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Abstract

Although it is generally accepted that geography is a major factor shaping human genetic

differentiation, it is still disputed how much of this differentiation is a result of a simple pro-

cess of isolation-by-distance, and if there are factors generating distinct clusters of genetic

similarity. We address this question using a geographically explicit simulation framework

coupled with an Approximate Bayesian Computation approach. Based on six simple sum-

mary statistics only, we estimated the most probable demographic parameters that shaped

modern human evolution under an isolation by distance scenario, and found these were the

following: an initial population in East Africa spread and grew from 4000 individuals to 5.7

million in about 132 000 years. Subsequent simulations with these estimates followed by

cluster analyses produced results nearly identical to those obtained in real data. Thus, a

simple diffusion model from East Africa explains a large portion of the genetic diversity pat-

terns observed in modern humans. We argue that a model of isolation by distance along the

continental landmasses might be the relevant null model to use when investigating selective

effects in humans and probably many other species.

Introduction

Departing from Africa around 100 kya (thousands year ago), modern humans colonized the

globe, scattering over the continents. This slow migration process created genetic divergence

as populations migrated, splitting along the way, to settle over the landmasses. The history of

humans can be deciphered using genetic differences between populations, reaching further

than anthropological knowledge [1]. With the increasing amount of genetic data, as well as the

advance of theoretical models, historical and prehistorical processes playing a major role in

shaping the observed genetic diversity can be better identified [2–4].

In particular, it has been recognized that geography plays a major role in structuring popu-

lations [5]. The significance of geography as a driver of genetic diversity has already been
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demonstrated in many studies, for example in work based on blood group polymorphism [6],

enzyme polymorphism [7], mitochondrial DNA complete sequences [8–10], and even com-

plete genome sequences [11]. Acting as a barrier to migration, mountains and seas decrease

the connectivity between populations, which correlates with genetic distance [3,12]. This

monotonous relationship between (geographic) distance and diversity, known as cline, is

expected under isolation by distance, in a continuous diffusion model.

However, looking at populations worldwide, genetic patterns show clustering of popula-

tions into major groups (European, Asian, Melanesian, Native Americans and Africans) [12].

Although this continental split suggests the action of specific environmental or cultural forces,

it remains unclear under which conditions these continental clusters emerge.

Hence, two types of patterns arise out of empirical population genetic studies, cline and

cluster, which seems contradictory. Interpretations have flourished around these patterns,

fueling the misplaced debate of human races [13,14].

Favoring a clinal view, some researchers have shown that human genetic variability declines

as one moves further away from East Africa [4,15]. Moreover, it has been observed that there

is a clear correlation (R2 = 0.85) between genetic distances (e.g., FST) and geographic distances

(along probable colonization routes). Although agreeing with this observed global pattern,

studies favoring a cluster view point to discontinuities along the decline of diversity. For these

clusters to appear, serial bottleneck events associated with isolation, must have generated what

one could see as steps in a staircase of genetic diversity [3].

As an attempt to reconcile both perspectives, Serre et al. [2] brought the possibility that the

geographically uneven sampling scheme used in most, if not all, worldwide studies on human

genetics may have generated these clusters, which would merely reflect sampling bias. Rosen-

berg et al. [3] challenged this view taking advantage of an expanded dataset to argue that,

among all other variables to be considered in the detection of clusters, geographic dispersion

of samples has relatively little effect on the final outcome. In such cases, large amount of

genetic data would always allow detecting discontinuities even if the distribution of sampled

populations were completely uniform. Such discontinuities could be small, but still detectable

and biologically relevant. Finally, another study, that focused on the geographical origin of

modern humans, detected similar patterns of clines in FST and genetic diversity, and attributed

the few deviations from these trends as being caused by “admixture or extreme isolation” [16].

Concretely, it remains unclear which underlying genetic and demographic processes could

explain both cline and cluster observed pattern.

This apparent opposition between a clinal and a cluster view of human diversity arises

because current models fails to re-create both patterns. Indeed, those models tend to simplify

the complexity of human demographic history (population growths, migrations) as well as

genetic processes (selection, drift). For example, studies looking for adaptation [17,18] as well

as the association between genotype and phenotype [19] rely strongly on neutral models

(diversity expected from drift and demography, no selection). Typically, some demographic

scenarii create genetic polymorphisms which are indistinguishable from those supposedly left

by selection. The deconvolution of selection and demographic signal is hindered by the lack of

simple demographic model that would reproduce basic patterns of human diversity.

For instance, Hofer et al. [20], looking at four continental human populations, detected an

unexpected large proportion of loci (nearly a third of their database) with strong differences in

allelic frequency. The authors suggested that the observed patterns are better explained by the

combination of demographic and spatial bottlenecks with allele surfing in the front of range

expansion rather than by selective factors [21]. In the allele surfing process, drift takes random

samples of alleles at potentially different frequencies from the source population (i.e. founder

effect), while the combination of range and demographic expansions amplifies this effect on
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the overall population by increasing the contribution of these alleles in the newly colonized

regions. Therefore, to understand the recent genetic evolution of human populations, it is

essential to have a good grasp on the demographic events underlying it. A first step to this end

is to understand the spatial distribution of human genetic diversity and the emergence of

strong discontinuities in empirical studies (i.e. formation of clusters).

To bridge the gaps between theoretical study and the discordance in empirical genetic stud-

ies, we present a simulation-based study.

Here, we investigate the distribution of neutral genetic diversity in modern humans using

spatially explicit simulations to model the demographic diffusion of our species throughout

the globe and to recover the genetic signature left by this process. The simulations are used to

estimate, the demo-genetic parameters best fitting a large microsatellite dataset of published

data [22, 23] using Approximate Bayesian Computation (ABC) [24]. We do so by generating

genetic data under a simple stepping stone model constrained by the shape of the continental

masses. Based on the parameter estimates, we simulate a full dataset of individual genetic

markers. We then compare simulated and empirical data using Principal Component Analysis

(PCA) and analyses with the STRUCTURE software [25]. This permits to assess whether the

proposed model is suitable for further population genetic studies, if it can generate patterns

similar to the one observed in real data (clusters and cline). We then discuss the outcomes of

such a model for the understanding of the processes defining human genetic diversity around

the world and possible applications in the field.

Material and methods

Empirical data

Data from this study represent a subset of the dataset originally made available by Pemberton

et al. [23], Rosenberg et al. [3] and Wang et al. [22]. Since we used a strict mutation model, we

chose 346 microsatellite loci whose length is proportional to the repeated segment length.

These loci represent the ones termed ‘regular’ by Pemberton et al. [23] that are also available

in the Wang et al [22] dataset. The number of populations in the original dataset was 78,

totaling 1484 individuals distributed throughout the world (more details in S1 Fig, S2 Fig and

S1 Table).

Although dense SNP datasets and full genomes are now available, we used a microsatellite

dataset in this study for the following reasons: (i) The microsatellites used here have been

extensively checked and shown to have equally sized repeat units, which is expected if they

evolve under the stepwise mutation model; (ii) they are unlinked and essentially neutral and

(iii) we could only simulate so many loci in a spatially-explicit approach with the currently

available computational power. Note that being multi-allelic markers, microsatellites contain

more information per locus than SNPs [26].

ABC

We estimated demographic and genetic parameters using an Approximate Bayesian Computa-

tion (ABC) framework. In brief, simulated dataset are generated over a large set of demo-

graphic parameters (start of expansion, initial population size, growth, as described in the

following paragraph). The simulation outcome that best match the empirical data are selected

to define a posterior probability distribution for each parameter. Genetic data were generated

using a modified version of quantiNEMO [27] in a two-step process. First, individual-based

forward-in-time simulations produce the demography of the expanding population. Then a

backward in time coalescent-based process simulates the genetic polymorphism. Parameters

were estimated using the ABC package ABCtoolbox [28].
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For the demographic part, all simulations started at one single deme with a varying initial

population size (Ni, uniform prior distribution, from 2 to 5120), in Eastern Africa (9˚1’48”N,

38˚44’24”E)–today’s Ethiopian city of Addis Ababa, the origin of human expansion as esti-

mated by Ray et al. [29] and place of the oldest known modern humans remains [30]. The

prior distribution for the time of the onset of this expansion had a normal distribution with

mean of 155 000 years and standard deviation of 32,000 years (T, generation time of 25 years).

These values were based on the combination of independently estimated dates of 141 455 ± 20

000 [31] and 171 500 ± 25 500 years ago [8]. These dates are more recent than the oldest reli-

ably dated fossil remains in Ethiopia (195 000 ± 5000), which is expected since they most likely

predate the spatial expansion of interest in this study [32]. Population regulation followed a

stochastic logistic model [33] with intrinsic growth rate (r, lognormal prior, mean = 0.5, SD =

0.6) delimited by the deme’s carrying capacity (N, uniform prior of 2–5120 individuals). Indi-

viduals are allowed to move between the four directly neighboring demes in a two-dimen-

sional stepping-stone pattern with a given dispersal rate (m) sampled uniformly between 0 and

0.5. Genetic data were generated using a coalescent approach to simulate genealogies for 20

microsatellite loci (single stepwise mutation model) with a mutation rate μ (uniform prior of

10−5–10−3 mutations/locus/generation) for the same 70 populations and same number of indi-

viduals as the observed sampling scheme (see S2 Table).

Summary statistics

In ABC, summary statistics are used to compare observations with simulations [24,34]. Ideally,

these summaries should be a set of a small number of measures that maximize the information.

Initially, we explored a large set of different summary statistics: number of alleles, allelic rich-

ness [35], Garza-Williamson’s M [36] and gene diversity [37] per sampled population; pairwise

FST [38] and Chord-distances [39] between samples. Considering that many of them did not

bring extra information to our inference scheme, while hindering the estimation [40], we used

two different techniques to reduce the dimensionality of the dataset. We retained a subset

made of the 2,415 pairwise FST between populations and the number of alleles (A) for each of

the 70 demes. These 2,485 summary statistics were then transformed into six “pattern” statis-

tics, summarizing the relationships between FST, number of alleles and geographic distance as

follows: The number of alleles sample was regressed on the geographic distance between the

sampled location and Addis Abeba, and pairwise Fst were regressed against pairwise geo-

graphic distances. From these two regressions, we extracted six pattern statistics, namely the

means, slopes, and the logarithm of the sum of residuals. The calculations of summary and pat-

tern statistics for the observed data were carried out in R and the R-package hierfstat [41].

Finally, these six pattern statistics were used for the estimates of the demo-genetic parameters

and subsequent validations. We also used partial least squares (PLS) to reduce the original

2,485 summary statistics to a small number of components [42]. This technique gave very sim-

ilar (but no better) results for the validations and a few parameters had slightly different esti-

mated values (S4 Fig). In the main text, we only report the results obtained with the six pattern

statistics.

Estimates

The six simulations parameters (Ni, μ, m, N, r, T) were estimated based on a comparison of the

simulated and the observed summary statistics and a subsequent estimation step. The compar-

ison of the summary statistics was obtained by assessing the Euclidean distance between simu-

lations and the statistics from the empirical data, which can be used to rank the simulations

from closest to most distant from the observations. Here, we retained the 5,000 simulations
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with smallest Euclidean distances from the observations. This subset of simulations was then

used to estimate the parameter values using a weighted generalized linear model (GLM) [43]

of the six pattern statistics with the ABCtoolbox software [29].

Validation. In order to assess the quality of our estimation process, we perform a standard

ABC validation. Hence, we used pseudo-observed values taken from the simulations. We

quantify how well these values could be recovered when estimated through our ABC pipeline

[44]. This was done for 1000 different pseudo-observations for each of the six investigated

parameters. We calculated then the correlation (R2) for the regression between pseudo-

observed and estimated values, the slope of this regression, the standardized root mean

squared error of the mode (SRMSE) and the proportion of estimates for which the 95% higher

posterior density interval included the true value.

Full-dataset simulations

Using these estimated parameters, we generate new simulated samples with 100 loci per indi-

vidual, with quantiNEMO. To investigate the effect of our estimated parameters, we ran three

sets of 100 simulations each whose parameter values were sampled from the (i) prior distribu-

tion of the estimation step, (ii) posterior distribution (95%HPD) of the estimation step or (iii)

taken directly from the point estimates (mode values of the posteriors) of the estimation step.

Using the output of these simulations, we investigated how well these simulations could repro-

duce analyses carried out on the real data set. To check for consistency, the first comparison

was based on the same six pattern statistics used for the estimations (i.e. mean, slope and sum

of residuals for number of alleles and pairwise FST). A second comparison was based on the

first two axes of a principal component analysis (PCA) computed on the individual allele fre-

quencies in each sampled population. Since the sign of the coordinates along PCA components

can differ between replicates, we compared the different sets of simulations by means of the

squared correlation between observed and simulated PCA results. Each axis was considered

separately. Thus, for each simulation, we estimated an R2 representing the correlation between

simulated and observed populations coordinates on the PCA axes. These R2 values were com-

pared across the three different sets of simulations (Prior, 95%HPD and Mode).

Finally, we ran a clustering analysis using STRUCTURE v2.3.4 [25] on the point estimate

simulated set. Each simulation was analyzed for varying K (the number of clusters) between 1

and 7. Each STRUCTURE analysis was run for 250 000 iterations, discarding the first 50 000 as

burn-in. To assess the accuracy of our model, we ran STRUCTURE on the empirical data, but

for these analyses we used the whole set of 346 microsatellite loci and ran 25 replicates for each

K. We processed the STRUCTURE outputs with CLUMPP [45] in order to align the different

replicates to compare the simulations data with the observations. We also carried out the esti-

mation of the number of groups (K) best explaining the variation present in simulations and

observations following Evanno et al. [46]. The ΔK was estimated based on 25 replicates for

each STRUCTURE run.

Results

Parameter estimates and validation

We ran in total 1,183,831 simulations based on prior distributions; 974,934 (82.4%) success-

fully colonized all the sampled patches and were therefore used in the subsequent analyses. We

obtained posterior estimates for all six demo-genetic parameters, which are presented in

Table 1 (point estimates; for their complete distributions, see S3 Fig). The inferred distribution

of each parameter presents a clear unique peak, as expected under a good estimation. Briefly,

we estimate a first expansion 132 kya with an initial population size close to 4,000 individuals,
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expanding with a growth rate of 0.149 and a migration rate of 0.041. The mutation rate μ is

estimated at 2.6x10-4 mutation/site/generations.

To assess the accuracy of these inferred parameters, we used a validation procedure [28]

based on 1000 independent simulations. The mutation rate (μ) estimation is satisfactory since

we observed a strong correlation between pseudo-observations and estimations (R2 = 0.877)

for which the slope was nearly 1 (slope = 0.908), and the error rate low (SRMSE = 0.099). The

proportion of the estimates that included the pseudo-observed value within their 95%HPD

interval was 0.977, suggesting that our posteriors are slightly conservative. Good inference was

also achieved for migration rate (m), current population size (N) and initial population size

(Ni) for which the R2 values were about 0.5 and the slopes above 0.6. We had rather poor esti-

mations for time of the onset (T) and population growth rate (r) where R2 values were below

0.3 (Table 1).

Full-dataset simulations

The posterior estimates above were then used in further simulations to create three sets of sim-

ulated genetic markers (100 simulated microsatellite loci), mimicking the empirical sampling

scheme. These additional simulations were carried-out by randomly sampling parameter val-

ues from either (i) the prior posterior, (ii) the truncated posterior (at the 95%HPD level) distri-

butions or (iii) the point estimates.

As these parameters were estimated using basic genetic polymorphism summary statistics,

it is essential to check whether such simple expansion can produce the empirical cline and

clustering patterns.

We first verified that our simulations were able to replicate the clinal pattern observed in

the original genetic data. Fig 1A shows the empirical cline with a reduction of genetic diversity

while increasing geographic distance, while Fig 1B shows in comparison the simulated cline

using point estimates parameters. In both cases, the general pattern is the same: a steady reduc-

tion of diversity for populations as one moves away from Addis Ababa, and a clear-cut increase

of genetic differentiation with geographic distance.

The comparison of the three simulation sets and the empirical cline emphasizes the power

of the ABC inference. Indeed, as expected, parameters sampled from posterior distribution

produce patterns closer to the empirical dataset than the prior distribution. The point esti-

mates produce patterns close, on average, to the posterior distribution, with less variation

around the true value (Fig 2 and S5 Fig). Finally the cline produced by the set of point estimate

simulations is very close to the empirical cline.

Next, we investigated whether the simulated genetic data could reproduce the clustering

patterns observed in the Principal Component Analysis (PCA). In the empirical dataset, one

Table 1. Accuracy table and estimates of the six variable parameters inferred by the ABC framework. Point estimate corresponds to the mode of the posterior distri-

bution, while HPD95% interval represents the parameter values comprised within the 95% higher posterior density interval. R2 stands for the coefficient of determination

of pseudo-observed on estimated values; SRMSE is the root mean squared error of the mode, standardized between 0 and 1; Prop. HPD95% stands for the proportion of

tests for which 95% higher posterior density intervals include the true value. All rates are per generation (25 years).

T (years) Ni (ind.) N (ind.) μ r m

Point estimate 132 250 3952 5 725 656 2.6x10-4 0.149 0.041

HPD95% interval 60 850–203 900 920–5120 35 658–20 905 776 9.3x10-5–4.4x10-4 0.036–0.679 0–0.177

R2 0.235 0.399 0.431 0.877 0.286 0.57

SRMSE 0.132 0.233 0.227 0.099 0.108 0.187

Slope 0.248 0.536 0.602 0.908 0.352 0.682

Prop. HPD95% 0.993 0.956 0.981 0.977 0.983 0.979

https://doi.org/10.1371/journal.pone.0192460.t001
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observes clear divisions between continental groups (Fig 3A), as previously demonstrated else-

where [9,47]. The PCA results based on our simulations returned a pattern very similar to that

observed (Fig 3A). The convergence of the estimation of parameters, from prior, to 95% HPD,

to point estimates, can also be assessed looking at the PCA. The correlation between observa-

tion and simulations in their principal components (PC1 and PC2) are presented in Fig 3B.

The data simulated under the 3 scenarios generated patterns for the first PCA component

extremely similar to what is observed in the real data set. For the second PCA component, the

Fig 1. Comparison of the patterns of isolation by distance generated with the empirical and simulated data. In A,

the patterns obtained for the observed data; in B, the result of one of the simulations based on the point estimates. Each

point represents a population (top) or a pairwise population comparison (bottom); the dashed lines represent the

linear regressions of these points (whose R2 values are informed).

https://doi.org/10.1371/journal.pone.0192460.g001

Fig 2. Distribution of estimated statistics from three simulated dataset and empirical observation (horizontal

gray line). Within each plot, we present the different sources for the simulations that generated the distributions:

“Prior” are simulations sampled randomly from the whole prior; “95%HPD” are simulations run based on the 95%

higher posterior density estimates for all parameters; and “Mode” represent simulations based on the point estimates

for all parameters.

https://doi.org/10.1371/journal.pone.0192460.g002

A simple model of human genetic diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0192460 February 21, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0192460.g001
https://doi.org/10.1371/journal.pone.0192460.g002
https://doi.org/10.1371/journal.pone.0192460


similarity to the observed pattern was small for dataset generated under the prior parameters

distribution, and increased for data simulated with the posterior parameters distribution and

point estimates.

Finally, we also looked at the partitioning pattern generated by the software STRUCTURE.

Simulations and empirical data gave the same estimates of the most likely number of groups

(K) within the worldwide sample either using the highest likelihood of the data as the criteria

for defining K (which led to K = 7 in both observations and simulations), or using ΔK [46],

which favored K = 2 both for observations and simulations (S7 Fig). The similarities also per-

sist in the way the different individual genomes are allocated to the different clusters resulting

from this analysis. They generated, for both empirical and simulated data, remarkably similar

results for K = 2 to K = 4 (Fig 4). For K = 2, we observe a cluster of Africans and a cluster of

Americans whereas all other individuals are admixed of these groups to different extent; the

proportion of admixture obtained for the different individuals in the simulations matches

almost perfectly with that seen in the observation. For K = 3, Eurasian populations emerge

from the previous African cluster with a few differences between simulations and observation:

In the observations, Middle-Easterners and Europeans group with Africans; whereas in the

simulations, they are admixed between the African and East Asian clusters. For K = 4, the sub-

Saharan samples split from the rest of the world creating a cluster unique to Africans. While

for the empirical observation this division is very clear, the results based on the simulated data

show a more gradual pattern with Middle-Eastern and European mixed-ancestry samples.

Beyond K = 4, the patterns observed between simulations and observations diverge: while sin-

gle populations start to emerge as separate clusters in the observation; higher values of K lead

to the appearance of admixed individuals and populations within the already existing groups,

creating no new clusters (S6 Fig). Interestingly, in both simulations and observation, the

grouping pattern is relatively consistent with the continental partitioning of the populations.

Discussion

We have shown using approximate Bayesian computation that a simple model of expansion

from East Africa using the world-wide landmasses leads to meaningful estimates of the past

demography of our species. Furthermore, when genetic data sets generated according to this

past demography are analysed with Principal component analyses or the STRUCTURE

Fig 3. PCA results in real observation and simulations. A, Comparison of PCA applied to the empirical data (left) and one selected simulation (right). The

first (PC 1) and second (PC 2) principal components are represented here, where each point represents one of the analyzed populations, grouped by

continents. B, Boxplots of the correlation values between the first two principal components in observations and simulations based on the prior distribution

(“Prior”), 95% higher posterior density distribution (“95%HPD”), and on the point estimates (“Mode”).

https://doi.org/10.1371/journal.pone.0192460.g003
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program, we obtain results that are extremely similar to those observed in the original human

microsatellite dataset. We discuss these findings below.

Despite the increasing use of genetic markers in anthropological reconstruction, it remains

unclear how to model the observed patterns of genetic diversity around the world, largely

because of the complexity of evolutionary processes of the human species. Specifically, the

apparent opposition between cline and clustering patterns, as observed in empirical studies,

remains a challenge as most existing model fail to reproduce both patterns. Owing to the

Fig 4. Comparison between the STRUCTURE results obtained for observed (OBS) and simulated (SIM) data.

Horizontal bars represent the 70 populations as used in the simulations and the different shades of gray code for the

proportion of each inferred ancestry group (K from 2 to 4).

https://doi.org/10.1371/journal.pone.0192460.g004
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release of new fast simulation tools, such as quantiNEMO, and the rising availability of global

datasets, we reconstruct a simple expansion scenario that reproduces the clustering effect of

modern populations, using large samples of published microsatellites data.

Based on empirical data of 346 microsatellites in 1,484 individuals from 70 populations, this

study has inferred six parameters (T, Ni, N, μ, r, m) that defines a worldwide expansion model

using the computationally intensive ABC framework. Despite the simplicity of the model, the

inference works remarkably well. The estimated values are similar to other studies. The muta-

tion rate (μ = 2.6 10−4 mut/allele/gen) matches recent estimates [48]. The growth rate

(r = 0.149) is close to rates described elsewhere when applying logistic growth to humans [29].

We inferred a start of expansion from Addis Ababa around 132 kya, close to previous estimates

[31]. Moreover, the validation, based on the estimation of known parameters using simulated

pseudo-observation, confirms the accuracy of the inferred values.

The inferred demic expansion model along landmasses generates genetic patterns very sim-

ilar to those observed in the real dataset. Similarly, to other studies [9], these simulations con-

firm the signatures of isolation-by-distance and constant decrease of genetic diversity with

increasing distances from Addis Ababa. Strikingly, these similarities are robust towards the

inferred parameters, as tested with three simulation sets (parameters issued from prior distri-

bution, posterior distribution or point estimates).

To investigate clustering patterns, PCA and STRUCTURE analyses were performed. The

PCA on the simulated dataset shows a strong correlation with both the first and second princi-

pal components calculated from the observation. The STRUCTURE analysis presents closely

related results between real data and simulations: the number of groups which better explains

the diversity in the samples is the same for both. The population division for up to four clusters

remains very similar. Hence, this study shows the possibility to reproduce both observed isola-

tion by distance and continental clusters under a unifying model of simple expansion.

To understand the underlying processes reproducing this pattern, it is interesting to have a

close look at the partitioning analyses. PCA has long been used in human population genetics

[49], it relates genetic variation to the geographic distribution of populations [50] and individ-

uals [51]. Simulated and empirical data are similarly scattered on the two first principal com-

ponents. The coordinates of the samples along the first axis (Fig 3B) show a very high

correlation with the observed coordinates, even for simulations based on the prior, uninforma-

tive, distribution of the parameters. This indicates that the first component of the PCA (captur-

ing the largest fraction of the genetic variance) probably relates to the origin of the expansion

(which occurs in the same place, East Africa, for all simulations) and demic diffusion. The sec-

ond principal component seems to be more sensitive to the choice of the parameter values, the

correlation between observation and simulations increasing when the parameters used for the

simulations get closer to the estimation.

Although admixture-based analyses are not completely independent from PCA [52], the

most surprising result obtained in this study comes from the population clustering analysis in

STRUCTURE. Indeed, no previous study has shown the appearance of clusters from a simple

diffusion process such as that we used in our simulations. In fact, based on ΔK, the estimation

of the best number of groups, allowing for admixed individuals, is consistent between simu-

lated and empirical data with K = 2 which suggests weak support to separate genetic groups. In

both cases, the assignment of each populations to the clusters is extremely similar, the model is

therefore able to reproduce the overall genetic patterns.

However, global population genetic studies have been–regardless of the previous finding–

consistently analyzed as if continental clusters were relevant [3]. Hence, we overlook the lack

of significance of multiple partitioning on worldwide samples to analyze the data with K>2;

the apparition of continental clustering is investigated in the simulations. The American
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populations are the first to stand out; second, a separation between European and African ver-

sus East Asian; and then the Africans alone stand out from the rest. There are a few exceptions

though. The Mozabite population, from North Africa, tends to group with the other African

populations in the PCA results for the simulations; while, in the observed data, they group

with the Middle-Eastern and European populations. It is possible that more recent events of

contact through the Strait of Gibraltar [53] or the Fertile Crescent, which are not captured by

our simulations, contributed to this discrepancy. Another explanation could be the absence of

the potentially important barrier of the Sahara Desert in the simulations, which may have

played an important role in isolating North Africans from sub-Saharan populations. Although

previous studies have modeled such environmental heterogeneity [29] it is extremely difficult

to model environmental changes, like the expansion of Sahara, through the last 100,000 years.

Moreover, the simulated European/Middle-Eastern populations are admixed unlike the

empirical data, which may be caused by the absence of the Sahara as well. Other studies have

shown that the peopling of Europe, the Fertile Crescent and North Africa is more complex

than a simple expansion [1,54]. Despite these few (albeit important) discrepancies, this very

basic model reproduces the global worldwide patterns remarkably well.

A potential bias in this study appears with the use of microsatellite loci which have a higher

polymorphism than the more popular SNP data which are becoming standard. However,

unlike SNP that are affected by ascertainment bias, evolutionary models of microsatellite data

are better known. Moreover, the amount information captured with a limited number of loci,

constraining the speed of simulations, is higher in microsatellites. Hence to grasp any bias

introduced by the type of markers we provide a comparison of previous studies across these

two kinds of markers. For the PCA results, studies on SNP worldwide datasets [47,51,55]

return results very similar those obtained here both for the empirical and simulated data (Fig

3A). The first component correlates with the distance from the start of expansion, with Ameri-

cas being the furthest. The second axis correlates with a north south geographical separation.

For the STRUCTURE analyses, the clustering pattern remains similar across markers. Indeed,

Rosenberg et al. [3] using STRUCTURE on microsatellite data have found results very similar

to those obtained with SNPs in Li et al. [9], which are, in turn, very similar to our results in Fig

4. Therefore, for capturing the overall human genetic distribution, the SNP data may increase

the resolution of the results, but does not seem to affect the general patterns that are replicated

in the model we propose here.

The results obtained here shed new light on the “cline vs. clusters” controversy. The fact

that a simple model of two-dimensional dispersion on a homogeneous world succeeds in pro-

ducing results so similar to the real data in many different analyses is strong support for an

overall clinal view of the distribution of human genetic diversity over the globe. Even though

the simulations used here involve some sophistication, the underlying model is simple and can

easily be considered in further population genetics studies: isolation-by-distance and continu-

ous decline of diversity as we move away from East Africa. These two patterns are easily

described by two linear regressions after all.

The clinal model for the global distribution of human diversity encounters support in other

biological and cultural systems. Skull morphological diversity, for example, shows a clear and

steady decline within population diversity as the distance from Africa increases and is in per-

fect agreement with what is found in DNA [56]. Language, a cultural feature, also shows a sim-

ilar pattern. Distance from Africa, alone, explains 30% of the reduction in phonemic diversity

as measured in 504 languages worldwide [57].

Working against the current trend of always more intricate models that capture a maxi-

mum of variation in the data, but failing to reproduce the global genetic patterns of cline and

clusters, we present here a very simple expansion scheme over continental landmasses.
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Although additional spatial heterogeneity could help to improve this basic neutral model (e.g.

by accounting for the Sahara), the simple one used here proved to be very useful for explaining

the main patterns of human genetic variation. Such a model may represent a good choice for

establishing a neutral background in future studies looking at more complex questions in

modern human evolution such as the detection of selective events [58–60]. Specifically, its sim-

plicity permits large scale fast simulations necessary for quantitative analysis of genetic mark-

ers. Indeed, the more specific models of local individual movement are not able to produce the

vast amount of simulations needed for statistical analysis [61]. Moreover, with added complex-

ity comes a vast set of added parameters (for example, local migration, time of demographic

events, spatial heterogeneity). Although these may seem more biologically significant, these

models tend to over-fit the data, as the information contained in the genetic markers may not

be sufficient to infer a large set of parameters. A bigger number of inferred parameters also

decreases the power of ABC while increasing exponentially the computation time. The good fit

of this very simple model over the dataset argues for using expansion-diffusion models or

more simply isolation by distance, instead of discrete populations, as a fundamental model of

human population genetics.

Supporting information

S1 Fig. Schematic representation of the pipeline used in the study. ABC framework shows

the basic structure of an ABC analysis focused in parameter estimation. Full-dataset simula-

tions represents the following step in which simulations were run based on the estimations

above and for which complete allele frequency data was retained. In Pattern comparison, fur-

ther analyses were run in order to compare simulations and observations in way they produce

results for IBD regression analysis, PCA and STRUCTURE.

(TIF)

S2 Fig. Distribution of the populations used in this study (red crosses). The origin of the

expansion of humans in East Africa is marked as the green dot. Map following Fuller’s Dymax-

ion projection, the same applied to the maps used in the simulations. The modeled map con-

tained 20,384 square demes (5,094 on land), each with an approximate area of 160 x 160 km2.

The pairwise geographic distances between populations were calculated with the R package

gdistance correcting for the Earth curvature and considering only on-land pathways–and

between A and geographic distance from Addis Ababa (the origin of the expansion).

(TIF)

S3 Fig. ABC-GLM estimation of the model parameters. Gray lines represent the prior distri-

butions; black lines, the posteriors; the gray dashed vertical lines, the modes for the posteriors

(point estimates). The estimations were carried out on 5,000 out of ~1 million simulations

which were the closest to the observations in six pattern statistics (see material and methods

for details).

(TIF)

S4 Fig. ABC-GLM estimation of the model parameters using five PLS components calcu-

lated from the whole set of statistics retaining 1000 simulations. Gray lines represent the

realized priors; blue dashed lines represent the distribution of the parameter values in the

retained simulations; red lines represent the posterior distributions. The PLS calculation was

conducted on a set of 2,485 statistics comprising number of alleles (A) and gene diversity (Hs)

per patch and all pairwise FST comparisons between patches. CAR_CAPA stands for current

population size; INI_SIZE, initial population size; MUT_RATE, mutation rate; GRW_RATE,

population growth rate; EXP_TIME, time of onset of the expansion; MIG_RATE, migration
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rate. Below each panel, the values for the mode (point estimates) are given for every parameter.

(TIF)

S5 Fig. Comparison of patterns generated with gene diversity (heterozygosity, hs). A, com-

parison of the patterns generated for the cline in heterozigosity between observation and a

simulation based on the point estimates. B, convergence of different pattern statistics related to

the heterozigosity cline across different samplings from prior or posterior.

(TIF)

S6 Fig. Comparison between the STRUCTURE results obtained for observed (OBS) and

simulated (SIM) data. Vertical bars represent the 70 populations as used in the simulations

and the colors code for the proportion of each inferred ancestry group (K = 5, 6 and 7). One

can observe that particular populations become highlighted in the observations (Suruı́ with

K = 5, Oceanians with K = 6); while, in the simulations, many populations begin to show

admixed compositions.

(TIF)

S7 Fig. Estimates of the most likely number of groups within the worldwide sample of pop-

ulations. The figure contains the results obtained both for observations (Observed) and simu-

lations (Simulated). L(K) is the direct assessment of likelihood for each number of groups.

Delta-K is the estimate based on Evanno et al.’s 2005 approach.

(TIF)

S1 Table. Population samples as they were analyzed in this study. Populations marked with

“a” were merged together due to their geographical proximity (less than 160km apart) and

were considered to inhabit the same deme in the simulations and also in the analyses applied

to the read dataset. Populations marked with “b” were removed from the pattern statistics cal-

culations: They were either known exceptions to the general patterns found in the continent

(Aché), or were sampled in the vicinity of other populations, on the edges of their original dis-

tributions. For these, we kept the populations with the larger sample sizes and these were the

Karitiana (as opposed to the Suruı́) and Guarani (as opposed to the Kaingang).

(PDF)

S2 Table. Prior distributions and values of the parameters explored in the ABC analysis.

(PDF)
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2. Serre D, Pääbo S. Evidence for gradients of human genetic diversity within and among continents.

Genome Res. 2004; 14: 1679–1685. https://doi.org/10.1101/gr.2529604 PMID: 15342553

3. Rosenberg N a., Mahajan S, Ramachandran S, Zhao C, Pritchard JK, Feldman MW. Clines, clusters,

and the effect of study design on the inference of human population structure. PLoS Genet. 2005; 1:

660–671.

4. Handley LJL, Manica A, Goudet J, Balloux F. Going the distance: human population genetics in a clinal

world. Trends Genet. 2007; 23: 432–439. https://doi.org/10.1016/j.tig.2007.07.002 PMID: 17655965

5. Cavalli-Sforza LL. The history and geography of human genes. Princeton University Press; 1994.

6. Cavalli-Sforza LL, Edwards AWF. Analysis of human evolution. Genet Today. 1964; 3: 923933.

7. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals.

Genetics. 1978; 89: 583–590. PMID: 17248844

8. Ingman M, Kaessmann H, Paabo S, Gyllensten U. Mitochondrial genome variation and the origin of

modern humans. Nature. 2000; 408: 708–713. https://doi.org/10.1038/35047064 PMID: 11130070

9. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human rela-

tionships inferred from genome-wide patterns of variation. Science (80-). 2008; 319: 1100–1104.

10. Auton A, Bryc K, Boyko AR, Lohmueller KE, Novembre J, Reynolds A, et al. Global distribution of geno-

mic diversity underscores rich complex history of continental human populations. Genome Res. 2009;

19: 795–803. https://doi.org/10.1101/gr.088898.108 PMID: 19218534

11. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale

sequencing. Nature. 2010; 467: 1061–1073. https://doi.org/10.1038/nature09534 PMID: 20981092

12. Rosenberg N a Pritchard JK, Weber JL Cann HM, Kidd KK, Zhivotovsky L a, et al. Genetic structure of

human populations. Science (80-). 2002; 298: 2381–2385.

13. Shiao JL, Bode T, Beyer A, Selvig D. The genomic challenge to the social construction of race. Sociol

Theory. 2012; 30: 67–88.

14. Fujimura JH, Bolnick DA, Rajagopalan R, Kaufman JS, Lewontin RC, Duster T, et al. Clines without

classes: how to make sense of human variation. Social Theory. 2014; 32: 208–227. D

15. Prugnolle F, Manica A, Balloux F. Geography predicts neutral diversity of human populations. Curr Biol.

2005; 15: R159–160. https://doi.org/10.1016/j.cub.2005.02.038 PMID: 15753023

16. Ramachandran S, Deshpande O, Roseman CC, Rosenberg N a, Feldman MW, Cavalli-Sforza LL. Sup-

port from the relationship of genetic and geographic distance in human populations for a serial founder

effect originating in Africa. Proc Natl Acad Sci. 2005; 102: 15942–15947. https://doi.org/10.1073/pnas.

0507611102 PMID: 16243969

17. Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci under-

lying local adaptation. Genetics. 2010; 185: 1411–1423. https://doi.org/10.1534/genetics.110.114819

PMID: 20516501

18. Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, et al. Signals of recent positive selec-

tion in a worldwide sample of human populations. Genome Res. 2009; 19: 826–837. https://doi.org/10.

1101/gr.087577.108 PMID: 19307593

19. Andersen KG, Shylakhter I, Tabrizi S, Grossman SR, Happi CT, Sabeti PC. Genome-wide scans pro-

vide evidence for positive selection of genes implicated in Lassa fever. Philos Trans R Soc B. 2012;

367: 868–877.

20. Hofer T, Ray N, Wegmann D, Excoffier L. Large allele frequency differences between human continen-

tal groups are more likely to have occurred by drift during range expansions than by selection. Ann Hum

Genet. 2009; 73: 95–108. https://doi.org/10.1111/j.1469-1809.2008.00489.x PMID: 19040659

A simple model of human genetic diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0192460 February 21, 2018 14 / 16

https://doi.org/10.1016/j.tig.2014.07.007
http://www.ncbi.nlm.nih.gov/pubmed/25168683
https://doi.org/10.1101/gr.2529604
http://www.ncbi.nlm.nih.gov/pubmed/15342553
https://doi.org/10.1016/j.tig.2007.07.002
http://www.ncbi.nlm.nih.gov/pubmed/17655965
http://www.ncbi.nlm.nih.gov/pubmed/17248844
https://doi.org/10.1038/35047064
http://www.ncbi.nlm.nih.gov/pubmed/11130070
https://doi.org/10.1101/gr.088898.108
http://www.ncbi.nlm.nih.gov/pubmed/19218534
https://doi.org/10.1038/nature09534
http://www.ncbi.nlm.nih.gov/pubmed/20981092
https://doi.org/10.1016/j.cub.2005.02.038
http://www.ncbi.nlm.nih.gov/pubmed/15753023
https://doi.org/10.1073/pnas.0507611102
https://doi.org/10.1073/pnas.0507611102
http://www.ncbi.nlm.nih.gov/pubmed/16243969
https://doi.org/10.1534/genetics.110.114819
http://www.ncbi.nlm.nih.gov/pubmed/20516501
https://doi.org/10.1101/gr.087577.108
https://doi.org/10.1101/gr.087577.108
http://www.ncbi.nlm.nih.gov/pubmed/19307593
https://doi.org/10.1111/j.1469-1809.2008.00489.x
http://www.ncbi.nlm.nih.gov/pubmed/19040659
https://doi.org/10.1371/journal.pone.0192460


21. Klopfstein S, Currat M, Excoffier L. The fate of mutations surfing on the wave of a range expansion. Mol

Biol Evol. 2006; 23: 482–490. https://doi.org/10.1093/molbev/msj057 PMID: 16280540

22. Wang S, Lewis CM, Jakobsson M, Ramachandran S, Ray N, Bedoya G, et al. Genetic variation and

population structure in Native Americans. PLoS Genet. 2007; 3: 2049–2067.

23. Pemberton TJ, Sandefur CI, Jakobsson M, Rosenberg N a. Sequence determinants of human microsat-

ellite variability. BMC Genomics. 2009; 10: 612–631. https://doi.org/10.1186/1471-2164-10-612 PMID:

20015383

24. Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian Computation in population genetics.

Genetics. 2002; 162: 2025–2035. PMID: 12524368

25. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype

data. Genetics. 2000; 155: 945–959. PMID: 10835412

26. Schlötterer C. The evolution of molecular markers—just a matter of fashion? Nat Rev Genet. 2004; 5:

63–69. https://doi.org/10.1038/nrg1249 PMID: 14666112

27. Neuenschwander S, Hospital F, Guillaume F, Goudet J. quantiNEMO: an individual-based program to

simulate quantitative traits with explicit genetic architecture in a dynamic metapopulation. Bioinformat-

ics. 2008; 24: 1552–1553. https://doi.org/10.1093/bioinformatics/btn219 PMID: 18450810

28. Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L. ABCtoolbox: a versatile toolkit for

approximate Bayesian computations. BMC Bioinformatics. 2010; 11: 116–123. https://doi.org/10.1186/

1471-2105-11-116 PMID: 20202215

29. Ray N, Currat M, Berthier P, Excoffier L. Recovering the geographic origin of early modern humans by

realistic and spatially explicit simulations. Genome Res. 2005; 15: 1161–1167. https://doi.org/10.1101/

gr.3708505 PMID: 16077015

30. Clark JD, Beyene Y, WoldeGrabriel G, Hart WK, Renne PR, Gilbert H, et al. Stratigraphic, chronological

and behavioral contexts of Pleistocene Homo sapiens from Middle Awash, Ethipia. Nature. 2003; 423:

747–752. https://doi.org/10.1038/nature01670 PMID: 12802333

31. Fagundes NJ, Ray N, Beaumont M, Neuenschwander S, Salzano FM, Bonatto SL, et al. Statistical eval-

uation of alternative models of human evolution. Proc Natl Acad Sci. 2007; 104: 17614–17619. https://

doi.org/10.1073/pnas.0708280104 PMID: 17978179

32. McDougall I, Brown FH, Fleagle JG. Stratigraphic placement and age of modern humans from Kibish,

Ethiopia. Nature. 2005; 433: 733–736. https://doi.org/10.1038/nature03258 PMID: 15716951

33. Beverton RJH, Holt SJ. On the dynamics of exploited fish populations. Springer Science & Business

Media; 2012.

34. Beaumont MA. Approximate Bayesian Computation in evolution and ecology. Annu Rev Ecol Evol Syst.

2010; 41: 379–406.

35. El Mousadik A, Petit RJ. High level of genetic differentiation for allelic richness among populations of

the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet. Springer; 1996;

92: 832–839. https://doi.org/10.1007/BF00221895 PMID: 24166548

36. Garza JC, Williamson EG. Detection of reduction in population size using data from microsatellite loci.

Mol Ecol. 2001; 10: 305–318. PMID: 11298947

37. Nei M, Chesser RK. Estimation of fixation indices and gene diversities. Ann Hum Genet; 1983; 47: 253–

259. PMID: 6614868

38. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution (N

Y). 1984; 38: 1358–1370.

39. Nei M. Molecular evolutionary genetics. Columbia university press; 1987

40. Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C. Approximate Bayesian Com-

putation. PLoS Comput Biol. 2013; 9: e1002803. https://doi.org/10.1371/journal.pcbi.1002803 PMID:

23341757

41. Goudet J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes.

2005; 5: 184–186.

42. Wegmann D, Leuenberger C, Excoffier L. Efficient approximate Bayesian computation coupled with

Markov chain Monte Carlo without likelihood. Genetics. 2009; 182: 1207–1218. https://doi.org/10.1534/

genetics.109.102509 PMID: 19506307

43. Leuenberger C, Wegmann D. Bayesian computation and model selection without likelihoods. Genetics.

2010; 184: 243–252. https://doi.org/10.1534/genetics.109.109058 PMID: 19786619

44. Neuenschwander S, Largiadèr CR, Ray N, Currat M, Vonlanthen P, Excoffier L. Colonization history of

the Swiss Rhine basin by the bullhead (Cottus gobio): inference under a Bayesian spatially explicit

framework. Mol Ecol. 2008; 17: 757–772 https://doi.org/10.1111/j.1365-294X.2007.03621.x PMID:

18194169

A simple model of human genetic diversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0192460 February 21, 2018 15 / 16

https://doi.org/10.1093/molbev/msj057
http://www.ncbi.nlm.nih.gov/pubmed/16280540
https://doi.org/10.1186/1471-2164-10-612
http://www.ncbi.nlm.nih.gov/pubmed/20015383
http://www.ncbi.nlm.nih.gov/pubmed/12524368
http://www.ncbi.nlm.nih.gov/pubmed/10835412
https://doi.org/10.1038/nrg1249
http://www.ncbi.nlm.nih.gov/pubmed/14666112
https://doi.org/10.1093/bioinformatics/btn219
http://www.ncbi.nlm.nih.gov/pubmed/18450810
https://doi.org/10.1186/1471-2105-11-116
https://doi.org/10.1186/1471-2105-11-116
http://www.ncbi.nlm.nih.gov/pubmed/20202215
https://doi.org/10.1101/gr.3708505
https://doi.org/10.1101/gr.3708505
http://www.ncbi.nlm.nih.gov/pubmed/16077015
https://doi.org/10.1038/nature01670
http://www.ncbi.nlm.nih.gov/pubmed/12802333
https://doi.org/10.1073/pnas.0708280104
https://doi.org/10.1073/pnas.0708280104
http://www.ncbi.nlm.nih.gov/pubmed/17978179
https://doi.org/10.1038/nature03258
http://www.ncbi.nlm.nih.gov/pubmed/15716951
https://doi.org/10.1007/BF00221895
http://www.ncbi.nlm.nih.gov/pubmed/24166548
http://www.ncbi.nlm.nih.gov/pubmed/11298947
http://www.ncbi.nlm.nih.gov/pubmed/6614868
https://doi.org/10.1371/journal.pcbi.1002803
http://www.ncbi.nlm.nih.gov/pubmed/23341757
https://doi.org/10.1534/genetics.109.102509
https://doi.org/10.1534/genetics.109.102509
http://www.ncbi.nlm.nih.gov/pubmed/19506307
https://doi.org/10.1534/genetics.109.109058
http://www.ncbi.nlm.nih.gov/pubmed/19786619
https://doi.org/10.1111/j.1365-294X.2007.03621.x
http://www.ncbi.nlm.nih.gov/pubmed/18194169
https://doi.org/10.1371/journal.pone.0192460


45. Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with

label switching and multimodality in analysis of population structure. Bioinformatics. 2007; 23: 1801–

1806. https://doi.org/10.1093/bioinformatics/btm233 PMID: 17485429

46. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software

structure: a simulation study. Mol Ecol. 2005; 14: 2611–2620. https://doi.org/10.1111/j.1365-294X.

2005.02553.x PMID: 15969739

47. Biswas S, Scheinfeldt LB, Akey JM. Genome-wide insights into the patterns and determinants of fine-

scale population structure in humans. Am J Hum Genet. The American Society of Human Genetics;

2009; 84: 641–650. https://doi.org/10.1016/j.ajhg.2009.04.015 PMID: 19442770
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