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Action ciphers — A new core component
for E/D similar block ciphers

Dr. David-Olivier Jaquet-Chiffelle

University of applied Sciences of Berne

Abstract - In cryptography, most practical block ciphers are E/D
similar. Three core components are usually considered and combined to
build E/D similar iterated block ciphers. In this report, we define a new
one —the action ciphers— that extends the classical concept of group
ciphers.
Then we investigate a subset of action ciphers, the so-called σ-action
ciphers, and give a cryptological characterization for this subset. All
group ciphers are σ-action ciphers as well, but choosing a σ-action cipher
which is not a group cipher eliminates “bad” properties of group ciphers
while keeping the “good” ones. . .
Any group cipher component in any block cipher can be replaced by a
σ-action cipher ; such a replacement has no impact on the key-schedule
algorithm.
Finally, in the appendix, we show an application of these concepts that
goes beyond the original scope of core components in E/D similar iterated
block ciphers. Indeed we replace some group operations in IDEA by σ-
action operations and get a large family of IDEA-like algorithms which
can be customized.

Keywords: cryptography, E/D similar block ciphers, group ciphers, action ciphers, IDEA.

1 Introduction

An Encryption/Decryption similar (E/D similar) block cipher is a block cipher for which
the encryption and the decryption process are similar : decryption can be done by modify-
ing only the key-schedule algorithm. The same hardware realization can be used for both
processes. The advantages in term of cost and convenience of using the same hardware
for both the encryption and the decryption certainly explains why E/D similar algorithms
are so popular. Most practical block ciphers are E/D similar.

In his Ph.D. thesis, X. Lai describes four constructions of E/D similar iterated block
ciphers. They are based on three core components which he then combines. The three
core components are
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• involutary permutations,

• involution ciphers and

• group ciphers.

Involutary permutations are permutations of order 2 ; they are key-independant.

An involution cipher is any cipher for which the encryption process is exactly the same
as the decryption process ; in other words, encrypting twice (with the same key) leads to
the identity transformation : any plaintext remains unchanged.

Group ciphers will be discussed in section 2. These ciphers provide perfect secrecy for
uniformly random one-time keys. However, a group is a rich mathematical structure with
(too) many algebraic properties. To prove that a group cipher is E/D similar, we need
only a few of those properties, the “good” ones. The unnecessary properties — the “bad”
ones — give extra tools to the enemy cryptanalyst. For example, in a group cipher, the
ciphering operation is associative ; it is even commutative when the group is Abelian.
Those unneeded mathematical properties help the enemy cryptanalyst and, therefore,
should be avoided from a cryptological point of view.

In this report, we define a new core component for E/D similar block ciphers — action
ciphers — which extends the concept of group ciphers. As we will see, not all action
ciphers are good cryptographically speaking. Only faithful actions can lead to action
ciphers that provide perfect secrecy for uniformly random one-time keys.

The so-called σ-action ciphers (a special type of action ciphers) are excellent cryptograph-
ically speaking. They keep all the good properties of a group cipher ; they provide in
particular perfect secrecy for uniformly random one-time keys. Actually, all group ciphers
are also σ-action ciphers but group ciphers are the only σ-action ciphers for which the
ciphering operation is associative. Indeed, in a σ-action cipher, the ciphering operation
is neither associative nor commutative except if it is a group cipher, even if the action
comes from an Abelian group. From a cryptological point of view, this is a significant
improvement in comparison to group ciphers.

Any group cipher component of an E/D similar iterated block cipher can be replaced by
a σ-action cipher. Moreover this substitution keeps the original key-schedule algorithm.

Last but not least, the group operations used in IDEA satisfy some partial distributive
laws ([4]). These partial distributive laws have been used to attack IDEA with three
rounds. Even though there has been no evidence that this poses a practical threat for
IDEA with eight rounds, the destruction of these partial ditributive laws would increase
the internal security. Replacing some of the group ciphers in IDEA by σ-action ciphers
can destroy these partial distributive laws and consequently make the core operations in
IDEA even more incompatible with each other.
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2 Group ciphers

As we consider E/D similar block ciphers, the same set X describes the set of all possible
plaintexts and the set of all possible ciphertexts. Note that there is no need to restrict X
to F2

m.

Let’s consider G the set of all possible keys. When G = X is a finite group for the
operation ∗, we define the corresponding group cipher as the translation of any plaintext
x by the key g ∈ G. There is no need to restrict G to 2-Sylow groups or to Abelian groups.

The translation can be either to the left (left group cipher), i.e. the ciphertext y is equal
to g ∗ x, or to the right (right group cipher) y = x ∗ g. When the group is Abelian, left
and right group ciphers are the same. In the following, we will only consider left group
ciphers. The theory and the properties for right group ciphers are similar.

In order to prove that encryption and decryption are similar in a group cipher, we only
use the following fundamental property :

Fundamental property of a group cipher :

If y = g ∗ x then
x = g−1 ∗ y where g−1 is the inverse of g in G.

In other words, if we use the key g to encrypt a plaintext x, we will use the same trans-
formation, but with the key g−1, to recover x from the ciphertext.

This fundamental property leads to the key-schedule algorithm for decryption given the
key-schedule algorithm for encryption in E/D similar iterated block ciphers using group
cipher components. If the subkeys used in the group cipher components during encryption
are k1, k2, . . . , kr then the subkeys used during decryption are k−1

r , k−1
r−1, . . . , k

−1
1 .

3 Action ciphers

In this section we introduce a generalization of the concept of group ciphers : the action
ciphers.

We keep the same notation as above ; now the set X can be different from G and does
not need to have a group structure. Suppose that G, ∗ is a finite group and that α is a
left action of G on X. We will use the symbol · to represent the action operation :

α : G × X −→ X, α(g ; x) = g · x
We define the corresponding action cipher in the following way :

Definition 3.1 With the above notation, the (left) action cipher corresponding to α is
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the cipher which transforms any plaintext x into the ciphertext y = g · x, where g is the
key.

A left (resp. right) action cipher comes from a left (resp. right) action. In this paper, we
consider only left action ciphers. The theory and the properties for right action ciphers
are similar.

By definition, a (left) action satisfies two conditions :

(i) ∀x ∈ X, e · x = x, where e is the neutral element of G

(ii) ∀g, h ∈ G, ∀x ∈ X, g · (h · x) = (g ∗ h) · x

From these two conditions, we can deduce — for the action ciphers — a property which
is similar to the fundamental property of a group cipher.

Fundamental property of an action cipher :

If y = g · x then
x = g−1 · y where g−1 is the inverse of g in G.

Proof:

g−1 · y = g−1 · (g · x)
(ii)
= (g−1 ∗ g) · x = e · x (i)

= x

This fundamental property proves that the key-schedule algorithm for deciphering an E/D
similar iterated block cipher containing an action cipher component is the same as if we
had a group cipher instead of the action cipher and is therefore independant from the
particular action itself.

Any group cipher is an action cipher (the group operation always defines an action of the
group on itself : g · x = g ∗ x). However, there are action ciphers which are not group
ciphers even when X = G (see theorem 4.3) ; our new concept of action ciphers really
generalizes the classical concept of group ciphers.

Remember now that a group cipher has the following security feature : given a ciphertext
y, any plaintext x is equally probable if the key is an unknown one-time key and if all
possible keys are equally probable. It means that, for a uniformly random one-time key,
group ciphers give perfect secrecy.1

Definition 3.2 An action cipher is perfect if, for a uniformly random one-time key, it
gives perfect secrecy.

1Cf. [5] and [2] p.25
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Not all action ciphers are perfect. For example, if we take the action induced by the
conjugation when G = X is an Abelian group (remember that all three groups in IDEA
are Abelian), we get the trivial action. Indeed,

g · x = g ∗ x ∗ g−1 = g ∗ g−1 ∗ x = x, ∀g, x ∈ G.

Such a cipher is just the identity transformation (any plaintext remains unchanged) which
is useless from a cryptological point of view. Only action ciphers which are perfect and
therefore at least as secure as group ciphers should be used in cryptography.

In the next section, we will characterize the subset of all perfect action ciphers, when
G = X is a finite group.

4 σ-action ciphers

In this section, we suppose that G = X is a finite group for the operation ∗. For any
permutation σ ∈ Sym(G), we define the operation ∗σ as follows :

g ∗σ x = σ−1(g ∗σ(x))

Proposition 4.1 g · x = g ∗σ x is an action of G on itself.

Proof:

(i) ∀x ∈ X, e · x = σ−1(e ∗σ(x)) = σ−1(σ(x)) = x

(ii) ∀g, h ∈ G, ∀x ∈ X,
g · (h · x) = σ−1(g ∗ σ(σ−1(h ∗σ(x)))) = σ−1(g ∗ h ∗σ(x)) = (g ∗ h) · x

Definition 4.1 We call the above action — g · x = g ∗σ x — a σ-action and the corres-
ponding action cipher a σ-action cipher.

Note that the Id -action cipher (where Id is the identity permutation) is exactly the
classical group cipher :

g ∗Id x = Id−1(g ∗ Id(x)) = g ∗ x

In other words, group ciphers are σ-action ciphers as well.
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4.1 Interpretation

We give here an intuitive interpretation for a σ-action.

Imagine that the elements of G are kept unchanged while those in X are renamed. The
permutation σ links the new names with the original ones :

{new name (in X)} � {original name (in G)}
x σ � x′

Then, the σ-action can be represented as follows :

������

������

�
�

�
�

�
�

�
�

������

������

�
�

�
�

�
�

�
�

�

�

(g, x) y = g · x = g ∗σ xINPUT OUTPUT

x′ = σ(x) x y′ = σ(y)
y

�

y′ = g ∗ x′

� �
σ σ−1

To calculate g · x = g ∗σ x, first we find x′, the original name for x ; then, we calculate
y′ = g ∗ x′ in the group G and we return y, the new name for y′.

4.2 Properties

First, we want to describe the set of all σ-actions in more details.

Definition 4.2 We say that two permutations σ and τ of G are equivalent relatively to
∗ (or, simply, equivalent) if the corresponding σ-actions are the same, i.e. if

∀g, x ∈ G, g ∗σ x = g ∗τ x

All permutations in a same class of equivalence define the same σ-action. The following
lemma proves that in each class of equivalence there is at least one permutation for which
e, the neutral element of the group, is a fix point.
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Lemma 4.2 Given a σ-action, we can suppose, without loss of generality, that σ(e) = e
where e is the neutral element of the group G.

Proof:
Consider the permutation τ defined by τ (x) = σ(x) ∗ σ(e)−1. Then,

τ (e) = σ(e) ∗ σ(e)−1 = e

Moreover, ∀g, x ∈ G,

y = g ∗σ x = σ−1(g ∗σ(x))
=⇒ σ(y) = g ∗ σ(x)
=⇒ σ(y) ∗ σ(e)−1 = g ∗ σ(x) ∗ σ(e)−1

=⇒ τ (y) = g ∗ τ (x)
=⇒ y = τ−1(g ∗ τ (x)) = g ∗τ x

This proves that ∀g, x ∈ G, g ∗σ x = g ∗τ x, i.e. those actions are actually equal.

The following lemma proves that in each class of equivalence there is at most one permu-
tation for which the neutral element of the group is a fix point.

Lemma 4.3 Let be σ and τ two permutations of G such that σ(e) = τ (e) = e. If they
are equivalent, then they are equal.

Proof:
∀g, x ∈ G, σ−1(g ∗ σ(x)) = τ−1(g ∗ τ (x))

for x = e, ∀g ∈ G σ−1(g ∗σ(e)) = τ−1(g ∗ τ (e))
as σ(e) = τ (e) = e, ∀g ∈ G σ−1(g) = τ−1(g)

=⇒ σ = τ

Corollary: (lemma 4.2 and 4.3)

1) There are exactly (|G| − 1)! different σ-actions.

2) A permutation σ is equivalent to Id — the identity permutation — if and only if
∀x ∈ G, σ(x) = x ∗ σ(e).

13



We want to prove now two important cryptographic properties satisfied by all σ-action
ciphers.

Proposition 4.4 For a σ-action cipher, two different keys always act (i.e. encrypt)
differently.

Proposition 4.5 σ-action ciphers are perfect ; they provide perfect secrecy for uniformly
random one-time keys.

In order to prove those propositions, we need two technical lemmas :

Lemma 4.6 All σ-actions are transitive.

Proof:
Indeed, ∀x, y ∈ G, ∃g ∈ G such that g · x = y : take g = σ(y) ∗ σ(x)−1.

g · x = σ−1(g ∗σ(x))
= σ−1(σ(y) ∗ σ(x)−1 ∗ σ(x))
= σ−1(σ(y))
= y

Lemma 4.7 Let be G, ∗ a finite group and α an action of G on itself. If α is transitive,
then for all x and y in G, there is a unique g in G such that g · x = y.

Proof:
The existence of g comes from the definition of a transitive action. We only need to show
the uniqueness.

For all x in G we define αx : G −→ G, αx(g) = g · x. The function αx is surjective since
the action α is transitive ; it is therefore injective. This terminates the proof.

Corollary: A σ-action is “invertible” both on the left and on the right. Indeed, lemmas
4.6 and 4.7 show that all σ-actions are not only faithful,2 they even satisfy a simplification
rule from the right. Moreover, an action always satisfies a simplification rule from the
left :

g · x1 = g · x2 =⇒ g−1 · (g · x1) = g−1 · (g · x2) =⇒ x1 = x2

2An action is faithful when g ·x = h ·x, ∀x implies g = h. In general, g ·x = h ·x does not imply g = h.
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Propositions 4.4 and 4.5 are a direct consequence of this corollary.

We prove now the main theorem which characterizes the perfect action ciphers when
G = X is a finite group.

Theorem 4.1 Let be G, ∗ a finite group and an action of G on itself. The corresponding
action cipher is perfect if and only if it is a σ-action cipher.

Proof:
Proposition 4.5 proves the theorem in one direction. We only need to prove that any
perfect action cipher is actually a σ-action cipher.

Let’s consider a perfect action cipher ; the action must be transitive as any ciphertext
might be the encryption of any plaintext. For each x in G there is a unique gx in G such
that x = gx · e (lemma 4.7). Our candidate for the permutation σ is defined by σ(x) = gx.

y = g ∗σ x
= σ−1(g ∗σ(x))
= σ−1(g ∗ gx)

σ(y) = g ∗ gx

gy = g ∗ gx

gy · e = (g ∗ gx) · e
gy · e = g · (gx · e)

y = g · x

This proves that our candidate for the σ-action is indeed equal to the original action.

As G = X, both g∗σx and x∗σg are defined. Is the operation ∗σ commutative in general?
Is it associative? A good cryptographic operation should not satisfy unneeded algebraic
properties. Indeed, unnecessary properties give extra tools to the enemy cryptanalyst.

The following theorem proves that all σ-actions where σ is not equivalent to the identity
permutation get rid of two unnecessary properties : commutativity and associativity.

Theorem 4.2 When σ is not equivalent to Id, the σ-action operation is neither commu-
tative, nor associative.

Proof:
We show that if the σ-action operation is commutative (resp. associative), then σ is
equivalent to Id .

15



1) We suppose that the σ-action operation is commutative. Then,

∀x ∈ G, e ·σ x = x ·σ e
=⇒ σ−1(e ∗σ(x)) = σ−1(x ∗σ(e))
=⇒ σ(x) = x ∗ σ(e)

This means that σ is equivalent to Id (corollary of lemma 4.2 and 4.3.)

2) We suppose that the σ-action operation is associative. Then,

(a · b) · c associativity
= a · (b · c) action

= (a ∗ b) · c.
Therefore, ∀a, b, c ∈ G, we have (a · b) · c = (a ∗ b) · c. As a σ-action is faithful,
the above condition means that a ∗σ b = a · b = a ∗ b = a ∗Id b, ∀a, b ∈ G, i.e. σ is
equivalent to Id .

We can now prove the following theorem that characterizes which σ-action ciphers are
group ciphers as well.

Theorem 4.3 A σ-action cipher is a group cipher if and only if σ is equivalent to Id.

Proof:
“⇐=” The Id-action cipher is the usual group cipher.

“=⇒” We suppose that we have a σ-action cipher which is a group cipher. Then, the
action operation is associative. We conclude by applying the theorem 4.2.

Theorems 4.2 and 4.3 prove that only a few σ-action ciphers are actually group ciphers,
namely those for which σ is equivalent to Id ; most of the σ-action ciphers are not group
ciphers. The σ-action ciphers create therefore a large family of new operations which are
not commutative, not even associative. From a cryptological point of view, this important
security feature is a significant improvement in comparison to group ciphers.

Some cryptographic algorithms use two or more different group operations defined on
the same set. For example, the three different group operations of IDEA are defined on
{0, 1, 2, . . . , 216 − 1}.

What happens when we replace two different group ciphers by two σ-action ciphers? We
want to be sure that if we start with two different group ciphers, we always get two
different σ-action ciphers after the replacement. In other words, we need to prove that
such a replacement can not lead to a unique action cipher.
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Theorem 4.4 proves that no collision are possible when we replace group ciphers by σ-
action ciphers. It garanties that two different group operations on the same set cannot
lead to the same action operation for particular, well poorly chosen permutations.

Theorem 4.4 Let be ∗ and ⊥ two different group operations defined on the same set G.
Then for all permutations σ and τ of G, the actions ∗σ and ⊥τ are different.

Proof:
We will prove that if there are σ and τ two permutations of G such that ∗σ and ⊥τ are
the same, then ∗ and ⊥ are already the same.

Let’s suppose that for two well chosen permutations σ and τ , the actions ∗σ and ⊥τ are
the same. Let be e∗ (resp. e⊥) the neutral element of G, ∗ (resp. G,⊥) ; withour loss of
generality, we can suppose that σ(e∗) = e∗ and τ (e⊥) = e⊥. As ∗σ and ⊥τ are the same,
we have

(†) ∀a, b ∈ G, σ−1(a ∗σ(b)) = τ−1(a⊥ τ (b)).

This is in particular true for a = e∗ and b = e⊥ ; the equation (†) becomes

σ−1(e∗ ∗σ(e⊥)) = τ−1(e∗⊥e⊥)

e⊥ = τ−1(e∗)

In other words, e∗ = τ (e⊥) = e⊥ ; both groups have the same neutral element e, and
σ(e) = τ (e) = e.

If we replace b by e in equation (†), we see that ∀a ∈ G, σ−1(a) = τ−1(a) ; therefore
σ = τ .

Then, the equation (†) becomes

σ−1(a ∗ σ(b)) = σ−1(a⊥σ(b)) ∀a, b ∈ G
=⇒ a ∗ σ(b) = a⊥σ(b) ∀a, b ∈ G
=⇒ a ∗ b′ = a⊥b′ ∀a, b′ ∈ G

This proves that ∗ is indeed exactly the same group operation as ⊥.

5 Conclusion

Most practical block ciphers are E/D similar. Amongst the three classical core com-
ponents (involutary permutations, involution ciphers and group ciphers) of E/D similar
block ciphers, the group ciphers component is with no doubt the most elaborate one.
Group ciphers provide perfect secrecy for uniformly random one-time keys. However,
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group ciphers are rich structures with unneeded extra properties that can help the enemy
cryptanalyst.

Action ciphers generalize the concept of group ciphers. When the group G (the set of all
possible keys) and X (the set of all possible plaintexts as well as the set of all possible
ciphertexts) are the same, we have characterized the action ciphers that provide perfect
secrecy for uniformly random one-time keys : those are exactly the so-called σ-action
ciphers, a subset of action ciphers defined using permutations σ ∈ Sym(G).

The σ-action ciphers extend the concept of group ciphers and keep all the good cryp-
tological properties of the group ciphers ; in particular, they provide perfect secrecy for
uniformly random one-time keys.

All group ciphers are σ-action ciphers where the permutation σ is equivalent to the identity
permutation. But group ciphers are the only σ-action ciphers for which the ciphering
operation is associative. Indeed, when the permutation σ is not equivalent to the identity
permutation, the σ-action cipher is not a group cipher and the ciphering operation is
neither associative nor commutative, even if it comes from an Abelian group. From a
cryptological point of view, this important security feature is a significant improvement
in comparison to group ciphers.

Any group cipher component of an E/D similar iterated block cipher can be replaced by a
σ-action cipher. Moreover such a substitution keeps the original key-schedule algorithm.
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Appendix

A σ-action ciphers applied to IDEA

A.1 Introduction

IDEA is an E/D similar iterated block cipher developped by X. Lai and J. L. Massey at
the beginning of the 90s. IDEA has eight rounds in its full version. Each round starts with
four group cipher components, followed by an involution cipher component and then by
an involutary permutation. We refer the reader to [2] or [3] to find a complete description
of this algorithm.

An important design criteria in the developpement of IDEA is the use of so-called “incom-
patible” group operations which are easy to calculate for a computer. The three group
operations are defined on the same set {0, 1, 2, . . . , 216 − 1}. The first one, +, is the usual
addition modulo 216 ; the second one, �, is the multiplication in F

∗
216+1 where 216 is named

0 ; the third one, ⊕, is the “exclusive or” applied bit per bit to the 16-bit words.

The group cipher components only use the + and the �, as group operations. The
involution cipher component contains the + and the � operations inside the so-called
MA-box3 as well as the ⊕ operation outside of the MA-box.

A.2 Three “incompatible” group operations

The group operations used in IDEA are incompatible with each other : there is no global
distributive law between them. This is an important design criteria.

Indeed, in general,
a ∗ (b ⊥ c) �= (a ∗ b) ⊥ (a ∗ c)

where ∗ and ⊥ are any two distinct group operations appearing in IDEA.

Nevertheless, the group operations used in IDEA satisfy some partial distributive laws
([4]) that have been used to attack IDEA up to three rounds. Even though there has
been no evidence that this could pose a practical threat for IDEA with eight rounds, the
destruction of these partial distributive laws would increase the internal security of the
core operations. In the following, we explain how to use σ-action operations in order to
destroy these partial distributive laws inherited from the ring of integers.

3“MA” stands for “multiply and add”.
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A.3 Replacement of some group operations by σ-action opera-
tions

As already explained, IDEA is an E/D similar iterated block cipher whose rounds contain
all three classical E/D similar core transformations : group ciphers, an involution cipher
and an involutary permutation.

Only two of the group operations, namely + and �, intervene in the group cipher com-
ponents. However, those operations do not only appear in the group cipher components,
they are also used internally in the involution cipher component, more precisely in the
MA-box. The ⊕ group operation only appears outside the MA-box in the involution
cipher component. The involutary permutation does not contain any group operation.

Replacing some of the group operations in IDEA by σ-action operations can indeed destroy
the partial distributive laws inherited from the ring of integers and consequently make
the core operations in IDEA even more incompatible with each other.

Moreover, the new operations are neither commutative nor associative if the permutation
is not equivalent to the identity permutation. This is an improvement from a cryptological
point of view : this destroys unnecessary algebraic properties that can help the enemy
cryptanalyst. Because of the non commutativity, the order of the operands is important.

A.3.1 Group operations appearing in the group cipher components

We choose σ and τ , two permutations of {0, 1, 2, . . . , 216 − 1}. Then, we systematically
substitute + (resp. �) by +σ (resp. �τ) in the group cipher components.

If the permutations σ and τ are not equivalent to the identity permutation, the operations
+σ and �τ are neither commutative, nor associative. Moreover, theorem 4.4 garanties
that +σ and �τ are always different from each other, for any choice of the permutations
σ and τ .

As we know, replacing + (resp. �) by +σ (resp. �τ) in the group cipher components
keeps the original key-schedule algorithm.

Using σ-action ciphers to replace the group ciphers in IDEA has another consequence
that goes beyond the original scope of E/D similar core components. Introducing σ-
action ciphers components creates a large family of IDEA-like algorithms which can be
customized. All these algorithms look like the original IDEA and have exactly the same
key-schedule algorithm as IDEA.
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A.3.2 Group operations appearing in the involution cipher component

In the involution, the operations + and � only appear in a so-called MA-box. With Lai’s
notation, the MA-box transformation can be seen as a function (V1, V2) = MA(U1, U2, Z5, Z6)
which has the following important properties (Cf. [2]) :

- for any choice of the key subblocks Z5 and Z6, MA(·, ·, Z5, Z6) is an invertible trans-
formation ; for any choice of U1 and U2, MA(U1, U2, ·, ·) is also an invertible trans-
formation ;

- this structure has a “complete diffusion” effect in the sense that each output subblock
depends on every input subblock. . .

If we replace + by +σ and � by �τ these properties stay valid.4 The proof only uses the
fact that these operations are “invertible” on both sides, which is the case for any σ-action
operation (see corollary on page 14). Such a replacement is therefore totally compatible
with the MA-box design and structure. Eventually, it has no impact on the key-schedule
algorithm and, moreover, the whole involution component stays involutive.

Two approaches are possible : either we replace + and � by σ-action operations only in
the group cipher components and we keep unchanged these operations in the involution
component, or we systematically substitute all the group operations + (resp. �) by +σ

(resp. �τ) in all the components.

The involution cipher component contains also the third group operation, namely ⊕.

Let’s consider a permutation γ of {0, 1, 2, . . . , 216 − 1} and the corresponding σ-action
operation ⊕γ. As we will see, most of the permutations γ destroy the involutive property
of the involution component. Indeed :

Proposition A.1 The operation ⊕γ must be equal to ⊕ in order for the involution com-
ponent in IDEA to stay involutive.

Proof:
Let’s consider two iterations of the whole involution component where ⊕ has been replaced
by ⊕γ.

As ⊕γ is not commutative in general, the order of the operands is important again. In
the following diagram, the order of the operands is indicated by “1” and “2”, representing
respectively the left and the right operands.

4As the new operations can be non commutative, the order of the operands has to be fixed.
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� �

� �

� �

�

� �

⊕γ

⊕γ ⊕γMAσ,τ

2 2

1 1

1 2

(S1, S2) (S3, S4)

(Y1, Y2) (Y1, Y2)

(T1, T2) (T3, T4)

� �

� �

� �

�

� �

⊕γ

⊕γ ⊕γMAσ,τ

2 2

1 1

1 2

(Y ′
1 , Y

′
2) (Y ′

1 , Y
′
2)

(S1, S2) (S3, S4)

We observe that T1 = Y1 ⊕γ S1 and S1 = Y ′
1 ⊕γ T1.

It means that

0 ⊕γ T1
action
= T1 = Y1 ⊕γ S1 = Y1 ⊕γ (Y ′

1 ⊕γ T1)
action
= (Y1 ⊕ Y ′

1) ⊕γ T1.

By the corollary on page 14, we conclude that Y1 ⊕ Y ′
1 = 0, i.e. Y1 = Y ′

1 . Similarly,
Y2 = Y ′

2 .

As MA-boxes are invertible for a fixed choice of the keys, the equalities Yi = Y ′
i , i = 1, 2

imply that the input of the MA-boxes is the same on both levels. In other words, we need
to have S1 ⊕γ S3 = T1 ⊕γ T3 and S2 ⊕γ S4 = T2 ⊕γ T4.

This means :

S1 ⊕γ S3 = (Y1 ⊕γ S1) ⊕γ (Y1 ⊕γ S3) and

S2 ⊕γ S4 = (Y2 ⊕γ S2) ⊕γ (Y2 ⊕γ S4)

The operation ⊕γ must therefore satisfy :

∀Y, S, S ′ ∈ G, S ⊕γ S ′ = (Y ⊕γ S) ⊕γ (Y ⊕γ S ′).
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Without loss of generality (lemma 4.2), we can suppose γ(0) = 0. For S ′ = 0 the above
relation becomes :

γ−1(S ⊕ γ(0)) = γ−1((Y ⊕γ S)⊕ γ(Y ⊕γ 0)) ∀Y, S ∈ G
= γ−1((Y ⊕γ S)⊕ γ(γ−1(Y ⊕ γ(0)))) ∀Y, S ∈ G

γ−1(S) = γ−1((Y ⊕γ S) ⊕ Y )
=⇒ S = (Y ⊕γ S) ⊕ Y ∀Y, S ∈ G
=⇒ Y ⊕γ S = Y ⊕ S ∀Y, S ∈ G

In other words, both operations ⊕γ and ⊕ must be equal.

In conclusion, if we want to keep only three operations in our generalizations of IDEA,
the group operation + (resp. �) can be replaced by any σ-action operation +σ (resp.
�τ), but the group operation ⊕ has to be kept unchanged. The theorem 4.4 garanties
that for any choice of the permutations σ and τ , the operation +σ, �τ and ⊕ will always
be different from each other.

A.4 How to choose +σ and �τ?

Any permutation which is not equivalent to the identity permutation leads to a ciphering
operation which is neither associative, nor commutative. Moreover, it is very likely to
destroy most of the (partial) algebraic properties of the group operations, properties
which are inherited from the ring of integers.5 Using σ-action operations can help make
the core operations even more resistant to linear and differential cryptanalysis.

The core ciphering operations must be easy to handle for a computer both in hardware
and software. This is an important criteria in the choice of the group operations of IDEA.

To define +σ and ⊕τ we need two permutations of {0, 1, 2, . . . , 216 − 1}.

We can choose for σ and τ any permutations of {0, 1, 2, . . . , 216 − 1} if enough memory is
available. For the choice of +σ and �τ , the total entropy is greater than 1′908′040. From
a practical point of view, if we want to store σ, σ−1, τ and τ−1 in lookup tables, we need
half a megabyte. . .

However, we can imagine cheaper and faster ways to define (less general) permutations of
{0, 1, 2, . . . , 216 − 1}. If speed is important, we can simply swap the halves for example,
i.e. σ(x) = σ(xL|xR) = xR|xL, where the vertical bar | represents the concatenation, xL is
the left half of x (8 most significant bits) and xR is the right half of x (8 least significant
bits.)

5Notice, for example, that if we consider only the least significant bit, both operations + and ⊕ are
the same.
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A trade off between speed and entropy is to “split” the permutations in two parts :

σ(x) = σ(xL|xR) = σL(xL)|σR(xR)

where σL and σR are two permutations of {0, 1, 2, . . . , 255}. Since we can fix the image of
the neutral element, we can actually choose σL and σR among (255!)2 different σ-actions.
If we split both σ and τ , the total entropy for the choice of +σ and �τ is slightly greater
than 6700 ; it requires only 2 Kbytes of memory to store σ, σ−1, τ and τ−1.

A.5 Conclusion

We have shown how some of the group operations appearing in IDEA can be replaced by
σ-action operations without modifying the original key-schedule algorithm of IDEA.

The ⊕ group operation have to be kept in order to maintain the involutive property of the
involution component. The other group operations, + and �, can be replaced by σ-action
operations. This replacement can occur either in the group cipher components only or
systematically in all the components. Those new operations are neither commutative nor
associative when the permutations are not equivalent to the identity permutation.

Using σ-action operations to replace some of the group oprations in IDEA has a conse-
quence that goes beyond the original scope of core components in E/D similar iterated
block ciphers. Introducing σ-action ciphers components creates a large family of IDEA-
like algorithms which can be customized. If we call IDEAS (International Data Encryp-
tion Algorithms Systems) this large family of IDEA-like ciphers, all algorithms in IDEAS
look like the original IDEA and have exactly the same key-schedule algorithm as IDEA.
This process of customization allows the user to take advantage of a public, well studied
algorithm while keeping his/her own version secret.

Using σ-action operations can destroy the partial distributive laws of +, � and ⊕ in
IDEA, inherited from the ring of integers. This can make the core operations even more
resistant to linear and differential cryptanalysis. This is a significant improvement from
a cryptological point of view : it destroys unnecessary algebraic properties in IDEA that
help the enemy cryptanalyst.
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