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Abstract
Climate change has been observed to expand distributions of woody plants inmany areas of arctic and
alpine environments—a phenomenon called shrubification.New spatial arrangements of shrubs
cause further changes in vegetation via changing dynamics of biotic interactions. However, the
mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation
change.Here, we examine possible warming-induced landscape-level vegetation changes in a high-
latitude environment using species distributionmodelling (SDM), specifically concentrating on the
impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and
tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs
of 116 vascular plants. Second, the predictions of vegetation change based on themodels including
only abiotic predictors and themodels including abiotic, shrub and tree predictors were compared in
a representative test area. Based on ourmodel predictions, abundance of woody plants will expand,
thus decreasing predicted species richness, amplifying species turnover and increasing the local
extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions
highlights that tundra vegetation can be expected to show awide variety of different responses to the
combined effects of warming and shrubification, depending on the original plant species pool and
environmental conditions.We conclude that realistic forecasts of the future require acknowledging
the role of shrubification inwarming-induced tundra vegetation change.

Introduction

Climate change alters vegetation by affecting species
distributions and composition [1–3]. Additionally, the
new spatial arrangement of species will further affect
surrounding ambient vegetation via biotic interactions
[4–7]. The mediating role of biotic interactions might
be of high importance especially in arctic and alpine
areas where the expansion of woody plants has been
recorded and is predicted to continue [8–12]. This
increase in shrub and tree abundance is also known as
shrubification and shrub expansion, all referring to
increased biomass, cover, height and/or volume of
woody plants [13]. Shrubification could intensify both
competition [e.g. 14, 15] and facilitation between plant

species [16, 17]. Consequently, the changing dynamics
of biotic interactions may amplify, reduce or even
reverse the effects of a changing climate on biodiversity
[15, 18–20]. However, the mediating effects of shrubi-
fication have been mainly studied in regard to their
climate feedbacks, e.g. effects on atmospheric and soil
CO2-content [21, 22], albedo and evapotranspiration
[10, 23], and snow and permafrost [24, 25].

Estimating the influence of shrubification is com-
plicated by varied manifestation of biotic interactions
between species [26, 27] and across landscapes
[28, 29]. For example, at the transition border between
boreal and arctic biomes, smaller arctic plants might
bemore sensitive to increases in shrub abundance that
increases competition for light [14]. Varying
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relationships between shrubs and other plant func-
tional groups (e.g. graminoids, forbs) due to the differ-
ent ecological strategies have also been observed
[14, 30, 31]. The spatially varying outcomes of biotic
interactions are based on a hypothesis that the high
productivity under benign conditions promotes com-
petition between plant species, whereas facilitative
impacts occur under environmentally harsh condi-
tions [e.g. 29, 32–37]. Consequently, instead of the
impacts following the isotherms, shrubification could
cause spatially fluctuating changes in structure and
composition of vegetation depending on the original
species pool and environmental conditions.

To estimate these potentially multifaceted mani-
festations of the impacts of shrubification, species dis-
tribution modelling [SDM; 38, 39], which can
simultaneously cover multiple species and a spectrum
of environmental conditions as well as enable predic-
tions in space and time, is a convenient method
[10, 28]. However, it must be acknowledged that it is a
correlative method, where the outcomes are based on
statistical relationships among used variables and an
assumption that the species are in equilibrium with
their current environment. Therefore, interpretations
of SDMs should be reinforced by comparisons with
results of experimental studies and ecological the-
ory [40].

Here, we examine potential changes in tundra
vegetation as a result of warming, and the role of shru-
bification therein. This is done by comparing spatial
predictions of vegetation changes in an oroarctic test
area, located just above the current ecotone between
boreal and tundra biomes. The predictions are based
on two sets of SDMs: one disregarding and the second
acknowledging shrubification. The used data com-
prise 2292 study plots (1 m2) covering major environ-
mental gradients, and thus, provide a basis for fine-
resolution, yet exhaustive, spatial examination of the

impacts of warming and shrubification. Specifically,
we firstly modelled and predicted the distributions of
130 vascular plant species, incorporating only abiotic
predictors. Predictions were made under current and
two future climatic conditions to assess the influence
of warming alone on vegetation. Secondly, we pro-
duced spatial estimates of shrub and tree cover under
current and future climatic conditions. Thirdly, the
estimates of shrub and tree cover were incorporated to
the abiotic SDMs of non-shrub species (n=116), fol-
lowed with predictions of species distributions under
current and future conditions. Finally, the vegetation
changes based on the predictions in the test area were
compared to assess the effects of shrubification. Parts
of analyses were also repeated separately for different
species groups: arctic and boreal species, and different
functional groups.

Material andmethods

Study area and data
The data were gathered from an ecotone between
oroarctic tundra and boreal mountain birch (Betula
pubescens ssp. czerepanovii) forests in Finland and
Norway (c. 69°N, 21°E; figure 1(a)) [29, 41]. Identities
and cover of all vascular plants were recorded from
1m2 plots (n=2292; figure 1(b)), and six abiotic
variables concerning growing season, over-wintering
conditions,moisture, solar radiation and soil nutrients
were also derived for each plot [for rationale, see 42].
The plots are organised into groups of four so that each
group forms a round study site with a radius of five
meters. The sites were positioned so that they cover a
wide spectrum of environmental conditions, see table
S1 in appendix.

The climatic predictors in the dataset, growing
degree days (GDD; °C, sum of the daily temperatures
when air temperature >3 °C), temperature of the

Figure 1. Locations of the study area (a), study plots (n=2292; (b)) and test area used for projections (c). Panels (b) and (c) show also
the relief of the study area asmeters above sea level.
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coldest quarter (TCQ; °C Dec-Feb) and water balance
(WAB; ratio of precipitation to evaporation), were
derived from 50 m resolution data produced following
[43]. In brief, the climatic data layers are based on
weather station (n=942) measurements modelled
and predicted using variables representing topography
(solar radiation, topographic position index) and
land-surface (proximity to sea, lake cover). Other
abiotic factors in the data were topographic wetness
index (TWI; [44] and solar radiation (RAD; MJ cm–

2 d–1), derived in ArcGIS [45] utilising a 5 m—resolu-
tion digital elevation model, and soil nutrients
(CALC), interpolated from the bedrock map of Fin-
land [46] as the proportion of nutrient-rich calcareous
bedrock. To create a variable to represent shrub cover,
the percentage cover values of (dwarf) shrub species
creating dense growths and reaching a height of at least
15 cm (resulted in 20 shrub species; see table S2 and
[13]) were summed in each 1 m2 plot. For tree cover,
the tree canopy cover (%) of a site was used. TheWAB
variable was excluded from the subsequent analyses
due to its high correlation (rs=−0.81)withGDD and
low variable importance in SDMs as based on pre-
liminary analyses.

To produce the environmental data for projec-
tions, the abiotic variables were also generated for a
test area (8×9 km) located in the middle of the study
area (figures 1(c) and S1). The test area was chosen so
that it represents a variety of environmental condi-
tions, yet so that the prevailing conditions are covered
by the SDM training data, even in the future scenarios
[47]. The variables were produced for 1 m2 plots
spaced every 25 m (i.e. the sub area was divided into
25×25 m squares, with a 1 m2 plot in the centre of
each square for which the data was produced). To gen-
erate the spatial estimates of shrub and tree covers for
the test area, generalised boosted method (GBM from
Rpackage gbm; [48]), with five abiotic variables (GDD,
TCQ, TWI, RAD, CALC)was used. To account for the
effects of a changing climate, GDD and TCQ values
were produced for the test area under a Representative
Concentration Pathway scenario 4.5 (RCP 4.5) for
years 2050 and 2070 [49]. Shrub and tree cover were
also predicted for the test area under the two future
climates.

Models andpredictions
Distributions of vascular plant species with a mini-
mumof ten presence observations in the data (resulted
in 130 species) were modelled implementing five
modelling algorithms (generalised linear mod-
el=GLM, generalised additivemodels=GAM, gen-
eralised boosted method=GBM, random forest=
RF and MAXENT) under BIOMOD2 platform [50].
First, themodels were built with five abiotic predictors
only (GDD, TCQ, TWI, RAD, CALC; hereafter abiotic
models). The second set of models also included the
shrub and tree covers (hereafter biotic models). Based

on the five algorithms and implementing a majority
vote ensemble technique [51], the distributions of
vascular plant species were predicted to the test area
under current and future climatic and biotic condi-
tions, resulting in six projections (i.e. abiotic and biotic
models under current and two future conditions); see
figure S2.

The projections were compared between current
and future conditions, and between abiotic and biotic
models. For abiotic–biotic comparisons only the spe-
cies not included in the shrub and tree cover estimates
(116 species) were included to avoid circular reason-
ing. The comparisons were made to assess changes in
mean vegetation height, functional group ratios, spe-
cies richness (species gains and losses), species compo-
sition (species turnover as measured with Sørensen
similarity coefficient between predicted species occur-
rencematrices) and extinction rate (proportion of spe-
cies going locally extinct); figure S2. For a subset of
analyses, vascular plant species were divided into sepa-
rate groups: arctic (51 species) and boreal (65 species)
to represent species’ main geographical distribution
area, and shrubs (14 species), graminoids (30 species)
and forbs (63 species) to represent different plant
functional types. Here, the shrub species to be model-
led individually were species meeting the require-
ments specified above for shrub cover predictor with a
minimum of 10 observations (see table S2). Mean
heights of vascular plant species, based on [52], were
used to assess changes in mean predicted vegetation
height (i.e. averaging the heights of species predicted
to occur).

All models were evaluated using four-fold cross
validation and root mean squared error (RMSE), area
under the curve (AUC), true skill statistic (TSS) and
Cohen’s kappa values [as done in 53]. Variable impor-
tance values were derived using the function provided
in BIOMOD2 to compare the magnitude of influence
of predictors in the models [50, 54 p 597]. Response
curves produced by the models, representing the rela-
tionship between species presence and the predictor,
were visually examined to check thatmodels produced
ecologically sound relationships between species and
environmental variables.

Results

Impact of warming on vegetation
The SDMs based on abiotic predictors perform
well (mean AUC=0.835 across all 130 species; for
other evaluation metrics, see table 1). Warming
climate enlarges predicted distributions of a majority
of studied species, and, thus, increases vascular
plant species richness in the test area (table S3).
Warming also alters species composition (asmeasured
with turnover) and causes local extinctions: for
example, in 2070, the mean extinction rate across the
test area is almost 50% (table S3). Based on our
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predictions, mean species height (as averaged
across species) increases subsequent to warming
(figures 2(a)–(c)). Comparing ratios of predicted
species richness of different functional groups (shrubs,
graminoids, forbs) demonstrates warming-induced
shrub-domination, especially at low altitudes
(figures 2(d)–(l)).

Impact of warming and shrubification on vegetation
Shrub and tree covermodels and predictions
The models of shrub and tree covers perform moder-
ately (RMSE=20.3 for shrub and RMSE=6.3 for
tree cover), with a comparison of observed and
predicted values revealing a bias to underprediction.
Nevertheless, the predictions of current shrub and tree
covers in the test area spatially match with the aerial
photographs (National Land Survey of Finland;
tiedostopalvelu.maanmittauslaitos.fi/tp/kartta), and
all predictions correspond with earlier observations
and estimates of woody plant abundance and expan-
sion [3, 8, 10, 55] . The warming expands distributions
of both shrubs and trees as measured with the cover
predictions (figure 3, and table S4). For example, for
2050, the mean shrub cover is predicted to approxi-
mately double, and for 2070, the tree cover is predicted
to reach a maximum cover of 37.2% at the lowest
elevations, while higher elevations remain treeless.

Species distribution models and predictions based on
bioticmodels
The biotic SDMs perform better than the abiotic
SDMs as measured with significant improvements in
all evaluation metrics; see table 1. Based on the mean
variable importance values of biotic SDMs, the shrub
cover is the second most influential predictor, while
the tree cover has only minor influence in the models
(table S5).

The area of predicted occurrence decreases for
most studied species with additions of shrub and tree
covers to the abiotic models: distributions of 70, 73
and 75 species (out of 116) decrease subsequent to
incorporating shrubification when examining the pre-
dictions under current, 2050 and 2070 conditions,
respectively. Consequently, including the shrub and
tree covers to the SDMs results in an overall decrease

in the predicted species richness (figure 4(a) and table
S3). Shrubification also amplifies turnover and increa-
ses extinction risk of the 116 ambient species
(figures 5(a), (b) and table S3).

Variation between species groups
Predicted vegetation changes vary between the species
groups. Warming alone increases the species richness
of boreal species but decreases the richness of arctic
species (figure 4(b) and table S3). For shrubs and
graminoids, the effect of warming is generally positive;
for forbs, it is negative (figure 4(c) and table S3). For all
species groups, the biotic models predict lower mean
species richness for the test area than abiotic models,
yet the richness of arctic species and graminoids are
more heavily decreased (figures 4(b), (c) and table S3).

The effects of warming and shrubification on the
other two vegetation change parameters of different
species groups follow the changes of all vascular plant
species together, i.e. warming increases turnover and
local extinction risk, with shrubification amplifying
these impacts (see figure 5 and table S3). When com-
paring the arctic and boreal groups, warming causes
bigger changes for arctic species, but shrubification
more heavily alters the changes caused by warming for
boreal species. From the other two species groups,
forbs react more strongly to changes in temperature,
while graminoids respond slightlymore to increases in
shrub cover.

Variation across landscape
The effects of warming and shrubification on vegeta-
tion show spatial variation, with the strongest influ-
ence at low and high elevations (figure 6). All spatial
patterns hold in general for all species groups despite
some fine-scale spatial variability (see figures S3–S8),
yet the variation between predictions of the gains and
losses of arctic and boreal species is noteworthy (figure
S3). The spatial predictions indicate increases in
vascular plant species richness at high elevations and
decreases at low elevations subsequent to warming
(figures 6(a) and (b)). Comparing the spatial predic-
tions of plant species richness produced by abiotic and
biotic models shows that shrubification can both
reverse and amplify the changes generated bywarming
(figures 6(c)–(f)). At high elevations, the biotic models
predict lower increases in species richness than the
abiotic models, while at low elevations, shrubification
amplifies the decrease in species richness. At mid-
elevations, shrubification has locally heterogeneous
impacts, both amplifying and decreasing the predicted
warming-induced changes in species richness. Both
the turnover and extinction risk caused by warming
are strongly amplified by shrubification at the highest
and lowest elevations of the test area (figures 6(g)–(r)).

Table 1.AUC, TSS andKappa values of abiotic and bioticmodels
averaged across species. Significance of improvement of the values
between abiotic and bioticmodels of 116 species was testedwith
paired t.test: *p<0.05; **p<0.01; ***p<0.001.MeanAUC,TSS
andKappa statistically significantly improved between abiotic and
bioticmodels alsowhen examining the four species groups
separately, except TSS for forbs, where improvementwas non-
significant. sp=species.

Abiotic (130 sp) Abiotic (116 sp) Biotic (116 sp)

AUC 0.835 0.838 0.856***

TSS 0.594 0.603 0.629***

Kappa 0.362 0.359 0.394***
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Discussion

Our predictions demonstrate potential changes in
tundra vegetation and call for acknowledging the
mediating role of shrubification in forecasts of warm-
ing-induced environmental changes [5, 53, 56]. Pri-
marily, a warming climate is predicted to affect species
diversity and composition, yet subsequently the
increase in the abundance of woody plants will further
alter vegetation by modifying biotic interactions
among species. The combined effects of warming and
shrubification decrease the diversity of tundra vegeta-
tion, placing especially small arctic forbs at risk.
Spatially, the predicted changes will be the strongest

under extreme climatic conditions. All in all, our
findings highlight the significant role of shrubification
in driving vegetation change along with warming. In
the next paragraphs, we present the predicted changes
in more detail and discuss potential mechanisms
behind the impacts. Yet, we remind, that due to the
used methodological approach, the findings are con-
tingent to three assumptions [57–60]: species are in
equilibrium with their current abiotic and biotic
environments, current species-environment relation-
ships persist in future, and no temporal or spatial
barriers are posed for universal dispersal.

Our abiotic models predict changes in tundra
vegetation structure, supporting warming-induced

Figure 2. Spatial vegetation changes predicted across the test area by abioticmodels under current and two future climatic conditions.
(a)–(c)Predictedmean vegetation height, with values averaged across the test area presented at each panel. (d)–(f)Predicted
domination of graminoid and shrub species. (g)–(i)Predicted domination of forb and shrub species. (j)–(l)Predicted domination of
graminoid and forb species. Domination of a species group ismeasured as a higher species richness within the group, e.g. in panels
(d)–(f), shrubs dominate (indicatedwith dark green)where the richness of shrub species exceeds the richness of graminoid species. In
the panels (d)–(l), the values in left bottom corners represent ratios of the area dominated by thefirst species group to the area
dominated by the second species group.
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expansion of woody species [61, 62]. In addition,
warming increases total species richness, modifies spe-
cies compositions and causes local extinctions. These
predictions are all in line with earlier (experimental)
studies demonstrating diversity loss [e.g. 62, 63]—
when recognising that here the increase in the total

predicted vascular plant species richness is mostly due
to the increase of shrub richness (figure 4).

The effect of shrubification reflects, in general,
competitive biotic interactions: including the shrub
and tree covers in the SDMs causes a decrease in the
mean species richness of ambient vegetation

Figure 3. Spatial estimates of current (a), (d) and future (b), (c), (e), (f) shrub (a)–(c) and tree covers (d)–(f). The estimates are spatial
predictions, based on themodels where observed shrub and tree cover valueswere related to five abiotic predictors using generalised
boostingmethod. Values in the left bottom corner of each panel show themean predicted covers averaged across the test area.

Figure 4.Themean predicted species richness (of species groups; (b) and (c)) under current and two future conditions averaged across
the test area. Solid lines represent predictions based on the abiotic species distributionmodels (i.e. species richness is the sumof
predicted species occurrences), and dashed lines represent predictions based on the biotic species distributionmodels. For all species
groups, the bioticmodels predict lower species richness values than abioticmodels.
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Figure 5.Themean predicted species turnover (a), (c), (e) and local extinctions (b), (d), (f) between current and two future conditions
averaged across the test area. Species turnover and proportion of species going locally extinct are calculated from spatial predictions of
non-shrub species occurrences under current and future conditions based on abiotic and biotic species distributionmodels. The
bioticmodels predict higher turnover values and extinction rates for all species groups than abioticmodels.

Figure 6. Species gains and losses (a)–(d), turnover (g)–(j) and proportion of species going locally extinct (m)–(p) as predicted in test
area for 2050 (a), (c), (g), (i), (m), (o) and 2070 (b), (d), (h), (j), (n), (p)without (a), (b), (g), (h), (m), (n) andwith the effect of
shrubification (c), (d), (i), (j), (o), (p). Values in the left bottom corners of panels are averaged values of spatial predictions across the
test area. Panels (e), (f), (k), (l) and (q), (r) show the effect of shrubification. In panels (k), (l) and (q), (r), red indicates amplifying
influence and blue indicates diminishing influence.
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compared to the predictions produced by abiotic
SDMs. Presumably, shrubification intensifies compe-
tition for light, space, moisture and/or nutrients
[14, 63]. Decreasing species richness as a function of
increasing productivity (assuming that shrubification
increases total vegetation biomass) can also be postu-
lated as a productivity-diversity-hypothesis [35, 64].
The amplified turnover and extinction rate instigated
by shrubification (figure 5) could indicate, in addition
to competition, indirect effects, such as rising summer
microclimatic temperatures at ground level caused by
increased shrub volume [13].

Our predictions also demonstrate that species
groups can be expected to show a wide variety of
responses to warming and shrubification depending
on species’ life-history characteristics. The varying
outcomes between species groups might also reveal
some mechanisms behind the impacts. For example,
the increased richness of boreal plant species, and the
decreased richness and high extinction rate of arctic
plant species due to the warming may be caused by
‘thermophilization’, i.e. warmer climate favouring
warm-adapted species [e.g. 61]. Warming also increa-
ses the richness of shrubs and graminoids at the cost of
forbs [see also 65], which might reflect the different
resource acquisition strategies of species [31, 66].
Shrubification decreases the species richness of arctic
plants and graminoids more heavily than the boreal
plants and forbs, respectively. These outcomes might
reflect varying competitive abilities between the spe-
cies groups [e.g. 30, 31]. For example, taller boreal
plants are superior light-competitors compared to
low-growing arctic plants. Contradictorily, the turn-
over and extinction rates are amplified more strongly
by shrubification for boreal than arctic species, and for
graminoids than forbs. This might, instead of an eco-
logical rationale, be explained by spatial associations:
the estimates of shrub cover and tree canopy are the
highest at low elevations with higher ratios of boreal
species and graminoids.

Thepredictions also demonstrate spatial variation in
the effects of both warming and shrubification [see
also 29, 33], with effects being the strongest under
extreme environmental conditions. At high elevations,
the impacts of both warming and shrubification could
be ‘worsened’ due to the low buffering ability of the low
species richness [67, 68] and/or species being specified
to cold environments [61] and sensitive to competition
[69]. At low elevations, the covers of shrubs and trees are
predicted to be the highest with potential for a strong
impact too. In addition, while in general the warming
and shrubification cause changes of the same direction,
the predictions reveal some spatial differences: at high
elevations, warming increases vascular plant species
richness that shrubification stabilises, and locally atmid-
elevations shrubification increases species richness and
diminishes turnover and extinctions. These outcomes

could be explained by facilitative impacts: shrubification
could, for example, locally sustain cool climatic condi-
tions through shading or provide shelter and nutrients
through trapping snow [17, 70]. Nevertheless, the spatial
variation in the predictions highlight how the original
plant species pool and environmental conditions are
crucial when estimating the effects of both warming and
shrubification.

Concluding remarks
Based on our models and predictions, warming will
severely change tundra vegetation. Shrub abundance
will increase with further influences on ambient
vegetation. In addition to decreasing species diversity,
shrub expansion amplifies species turnover and local
extinction rates. Arctic forbs and extreme environ-
ments particularly are at the risk. In general, the
combined effects of warming and shrubification
amplify one other, yet our results also demonstrate
spatial variation in the effects of warming as, locally,
shrubification can also diminish or even reverse the
warming-induced changes. All in all, our findings call
for acknowledging themediating role of shrubification
to enable more realistic forecasts of the future changes
in tundra vegetation.
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