at TP3 compared to 
controls (PBH=0.012) and TP2 (PBH=0.012; Figure 5).

Targeted Attack
Using the measure of degree to target serially the 
nodes of the network, Eglob differed from control only 
at TP3 (PBH=0.015). Longitudinally, Eglob significantly 
varied across TPs (mixed model, F=7.954, P=0.009). 

Eglob increased from TP2 to TP3 (PBH =0.015) but not 
between TP1 and TP2 (PBH=0.846).

Clinically Representative Lesions
(Figure 6) Eglob varied significantly over time (mixed model, 
F=18.97, P<0.001) and for cortico-subcortical attacks 
(mixed model, F=4716, P<0.001). There was no signifi-
cant change in global efficiency from TP1 to TP2 after all 3 
attack types (cortical: PBH=0.934; subcortical: PBH=0.916; 
cortico-subcortical: PBH=0.788). At TP3 compared to TP2 
however, a higher resilience was observed after all types 
of attacks (cortical: PBH=0.045; subcortical: PBH=0.045; 
cortico-subcortical: PBH=0.047). When patients were 
compared to controls, a higher resilience was only found 
at TP3 (cortical: PBH=0.012; subcortical: PBH =0.009; 
cortico-subcortical pBH =0.009) but not at TP1 (cortical: 
PBH=0.261; subcortical: PBH=0.261; cortico-subcortical: 
PBH=0.245) nor at TP2 (PBH=0.261 in all cases).

Correlation Between Wiring Cost and Network 
Resilience
Increase in resilience between 3 weeks (TP2) and 3 
months (TP3) after stroke was significantly correlated 
with the increase in wiring cost of the network (Spear-
man ρ=0.785; P=0.001; Figure S2).

DISCUSSION
In our population of highly selected patients with focal 
cortical strokes restricted to the primary motor cortex, 
we showed that resilience in brain networks increased 

Figure 2. Lesion masks of focal middle cerebral artery (MCA) strokes used for lesion simulation with corresponding 
Brainnetome regions.
Top, Magnetic resonance imaging (T2 sequence) shows the lesion for each stroke subtype (subcortical, cortical, cortico-subcortical MCA 
territory). Bottom: standard Montreal Neurological Institute template with an overlay of the lesion mask (in red) resulting from the delineation 
of the infarct shown in the top row after normalization to the template. The list of regions of interest (ROIs) enumerates the Brainnetome atlas 
regions overlapping with the lesion masks. A detailed description of Brainnetome ROIs can be found in Table S3.
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between 3 weeks and 3 months after stroke. This was 
demonstrated using attacks mimicking clinically repre-
sentative strokes by targeting specific or random nodes 
in the whole-brain network. This work represents the first 
evidence that network reorganization may prevent the 
consequences of a second stroke, at the price, however, 
of a higher wiring cost.

Resilience to attacks against the network increased 
at 3 months compared to 3 weeks, whereas patients 
had recovered completely from the first event. This was 
determined by a higher global efficiency (Eglob) follow-
ing all types of lesion simulation. Although network effi-
ciency has not been studied in patients after a second 
lesion, previous observational studies have revealed 

Figure 3. Changes in network 
efficiency over time. 
Violin plots with inner box plots for areas 
under the curve of global efficiency in 
stroke patients (ST, shown in green, 
blue, and purple) and healthy controls 
(HC, shown in red) at each time point 
(TP). Each box extends from the 25th 
percentile to the 75th percentile with a line 
indicating the median. Upper and lower 
whiskers show the range up to the upper 
and lower extremes (±1.5×interquartile 
range). Individual values are represented 
by gray dots. Outliers are represented by 
gray diamond shapes. Significance was 
evaluated with multiple t tests with false 
discovery rate corrections; P values are 
represented as *P≤0.05 and **P≤0.001.

Figure 4. Comparison of network cost (degree) and global efficiency between patients and healthy controls at different time 
points (TP).
Representation of mean degree and global efficiency illustrated with means (lines) and standard deviations (filled areas) in patients and healthy 
controls (HC) at each TP.
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distinct patterns of Eglob changes during recovery after 
a first stroke. In a study including patients with mainly 
subcortical lesions, a progressive decrease in Eglob in the 
contralateral hemisphere was observed.27 When Eglob 
was considered after normalization by random graphs, 
no changes were described up to 6 months after cortical 
or subcortical stroke.28,29 More in line with our results, a 
higher Eglob was described within the contralateral hemi-
sphere in mice recovering well from intraluminal occlusion 
of the right MCA.30 Comparison of Eglob across studies 
proved, however, to be challenging, due to differences in 
patient population and in the methods applied to deter-
mine connectivity (structural versus functional). Impor-
tantly, in our study, the increase in Eglob was obtained at 
a higher network cost, estimated by mean node degree. 
The price of shorter paths and more efficient information 
propagation during stroke recovery could therefore be 
related to the development of new connections.

We interpret the higher Eglob following lesion stimula-
tion at 3 months as the reflect of a higher capacity of the 
network to preserve information integration across the 
entire network in the case of a second event. Because 
clinical testing is not possible after lesion simulation, the 
clinical relevance of these findings remains hypotheti-
cal. However, animal studies demonstrated that longer 
delays between a first and second stroke were asso-
ciated with a lower behavioral impact of the recurrent 
stroke.2 Our study suggests that new forms of network 

organization may increase brain resilience to new attacks. 
If de novo creation of new connections seems unlikely, 
we hypothesize that an increase in resilience may rather 
reflect the recruitment of preexisting connections that 
were not used in healthy controls for normal function-
ing. Our data suggest, at least in our patient population, 
that functional network reorganization after stroke does 
not exclusively aim at restoring initial reorganization but 
also tends towards developing a more resilient state to 
reduce the functional impact of further insults. We may 
also consider that mechanisms of regeneration partici-
pate in the network reorganization.31–33 Further studies 
investigating structural data such as cortical thickness, 
voxel-based morphometry, or structural connectivity may 
provide important information regarding the underlying 
mechanisms of resilience.

Interestingly, resilience was increased for all types of 
simulated lesions (subcortical, cortical, and cortico-sub-
cortical). We hypothesized that widespread reorganiza-
tion occurs because the location and size of the second 
lesion are not predictable and cannot be anticipated. 
However, it could also be speculated that resilience may 
differ according to stroke cause. For instance, resilience 
after a lacunar stroke would possibly develop in a con-
figuration that would specifically protect from another 
lacunar stroke. Similarly, in a patient with a unilateral 
carotid stenosis, resilience may specifically aim at lim-
iting the consequence of an ipsilateral stroke. In this 

Figure 5. Network resilience after serial random and targeted attacks.
Representation of global efficiency after (A) random node deletion and (B) targeted node deletion based on degree. This representation is 
illustrated with mean global efficiency (lines) and SDs (filled areas) after attacks for patients at time point (TP) 1, TP2, and TP3, as well as for 
healthy controls (HC).

D
ow

nloaded from
 http://ahajournals.org by on O

ctober 30, 2023



CLINICAL AND POPULATION 
SCIENCES

van Assche et al Network Resilience After Stroke

Stroke. 2022;53:2038–2047. DOI: 10.1161/STROKEAHA.121.037372� June 2022    2045

case, resilience of brain networks may be part of a more 
global concept, including mechanisms related to hemo-
dynamic impairment such as vasodilatation or develop-
ment of collaterals.

This work purposefully focused on patients with 
small primary motor cortex lesions, with complete and 
early functional recovery. At 3 weeks, our patients had 
recovered their hand function. In patients with a larger 
index lesion or a lesion affecting a network hub, a 
greater decrease in Eglob could be expected early after 
stroke.34 We can nevertheless postulate that resilience 
could increase over time compared to earlier TPs. If 
patients would keep on improving their motor function 
beyond 3 weeks, mechanisms of resilience and recov-
ery would coexist and become difficult to individualize. 
One of the advantages of our study population is the 
homogeneity of the lesions in terms of size and loca-
tion. Furthermore, because patients have fully recovered 
clinically at 3 weeks, we were able to make the assump-
tion that changes in connectivity occurring at later TPs 
were related to resilience and not solely to motor recov-
ery.15,35–38 Nevertheless, generalizability of our findings to 
all types of stroke is challenging given the variability of 
stroke location, size, and clinical impact. Further studies 
are needed to determine whether similar changes occur 
with all types of lesions.

Methodologically, this study opens new perspectives 
for the study of network reorganization and resilience 
in stroke and other diseases. One experimental lesion 

simulation approach combines MRI-guided brain stimu-
lation with functional connectivity MRI and high-density 
electroencephalography. In recent years, brain stimula-
tion, when guided with MRI, has dramatically increased its 
spatial precision and high-density electroencephalography 
provides a detailed measure of brain physiology.39,40 If this 
strategy represents one of the most promising techniques 
to study brain resilience, it does not allow to mimic lesions 
that precisely correspond to those commonly observed in 
acute stroke patients. The use of node deletion to simulate 
lesions combines several essential characteristics for the 
study of brain resilience in human. First, it is a highly con-
trollable and precise intervention that is fully noninvasive. 
To date, studies using node deletion to simulate lesions 
have been used to test the architecture of healthy or 
pathological networks with no intention to mimic clinically 
representative strokes..9,20,41–45 Here, we simulated clinically 
representative lesions by deleting contiguous nodes using 
masks of lesions observed in patients admitted to our 
stroke center. MCA lesions of various sizes and locations 
were considered in this proof-of-concept study. Large cor-
tico-subcortical MCA lesions had a more dramatic effect 
on efficiency than lesions limited to the deep perforator of 
the MCA (subcortical lesion) or restricted to a superficial 
branch of the MCA (cortical lesion). This difference could 
be explained by both the size of the lesion and the impor-
tance of the nodes (hubs) affected by the different lesions.

Lesion simulation is an innovative approach, which may 
have major implications for stroke therapy. If the results of 

Figure 6. Network resilience after simulation of clinically representative lesions.
Global efficiency after cortical, subcortical, and cortico-subcortical simulation of middle cerebral artery (MCA) strokes. A, Prelesion and postlesion 
comparison in patients at time points (TP) 2 and TP3. B, Cross-sectional comparison between healthy controls (HC) and stroke patients at TP3, 
illustrated with mean global efficiency before (straight lines) and after attack (dotted lines), as well as SDs (filled areas) for each group.
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the current study can be confirmed in patients with a more 
heterogeneous pattern of stroke size and location, indi-
vidualized neuromodulation strategies could be developed 
using transcranial magnetic stimulation or transcranial 
direct current stimulation to not only improve clinical func-
tion but also promote resilient network reconfigurations to 
limit the consequences of future attacks. This approach 
could also have important implications beyond the stroke 
field to support the development of individualized thera-
pies for instance in neurodegenerative diseases, such as 
Alzheimer disease. Identification and promotion of network 
configurations that are more resilient to the degenerative 
process may have a huge clinical impact.46

There are several limitations to this study. First, we 
included only patients with discrete lesions limited to the 
primary motor cortex, who fully recovered at 3 weeks. 
The inclusion of highly selected patients limits the gen-
eralization of our results to other stroke patterns. The 
increased network resilience following stroke observed 
in our study may be limited to the setting of small lesions 
of the primary motor cortex and patients with swift and 
full recovery. Our results might be affected by the highly 
interconnected nature of the primary motor cortex.47 In 
patients with larger lesions or affecting hubs, a more 
severe impact on brain network topology could be initially 
expected early after stroke.48 This may concern lesions in 
regions previously identified as a rich club; for instance, 
the precuneus, superior frontal cortex, superior parietal 
cortex, hippocampus, putamen, thalamus.49 However, the 
greater impact that strokes have on Eglob in the acute 
phase does not exclude further increase of resilience 
over time. Finally, we limited our simulation to the deletion 
of nodes; therefore, structural connectivity was not taken 
into account. As real stroke lesions also affect white mat-
ter fiber tracts, the final impact of a second lesion could 
be more severe than reported here.34 Further studies 
should investigate these hypotheses.

CONCLUSIONS
In the setting of a highly selected patient cohort limited 
to small strokes to the primary motor cortex, our results 
suggest that the optimal network reconfiguration follow-
ing stroke may not be identical to prestroke architecture. 
Natural selection may have increased the robustness of 
neural networks by favoring their adaptability to unfore-
seen events.50,51 If confirmed in a larger stroke population 
with lesions of various sizes and locations, the results 
of our study may be relevant to inform neuromodulation 
strategies that intend to reconfigure network architec-
ture during stroke recovery to also promote resilience.
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