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Intracranial hemorrhage (ICH) is a common finding in traumatic brain injury (TBI)
and computed tomography (CT) is considered the gold standard for diagnosis.
Automated detection of ICH provides clinical value in diagnostics and in the ability
to feed robust quantification measures into future prediction models. Several
studies have explored ICH detection and segmentation but the research process
is somewhat hindered due to a lack of open large and labeled datasets, making
validation and comparison almost impossible. The complexity of the task is further
challenged by the heterogeneity of ICH patterns, requiring a large number of
labeled data to train robust and reliable models. Consequently, due to the labeling
cost, there is a need for label-e�cient algorithms that can exploit easily available
unlabeled orweakly-labeled data. Our aims for this studywere to evaluatewhether
transfer learning can improve ICH segmentation performance and to compare
a variety of transfer learning approaches that harness unlabeled and weakly-
labeled data. Three self-supervised and three weakly-supervised transfer learning
approaches were explored. To be used in our comparisons, we also manually
labeled a dataset of 51 CT scans. We demonstrate that transfer learning improves
ICH segmentation performance on both datasets. Unlike most studies on ICH
segmentation our work relies exclusively on publicly available datasets, allowing
for easy comparison of performances in future studies. To further promote
comparison between studies, we also present a new public dataset of ICH-labeled
CT scans, Seq-CQ500.

KEYWORDS
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1. Introduction

Traumatic brain injury (TBI) is a major cause of death and disability in young adults

and the number of people who suffer from TBI each year worldwide is estimated to be

69 million (Dewan et al., 2018). At the event of trauma, mechanical forces of impact can

result in intracranial hemorrhage (ICH) which can lead to further brain injury and bleeding

progression. Rapid identification of intracranial hemorrhage is therefore crucial in the care

of TBI patients. Diagnosis of TBI patients is based on clinical assessment and brain imaging

where non-contrast CT is standard, due to its wide availability and low acquisition time.

Since TBI is a global burden there is, however, a wide variety of settings of TBI assessment

and diagnostics, from resourceful level-1-trauma centers to remote areas with only limited

access to radiologists.
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Automated and precise detection and segmentation of ICH

could add clinical value in providing fast and accurate diagnosis.

One challenge in developing accurate segmentation models for

ICH consists of its heterogeneity with a wide range of distribution

patterns within and around the brain. There are five subtypes of

ICH, Intraparenchymal hemorrhage (IPH), Epidural hemorrhage

(EPH), Subdural hemorrhage (SDH), Subarachnoidal hemorrhage

(SAH), and Intraventricular hemorrhage (IVH), all of which can

be represented simultaneously in various slices of a CT head scan.

Current classification scores of brain trauma are partly based on

these subtypes (Marshall et al., 1991; Maas et al., 2005; Nelson et al.,

2010; Raj et al., 2014) however, they are time consuming to use

and demonstrate intra- and inter-reader variability. Accordingly,

providing robust metrics of hemorrhage subtype distribution

could be a step forward in improving prediction models

in TBI.

Deep learning algorithms (LeCun et al., 2015) enable efficient

processing of high-dimensional input, such as CT images, and

show promising performances in the medical domain in a

diversity of tasks (Ronneberger et al., 2015; Havaei et al., 2017;

Chen et al., 2019b). The task of labeling ICH in CT scans is

complex since several intracranial conditions can mimic subtypes

of ICH, such as calcification, vascular anomalies, and malignant

lesions, among others. Accordingly, an in-depth understanding

of neuroanatomy and pathology is needed to discriminate these

conditions from one another, something that usually requires a

radiologist, an often scarce resource. Given the need of large

training datasets, this highlights the need for algorithms using fewer

labeled data.

During the past years several studies have explored the use

of deep learning algorithms for both automated detection and

segmentation of ICH. In one of the first studies, Chilamkurthy

et al. (2018) harnessed deep learning for automated detection

(classification) of traumatic brain lesions, ICH being one. The

following year, Kuo et al. (2019) explored the use of a single

neural network to perform both detection (classification) and

segmentation of ICH in CT scans. These two studies represent

the largest work in the field and present impressive results

in large datasets, approximately 300,000 and 4,500 CT scans

respectively. In conjunction with additional previous studies

the datasets for ICH segmentation are non-public, and until

recently there was no benchmark dataset for ICH segmentation,

making the comparison of methods nearly impossible. It is

thus difficult to gauge whether datasets include a representative

sample of ICH. To our knowledge, Hssayeni et al. (2020)

presents the only public dataset labeled for ICH segmentation,

but it is limited in size and consequently reports lower

segmentation performances.

In addition, previous studies focus on fully supervised

approaches but recent years’ development of semi-supervised

models have the potential to further increase the models’

performances. The simplest form of semi-supervised learning is

transfer learning (Raina et al., 2007; Torrey and Shavlik, 2010)

where the model’s weights are initialized with those learned using

the unlabeled/weakly-labeled data on a pretext task. A few studies

have explored semi-supervised methods for ICH segmentation

(Wang et al., 2020; Kyung et al., 2022). To the best of our

knowledge, only Wang et al. (2020) examined the use of external

unlabeled public data, from RSNA (Flanders et al., 2020). Kyung

et al. (2022) explored a semi-supervised approach on three private

datasets and the public dataset from Hssayeni et al. (2020). Their

work follows the same direction as this study as they harness

transfer learning, but they explored a single pretext task and they

evaluate it mostly on private datasets.

There exists a plethora of generic semi-supervisedmethods that

can be applied in various fields. This study focused on transfer-

learning for its simplicity. In this context, self-supervised learning

has shown to be effective in learning good features without any

labels and a number of generic methods have been reported (e.g.,

He et al., 2019; Chen et al., 2020b; Grill et al., 2020; Bardes et al.,

2021; Lee and Aune, 2021). A subset of state-of-the-art methods

was explored.

In the study, we also manually labeled a subset of the dataset

for ICH-segmentation and built a supervised baseline as a control

and tested whether semi-supervised approaches can improve the

performances over this baseline.

In summary, evaluations of label efficient approaches for ICH

segmentation are poorly explored and benchmark datasets are

lacking. To cope with the aforementioned limitations and to

facilitate similar comparisons in the future, we made our labeled

subset publicly available.

2. Methods

2.1. Ethical approval

This study was approved by the Swedish Ethical Review

Authority (approval no. 2021-00439).

2.2. Datasets

2.2.1. Public segmentation dataset
Recently, Hssayeni et al. (2020) collected and published a public

dataset of 75 CT-scans of patients with TBI, among which 36 scans

present ICH with the associated segmentation ground truth. The

scans were anonymized by blurring the facial components of the

skull resulting in non-natural structures around the face. Each scan

contains approximately 35 slices, and thus has a small inter-slice

resolution of around 5 [mm] where each voxel has the dimension

of 0.33 × 0.33 × 5 [mm] [voxel volume = 0.54 mm3]. Due to

the low inter-slice resolution, 3D algorithms cannot be explored

resulting in a reduced scope for the application of the dataset, but it

is included in our study for comparison.

2.2.2. CQ500 dataset
In a study on ICH classification, (Chilamkurthy et al., 2018)

made a validation set of 491 CT-scans (the CQ500) publicly

available, 173 containing ICH. However, the scans are only labeled

for classification at the scan level which is not usable in a

segmentation task.
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FIGURE 1

Two samples from the two segmentation datasets are presented overlaid with the ICH ground truth and the intracranial cavity segmentation
obtained with the U-Net 2D. (A) Hssayeni et al. (B) Our Seg-CQ500.

TABLE 1 Description of the public ICH segmentation datasets.

Nvolume Nslices

all no-ICH ICH all no-ICH ICH

all IPH IVH SAH SDH EDH

Hssayeni et al. (2020) 75 39 36 16 5 7 4 21 2814 2496 318

Our Seg-CQ500 51 0 51 42 12 12 15 5 11175 7675 3500

2.2.3. RSNA dataset
The Radiological Society of North America (RSNA) has

recently released a large public dataset of CT-scans labeled for ICH

detection (Flanders et al., 2020). The dataset consists of 752,803

slices frommore than 25,000 CT-scans among which 107,933 slices

contains an ICH. Each slice is labeled whether it contains an ICH

and what types of ICH are present.

2.2.4. Our intracranial hemorrhage labeling of the
CQ500 dataset, the Seg-CQ500 dataset

Since the CT scans from the CQ500 dataset are only labeled

for classification at the volume level, 51 scans of this dataset

were manually labeled in collaboration between a 5th year-

radiology resident and an expert neuroradiologist (with over 15yrs

experience) from Karolinska University Hospital (Sweden). The

scans were randomly chosen ranging from mild to severe injuries

and contain all subtypes of ICH along with varying image quality.

Mia-lab (Wang et al., 2014) and ITK-SNAP (Yushkevich et al.,

2006) software were used for the labeling. Our resulting Seg-CQ500

dataset is versatile with its higher number of scans as well as a

higher inter-slice resolution in the majority of the 51 cases. Forty-

one cases have voxels with the dimension of 0.45 × 0.45 × 0.625

[mm] [voxel volume = 0.13 mm3] and 10 cases have a lower

inter-slice resolution ranging from dimensions of 0.48 × 0.48 ×

3 mm [voxel volume = 0.69 mm3] to 0.49 × 0.49 × 5 mm [voxel

volume = 1.22 mm3]. As a result, our dataset could be used in

future studies for 3D algorithms unlike the dataset of Hssayeni

et al. (2020). Samples and information on the Hssayeni et al. (2020)

dataset and our segmentation datasets are presented in Figure 1

and Table 1.

2.3. Pre-processing

2.3.1. Contrast window
The output of a CT scanner is a volume in which each

voxel is assigned a physical measure of the light absorption

relative to water, given in Hounsfield Units (HU) (DenOtter and

Schubert, 2019). As a result, the gray-scale intensity of each voxel is

already standardized between samples, but also between scanners.

Nonetheless, the voxel values cover a broad range while only a small

portion of this spectrum is relevant for ICH segmentation. For

example, hematoma usually lies in the range of 40 [HU] to 90 [HU]

(Phan et al., 2020). Therefore, in all the following experiments,

a window of [−50, 150] [HU] is used to adjust the contrast of

the scans in view of focusing on the ICH signature while keeping

variety in pixel values to let the networks understand and learn

good features. As a result, each scan is rescaled so that values below

−50 [HU] are clipped to 0, values above 150 [HU] are clipped to 1,

and values inside the window are linearly scaled between 0 and 1.

We apply the same contrast window for all the ICH segmentation

methods presented below. We keep the pre-processing similar
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over the methods since the main goal of this study is to compare

semi-supervised and supervised approaches.

2.3.2. Data augmentation
To reduce overfitting on the rather limited amount of labeled

data for the segmentation task, and in view of learning more robust

features, we used data augmentation upon data loading. Since

all CT-scans are acquired in the same orientation (head pointing

upward and roughly in the center), we decided to use spatial

transformations that would yield meaningful and realistic scans.

The dataset was thus virtually enriched by translating (vertically

and horizontally) the images by a factor uniformly sampled in

[−10%, 10%], followed by randomly rotating the images by an

angle sampled uniformly in [−15◦, 15◦], followed by a random

scaling of a factor sampled uniformly in [0.9, 1.1], and finally by

randomly flipping the images horizontally 50% of the time. Finally,

the images were resized to 256 × 256 pixels. Note that different

augmentations were used in the contrastive experiment.

2.3.3. Intracranial cavity segmentation
Naturally, ICH can only be present in the intracranial cavity

of the patient, and any prediction outside the intracranial cavity

would be meaningless. Therefore, we segmented the intracranial

cavity for each CT-scan which allowed us to ignore extracranial

hemorrhage detection.Motivated by the work of Akkus et al. (2020)

we chose to generate the intracranial cavity 3D-mask using a 2D U-

Net applied on each slice of the CT-scan. Due to the lack of public

data for intracranial cavity segmentation on CT-scans, we decided

to manually label 10 scans from the CQ-500 dataset (Chilamkurthy

et al., 2018) using the ITK-SNAP software (Yushkevich et al., 2006).

In order to obtain a more robust segmentation model for our

use-case (with potential presence of ICH), we segmented 5 scans

defined as healthy and 5 scans presenting hemorrhage. The 10

scans had good resolution on the z-axis and allowed us to obtain

2,572 labeled images, among which 2106 contained a part of the

intracranial cavity. However, due to the large variety in shape and

size of ICH, using only 5 scans was considered unlikely to be

enough to build a robust model. Therefore, we decided to train two

models on different CT windows: 1) One U-Net trained on slices

rescaled with a tissue window HU ∈ [0, 600], and 2) One U-Net

trained on slices rescaled with a bone window HU ∈ [150, 650].

The model trained on the tissue window should be able to extract

the intracranial cavity well in areas where the boundary is less

clear, such as at the top and bottom of the skull, while the bone

window should perform well when there are abnormal elements

in the intracranial cavity, such as ICH, since it is based principally

on the skull structure. The final intracranial cavity mask was then

obtained as the union of the predictions of those two models.

The tissue and bone U-Nets were trained on the Dice loss

(Milletari et al., 2016) for 50 epochs with a batch size of respectively

20 and 16. The weights were optimized using the Adam methods

with default parameters and with an initial learning rate of 0.001

exponentially decayed with a base of 0.96 every epoch. The weight

of L2 regularization on the model’s parameters was set to 1e-6. The

models were trained on the 10 manually labeled scans. Then we

segmented the intracranial cavity on the scan of both segmentation

datasets. Some results of the segmentation are shown on Figure 1

in blue.

2.4. Evaluation metrics

Semantic segmentation is a pixel-wise classification, therefore

each segmentation can be viewed as a sample prediction

which enables reporting of classification metrics sample-wise

(Asgari Taghanaki et al., 2020). To present the performance of

the model, we report the mean volume recall which highlights the

model’s capacity to detect hemorrhage. We also report the mean

volume precision which highlights the model’s capacity to avoid

false detection of hemorrhage. Furthermore we report the mean

volume Dice coefficient which is commonly used in segmentation

tasks and is equivalent to the F1-score. Thus,

Dice =
2TP + ǫ

2TP + FP + FN + ǫ
(1)

Precision =
TP + ǫ

TP + FP + ǫ
(2)

Recall =
TP + ǫ

TP + FN + ǫ
(3)

where TP is the number of true positive, FP the number for

false positives, FN the number of false negatives, and ǫ ensures

numerical stability when there are no true positives, set to ǫ =

1. Additionally, these metrics are reported in two ways on the

Hssayeni dataset: either including all the 75 volumes, or including

only the 36 volumes containing an ICH. The first way allows for

taking into account the models’ capability to successfully reject

healthy scans, but can be biased toward high precision methods.

Indeed, a model detecting nothing will be rewarded with maximum

performances on healthy volumes which will push the overall

performances up while the detection of ICH is null. That is why

it is important to also report the performances only on volumes

with ICH. As our Seg-CQ500 contains only volumes with ICH, this

distinction was not done.

2.5. U-Net 2D architecture & baselines

2.5.1. Architecture
The U-Net architecture (Ronneberger et al., 2015) is well suited

for semantic segmentation and has shown its potential on various

tasks across various domains. Even though the U-Net has been

successfully used with 3D volumes as input, such an approach

requires the volumes to have relatively similar resolution along

the three dimensions in order to learn meaningful convolutional

filters. This is not the case in the public dataset of Hssayeni et al.

(2020) that have a resolution of around 0.5 mm in the x and y

direction but only around 5 mm between slices. In addition, the

use of 3D convolutions is computationally intensive and hinders

the possibility of using deeper and more complex architecture.

That is why, this study uses a U-Net 2D as the main architecture

that processes volumes slice by slice, but the performance was

computed over the whole volume instead of separately for each

slice. Additionally, it allows harnessing of the large RSNA dataset.
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For all experiments, the same U-Net architecture was used

for meaningful comparison of the different approaches. Our U-

Net was composed of five convolutional blocks for encoding and

four deconvolutional blocks for decoding that integrate features

of the corresponding block in the encoding path through skip

connections. The first convolutional block output a feature map

with 32 channels. A convolutional block is a series of two

convolutions, batch-normalization and ReLU layers, over which the

number of channels is increased by a factor of two (e.g., of feature

map dimensions: h × w × 32 → h × w × 32 → h × w × 64).

Between the two convolutional blocks a Max-pooling layer reduces

the feature map size by a factor of two. A deconvolutional block

is composed of a transposed convolution that increases the feature

map size followed by a convolutional block similar to the encoding

path except that the number of channels is reduced by a factor of

two over the block (e.g., of feature map dimensions: h×w× 64 →

h× w× 32 → h× w× 32).

2.5.2. Training & evaluation
Given the low number of labeled images in the Hssayeni dataset

(n = 318) and the heterogeneity of the hemorrhages in the dataset,

the performances of the U-Net 2D were estimated through a 10-

fold cross-validation scheme to maximize the amount of example

available for training. In contrast, on our Seg-CQ500 dataset we

adopted a 5-fold cross-validation scheme. The dataset was also split

in a stratified way at the level of the volume to ensure that all slices

of a scan ended up in the same fold and that each fold contained

volumes with hemorrhages. The U-Net was trained on the Dice

loss (Milletari et al., 2016) which directly enforces the model to

maximize the Dice score:

LDice(p, t) = 1−
2|p · t|

|p|2 + |t|2
(4)

where p is the output of the network passed through a

sigmoid activation, and t is the binary ground truth. The binary

segmentation was obtained by thresholding the sigmoid output

with t = 0.5. Note that no class weights were used to compensate

the loss for class imbalance.

2.5.3. Baselines
This study focused mainly on transfer learning. To clearly

gauge the power of transfer learning, we trained the U-Net 2D

without transfer learning by simply training the U-Net 2D using

the labeled scans. As a coarse baseline, we first trained the U-Net

2D using only training slices presenting ICH (ICH-only). Second,

we hypothesized that the network’s optimization should benefit

from the presence of healthy slices in the training set as it had to

process the whole scan in evaluation. We thus supposed that this

additional data would enable the model to learn better features as

it would be optimized on a larger variety of data structure helping

in discrimination of ICH from other tissues. However, to keep the

model’s optimization focused on the detection of hemorrhage we

decided to assign a smaller weight α to normal slices in the loss.

The loss function thus becomes:

LDice(p, t) = t=0 αLDice(p, t)+ t 6=0 LDice(p, t) (5)

where condition is a boolean gate giving 1 if condition is true,

otherwise 0. We trained the U-Nets on all the ICH train slices

together with twice as many normal slices randomly selected in the

training volumes, and set α to 0.2 (Mixed).

Both the ICH-only and Mixed baselines were trained for 100

epochs with a batch size of 16 for the Hssayeni dataset. Since there

were more data available in our Seq-CQ500, our baselines were

trained for 40 epochs and a batch size of 32. Both were trained with

an initial learning rate of 0.001 exponentially decayed at each epoch

with a base of 0.96. The model’s parameters were optimized using

the Adam optimizer with the default parameters and a weight of

L2 regularization set to 1e-6. For both, the generated segmentation

were either kept as such or only on the brain using the intracranial

cavity mask (ICM).

2.6. Transfer learning

In settings where the amount of available annotations is scarce

like ours, semi-supervised approaches are effective frameworks

enabling the use of unlabeled data to extract meaningful features

to assist the model in better performance on the few annotations

available. We chose this kind of semi-supervisedmethod because of

its simplicity and the absence of cumbersome scaling when dealing

with joint training of several tasks. For a fair comparison of the

tasks, in all transfer learning experiments we used 107,933 slices

of the RSNA dataset labeled with ICH and an equal number of

slices without ICH. We kept 5,000 images for validation and used

the rest (around 211,000 slices) to train the pretext task. The pre-

trained weights were then transferred to the U-Net 2D without

freezing them. Afterward, the U-Nets 2D was trained using the few

available annotated data similarly to in theMixed setting described

above. The general settings are summarized in Figure 2. The label

requirements of each approach explored are summarized in Table 2.

2.6.1. Self-supervised transfer learning
Self-supervised objectives aim to learn meaningful

convolutional filters using only unlabeled data through a

pretext task. The pretext task can be anything that enforces the

network to learn features tailored to the data using the data itself as

target. The learned filters can then be used to initialize the U-Net

or any other compatible networks and be fine-tuned for the task of

interest using the few labels available.

2.6.1.1. Context restoration

Chen et al. (2019a) proposed a self-supervisedmethod based on

image restoration. For an image x from a set of unlabeled data, the

rationale of the method is to generate x̂, a corrupted version of x, by

sequentially swappingN patches of dimension hswap×wswap on the

image x. An encoder-decoder model is then trained to reconstruct x

from the corrupted version x̂ by using the Mean-Square-Error loss

with x as ground truth. This pretext task is supposed to enforce the

network to understand the spatial context of the image and thus

learn meaningful features. A U-Net architecture can be used and

the learned features can thus be used to initialize the whole model

for the segmentation task.
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FIGURE 2

Transfer learning principle. Stage 1 represents the Self/Weakly-supervised pre-train tasks on an arbitrary network architecture (encoder, partial U-Net
or full U-Net). The orange bracket highlights the knowledge transfer to a full U-Net. Stage 2 represents the further optimization of the U-Net 2D
using available labeled volumes.

TABLE 2 Methods labels requirements overview.

Segmentation
Label

Unlabeled
Data

Classification Label

Binary Multi-label

Semi-supervised Weakly-supervised Transfer learning Multi-label classification (DL) ✓ ✗ ✗ ✓

Multi-label classification (CE) ✓ ✗ ✗ ✓

Binary Classification ✓ ✗ ✓ ✗

Self-supervised Transfer learning Local Contrastive ✓ ✓ ✗ ✗

Global Contrastive ✓ ✓ ✗ ✗

Context Restoration ✓ ✓ ✗ ✗

Supervised No transfer Learning U-Net 2D Mixed + ICM ✓ ✗ ✗ ✗

U-Net 2D Mixed ✓ ✗ ✗ ✗

U-Net 2D ICH-only + ICM ✓ ✗ ✗ ✗

U-Net 2D ICH-only ✓ ✗ ✗ ✗

Each image is corrupted with N = 20 swaps of dimension

hswap×wswap = 20×20 pixels. The network is trained for 50 epochs

with a batch-size of 32 using Adam as optimizer with the default

parameters. The learning rate is set to 0.001 and is exponentially

decayed with a base of 0.96 every epoch. The network’s weights are

regularized with an L2-penalty weight of 1e-6.

2.6.1.2. Global contrastive

The contrastive self-supervised task enables to learning of

salient features by comparing images in a set and has recently

shown promising capabilities in classification (Chen et al., 2020a,c;

He et al., 2020) and anomaly detection (Spahr et al., 2021). An

encoder network ψ is optimized to bring similar images closer

in the embedding space while pushing dissimilar ones away from

one another (Oord et al., 2019). To identify similar and dissimilar

samples without prior knowledge, an image x from a comparison

set of images X is heavily augmented twice by the transformation

TG, resulting in two versions of the same image. The network

encoder ψ(·) yields a representation z of each image. For each

transformed image xi in the comparison set, the network ψ is

trained to identify the corresponding image’s (xj) representation

from the set of 2N − 1 other transformed images {xk}k6=i. It can

be transcribed into the InfoNCE loss that we will call the global

contrastive loss LGlobal for it processes global representation:

LGlobal =

N∑

i=0

−log
exp(sim(zi, zj)/τ )

∑2N
k=1 [k6=i]exp(sim(zi, zk)/τ )

(6)

where zi = ψ(xi), sim(u, v) = u
T
v/‖u‖ ‖v‖ is the cosine similarity

between u and v, and τ is a hyper-parameter called temperature. It

has been demonstrated by Chen et al. (2020a,c), and He et al. (2020)

that a large comparison set as well as a strong augmentation yield
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better learned features for downstream tasks. There are different

approaches to define the comparison set: Chen et al. (2020a) use

the mini-batch as comparison set while He et al. (2020) use a data

bank updated over the training allowing a larger comparison set

without the computational cost of a large mini-batch. Chen et al.

(2020a) further showed that defining ψ(·) = MLP(ψe(·)) as the

encoder to trainedψe(·) yields better performances. The contrastive

optimization was therefore performed with an additional MLP

projection head, but only the features of ψe were transferred

downstream. The features extractor ψe(·) can then be used to

initialize only the encoder part of the segmentation network. The

segmentation model is then trained similarly as in a supervised

setting with labeled data.

We defined ψ(·) as the encoder part of the U-Net followed by a

2-layer MLP (512 → 512 → 128). We defined the transformation

TG as a sequential combination of random translation in range

[−15%, 15%], random rotation in the range [–90◦, 90◦], random

scaling in the range [0.8, 1.2], random horizontal flipping 50%

of the time, randomly adjusting the contrast 50% of the time,

randomly adjusting the brightness 50% of the time, randomly

blurring (Gaussian) 50% of the time, and randomly cropping and

resizing the image. The temperature hyper-parameter is set to τ =

0.1. The network was trained for 50 epochs with a batch-size of 60

using Adam as optimizer with the default parameters. The learning

rate was set to 0.001 and was exponentially decayed with a base of

0.96 every epoch. The network’s weights were regularized with a

L2-penalty weight of 1e-6.

2.6.1.3. Local contrastive

Global contrastive pre-training is designed for learning features

of an encoder only making it well suited for tasks involving only an

encoder structure such as classification. However, in a segmentation

procedure, the network is expected to expand the representation

into a segmentation mask. As a result, in the global contrastive

approach, around half of the network remains randomly initialized

when fine tuning for the segmentation. Chaitanya et al. (2020)

recently proposed an adaptation of the contrastive pre-training

for the segmentation of organs in CT-scans. In their approach,

a contrastive loss was applied locally in the feature map of the

decoding path. The core of the idea is that the decoding feature

maps of two versions of an image should present local similarities:

a region of the feature map should be similar between two versions,

but dissimilar to other regions of the feature map. As a result,

no comparison is made with other images, only local regions are

compared. Formally, for an input image x, two augmented versions

are obtained by applying the transformation TL twice to obtain

x1 and x2. Note that we chose TL to not contain transformations

that would strongly impair the localization of features (such as

horizontal flipping) since the feature localization is the core of the

comparison. In order to compare features that were still of a rather

low level of abstraction, the comparison was performed on the

feature map of an intermediate stage of decoding. As a result, the

network ψ(·) was an encoder followed by a partial decoder. The

feature map of interest was then passed through a convolutional

projection head (series of 1 × 1 convolutions) that have the same

purpose as the MLP head in the global contrastive. Therefore the

network output F1 = ψ(x1) has dimension [H×W×C] in the 2D

case. To compare local features, Nr non-overlapping regions of size

[K×K×C] are randomly extracted from the feature map obtained

for both x1 and x2 (F1 and F2). It yields 2Nr comparison units fij
where i is the index of image version and j is the index of the region.

The local contrastive loss can thus be written as:

LLocal =

Nr∑

i=0

−log
exp(sim(f1i, f2i)/τ )∑2Nr

k=1 [k6=i]exp(sim(f1k, f2k)/τ )
(7)

In their study, Chaitanya et al. (2020) first optimized the

encoder part of ψ using the global contrastive task, then froze

the encoder weight to train only the partial decoding on the local

contrastive task.We adopted the same strategy and used the learned

encoding and decoding features to partially initialize the U-Net and

fine-tune it with the labeled data. Note that skip connections are

conserved in the partial network.

We defined ψ(·) as the encoder part of the U-Net followed

by three decoding blocks and two 1 × 1 convolution with (64 →

128 → 32). We defined the transformation TL as a sequential

combination of random translation in range [−15%, 0.15%],

random rotation in the range [–45◦, 45◦], random scaling in the

range [0.8, 1.2], randomly adjusting the contrast 50% of the time,

randomly adjusting the brightness 50% of the time, randomly

blurring (Gaussian) 50% of the time, and randomly cropping and

resizing the image. The temperature hyper-parameter was set to

τ = 0.1. We extracted Nr = 20 regions of size K × K = 3 × 3

from the feature map to compute the local loss. The network was

initialized with the weights learned with the global contrastive task

(see above) and was then trained for 50 epochs with a batch-size

of 24 using Adam as optimizer with the default parameters. The

learning rate was set to 0.001 and was exponentially decayed with

a base of 0.96 every epoch. The network’s weights were regularized

with a L2-penalty weight of 1e-6.

2.6.2. Weakly-supervised transfer learning
Self-supervised tasks are designed to learn relevant features in

an unsupervised way to implicitly differentiate ICH from healthy

scans. However it can be challenging to encourage the network to

focus specifically on smaller ICH, such as widespread traumatic

SAH. In contrast, in weakly-supervised transfer learning, with

access to weak labels (e.g., classification labels), one can provide

an explicit learning signal to discriminate the hemorrhages from

the rest.

2.6.2.1. Binary classification

Since the RSNA is labeled for hemorrhages presence at a slice

level, convolutional filters of an encoder can be optimized using a

binary classification task as the pretext task (ICH vs. no-ICH). We

define the classifier as the encoder part of the U-Net followed by an

average pooling layer, a 3-layer MLP (512 → 1024 → 256 → 2)

and a softmax layer as final activation. Themodel is then trained for

50 epochs with a batch-size of 64 using Adam as the optimizer with

the default parameters, using the cross-entropy loss. The learning

rate is set to 0.001 and is exponentially decayed with a base of

0.96 every epoch. The network’s weights are regularized with a

L2-penalty weight of 1e-6.
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2.6.2.2. Multi-label classification

The RSNA dataset is not only labeled for the binary

classification task but also for the classification of ICH subtypes

allowing a more complex weakly-supervised pre-training scheme.

Each CT slice may contain one, or several, of the five subtypes of

ICH. Such a classification task is known as multi-label classification

in which the classifier is trained to maximize its sigmoid outputs

response for all non-exclusive positives classes through a class-wise

binary cross-entropy loss or through a Dice loss. In our case, we

chose to use seven different classes: no-ICH, ICH, and the five

ICH types. We decided to include the ICH class to train the model

explicitly in differentiating non-ICH and ICH slices as in the binary

classification task. On top of that, the classification of the five

types should push the models in differentiating the nature of the

hemorrhage and therefore in learning better features. We used a

similar classifier as for the binary classification with seven neurons

as output and a sigmoid layer as final activation. We trained the

model either on a weighted binary cross-entropy (CE) loss where

each possible class is seen as a binary classification task, or on the

Dice loss (DL) where themodel is trained to generate an output that

matches the 7-neurons ground truth. The model was then trained

with the same settings as in the binary classification task.

3. Results

All the segmentation performances are presented in Table 3 for

both datasets as the mean and standard deviation over all volumes

when present in the test fold of the cross-validation. As the dataset

of Hssayeni et al. (2020) contains volumes without ICH we also

report the performances either considering all the 75 volumes or

considering only the volumes with hemorrhages. We make this

distinction to avoid possible bias towardmethods that do not detect

ICH well. Indeed, in a volume without hemorrhage (i.e., without

true positives), the Dice, precision, and recall are either 1.0 or

decay rapidly toward zero with few false positives. As a result,

a method with a low detection rate would see its performance

greatly increased when considering the volume without ICH, but it

would not reflect the hemorrhage detection capability which is the

main objective. The segmentation performances are further visually

presented in Figure 3 through the volume Dice distributions

to better appreciate and compare the true performances. The

distribution is presented over all volumes with ICH but also by ICH

sub-type. The boxplot by sub-type must be read with caution for

two reasons. First, because the number of volumes with a given type

can be low, and second, because a volume may contain more than

one sub-type of ICH. Nonetheless, we decided to present them to

better grasp the models’ capabilities.

The straightforward implementation of the U-Net 2D trained

only with slices containing ICH yields a rather lowmean Dice score

over volumes of the Hssayeni dataset (15.73% on all volumes and

32.64% on ICH volumes). This low Dice can be mainly imputed

to a low precision of the model that tends to detect hemorrhages

everywhere which is not a desired behavior. Subsequently, by

simply using the generated intracranial cavity mask to remove

insignificant predictions outside of the intracranial cavity, the

performances were increased and reached a Dice of 18.51% on all

volumes and 38.31% on ICH volumes. Even with this improvement, T
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FIGURE 3

Segmentation performances overview. The volume Dice for each method is presented through boxplots, either for all volumes with ICH or for the
di�erent ICH-types [Intraparenchymal (IPH), Intraventricular (IVH), Epidural (EDH), Subdural (SDH), and Subarachnoid (SAH)]. Methods are grouped by
color depending on the type of supervision. The further on the right, the more labels are needed. The number of volumes per category is presented
on the lower left corner. The gray line on the boxplot highlights the mean while the black highlights the median. ICM, Intracranial Cavity Mask.

the precision still remained quite low, reflecting a large number

of false positives inside the brain. On the other hand, on our Seq-

CQ500 dataset, a mean volume Dice of 51.74% was obtained with

a better precision. Again, the use of the intracranial cavity mask

further improved the Dice by a few percent.

Interestingly, the simple adaptation of the U-Net 2D training

consisting of adding slices without ICH and assigning them a lower

weight on the loss computation, easily improved the segmentation

capabilities of the U-Net on both datasets by several percent inDice.

The improvement came from a large increase in precision while

conserving a rather similar recall. In this case, the application of

the intracranial cavity mask does not further increase the scores on

both datasets.

The RSNA data was used without the labels in the three

different self-supervised transfer learning experiments: context

restoration, global contrastive, and local contrastive. Each pre-

training scheme improved the downstream segmentation’s Dice.

On the Hssayeni dataset, the mean volume Dice is improved

by 2 to 3% on ICH volume while an increase between 10 and

20% is observed on all volumes. This increase is mostly the

result of an improved precision of the U-Net. In our Seg-CQ500

dataset, the Dice is also improved but in a lessened fashion, and

a Dice of 58.26% is obtained using the global contrastive task.

The two contrastive tasks yielded a large precision but a reduced

recall while the context restoration yielded a better recall but a

reduced precision.

On both datasets the knowledge transferred from weakly-

supervised classification tasks yields higher mean volume Dice

compared to the baselines and the self-supervised tasks. On the

Hssayeni dataset the best Dice is obtained with the multi-label

classification trained on the cross-entropy loss (50.06%), while on

our Seg-CQ500 dataset, the best Dice is obtained with the multi-

label classification trained on the Dice loss (63.23%). This transfer

learning scheme demonstrates a large precision and recall.

Methods are mainly compared on their averaged metrics

over the different volumes. While this provides a general

trend, it does not address the statistical significance of the

observed improvements. To address this, Welch t-tests were

conducted between each pair of methods for each metric and

both datasets. Figure 4 presents the corresponding p-values for

these tests. Regarding recall, the improvement observed between

the different methods and the baselines was not found to

be statistically significant. However, the precision exhibited a

significant improvement with the utilization of semi-supervised

methods on both datasets. Consequently, the Dice coefficient did

not display a significant improvement due to the modest gains

in recall. Nevertheless, a discernible tendency of improvements

can still be observed. Overall, these findings demonstrate that

semi-supervised models have the potential to significantly enhance

precision in the models, while their impact on recall may not be

as pronounced.

4. Discussion

4.1. Benefit of transfer-learning

In the absence of transfer learning, segmentation performances

were improved by simply using the intracranial cavity mask to

reject several false positives. Such an improvement was not seen

in our larger dataset, highlighting the benefit provided by having

more data. Furthermore, presenting the model with more images,
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FIGURE 4

Statistical pairwise comparison of the di�erent methods for both datasets. Each method is compared to the others using a Welch two-sided t-test on
three di�erent metrics: Dice, precision, and recall. The p-value of this test is represented as a heatmap to provide an overview of the statistical
significance.

FIGURE 5

Bottleneck representation learned by the di�erent pre-training tasks (self-supervised or weakly-supervised) on the validation set (n = 5,000). The
large embedding space is first passed through an average pooling layer and the resulting 512-dimensional vector is represented in 2D thanks to a
t-SNE transformation (Maaten and Hinton, 2008). Each sample is colored depending on whether it represents a slice with or without ICH. Below the
main visualization, the same t-SNE is presented for the five ICH types in which orange highlights samples of the given type and gray represents the
absence of the type. EDH, epidural hemorrhage; IPH, intraparenchymal hemorrhage; IVH, intraventricular hemorrhage; SAH, subarachnoid
hemorrhage; SDH, subdural hemorrhage. (A) Context restoration. (B) Global contrastive learning. (C) Binary classification. (D) Multi-label
classification (CE). (E) Multi-label classifcation (DL).

even without the targeted hemorrhage, greatly improved the

performance. We hypothesize that the addition of non-ICH images

in the mini-batch allowed the model to better differentiate the

healthy structures from ICH structures which successfully reduced

the false positives. Noteworthy is that this simple improvement

relies solely on the segmentation dataset itself and does not require

any external data. It is therefore data-efficient. The absence of

improvement using the intracranial cavity mask further highlights
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that this adaptation allows the U-Net to focus implicitly on the

intracranial cavity region.

However, the use of external data in transfer learning

allowed higher segmentation performances. In general, among

the three self-supervised pre-training schemes, the global and

local contrastive tasks appeared to yield better downstream

segmentation on both datasets even though fewer weights were

transferred to the downstream U-Net. This shows the relevance

of the contrastive tasks to learn meaningful features in a self-

supervised way. Moreover, the enhanced performance was larger in

the smaller (Hssayeni et al., 2020) dataset than on ours, suggesting

that with larger datasets the benefit of transfer learning is reduced

and having more data act in a similar fashion.

Nonetheless, in the weakly-supervised transfer learning setting,

the use of the classification labels allowed explicit learning

of what we aimed to learn with the self-supervised: weights

that discriminate hemorrhage slices from the other and thus

features that are tailored for detecting ICH. Consequently, better

performances were obtained using this framework on both datasets

showing that even larger datasets can benefit from transfer learning

when using more explicit pre-training tasks. In this context,

the highest mean volume Dices were thus obtained using the

knowledge transferred from the multi-label classification which is

also the task that requires the most complex labels. This confirms

the ever-existing trade-off between performances and label access.

The performances increased compared to the mixed baseline

solely rely on the weights used to initialize the U-Net. It is

therefore insightful to uncover what those pre-training tasks

have learned. That is why we observe the 512-dimensional

representation (the feature map transferred to the segmentation

model averaged over height and width) of the validation set using

a t-SNE transformation (Maaten and Hinton, 2008), colored by

ICH presence. The t-SNE visualizations are shown on Figure 5.

Note that for a fair comparison, the different models were

trained on the same amount of data and evaluated with similar

validation sets of 5,000 slices. At first glance, the two self-supervised

tasks yield bottleneck representations that look roughly similar:

ICH slices tend to be mapped in the same cluster and are

slightly blended with some healthy slices, while some non-ICH

clusters clearly stick out. Even though the representations look

similar, with the contrastive task, there exists an area containing

exclusively ICH slices whereas it is not the case with the context

restoration task where positive and negative slices are almost

always blended. More precisely, the contrastive task seems to

isolate intraparenchymal and intraventricular hemorrhages (IPH

and IVH) while it is not the case in context restoration. Therefore

the self-supervised contrastive method provides the incentive

to rely on ICH structures to differentiate images. Being able

to rely on those structures highlights the better ability of the

contrastive task to learn salient features. In brief, the contrastive

tasks have learned features that better discriminate ICH slices

from the others. Those better features later transpose in better

segmentation performances compared to the context restoration

task. Note that the context restoration has the advantage of

providing initialized features for the whole U-Net while the

contrastive task can only pre-train an encoder. Consequently,

with less information transferred, the contrastive task enables

better performances.

With the access to classification labels, the representation

learned on the binary classification tasks presents a clean separation

of ICH and non-ICH slices with a blending area containing

challenging cases. As a result, the features learned in this weakly-

supervised way are tailored specifically for ICH and naturally lead

to better segmentation performances especially in terms of recall.

Furthermore, based on the representation by ICH type on Figure 5

it again appears that IPH and IVH are the two types that are

well pushed away from healthy slices and thus away from the

blending area that characterize challenging cases. Nonetheless, as

shown on the t-SNE representation by ICH type, features learned

on the binary classification tasks are optimized to differentiate

ICH as a whole and the model is not explicitly encouraged to

learn more detailed features about those hemorrhages (i.e., what

differentiate the ICH types). On the other hand, the pre-training

on the multi-label classification task (DL and CE) provides such

an incentive to learn higher-level features as demonstrated by the

t-SNE representations. Indeed, not only the ICH and non-ICH

slices are nicely separated similarly as in the binary classification

case, but the different ICH types also form clusters highlighting

that the model has successfully learned to discriminate them.

The clusters appear to be more separated when using the Dice

loss as an objective. Note that the cluster boundaries are fuzzy

because of the multi-label settings; one sample can contain ICH of

various types.

The subset of our explored methods were considered state-

of-the-art at the time of our experiments. We acknowledge

that they could potentially be outperformed by other self-

supervised methods. Nevertheless, we hope that our results will

encourage further exploration and utilization of this vast array

of methods in the field of intracranial hemorrhage segmentation

and detection.

In brief, the use of unlabeled data through transfer learning

enables great improvement of the segmentation of ICH using

a relatively simple framework. Additionally the benefit of

transfer learning seems to be consistent across the two

datasets explored. We further show that better performances

are reached when using more specific pre-training tasks using

weak labels.

4.2. Benefit of our Seq-CQ500

The use of transfer learning allows an increase of the

segmentation performances on the two segmentation datasets

used in this study highlighting the relevance and robustness

of this approach. However the raw performances obtained on

the two datasets diverge significantly. Indeed, on the Hssayeni

dataset the highest mean volume Dice obtained (only on

ICH volumes) reaches 50.06% while on our Seg-CQ500 the

highest mean volume Dice of 63.23% is reached. Furthermore,

with our Seg-CQ500, the worst mean volume Dice obtained

is 51.74%. Our efforts in comparing datasets highlights the

large discrepancies that can be observed between different

small datasets.

Another example is the discrepancy in Dice between the

subtypes IVH and SDH in Figure 3. Here we can see that SDH has

a much higher Dice for the Hssayeni dataset than the Seq-CQ500
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dataset, while it is the opposite for IVH. This is despite the fact that

the Seq-CQ500 dataset has more examples of the subtypes than the

Hssayeni dataset. The most likely explanation is that the examples

of IVH and SDH differ in heterogeneity and difficulty between

the datasets. This example further highlights that large datasets are

required to cover the full spectrum of hemorrhages. As a result, it

is crucial to use benchmark datasets across studies to clearly gauge

the capabilities between research studies otherwise any comparison

would be meaningless.

As highlighted in Table 1 our Seq-CQ500 dataset contains more

data volumes and more slices compared to the Hssayeni dataset

which may explain the overall better results obtained with Seq-

CQ500. The evaluation of label-efficient approaches is currently

obstructed by insufficient benchmark datasets and even though

the size of the Seq-CQ500 limits its comprehensiveness it is more

versatile than what is currently publicly available. Our dataset not

only contains more labeled scans than the only other publicly

available dataset (Hssayeni et al., 2020) but it also provides scans

with a better inter-slice resolution (41 out of the 51 volumes).

This inter-slice resolution would enable the use of 3D architecture,

which is not explored in this study.

Our manual labeling of the Seq-CQ500 dataset was performed

by radiologists, something that is always combined with a risk

of human errors. The border between ICH and normal brain

parenchyma is often indistinct and there is always the risk that

factors such as fatigue, concentration, and time of day affect the

labeling. Even though this risk is ever present, we were able to

differentiate the ICH findings we came across in the CQ500 dataset

from ICH mimics and expect the risk of misclassification in our

study to be low. We thus believe that our new publicly available

Seq-CQ500 dataset can be used as a relevant benchmark dataset in

the development of ICH segmentation algorithms.

5. Conclusion

In this study, we have demonstrated the relevance of self-

supervised and weakly-supervised transfer learning to improve

segmentation performance. Additionally, our study on ICH

segmentation highlights that the smaller the labeled dataset, the

stronger the benefit of transfer learning, whereas larger datasets

benefit when using more explicit pre-training tasks. We have also

underlined the importance of comparing methods on different

datasets. In addition, we present a new open dataset with

labels for ICH segmentation, Seq-CQ500 (Chilamkurthy et al.,

2018), available as a benchmark for future research in automatic

segmentation of ICH.
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