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Abstract 

Fibrosis is an inadequate response to tissue stress with very few therapeutic options to prevent its 

progression to organ dysfunction. There is an urgent need to identify drugs with a therapeutic 

potential for fibrosis, either by designing and developing new compounds or by repurposing drugs 

already in clinical use which were developed for other indications. In this Perspective, we summarize 

some pathways and biological targets involved in fibrosis development and maintenance, focusing 

on common mechanisms between organs and diseases. We review the therapeutic agents under 

experimental development, clinical trials or in clinical use for the treatment of fibrotic disorders, 

evaluating the reasons for the discrepancies observed between preclinical and clinical results. We 

also discuss the improvement that we envision in the development of therapeutic molecules able to 

achieve improved potential for treatment, including indirect modulators, targeting approaches or drug 

combinations.   
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1. Introduction. Molecular and cellular players mediating fibrosis. 

Fibrosis is a maladaptive response to tissue or organ injury, such as chronic inflammation or chemical 

and mechanical insults. These result in metabolic dysregulation, abnormal production of extracellular 

matrix (ECM), formation of stiff scar tissue and compromised organ function. Fibrosis can affect any 

organ of the body. In response to tissue injury, the repair process may result in two distinct 

phenomena, a normal regenerative process, limited in time, in which injured tissues and cells are 

replaced by cells of the same type, maintaining tissue homeostasis; and a chronic fibrotic process, 

non-controlled, in which connective tissue replaces normal tissues. During the process of normal 

remodeling, resolution of organ fibrosis includes regeneration of the normal cell and tissue functions 

and disappearance of myofibroblasts,1 which is a process not observed in chronic fibrotic processes. 

The mechanisms leading to the development of fibrosis are not completely understood and depend 

on the underlying diseases and/or local tissue properties. An inflammatory response to an initial 

injury, whatever the injury, can be postulated in most but not all fibrotic processes. For example, 

inflammation is involved in liver fibrosis; metabolic disorders and inflammation are involved in heart 

and kidney diseases, whereas there is no real inflammation in idiopathic pulmonary fibrosis (IPF). 

The quality of the connective tissue, especially of the collagens, is also important in the maintenance 

of homeostasis in the different tissue compartments. Pathological fibrotic processes are associated 

with abnormal and excessive deposition of an altered ECM by activated (myo)fibroblasts, a 

consequence and a driver of fibrosis,2,3 which finally results in the replacement of normal tissue with 

permanent scar tissue of increased stiffness.4 Whereas there has been progress in understanding some 

of the mechanisms of fibrosis, there is still an urgent need to find new biological targets and 

therapeutics to control fibrosis development, progression and resolution. Indeed, there are very few 

treatment options for this progressive, often fatal condition, which may be responsible of up to 45% 

of deaths in the industrialized world.5,6 Current therapeutics are mostly supportive rather than 

curative, but as ongoing research identifies the molecular pathways that initiate and propagate fibrotic 

processes, better antifibrotic therapeutic possibilities may become available.  

Immune cells (T-cells and macrophages), fibroblasts and epithelial cells all contribute to the 
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development of tissue fibrosis. In fibrotic diseases involving inflammation, macrophages and other 

immune cells are recruited to inflamed/injured tissues to promote diseased tissue clearance, repair 

and healing, and are crucial in maintaining tissue homeostasis. Profibrotic M1-type macrophages can 

locally synthesize a variety of growth factors, pro-inflammatory cytokines, enzymes and ECM 

proteins, whereas M2-type macrophages produce anti-inflammatory compounds, together influencing 

fibrogenesis and its resolution. However, activation of resident and/or recruited tissue fibroblasts into 

activated (myo)fibroblasts is central to the development of fibrosis,7 in conjunction with the 

transforming growth factor-β (TGF-β)-associated signaling pathways.8,9 TGF-β is predominantly 

produced by circulating monocytes, tissue macrophages and cancer cells. Epithelial damage triggers 

the production of TGF-β and its associated molecules, which in turn activate the epithelial-to-

mesenchymal transdifferentiation (EMT) program as well as fibroblasts to become ECM-secreting 

(myo)fibroblasts. TGF-β is synthesized as an inactive latent peptide, needing transconformational 

and/or proteolytic processing to become active. In addition to TGF-β, cytokines (such as interleukin 

(IL)-4, IL-6, IL-13), chemokines (C-C motif chemokine ligand (CCL2)), growth factors (such as 

platelet-derived growth factor, PDGF), cadherins, integrins (in particular the αvβ6 integrin) able to 

activate latent TGF-β via a RGD-binding site, also contribute to the fibrotic processes and hence are 

potential therapeutic targets. Other inducers of fibrosis include the cellular pathways associated with 

the components of the angiotensin and endothelin systems. Angiotensin and endothelin peptides 

exhibit profibrotic activity, enhancing the production and signaling of active TGF-β, ECM deposition 

and fibroblast proliferation and differentiation into collagen-producing myofibroblasts via autocrine 

amplifying loops. During the normal process of tissue remodeling, the final stages include not only 

reduced synthesis but also increased degradation of collagens. An imbalance between the levels and 

activities of proteases secreted by myofibroblasts and/or their inhibitors, may compromise this 

regenerative phase and drive a progressive fibrotic process, suggesting that protease inhibitors also 

are potential therapeutics for controlling fibrosis. Several proteolytic enzymes, such as the matrix 

metalloproteinases (MMPs) or enzymes of post-prolyl-cleaving specificities such as dipeptidyl 

peptidase IV (DPP IV/CD26) or fibroblast activation protein-α (FAP-α) are involved in fibrotic 
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processes. Resolution of organ fibrosis can also be envisioned as a biological process under the 

control of three critical components: 1) eradication of the cause of injury; 2) degradation and removal 

of the fibrotic ECM, mainly by increasing the activity of specific MMPs and/or decreasing the 

expression level of MMP inhibitors; and 3) elimination of fibrogenic myofibroblasts, through 

apoptosis, senescence, de-differentiation and reprogramming, according to not well-defined 

processes.1  

As stated above, the accumulation of proliferating activated ECM-producing fibroblasts and 

myofibroblasts in response to an initial inflammatory stress or tissue injury is central to tissue fibrosis, 

across a range of pathologic states. In comparison with their resting counterparts, activated ECM-

secreting (myo)fibroblasts express de novo specific molecules;10 however, all the precise molecular 

mechanisms are not yet elucidated. Myofibroblasts are activated by a variety of stimuli, including 

mechanical stress as well as autocrine and paracrine inflammatory and non-inflammatory cell-derived 

factors, in particular from the TGF-β pathway. Myofibroblasts are present at very low number in 

normal tissues, but in increased number in healing wounds, fibrotic and cancerous tissues. The 

hallmarks of myofibroblasts consist in the expression of α-smooth muscle actin (α-SMA), comparable 

to smooth muscle cells, the production of ECM, including several collagens, and of ECM-modifying 

enzymes. The source of activated fibroblasts and myofibroblasts is believed to be multiple, potentially 

including tissue-resident fibroblasts, circulating bone-marrow-derived fibrocytes, vascular pericytes 

and epithelial/endothelial cells via EMT and endothelial-to-mesenchymal transdifferentiation 

(EndMT) mechanisms.10-12 The increased number of (myo)fibroblasts could also originate from 

excessive proliferation or acquired resistance to physiological apoptosis of tissue-resident cells. 

Fibroblasts represent a heterogeneous population of cells7,10-15 with diverse features between 

anatomic sites and even within a single tissue. Fibroblasts exhibit considerable functional diversity, 

but it is not clear whether this is due to intrinsic differentiation properties of these cells or if it is a 

response to environmental factors. The identification and characterization of distinct lineages of 

fibroblasts, based on functional roles or with intrinsic fibrogenic potential, suggest that some 

populations of fibroblasts are more prone than others to induce fibrosis. Recently, in the mouse skin, 
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at least two lineages of fibroblasts with different location, capacities for wound healing and the 

production of ECM proteins and to express the Wnt/β-catenin pathway could be distinguished.16,17 

DPP IV was shown to be a cell marker of this fibrogenic lineage and exposure to a DPP IV/FAP-α 

inhibitor during wound healing resulted in diminished cutaneous scarring. Fibroblast heterogeneity 

was stable following transplantation, suggesting tissue origin memory rather than tissue 

environmental differences. In summary, myofibroblasts producing an altered ECM3 with increased 

stiffness4 are found in fibrotic, metabolic, oncogenic and inflammatory diseases, and in implant-

related fibrotic disorders. In this Perspective, we will review what is known about the mechanisms 

involved in the development and maintenance of fibrotic processes in an organ-specific manner in 

order to determine potential therapeutic targets which may be common to all organs. We will also 

discuss some of the drugs developed for therapeutic intervention presently available.  

 

2. Organ-specific fibrosis and therapeutic targets. 

As stated above, fibrosis, the excessive scarring of tissues, is a non-specific terminal pathway of many 

toxic, metabolic and inflammatory diseases and can develop in almost all organs exposed to chronic 

injury.9 Fibrogenic mechanisms are initially aimed at repairing short-term tissue insults, however, 

when repetitive, they lead eventually to organ scaring and failure. While fibrosis represents a final 

common response to injury from ubiquitous processes, the resulting phenotype is tissue-specific and 

the course of organ failure can be highly variable, dependent on local tissue characteristics,18 thus 

presenting opportunities for targeted therapeutic intervention.19 However, in all organs, fibrosis has 

been linked to the activation of the TGF-β signaling pathway, which currently represents the main 

pathway under investigation for the development and evaluation of therapeutic approaches. Below 

we will discuss for the most commonly affected organs some novel therapeutic options to control 

fibrosis and organ dysfunction. The chemical structures of the molecules discussed in the following 

paragraphs are presented in Figures 2 to 16, and some selected clinical trials in Table 1. 

 

2.1. Liver fibrosis  
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Liver fibrosis leading to cirrhosis results from persistent healing attempts to replace defective/dead 

hepatocytes in response to injury and is a common consequence of chronic liver disorders. Following 

liver injury, either toxic or metabolic, hepatic stellate cells and portal fibroblasts transform into 

myofibroblasts and with disease progression express the integrin αvβ3. Hepatic stellate cells are 

responsible for maintaining the ECM in the liver and activation of these cells leads to excess collagen 

formation and fibrosis. Controlling the functions of stellate cells may thus represent means of 

regulating the fibrotic response.20 Kupffer cells are an important source of cytokines and are known 

to stimulate stellate cells to secrete hepatocyte growth factor (HGF). Presently, there is no effective 

therapy for liver fibrosis. However, as compared to other organs, the liver has some potential for 

regeneration. Proteolytic digestion of collagens with disappearance of myofibroblasts may resolve 

fibrosis upon cessation of liver injury.21,22 Liver fibrosis has been mostly studied in nonalcoholic fatty 

liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), either in animal models of the disease 

or human surgical specimens.23 NASH covers a range of diseases that result from fat accumulation 

in the liver leading to liver inflammation, scarring, irreversible damage and liver failure. NASH is 

currently estimated to affect up to 20 to 30% of the general population in the western world. Patients 

with type-2 diabetes mellitus and morbid obesity are the most affected. Thus, fatty acid metabolic 

pathways have been evaluated as therapeutic targets. Peroxisome proliferator-activated receptor 

(PPAR)-γ agonists combined with cholesterol-lowering agents, the “statins”, possibly associated with 

omega 3 fatty acids, antidiabetic agents or vitamin E, have been proposed;24,25 but only very limited 

clinical trial data are presently available. Farnesoid X-activated receptor (FXR) agonists are under 

investigation as potential treatment for multiple metabolic and liver disorders. For example, single 

agonists to the FXR receptor26 and the PPAR-γ receptor 27 or dual PPAR-γ/FXR agonists28 are under 

clinical development for NASH. A liver-directed oral inhibitor of acetyl CoA carboxylase (ACC), an 

enzyme involved in the metabolism of fatty acids in the liver, has shown beneficial effects in animal 

models and in a clinical trial in overweight adult male subjects.29 In NASH, the protein 

sterol regulatory element-binding protein 1 (SREBP-1), which regulates fatty acid biosynthesis in the 

liver, is increased, and could represent another therapeutic target.30 The renin-angiotensin system 
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(RAS) has also been implicated in NASH. However, trials including angiotensin receptor type 1 

(AT1R) blockers produced mixed results, while control of obesity, of insulin resistance and of 

hypercholesterolemia may be more efficient to reverse fibrosis.31 Fibroblast growth factor 21 

(FGF21) is a hepatoprotective hormone identified as a substrate of FAP-α, a membrane-bound 

protease expressed at sites of tissue remodeling, inflammation and fibrosis. Cleavage by FAP-α 

inactivates FGF21, while FAP-α inhibition increases endogenous levels of active FGF21, making 

FAP-α an attractive target for liver diseases.32,33 The lysyloxidase-like 2 (LOXL2) enzyme catalyzes 

the oxidation of ε-amines of lysine residues within collagen, generating reactive aldehydes that 

condense to form collagen cross-linkages. Dysregulation of this process can lead to fibrosis and 

LOX(L) inhibitors were shown to significantly reduce fibrosis in mouse models. Following on these 

experimental results, a phase I trial was completed in healthy volunteers.34 Blocking chemokine 

pathways is also a promising approach and a dual C-C chemokine receptor (CCR)-2/5 antagonist is 

under a phase IIb study in adults with NASH and liver fibrosis (CENTAUR study) after promising 

results in experimental rodent models.35 The clinically approved family of DPP IV inhibitors, the 

“gliptins”, and several kinase inhibitors are evaluated in various clinical trials, either completed or 

ongoing, but no molecule has been presently approved for this indication. In animal models, another 

promising target, besides TGF-β, is the sphingosine axis,36 expressed and active in many organs and 

tissues. Sphigosine-1-phosphate (S1P)/S1PR signaling has both pro- and anti-fibrotic effects 

depending on the context and site of action.37 In the liver, S1P is involved in profibrotic processes, 

including the differentiation of resident hepatic stellate cells into activated myofibroblasts.38  

 

2.2. Lung fibrosis  

In the lung, fibrosis encompasses a variety of idiopathic disorders with distinct clinical phenotypes, 

characterized by progressive replacement of normal alveolar structures by dense connective tissue 

that prevents normal gas exchange. Idiopathic pulmonary fibrosis (IPF) is the most frequent, 

progressive and fatal fibrotic lung disease that eventually leads to respiratory failure and death. 

Presently, lung transplantation is the sole curative intervention for IPF. The contribution of 
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inflammation is not the main driver of IPF, but can orchestrate existing fibrotic responses.39 

Unfortunately, no animal model truly reproduces the pathogenesis of IPF. The mouse bleomycin 

model has been nevertheless extensively studied, but bleomycin is associated with a marked influx 

of inflammatory cells into the lung parenchyma, in contrast to IPF in humans. A recent review has 

described the therapeutic agents of interest in IPF.40 We will not repeat the discussion of the molecules 

presented in this review with some exceptions for the compounds that we believe are of a broader 

interest in the development of therapies for fibrotic diseases other than IPF. Currently no approved 

treatment can cure this disease, nevertheless, pirfenidone (1, structure in Figure 2), a pleiotropic anti-

inflammatory, anti-fibrotic and antioxidant molecules, and nintedanib (63, structure in Figure 9), a 

multikinase inhibitor, have been shown (ASCEND, CAPACITY, TOMORROW and IMPULSIS 

trials) to slow down disease progression and prevent acute exacerbations in patients with IPF, and 

have been recently approved for the treatment of IPF. In lung fibrosis, most mechanisms of disease 

induction converge toward the TGF-β pathway, making this pathway an obvious target for the 

development of therapy.41 In addition, myofibroblasts are activated by the components of the 

endothelin axis, another potential therapeutic target.42 TGF-β induces endothelin (ET)-1 expression, 

forming an autocrine amplifying loop. ET-1 is chemotactic and proliferative for fibroblasts, induces 

α-SMA expression, ECM accumulation and contraction, and the myofibroblast phenotype in human 

lung fibroblasts, mediated by the ETA and ETB receptors. ET receptor antagonists are approved for 

the treatment of pulmonary hypertension. The dual ET-1 receptor antagonist bosentan (40, structure 

in Figure 6) decreases collagen I and III synthesis by fibroblasts, suggesting that ET-1 receptors 

antagonists may have therapeutic potential in lung fibrosis. However, several phases II or III clinical 

trials in patients with established pulmonary fibrosis of the dual ETA/B antagonists 40 (Build-1, -2 and 

-3 trials) and macitentan (41, structure in Figure 6) (MUSIC trial) and the ETA-selective ambrisentan 

(43, structure in Figure 6) (ARTEMIS trial) produced negative results. Acquisition of an apoptosis-

resistant myofibroblast phenotype in the injured lung is mediated, at least in part, by the sustained 

activation of focal adhesion kinase (FAK) and protein kinase B (PKB/Akt).43 A C-Jun N-terminal 

kinase (JNK)-1 inhibitor is currently being evaluated in a phase I/II trial. A reversible inhibitor of 
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PI3K/Akt/mammalian target of rapamycin (mTOR) and the approved immunosuppressive drug 

sirolimus/rapamycin (16, structure in Figure 3), also targeting mTOR, are being evaluated in double-

blind placebo-controlled trials. A Rho-associated protein kinase (ROCK) II inhibitor is in phase II 

trial. Compounds with anti-inflammatory and anti-oxidative properties were shown to attenuate or 

even reverse fibrosis in several animal and clinical studies.44 A multikinase inhibitor related to the 

natural antioxidant quercetin (110, structure in Figure 11) is presently being evaluated in a phase I 

trial. Basic fibroblast growth factor (bFGF) is mitogenic for human lung fibroblasts via the 

plasminogen activator inhibitor type 1 (PAI-1) cascade.45 Inhibitors targeting among others platelet-

derived growth factor receptor (PDGFR)α/β, and vascular endothelial growth factor receptors 

(VEGFRs) have been evaluated in several clinical trials with some positive effects.46 The protease 

FAP-α is selectively expressed by activated myofibroblasts. FAP-α, in concert with MMPs, 

participates in collagen catabolism and clearance, scar resolution and restoration of lung homeostasis, 

displaying protective effects in murine experimental models.47 Loss of this protease was associated 

with fibrosis exacerbation in FAP-α-deficient mice exposed to bleomycin. Fatty acid pathways have 

also been studied. Agonists to the S1P pathways are pro-fibrotic in human lung fibroblasts in a Smad- 

independent mechanism.48 Lysophosphatidic acid (LPA) is a bioactive phospholipid acting on LPA 

receptors. Results in LPA1 receptor-knockout mice suggested that blocking LPA1 signaling could 

provide a potential novel approach for the treatment of IPF.49 A selective LPA1 antagonist inhibited 

proliferation and contraction of normal human lung fibroblasts following LPA stimulation.50 An 

antagonist to the LPA1 receptor has been tested in a phase II trial, but results are not yet published. 

An inhibitor of autotaxin (ATX), an enzyme involved in the synthesis of LPA, is evaluated in an 

ongoing phase II trial. As IPF is characterized by a paucity of inflammatory cells within the lung 

parenchyma, classical anti-inflammatory treatments such as glucorticosteroids or purine inhibitors 

have proven ineffective, except for acute exacerbation episodes. A small molecule antagonist of the 

αvβ6 integrin was evaluated in phase I trials.51 Drugs modulating the immune system have mostly 

involved antagonizing antibodies, which we will not discuss in the present Perspective. Stem cell 

therapies and anti-senescence therapies are novel therapeutic approaches to repair damaged tissue. 
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They are too recent and only in early preclinical stage to draw conclusion, but they may be interesting 

targets to pursue. 

 

2.3. Kidney fibrosis 

Fibrosis in the kidney is the final common pathway following severe acute and chronic kidney 

diseases, independent of the type of initial injury. Inflammatory and non-inflammatory stresses can 

affect the structure and physiological function of the glomeruli (the main filtration barrier that 

determines global kidney function) and/or the tubulointerstitial compartment, leading to progressive 

renal failure requiring dialysis or renal transplantation.52,53 Acute kidney injury is an increasing 

common clinical disorder, in particular in frail and hospitalized patients, due to multiple causes, such 

as ischemic injury and exposure to nephrotoxic substances.18,54,55 Oxidative stress-mediated injury as 

well as toxins mainly affect the tubulointerstitial compartment resulting in an inflammatory response. 

This process is characterized by fibroblast proliferation near the site of the injury, the appearance of 

α-SMA-positive activated myofibroblasts depositing excessive ECM in the interstitial space, and the 

activation of an EMT program in tubular epithelial cells.54,56-58 The crosstalk between tubular cells 

and myofibroblasts in driving fibrosis is not clear, but seems to involve the transcription factors Snail 

and Twist that regulate EMT.56,59,60 The glomerular compartment can also be damaged by acute or 

chronic primary glomerulopathies as well as during systemic ongoing diseases such as diabetes. 

Defaults in the metabolism of fatty acids, driven by TGF-β1 and involving PPAR-γ pathways, have 

also been implied. PPAR-γ agonists activating the S1P axis are anti-fibrotic in the kidney.61 

Activation of PPAR-γ by synthetic agonists,62 the “glitazones” rosiglitazone (117) or pioglizazone 

(118, structures in Figure 12), approved in the treatment of type-2 diabetes, inhibit TGF-β profibrotic 

effects. These molecules are presently under clinical evaluation for kidney fibrosis. Activation of ET-

1 receptors has also been implicated in the pathophysiology of chronic kidney disease and particularly 

in diabetic nephropathy. Animal models have shown beneficial effects on proteinuria and kidney 

function of the blockade of the endothelin axis, using either dual ETA/B or ETA-selective antagonists.42 

For example, an ETA-selective antagonist is in phase III for diabetic nephropathy.42 Central to the 

https://en.wikipedia.org/wiki/Diabetes_mellitus_type_2
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therapy of kidney diseases are antagonists to the RAS, either angiotensin converting enzyme (ACE) 

inhibitors, AT1R antagonists or antagonists to mineralocorticoids, which have been in clinical use for 

decades for hypertension and cardiovascular disorders. However, in glomerular fibrosis, RAS 

blockade only modestly slows down progression. The RAS is a potent inducer of TGF-β, suggesting 

that anti-RAS drugs should be associated with TGF-β antagonists.63 Angiotensin (Ang) II activates 

the epidermal growth factor receptor (EGFR) pathway, another potential therapeutic target in renal 

fibrosis.54,64 The bone morphogenic protein (BMP) receptor activin–like kinase 3 (Alk3) has anti-

fibrotic properties in the tubular epithelium, inhibiting TGF-β1/Smad3 signaling, epithelial damage 

and fibrosis. The peptide AA123/THR123 BMP7 agonist could reverse fibrosis in mouse models of 

kidney injury and are presently in Phase I for acute kidney injury.65,66 Combining AA123/THR123 

and the approved ACE inhibitor, captopril (35, structure in Figure 5), exhibited additive therapeutic 

benefit in controlling fibrosis. Anti-TGF-β therapeutics clinically evaluated include neutralizing 

antibodies and antisense or silencing nucleotides. The small molecule antagonist of the TGF-β 

receptor 1 has been examined in several clinical trials for diabetic nephropathy and was proposed to 

be effective in slowing the decline of renal function. Tranilast (17, structure in Figure 3), a drug 

approved for bronchial asthma and hypertrophic scar, as well as new cynnamoylanthranilate 

analogs,67 have been shown to inhibit the TGF-β and PDGF pathways and are presently under clinical 

evaluation for the treatment of diabetic nephropathy. Additional pathways such as integrin-linked 

kinases and Wnt/β-catenin, which have a central role in EMT regulation, have been suggested to be 

potential therapeutic targets for renal fibrosis. Activation of the Wnt/β-catenin, pathway, of which the 

RAS is a target in the kidney, enhances renal fibrotic processes.68 Inhibition of the Ca2+-activated K+ 

channel (KCa3.1) inhibits TGF-β-induced upregulation of ECM-associated genes in renal 

fibroblasts.54,57,69 Janus kinase/signal transducers and activators of transcription (JAK/STAT)-3/6 that 

governs lymphocyte functions has an important role in interstitial fibrosis development which is 

abolished by a JAK3 inhibitor.70 An antagonist to the CCR2 chemokine is being evaluated in three 

phase II trials for diabetic nephropathy.71 The kidney is the organ expressing the highest levels of the 

protease DPP IV which has been associated with cell survival and ECM remodeling, suggesting that 
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beside their glucose-lowering action, DPP IV inhibitors, the “gliptins”,72 may have potential renal 

protective effects, inhibiting EndMT.73,74 Anti-cholesterol agents, the “statins”, diminish EMT, TGF-

β signaling and oxidative stress in glomerular cells.75 An antioxidant NADPH oxidases (NOX1/4) 

inhibitor is in phase II trial for diabetic nephropathy. A non-selective phosphodiesterase (PDE) 

inhibitor is under one phase III and two phase IV clinical trials and the PDE-5-selective PF00489791 

is in phase II all for diabetic nephropathy.76 It has to be underlined that in the kidney the course of 

fibrosis progression is heterogeneous between patients, depending on the nature of the injury, 

continuous activation of the (myo)fibroblasts and patient-associated environmental and genetic 

factors.77 Facilitating regeneration through the ability of resident progenitor cells to differentiate into 

new renal cells was shown in experimental models to enhance recovery from acute kidney injury.78 

 

2.4. Cardiovascular system-associated fibrosis 

Fibrillar collagen-1 is the main protein of the heart structural ECM network, providing a scaffold for 

and regulating the contraction of cardiomyocytes. This ECM scaffolding is maintained by interstitial 

fibroblasts. In heart diseases, such as ischemic cardiomyopathy, cardiomyocytes loss is observed but 

the heart structural integrity is maintained by activated myofibroblasts in a healing response, with 

formation of a scar tissue involving stiff crosslinked fibrillar collagen-1 and various ECM proteins. 

With disease progression, this initial reparative process results in an amplification loop of continuous 

fibrogenesis and general cardiomyocyte dysfunction. The mediators and pathways involved are the 

RAS, the ET-1 axis and TGF-β-dependent signaling, growth factors, macrophage-derived pro-

inflammatory molecules, such as tumor necrosis factor (TNF)-α, oxidative stress, and proteases. 

Candidate proteases include MMP-2 and MMP-9,79 as well as the serine proteases FAP-α80 and DPP 

IV expressed by activated fibroblasts and smooth muscle cells.81 The PREMIER clinical trial of a 

MMP inhibitor was not conclusive of a beneficial effect.82 FAP-α is induced by TNF-α in activated 

myofibroblasts and can degrade type-1 collagen.80,83 In vascular diseases, atherosclerotic plaque 

rupture is facilitated by the protease activity of FAP-α able to degrade type-1 collagen.83 Antifibrotic 

therapeutics for heart diseases include anti-oxidants such as flavonoids, mitochondrial regulators such 
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as cyclosporin A (20, structure in Figure 3), β-adrenergic receptor antagonists and inhibitors of the 

angiotensin and endothelin pathways, such as the “sartan” family of AT1R antagonists or ACE 

inhibitors (ACEI) and the “sentan” family of ETRs antagonists. Both activators and antagonists of 

the fatty acid pathways, such as the S1P/S1PR axis, must also be considered, as well as antagonists 

to inflammatory mediators, since most chronic heart diseases have an inflammatory component. 

Antagonizing the binding of stromal cell-derived factor 1 (SDF1, also known as C-X-C motif 

chemokine 12 (CXCL12)) to its CXCR4 receptor was as efficient in reducing cardiac fibrosis as 

inhibiting the binding of Ang II to AT1R, independently of the level of blood pressure control.84 Notch 

signaling has also been involved in cardiac and other organs fibrotic processes.85 Notch activation 

was shown to be protective by reducing the effects of the profibrotic cytokine TGF-β on the 

differentiation of fibroblasts into myofibroblasts, the production of fibrillary type-1 collagen, as well 

as EMT and EndMT. These data suggest that activating Notch functions, for example with soluble 

Notch ligands or Notch pathway activators including the hormone relaxin, may be beneficial in 

preventing cardiac fibrosis.86,87 Relaxin indeed affects collagen metabolism, inhibiting collagen 

synthesis and enhancing its breakdown by MMPs. Adenosine and its G-protein coupled receptors 

(GPCR), in particular the A2BAR, are able to modulate fibrosis in the heart following myocardiac 

damage. In the early stages of the disease, Adenosine receptor (AR) agonists seem to be anti-fibrotic 

whereas antagonists seem to be of interest for a chronic treatment.88  

 

2.5. Wound healing  

Wound repair involves stages of inflammation, tissue regeneration and remodeling. In the healing 

skin, α-SMA-positive myofibroblasts contract and exert mechanical tension on the ECM causing it 

to be reorganized into a functional connective tissue with the formation of a normal temporary 

fibrogenic process, the closing of the wound and the reconstruction of a functional skin. As already 

stated, discrete skin fibroblast lineages have been described, at least in mice, depending on their 

embryonic origin and their expression of specific markers, in particular of the Wnt/β-catenin pathway, 

and their capacity to deposit ECM in response to fibrogenis stresses. The subset of fibroblasts 

https://en.wikipedia.org/wiki/Collagen
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contributing mainly to ECM deposition are DPP IV- and likely also FAP-α-positive,16,17 and express 

ADAM12,89 suggesting potential therapeutic intervention targeting these proteases. Two deviations 

from the normal process of healing may happen in the skin: an over-reaction of the myofibroblasts 

resulting in scar tissue as observed for example in scleroderma or in cheloid formation, or on the 

contrary the absence of wound closing and the formation of ulcers. Scleroderma is an autoimmune 

chronic connective tissue disease that may be limited to the skin of the face and extremities, but it 

may also affect internal organs (systemic sclerosis) including lungs, heart, gastrointestinal tract and 

kidneys. The etiology is not well defined and no specific treatment is currently available. The 

prognosis is determined by the form of the disease and the extent of visceral involvement. The 

underlying mechanism involves abnormal growth of connective tissue, exaggerated deposition of 

collagen and ECM, and tissue fibrosis, which is believed to occur as a result of an initial insult by the 

immune system. Some biological pathways have been implicated, including the TGF-β and PDGF 

signaling pathways, as well as the endothelin axis. The purinergic P2X7 receptor, a nucleotide-gated 

ionotropic channel primarily involved in inflammatory response, may also play a role.90  Therapeutic 

approaches have been based on the control of myofibroblasts differentiation and recruitment.91 In this 

regard, the Wnt/β-catenin/tankyrase signaling is an important mediator of sustained fibroblast 

activation in fibrotic diseases, including systemic sclerosis.92 Chronic non-healing wounds are 

characterized by unresolved inflammation, impaired fibroblast function and ECM deposition, and 

increased levels of proteolytic activity. To date, approved therapies for chronic cutaneous wounds 

include human skin substitutes and recombinant human PDGF. Blockade of the endothelin axis by 

the dual ETA/B antagonist 40 for digital ulcers is presently approved, following the demonstration in 

phase III and IV trials, of beneficial effects on the development of new ulcers. However, many 

patients affected with chronic ulcers remain unhealed, suggesting that the design of novel topical 

therapies is necessary.93  

 

2.6. Allogeneic transplant-associated fibrosis 

Solid organ, cell or engineered tissue transplantation are therapies required in the treatment of patients 

https://en.wikipedia.org/wiki/Connective_tissue
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with end-stage organ diseases. Graft-associated fibrosis is a predictor of dysfunction of solid organ 

transplants and implanted biomaterials.5,57,94 While the development of potent immunosuppressive 

regimens has resulted in improved short-term allograft outcome, long-term survival and functioning 

of the grafts remain a challenge. Beside alloimmune injuries such as cell- and antibody-mediated 

rejection, late allograft loss is often due to a conjunction of non-immune factors, such as local 

oxidative stress due to ischemic injury, or the toxicity of immunosuppressive drugs used for 

maintenance therapy, leading to progressive non-specific inflammation, ECM deposition by tissue 

(myo)fibroblasts and fibrosis. Some degree of ischemia-reperfusion injury is unavoidable in the early 

phase of organ transplantation and influences both short-term and long-term allograft outcome. 

Carbon monoxide (CO) has attracted attention as a medical gas with anti-inflammatory and anti-

apoptotic effects. CO decreases oxidative stress and mRNA expression of proinflammatory 

cytokines. In experimental models of kidney transplantation, CO inhibited inflammation, interstitial 

fibrosis, tubular apoptosis and injury.95 By controlling leukocyte trafficking, S1PR agonists produce 

clinical immunosuppression useful for preventing transplant rejection and treating immune diseases. 

However, they also cause side effects due to the activation of different S1PRs, suggesting that 

receptor-specific agonists or antagonists may be preferable. S1PR modulators attenuated myocardial 

fibrosis following heart transplantation by reducing oxidative stress and apoptosis in a rat 

experimental model.96 The complement pathway is part of the innate immune system. Inappropriate 

activation of this system is involved in organ dysfunction in transplantation, in particular in kidney 

transplantation. The complement cascade may be activated by ischemia/reperfusion injury and other 

non-specific inflammatory processes, representing a potential therapeutic target.97 But to the best of 

our knowledge, no small molecule has presently been developed able to inhibit complement 

activation (apart from anti-C3a and C5a antibodies). DPP IV/CD26 is a co-stimulator of T-cells and 

a therapeutic target for type-2 diabetes. Following transplantation, type-2 diabetes is a common side 

effect of immunosuppressive anti-rejection therapies, which is improved by DPP IV inhibition.98 In 

a murine model of lung allograft DPP IV inhibition promoted graft acceptance by reducing T-cell 

infiltration and modulating cytokine expression.99 The secretion of TGF-β by activated fibroblasts 
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together with other cytokines and chemokines, the activation of the mammalian target of rapamycin 

(mTOR) pathway, the release of ET-1, prostacyclins, MMPs and the activation of the RAS by 

immunosuppressive drugs are some of the identified culprits of allograft fibrosis and dysfunction. 

However, no clinically evidence-based regimen has emerged so far. Another form of transplantation 

and regenerative medicine is represented by the direct transfer of cells, mostly by injecting them in 

the blood or following encapsulation into a polymeric device. Therapeutic mesenchymal stem cell 

therapy100 has raised hopes for new treatments as these cells have high self-renewal capacity and can 

generate multiple cell lineages. They can be isolated from many tissues such as bone marrow, 

amniotic fluid, skin, heart, kidneys, liver and the adipose tissue. Amnion-derived fetal epithelial cells 

which are non-immunogenic and have anti-inflammatory and anti-fibrotic potential101,102 are of 

potential interest. Autologous or allogeneic mesenchymal stem cells are presently under evaluation 

in many clinical trials (ClinicalTrials.gov) for the treatment of organ fibrosis, including after 

transplantation. As many adult tissues contain stem and progenitor cells able to proliferate, 

differentiate and maintain tissue homeostasis and repair, efforts have been made to enhance these cell 

populations using small molecules.103 

 

2.7. Medical bio-device implants-associated fibrosis  

Biomedical devices have important applications as orthopedic, dental and breast implants, 

pacemakers, vascular grafts, heart valves, intraocular lenses, drug delivery devices and biosensors. 

The fate of almost all medical implants is dictated by the biological response at the interface of host 

tissue and the implanted devices.104 The engineering of safe biomaterials is fundamental since tissue-

replacement scaffolds in regenerative medicine provide physical support and deliver biologically 

active molecules and cells, or mobilize endogenous cells to repair, maintain, replace or enhance the 

function of a specific tissue or organ.105 Medical devices must be biocompatible, not activating the 

immune system,106 and functional, displaying properties adapted to the aims of the replacement.107 

However, many bio-materials promote local inflammation, the adhesion, proliferation and activation 

of (myo)fibroblasts, resulting in abnormal tissue repair and fibrosis, ultimately hindering long-term 
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functioning of the devices. For example, we have shown (LJJ; unpublished results) that human 

fibroblasts grown in 3-dimensional collagen lattices in which a synthetic surgical implant was 

incorporated enwrap the implant in a thick ECM layer (Figure 1).  

 

                                          

Figure 1. Implant-induced fibrosis. Three-dimensional culture in collagen gels of human fibroblasts 

with a surgical mesh. Left: at the initiation of the culture no ECM layer could be detected; right after 

two weeks of culture the fibroblasts adhered to the mesh and secreted a thick ECM layer (brown layer 

tightly surrounding the mesh). 

 

The mechanisms behind implant-associated fibrosis are postulated to involve an initial, and probably 

repetitive, injury and tissue stress at the interface of the implant and the receiving tissue.108 

Manipulating the surface chemistry of biomaterials104 is a way to modulate protein recognition and 

biomaterials-host contact and, subsequently local the inflammatory response. Several support systems 

may be envisioned, natural source-derived, polymer-derived or tissue-derived following sophisticated 

processing. To be accepted by the host tissue, a medical implant requires two main properties: first 

to resist inflammation and subsequent fibrosis development, and second  to support vascularization, 

to bring nutriments, growth factors and oxygen for local physiological needs.109,110 The development 

of a functional vascular system depends on the response of vascular cells to inflammation and 

oxidative stress.111,112 Thus, controlling these processes will improve the viability of the 

bioengineered implants. These issues have been addressed by innovative approaches: the 

development of tissue-engineered blood vessels for arterial revascularization, and the production of 

non-immunogenic de-cellularized 3-D matrix organ scaffolds that can be re-cellularized with host-

derived stem cells, as performed in experimental models and pioneering clinical studies in the 

respiratory system.112,113 Modulating the local cell responses against engineered structures must also 
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involve controlling the release of pro-inflammatory cytokines/chemokines induced by biomaterials. 

Besides the modification of the physical and chemical properties of biomaterials to minimize 

inflammatory responses, novel therapies are being developed, based on cells with specific anti-

inflammatory functions.114 Presently, very few studies have aimed at developing anti-fibrotic 

strategies in the context of implanted biomaterials. However, there is an urgent need to develop 

strategies to prolong the physiological life of the implant and prevent implant failure. Up to now, 

most tissue-engineered products have been used in the clinic for the management of burns and severe 

wounds, as well as for cartilage and bone replacement. We believe that evaluating and comparing 

what has been developed in several organs as anti-fibrotic therapy for other situations may allow to 

define relevant strategies to prevent fibrosis associated to implants. Molecules able to favor medical 

device implantation are also under development, which includes 1,115 an approved drug for treating 

IPF.  

 

2.8. Cancer-associated fibrosis 

Tumors are heterogeneous populations of cells, the tumor cells themselves, inflammatory and 

immune cells, vascular cells and cancer-associated (myo)fibroblasts (CAFs) interacting with each 

other through direct interactions or mediated by secreted factors and their receptors, as well as 

enzymes, including many kinases, all influenced by inflammation-derived signaling processes.116 The 

fibrotic tumor stroma has only recently emerged as a potential target for anti-cancer therapy. Many 

previous and recent reviews117,118 have discussed the involvement of the stroma in cancer progression, 

including CAFs, thus we will only summarize the information relevant to our purpose provided in 

these reviews. CAFs express specific markers and display distinct properties and origin,117-119 and are 

resistant to apoptosis. CAFs recruited to the stroma of tumors modulate oncogenic processes and 

cancer progression. They produce an altered cross-linked ECM3 of increased stiffness,4 which 

influences tumor immunity, vascularization and metastatic behavior, as well as the distribution of 

therapeutics. Collagen cross-linking is dependent on the action of LOX and LOXL enzymes. 

Inhibitors for these enzymes are under investigation. Collagen cross-linking might be also indirectly 
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targeted with the approved immunosuppressive drug tacrolimus/FK506 (18, structure in Figure 3) 

which inhibits FKBP65 a peptidyl prolyl isomerase that enhances lysine-hydroxylase-2 (LH2) 

activity.120 Classically, CAFs are considered as pro-tumorigenic, however, when in a non-stimulated 

form, tumor-resident fibroblasts may also display anti-tumoral functions, promoting anti-tumor 

immunity similar to what is known about polarized pro- and anti-tumor (M1 and M2, respectively) 

populations of macrophages. From a therapeutic view, selectively promoting anti-tumor fibroblast 

populations would be more interesting, than eradicating all fibroblast populations. CAFs express 

and/or secrete TGF-β, CXCL12/SDF1 and its CXCR4 receptor, Notch, Wnt and HGF (the cMet 

ligand expressed on tumor cells and involved in cell scattering and invasion), several cytokines, 

chemokines, growth factors, proteins, and enzymes. CAFs also express fibroblast-specific protein-1 

(FSP-1/S100A4), α-SMA, FAP-α and PDGFRβ. Altogether, this results in the activation of the EMT 

and the metastasis programs,121 but also provides targets for therapy. In CAFs the transcriptional 

regulator heat shock factor 1 (HSF1) is activated and regulates cancer cell growth via TGF-β and 

CXCL12/SDF1 signaling in an autocrine loop.122 CAFs have been involved in promoting cancer stem 

cell properties via insulin-like growth factor (IGF)1R-Akt signaling, suggesting the applicability of 

antagonists of IGFR, however, combination therapies will probably be necessary.123 The enzyme 

FAP-α is expressed in the stroma directly surrounding epithelial cancers and in melanoma and 

sarcoma tumor cells. FAP-α inhibition is generally considered a potential therapeutic target for 

oncologic diseases. The proteolytic activity of FAP- is pro-fibrogenic being involved in remodeling 

of the ECM, in particular increasing the levels of fibronectin and collagen fibers, an effect mediated 

by the α9β1 integrin which contributes to the recruitment of CAFs.124-126 Thus, antagonists to integrins 

are also of potential therapeutic value in oncologic contexts. Tumor-associated S1P kinase signaling 

pathway promotes the differentiation of fibroblasts into myofibroblasts, then myofibroblasts-

associated S1P kinase via a S1P receptor promotes tumor cell dissemination,127 suggesting that the 

S1P axis is a potential target for controlling CAFs. The enzyme thrombin can directly stimulate ECM 

deposition, fibroblast proliferation and differentiation into myofibroblasts. Several thrombin 

inhibitors have been developed in the context of coagulopathies and may be of therapeutic interest. 
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In normal tissues, epithelial cells create an anti-inflammatory milieu which is lost in cancer and may 

be an initial signal for fibrotic responses. The combination of 1 and 63, two drugs approved for the 

treatment of IPF has demonstrated a survival benefit in cancer.128 A phase II clinical trial combining 

the approved AT1R antagonist losartan (37, structure in Figure 5) and FOLFIRINOX regimen is 

underway in pancreatic cancer. Chemotherapy- and radiotherapy-induced fibrosis in cancer survivors 

is a common complication of therapeutic cancer regimens.19 Targeting tumor stromal cells would be 

advantageous as these cells are genetically stable and therefore less prone to develop resistance 

mechanisms. Stromal cells also express specific markers, different of the markers expressed by tumor 

cells, thus, allowing more diversified combination and targeted therapies. In cancer, therapeutic 

attempts have been mainly, with a few exceptions, directed at blocking the effects in tumor cells of 

factors secreted by CAFs, or to develop drugs aimed at modulating the vascular and immune systems 

in the stroma. Very few preclinical and clinical attempts have been made (yet) aimed at directly 

targeting CAFs.  

 

2.9. Common mechanisms and therapeutic strategies 

In summary, during development and wound healing, physiological fibrogenesis maintains 

connective tissue integrity and structure through the synthesis of ECM. However, chronic organ stress 

results in fibrosis, overgrowth, hardening, and scarring of tissues, ultimately progressing to loss of 

organ function. Currently, there are very few approved anti-fibrotic therapeutic drugs (3.1.) and often 

these drugs are only slowing disease progression. Whilst the pathology of fibrosis and its functional 

significance are well described, its molecular regulation and therapeutic targets for preventing and 

treating fibrosis are less understood. Whereas fibrosis represents a final common pathway to injury, 

the course of organ failure can be highly variable, dependent on local tissue characteristics.18 It seems 

however possible to generalize some findings between organs, as common key contributors to fibrotic 

diseases have been identified and are as outlined in Schema 1. The TGF-β1 signaling pathway (3.2.) 

is central to fibrosis,129-131 and selectively antagonizing it is mandatory in the therapeutic arsenal. An 

inflammatory stress has been shown to be relevant in the initiation of fibrosis in defined organs, but 
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inflammation seems to be less involved in later stages. Thus, anti-inflammatory strategies (3.3.) must 

be initiated early in the course of the disease. Controlling the bioactive lipid S1P (3.4.) is also very 

relevant in anti-fibrotic therapies for all organs considered.37,96 Depending on the context, targeting 

the kinases acting on sphigosine or developing agonists and/or antagonists for the S1PRs is to be 

considered. Targeting vasoactive peptides, in particular angiotensin and endothelin and their 

receptors (3.5.), also represent common mechanisms in the development and progression of fibrosis. 

In many organs, RAS blockade is currently the best available anti-fibrotic therapy.82 Activation of 

AT1R by Ang II mediates inflammation and fibrogenesis, whereas activation of the AT2R has counter-

regulatory anti-inflammatory and anti-proliferative effects, suggesting that compounds activating 

AT2R have therapeutic interest.132 The blockade of ETA/B receptors by itself was shown to be not 

sufficient to control fibrosis progression,42 but combination therapies with ET-1 receptor(s) 

antagonists provided interesting results. Several enzymes, in particular some proteases and the 

lysyloxidases have been shown to be involved in fibrotic processes and inhibitors able to control their 

activity have been developed and evaluated (3.6.). Kinases and receptors involved in the 

differentiation of fibroblasts into activated (myo)fibroblasts have also been the targets of anti-fibrotic 

strategies (3.7.). Modulators of several metabolic pathways, in particular oxidative stress, PPAR-γ, 

FXR and the synthesis of fatty acids (3.8.) have also been developed and evaluated. Controlling the 

adenosine pathway, in particular the A2BAR,88 and the Notch1 pathway85,86 are also relevant to 

fibrogenesis therapy. A few natural products have shown interesting properties and may be relevant 

for developing synthesis programs and optimization (3.9.). Finally, cell therapy options must be 

considered (3.10.) to replace organ transplantation in terminal diseases. Stem cell therapies offer 

opportunity to enhance tissue repair in chronic organ diseases.101,102,133 but in this Perspective these 

therapeutic approaches will only be outlined and not discussed in detail. In conclusion, the recent 

development of treatment strategies offers the prospect of more efficacious therapies to prevent or 

even treat fibrosis (see Table 1 for the list of clinical trials). However, as these anti-fibrotic therapies 

may target widely expressed and important physiological pathways, it will be mandatory to develop 

tissue-selective approaches.  
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Schema 1. Schematic representation of cellular pathways mediating fibrosis.  

 

3. Anti-fibrotic therapeutics. 

A large amount of potential therapeutics against fibrotic diseases have been designed, prepared and 

evaluated in vitro, in animal experimental models (Figures 2-10) and for some of them in clinical 

trials (summarized in Table 1). Several excellent previous review papers have described in detail the 

molecules that have been designed, prepared and evaluated.40,134-137 We will not repeat here in deep 

all this information, but only outline the most relevant characteristics of these previously described 

therapeutics. Therefore, in this chapter, we will discuss a selection of small molecules developed for 

the prevention and therapy of fibrosis and fibrosis progression, excluding genetic tools, antibodies 
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and analogs of proteins. We will also not discuss in detail cell-based therapies that were recently 

reviewed.102 We have chosen to discuss the development of therapeutics according to the 

physiological pathways targeted, rather than the affected organ/tissue in an attempt to extract relevant 

information of more general interest for anti-fibrotic therapy in human diseases.  

 

3.1. Clinically approved drugs for the prevention and treatment of fibrosis. 

Presently, only very few drugs, in particular 1 (pirfenidone, trade names Esbriet, Pirespa, Etuary, 

structure in Figure 2) and 63 (nintedanib/BIBF1120, trade name Ofev, structure in Figure 9) have 

been specifically approved for clinical use as anti-fibrotic therapeutics. These two drugs have been 

shown in several clinical trials (the ASCEND, CAPACITY, TOMORROW and INPULSIS trials) to 

reduce the decline in lung function in patients with IPF and have been approved for this indication. 1 

is an anti-fibrotic drug able to suppress fibroblast proliferation and to downregulate the production of 

growth factors, including TGF-β, and of procollagens I and II. It is also under evaluation for the 

treatment of other fibrotic processes, including renal, cardiac and liver fibrosis and abnormal wound 

healing.138-141 1 was evaluated in the CAPACITY-004 and -006 clinical trials, resulting in its approval 

by the FDA for IPF in 2014. 63 is an intracellular inhibitor of multiple receptor-associated tyrosine 

kinases, including PDGFR. 63 was evaluated in the INPULSIS-1 and -2 phase III clinical trials as an 

oral treatment for IPF, resulting in its approval by the FDA for this indication in 2014. In addition, 

several drugs designed, developed and clinically approved for other indications have been shown to 

be clinically interesting for the treatment of fibrotic conditions. 17 (tranilast, trade name Rizaben, 

structure in Figure 3) is a drug inhibiting IL-6 production, initially approved for allergic bronchial 

asthma. Therapeutic indication for hypertrophic scars was added later. In vitro it reduces collagen 

synthesis in fibroblasts.142 and has been shown to also display modest anti-TGF-β activity, however, 

with disappointing results in the PRESTO study.143 Roflumilast (127, trade names Daxas, Daliresp, 

structure in Figure 13), an orally active, selective, long-acting inhibitor of the enzyme PDE-4 with 

anti-inflammatory effects, was approved for the treatment of inflammatory conditions of the lungs.144 

1 and 17 have adverse effects on liver function. It has to be noted that these therapeutics can slow 

https://en.wikipedia.org/wiki/Bronchial_asthma
https://en.wikipedia.org/wiki/Bronchial_asthma
https://en.wikipedia.org/wiki/Hypertrophic_scar
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down the progression of the disease but cannot reverse it. Therapeutic anti-fibrotic strategies using 

approved drugs also include RAS antagonists, either ACEI, such as 35 (captopril, trade name 

Capoten) or AT1 antagonists such as 37 (losartan, trade name Cozaar) (structures in Figure 5), as well 

as ET-1 receptor antagonists, such as bosentan (40, trade name Tracleer), macitentan (41, trade name 

OPSUMIT) or ambrisentan (43, trade names Letairis, Volibris) (structures in Figure 6). 

 

3.2. Inhibitors of TGF-β signaling (Figure 2). 

TGF-β1-4s are a family of multifunctional cytokines that bind to TGF-β receptors, composed of type 

1 (TGF-βRI) and type 2 (TGF-βR2) receptor subunits. After the binding of TGF-β, TGF-βR2 kinase 

phosphorylates TGF-βR1 kinase, inducing a signaling cascade that recruits and activates the Smads 

proteins. Their translocation to the cell nucleus induces transcription of different effectors of 

downstream regulatory proteins, which results in differentiation, chemotaxis, proliferation and 

activation of target cells. TGF-β1 has been the most studied pro-fibrogenic factor. TGF-β1 is 

biosynthesized as an inactive latent peptide needing proteolytic activation by several proteases 

including MMPs, but also by transconformation by integrins, local pH, and reactive oxygen species. 

TGF-β1 key functions include regulation of inflammatory processes, ECM production, stem cell 

differentiation as well as T-cell regulation and differentiation. In the context of fibrosis, TGF-β 

signaling promotes the differentiation of quiescent fibroblasts into ECM-secreting myofibroblasts. 

TGF-β-dependent signaling via the Smad-3 pathway is responsible for many of its functions, 

therefore inhibiting TGF-β1 binding to its receptors and the associated Smad3 signaling pathway has 

been the target of many attempts in fibrosis. The profibrotic effects of TGF-β1-Smad 2/3 may also 

be antagonized by the activation of the BMP7-Smad1/5 axis, but to the best of our knowledge, no 

synthetic agonists for this axis have been described. Only small peptide analogs of BMP7 

(AA123/THR123, Thrasos Therapeutics) have been prepared, presently in phase I clinical trials.66 

TGF-β antagonists have been examined in several clinical trials for diabetic nephropathy and were 

proposed to be effective in slowing fibrogenesis. GW 788388 (2), IN 1130 (3), LY 364947 (4), R 

268712 (5), RepSox (6), SB 525334 (7) and ITD 1 (8) are potent and selective TGF-βRI inhibitors; 

https://en.wikipedia.org/wiki/Cytokine
https://en.wikipedia.org/wiki/TGF_beta_receptors
https://www.tocris.com/products/gw-788388_3264
https://www.tocris.com/products/in-1130_6016
https://www.tocris.com/products/ly-364947_2718
https://www.tocris.com/products/r-268712_5288
https://www.tocris.com/products/r-268712_5288
https://www.tocris.com/products/repsox_3742
https://www.tocris.com/products/sb-525334_3211
https://www.tocris.com/products/itd-1_5068
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A 83-01 (9), and SB 431542 (10) inhibit TGF-βRI, anaplastic lymphoma kinase (ALK)-4 and ALK-

7; D 4476 (11) inhibits TGF-βRI and casein kinase-1 (CK1); SD 208 (12) is a potent ATP-competitive 

TGF-βRI inhibitor. SIS3 (13), a selective Smad3 inhibitor, was shown to delay the progression of 

diabetic nephropathy in experimental models by reducing ECM proteins and antagonizing the effects 

of C5a receptor activation.65,145 The new cynnamoylanthranilate analog FT011 (14) inhibits the TGF-

β and PDGF pathways,67 and is presently under clinical evaluation for the treatment of diabetic 

nephropathy. Hydronidone (15), a cyclo-oxygenase (COX) and TGF-β inhibitor, is in clinical trial 

for liver fibrosis, whereas PDE inhibitors, also able to decrease TGF-β, are in trials for diabetic 

nephropathy.146. Relaxin, an endogenous potent vasodilator hormone with pleiotropic effects, controls 

fibrosis by inhibiting TGF-β and Smads, regulating the MMP proteolytic balance and inhibiting local 

inflammatory response. Relaxin displayed anti-fibrotic effects in experimental models of 

cardiovascular diseases, but only when TGF-β1 levels were elevated.147-150  

 

               

Figure 2. Examples of inhibitors of the TGF-β signaling pathway.  

                       

pirfenidone (1)        GW788388 (2)       IN 1130 (3)                         LY 364947 (4)

     

      R 268712 (5)          RepSox (6)          SB 525334 (7)            ITD 1 (8) 

 

         A83-01 (9)         SB 431542 (10)                      D 4476 (11)            SD 208  (12) 

         

               SIS3 (13)    FT011(14)           hydronidone (15) 

https://www.tocris.com/products/sb-431542_1614
https://www.tocris.com/products/d-4476_2902
https://www.tocris.com/products/sd-208_3269
https://www.tocris.com/products/sis3_5291
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In summary, antagonizing TGF-β-associated pathways is necessary to control fibrosis, however, due 

to the pleiotropic effects of these pathways in normal physiological conditions, it will be necessary 

to develop disease-targeted and target-addressed therapeutics. 

 

3.3. Inhibitors of inflammation and immunosuppressive drugs (Figure 3). 

Although the trigger of fibrosis in different organs and clinical situations not always implies an 

inflammatory stress, the mechanisms leading to fibrosis frequently involve either initial or subsequent 

inflammation and the secretion of cytokines and chemokines by immune cells. In response to these 

stimuli, monocytes/macrophages infiltrate the interstitial space, perpetuating inflammation and 

inducing differentiation and proliferation of myofibroblasts. Then, it is generally thought that the 

fibrotic process progressively becomes independent of inflammation. Therefore, anti-inflammatory 

drugs targeting cytokine production and their cognate receptors may be relevant to be used early in 

the fibrogenic process. 16 and 17, approved for bronchial asthma and hypertrophic scar, 18 and 20, 

as well as 127, an inhibitor of PDE-4 approved for chronic obstructive pulmonary disease, have also 

anti-inflammatory properties. The oral chemokine receptor antagonist cenicriviroc/TAK-652/TBR-

652 (19), an inhibitor of CCR2/5 receptors, has been evaluated in the CENTAUR phase IIb study in 

NASH and liver fibrosis in adults at increased risk of progression to cirrhosis, but failed for this 

indication although it had a significant impact on fibrosis.35 18 and 20 are immunosuppressive drugs 

used in preventing transplant rejection. They inhibit the activation and effector function of T-cells, 

including the production of inflammatory cytokines.20 forms a complex with cyclophilin to block the 

phosphatase activity of calcineurin. Thalidomide (21) and pomalidomide (22) are able to inhibit 

inflammation-induced angiogenesis. PBI-4050 (23) binds to GPR40 and GPR84 receptors, inhibiting 

collagen I production in epithelial cells and fibroblasts. Bardoxolone (24) inhibits the pro-

inflammatory nuclear transcription factor NF-κB. Selective p38 mitogen-activated protein kinase 

(MAPK) inhibitors blocked the secretion of TNF-α and decreased cardiac fibrosis in mice,151 and 

may represent a new treatment modality in humans. The RENEWAL study152 examining the effect 

https://en.wikipedia.org/wiki/Immunosuppressant
https://en.wikipedia.org/wiki/Immunosuppressant
https://en.wikipedia.org/wiki/Cyclophilin
https://en.wikipedia.org/wiki/Phosphatase
https://en.wikipedia.org/wiki/Calcineurin
https://en.wikipedia.org/wiki/Angiogenesis
https://en.wikipedia.org/wiki/NF-%CE%BAB
http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B61
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of the TNF-α fusion protein antagonist etanercept in patients with heart failure was negative and the 

ATTACH trial was stopped prematurely as the high dose of the anti-TNF-α monoclonal antibody 

infliximab increased mortality in patients with moderate-to-severe chronic heart failure.153 Statins are 

also anti-inflammatory and were shown to attenuate cardiac fibrosis in animal models and in a small 

clinical study, but the large-scale CORONA and GISSIF-HF trials displayed only a neutral effect.154-

157 

                 

Figure 3. Examples of inhibitors of the immune/inflammatory stress. 

 

In summary, inhibitors of inflammatory pathways are likely to be of therapeutic interest in defined 

organs in controlling the early phase, but not the late phase, of fibrosis development and progression.   

 

3.4. Inhibitors of the sphingosine pathway (Figure 4).  

The S1P/S1PR axis is expressed and active in many organs and tissues and involved in diverse 

cellular processes. Sphingosine (2-amino-4-octadecene-1,3-diol) is an unsaturated 18-carbon amino 

       

             sirolimus (16)          tranilast (17)                tacrolimus (18)        

       
           cenicriviroc (19)        cyclosporin A (20) 

   

thalidomide (21)     pomalidomide (22)          PBI-4050 (23)          bardoxolone (24) 

http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B8
http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B1
http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B58
https://en.wikipedia.org/wiki/Amino_alcohol
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alcohol cell membrane lipid. Sphingosine is phosphorylated in vivo by two kinases, sphingosine 

kinase-1 (SK1) and SK2, leading to the formation of S1P. S1P exhibits a broad spectrum of biological 

activities, including cell proliferation, survival, migration, cytoskeletal organization, morphogenesis 

and the differentiation of resident hepatic stellate cells into activated myofibroblasts. S1P is active 

intracellularly and can also bind extracellularly to five distinct GPCRs, S1P1-5R, displaying both pro- 

and anti-fibrotic effects, depending on the context and site of action.37 S1PR agonists and antagonists 

and SK inhibitors have been developed and evaluated, in particular in liver fibrosis,38 and represent 

targets for the treatment of fibrosis. Side effects are observed due to the non-selective activation of 

different S1PRs, suggesting that receptor-specific agonists or antagonists may be preferable. The 

agonist FTY720/fingolimod (25) following its phosphorylation by SKs binds to S1P1R, S1P3R, 

S1P4R and S1P5R. SEW2871 (26) is a selective S1P1R agonist not active on the S1P2-5R. KRP203 

(27) is a selective S1P1R agonist with potential immunosuppressive activity by decreasing the 

production by lymphocytes of inflammatory cytokines, such as interferon (IFN)-γ, IL-12 and TNF-

α. VPC23019 (28) is a dual S1P1/3R antagonist. W146 (29) is a S1P1R antagonist with no agonist or 

antagonist activity on S1P2R, S1P3R, or S1P5R. JTE-013 (30) is a potent (IC50 = 20 nM), selective 

S1P2R antagonist of the human and rat receptors modulating cell migration, contraction and cyclic 

AMP accumulation. CAY-10444/BML-241 (31) is a selective antagonist of S1P3R, blocking calcium 

increase in cells. However, the selectivity of several S1P agonists and antagonists currently under 

development has been questioned.158 For example, 30 also inhibited the effects of ET-1. PF543 (32) 

is a cell-permeable hydroxyl methyl pyrrolidine compound that reversibly inhibits SK1-catalyzed 

sphingosine phosphorylation in a sphingosine-competitive manner (Kd=5 nM), exhibiting no affinity 

toward S1PRs, with no effect on cell proliferation and survival. SKI-II (33) is a dual orally active 

SK1/2 inhibitor (IC50 = 35 and 20 μM for SK1 and SK2, respectively) which inhibits tumor growth 

in vivo. N,N-dimethylsphingosine (34), a natural metabolite of sphingosine inhibiting both SKs, 

induces apoptosis, decreases airway inflammation and is cardioprotective. Selectively silencing SKs 

or S1PRs with siRNAs has also been attempted. 
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Figure 4. Examples of modulators of the sphingosine pathway. 

 

In summary, S1PR-selective agonists and antagonists and SK inhibitors have the potential to be of 

therapeutic use in fibrosis. However, their target organs and their optimal molecular structures and 

timing of therapeutic efficacy in fibrogenesis need to be better defined.  

 

3.5. Inhibitors of vasoactive peptides: angiotensin and endothelin (Figures 5 and 6). 

Angiotensin (Ang) and endothelin (ET) peptides are pro-fibrotic, enhancing TGF-β1 production, 

fibroblast proliferation and activation and EMT/EndMT, effects mediated by autocrine amplifying 

loops. Antagonists of the Ang and ET pathways may represent interesting molecules for anti-fibrotic 

therapy, since several drugs are already approved for clinical use in the management of cardiovascular 

and hypertensive diseases.  

 

Angiotensin pathway inhibitors (Figure 5). From the angiotensinogen precursor, the enzyme renin 

selectively releases an inactive decapeptide Ang I, further activated by ACE to the active octapeptide 

Ang II which acts on two GPCRs AT1R and AT2R. AT1R activation is pro-fibrogenic, pro-
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inflammatory and pro-oxidative.31,159 whereas AT2R activation counteracts AT1R activation, being 

protective against fibrosis.132 Ang(1-7) produced by the action of ACE2 and acting on the Mas 

receptor attenuates myofibroblasts activation,160 hence functioning as a negative regulator of Ang II-

mediated fibrosis. Ang II may be released locally by activated macrophages and fibroblasts, activating 

an inflammatory response, TGF-β production and signaling, and fibroblast proliferation and 

differentiation into ECM-producing myofibroblasts. Inhibition of the conversion of Ang I to Ang II 

with ACE inhibitors or blockade of AT1R by antagonists demonstrated the role of the RAS in fibrosis. 

Inhibitors of ACE, including 35 or enalapril (36), as well as antagonists of the AT1R, including 37 or 

valsartan (38), in clinical use for the treatment of cardiovascular disorders, have been evaluated in 

the context of fibrosis, showing some benefit. For example, 37 was shown in cancer models to 

reprogram CAFs, reduce their number and decrease TGF-β, connective tissue growth factor (CTGF) 

and ET-1.161 Agonists of AT2R have been developed. such as the AT2R-selective non-peptidyl 

molecule C21 (39) (Ki 0.4 nM for AT2R and 10 µM for AT1R) are anti-fibrotic in cardiovascular and 

renal diseases.132   

                          

Figure 5. Examples of inhibitors of the angiotensin pathways. 

 

Endothelin pathway inhibitors (Figure 6). Precursor endothelin polypeptides (ppET1-3) are 

proteolytically activated in two steps, first by the intracellular serine proteases subtilisin-like 

convertases/furins, releasing the 38 aa-long pro-ETs/big ETs, then subsequently by the more specific 

                 

     captopril (35)         enalapril (36)         losartan (37)   

                     

    valsartan (38)                C21 (39) 



32 
 

membrane-bound endothelin converting enzyme-1 (ECE-1) to yield the 21aa active ET-1, ET-2 and 

ET-3 peptides. Following secretion, ET peptides act on two distinct high-affinity GPCRs, ETA and 

ETB, located on target cell membranes and signaling through the MAPK pathway. The ET-1 axis 

plays a fundamental role in the pathogenesis of fibrosis,162,163 mediating the profibrotic effects of 

TGF-β. ET-1 is chemotactic for cells and induces fibroblast proliferation, ECM accumulation and 

contraction, mediated by the two ET-1 receptors. Most cells express both receptors, rendering 

difficult to define the culprit receptor in the context of fibrosis. A consensus exists that dual ETA/B 

antagonists are probably to be preferred.42,163 Antagonists for the ET receptors, either dual ETA/B or 

ETA-selective, are in clinical use for the treatment of pulmonary hypertension.42 Receptors 

antagonists decrease collagen I and III synthesis by fibroblasts. Several phases II or III clinical trials 

were performed in patients with fibrosis-associated diseases. The dual ETA/B receptor antagonist 40 

was evaluated in the BUILD-1 and -3 trials in lung fibrosis and in the RAPIDS-1 and -2 trials in skin 

fibrosis. The dual ETA/B receptor antagonists 41 and enrasentan (42) were evaluated in the MUSIC 

trial in lung fibrosis and in heart fibrosis, respectively. The ETA-selective antagonist 43 was evaluated 

in the ARTEMIS trial for lung fibrosis. The ETA-selective antagonists avosentan (44), sitaxentan (45) 

and darusentan (46) were evaluated in the ASCEND trials for kidney fibrosis and in the EARTH trial 

for heart fibrosis; whereas the ETB-selective BQ-788 (47) was evaluated only in liver fibrotic 

diseases. All trials showed mixed outcomes, mostly being ineffective to reverse fibrosis, with the 

exception of 40, which has received clinical approval for digital ulceration in systemic sclerosis. ETA-

selective antagonists demonstrated some reduction of proteinuria in kidney fibrosis, but they are 

associated with side effects when prescribed in combination with RAS blockade.42,163 The dual 

ETA/AT1R antagonist, sparsentan/RE-021/retrophin/BMS456567 (48) is presently in a phase II trial 

for diabetic nephropathy. 
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Figure 6. Examples of inhibitors of ET-1 receptors. 

 

In summary, blockers of the Ang and ET pathways may present interest in the treatment of fibrosis, 

mainly by their beneficial effects on associated pathologies, such as diabetes or hypertension. In the 

context of fibrosis, they are likely to be mandatory in combination regimens.  

 

3.6. Enzyme inhibitors (Figures 7 and 8). 

In fibrosis, two families of enzymes have crucial roles in ECM remodeling. Proteases involved in 

ECM degradation, the Zn-dependent proteases such as MMPs and ADAMs or the prolyl-specific 

serine-proteases of the DPP IV family, and enzymes involved in ECM stabilization, the lysyloxidases 

LOX and LOXL1-4.  

 

Inhibitors of proteases (Figure 7). Inhibitors of the proteases. MMPs and ADAMs are implicated in 

a variety of physiological processes as well as in pathological conditions such as inflammation, 

cancer, fibrosis and tissue repair,164 acting on cytokines, chemokines, adhesion and signaling 

molecules and structural proteins.165 MMPs and ADAMs mediate ECM remodeling and release 
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fibrogenic factors including TGF-β or TNF-α, triggering inflammation and fibrosis.166 The role of 

MMPs in fibrogenic diseases has been previously reviewed by several authors.167 The first MMP 

inhibitors failed in clinical trials due to their low selectivity. Later on, MMP inhibitors with higher 

affinity and increased selectivity or MMP inhibitors targeting exosites mediating cell surface 

interactions and activation, were designed. Whereas MMP inhibitors, for instance 18 (structure in 

Figure 3) and batimastat/BB-94 (49) or marimastat (50), can control the perpetuation of fibrosis 

induced by MMP overproduction,169 the PREMIER clinical trial of the MMP inhibitor PG-116800 

(51) was not conclusive of a beneficial effect.168 Specific inhibitors have been developed against the 

proteases able to process biologically active prolyl-containing peptides: DPP IV, FAP-α and 

POP/PREP.72,124 DPP IV/CD26 is a co-stimulator of T-cells and a therapeutic target for type-2 

diabetes. Indeed, DPP IV inhibitors, the “gliptins”, are approved in the clinic for the treatment of type 

2 diabetes,72 a condition frequently associated with fibrosis. Diabetic nephropathy is associated with 

increased expression of DPP IV on endothelial and tubular epithelial cells. The proteolytic activity of 

FAP- is pro-fibrogenic but the protein itself is a regulator of cell apoptosis, adhesion and migration. 

FAP-α protein and/or activity has been associated with fibrosis in many organs.124 FAP-α inhibition 

increases endogenous levels of active FGF21, making FAP-α an attractive target for the treatment of 

liver diseases and NASH.32,33 Synthetic POP inhibitors have been developed and evaluated mainly in 

the context of neurodegenerative diseases. However, as POP, and possibly also FAP-α, have been 

involved in the activation of the anti-fibrotic Ac-Ser-Asp-Lys-Pro peptide from thymosin-β4,124 its 

inhibition in the context of fibrosis would be detrimental. The DPP IV inhibitor linagliptin (52) has 

incretin-independent anti-fibrotic effects in diabetic nephropathy, preventing renal fibrosis mediated 

by TGF-β. 52 has the advantage that it can be used in patients with renal dysfunction without dose-

adjustment since it is not excreted by the kidney. New onset diabetes after transplantation is a 

common side effect of immunosuppressive therapies, which could be improved by the DPP IV 

inhibitor vildagliptin (53).98 In a murine model of lung allograft, 53 promoted graft acceptance by 

reducing T-cell infiltration and modulating cytokine expression.99  In DPP IV- and likely FAP-α-

positive fibroblasts, able to deposit ECM in response to fibrogenic stresses, diprotin A/Ile-Pro-Ile 
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(54), a competitive substrate of DPP IV-like proteases could reduce scar formation.16,17 The only 

FAP-α inhibitor which has been evaluated in clinical trials is the small molecule dual DPP IV/ FAP-

α inhibitor PT-100/ValboroPro/talabostat (55). Clinical trials of 55 demonstrated positive response in 

a phase II trial of stage IV melanoma patients.124 Dabigatran (56) is in clinical use to inhibit thrombin-

induced fibroblast proliferation, presently under consideration for clinical trial.  

              

Figure 7. Examples of protease inhibitors. 

 

Inhibitors of lysyloxidases (Figure 8). LOX and LOXL-1–4 enzymes are a family of lysine-

tyrosylquinone-dependent copper amine oxidases which are upregulated by TGF-β1 before the 

appearance of fibrotic lesions. These enzymes catalyze the oxidation of ε-amines of lysine residues 

within collagen, generating reactive aldehydes that condense to form covalent collagen cross-linkages 

in the ECM.170,171 Crosslinking by LOX and LOXLs not only stabilizes collagen fibers, rendering 

them more resistant to degradation, but also contribute to myofibroblast activation due to increased 

stiffness, causing progression of interstitial fibrosis.172,173 Specific LOXL inhibitors could prevent 

fibrosis. β-Aminopropionitrile (57, BAPN), a small molecule inhibitor of the LOX family, improved 

the outcome of experimental liver and reversed cardiac fibrosis.174-176 Based on this lead, LOX(L) 

inhibitors have been designed. PAT-1251 (58) was identified as a potent, highly selective, irreversible 
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inhibitor of LOXL2, significantly reducing fibrosis in mouse bleomycin-mediated lung injury 

models. It has completed a healthy volunteer phase I trial.34 CCT365623 (59) successfully disrupted 

LOX signaling pathway by decreasing the EGFR pathway in cancer models.177 Out of two series of 

potent chemical inhibitors for LOXL-2, either para-substituted benzylamines or 2-substituted pyridin-

4-ylmethanamines, the most potent and reversible inhibitor was the 2-chloropyridin-4-

yl)methanamine  (60), selective for LOXL-2 compared to LOX.34 Other selective inhibitors under 

development with wide application from fibrotic disease to cancer include the 3-fluoro-4-

aryloxyallylamine inhibitors PXS-S1A (61) able to significantly reduce the activation of CAFs in 

cancer models,178 as well as collagen accumulation and cross-linking in CCl4-induced liver fibrosis. 

Gilead Sciences is testing simtuzumab, a recombinant humanized monoclonal antibody against 

LOXL2 designed as an immunomodulator for the treatment of fibrosis. It is in multiple phase II trials 

for several organ fibrosis. Tipelukast/MN-001 (62) is an oral dual leukotriene receptor 

antagonist/LOXL-2 inhibitor, which also inhibits PDE-3 and PDE-4, as well as 5-lipoxygenase. It 

downregulates collagen type 1, MMP inhibitors, pro-inflammatory chemokines and is presently being 

evaluated in a phase II trial.  

                    

Figure 8. Examples of LOX and LOXL inhibitors. 

 

In summary, inhibiting the activity of proteases and lysyloxidases in the early phase of fibrosis 

development is relevant. However, more information is necessary to ascertain their effect in 

progression and late phase of fibrosis. Combination therapies would probably be necessary. 
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3.7. Inhibitors of kinases and cellular signaling pathways (Figures 9 and 10). 

Several kinases and cellular signaling pathways participate in the development and progression of 

fibrotic processes. These include the EGFR-MAPK, IGF1R-Akt, JAK3/STAT6, Wnt/β-catenin and 

Notch signaling pathways, CXCL12/ SDF1 and its CXCR4 receptor, integrins and cadherins. Thus, 

controlling activation of these pathways with antagonists and/or inhibitors has been attempted, but 

reaching selectivity for one pathway over the others is difficult. Moreover, many of these pathways 

are involved in tissue homeostasis in normal physiological conditions. It is impossible in this 

Perspective to describe all pathways and molecules; thus, we present a selection that we hope is 

representative of the attempts made. 

 

Kinases inhibitors (Figure 9). EGFR (ErbB-1; HER1 in humans) belongs to a family of receptors for 

members of the EGF protein ligands. Overexpression of EGFR signaling is associated with the 

development of a wide variety of diseases. Upon activation by its growth factor ligands, EGFR 

dimerizes which stimulates its intrinsic intracellular protein-tyrosine kinase activity. The resulting 

autophosphorylation initiates signal transduction cascades, principally the MAPK-ERK, PI3K-Akt-

mTOR and STAT/JNK pathways, leading to cell activation, proliferation and migration. Interruption 

of EGFR signaling can be achieved either by blocking EGFR binding sites on the extracellular domain 

of the receptor or by inhibiting intracellular tyrosine kinase activity. Therapeutics directed against 

EGFR include small molecule kinase inhibitors or antibodies, targeting the ligand binding site or the 

downstream signaling pathways. CAFs have also been shown to activate the insulin-like growth 

factor 1 receptor (IGF1R)-Akt signaling,123 raising interest for antagonists of these receptors. 

However, due to the similarity of IGF-1R and the insulin receptor structures, especially in the ATP 

binding site and tyrosine kinase domain, side-effects can be expected. Selectivity of inhibitors for 

specific kinases has been generally difficult to achieve and several small molecule drugs display 

multikinase inhibition, suggesting that the design of targeted analogs will be necessary. 16 (structure 

in Figure 3), an immunosuppressive drug targeting mTOR, is being evaluated in a double-blind 
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placebo-controlled trial. 63, clinically approved for IPF, is a tyrosine kinase inhibitor of VEGFR, 

FGFR and PDGFR. Dasatinib/BMS-483525 (64), a multikinase inhibitor, in association with the 

natural antioxidant 110 (structure in Figure 11) is presently being evaluated in a phase I trial. Suramin 

(65) is a polysulphonated naphthylurea with potential anti-tumor activity, able to block the binding 

of various growth factors, including IGF-I, EGF, PDGF and TGF-β to their receptors, thereby 

inhibiting cell proliferation and migration. Sunitinib (66), a multikinase inhibitor, was developed as 

a kidney-targeted therapeutic by conjugating the analog 17864 (67) to the kidney-specific enzyme 

lysozyme, but this did not result in anti-fibrotic effects.179 Cabozantinib (68) is a small molecule 

inhibitor of the tyrosine kinases c-Met, VEGFR2, AXL and RET. Omipalisib/GSK2126458 (69) is a 

highly selective and potent inhibitor of p110α/β/δ/γ and mTORC1/2 with Ki in the low nM range, 

able to decrease mitogenic fibroblast responses through inhibition of the PI3K/Akt/mTOR pathway. 

It has been already tested in a completed phase I trial. KD025/Slx-2119 (70) is an orally available 

selective ROCK2 versus ROCK1 inhibitor, with IC50 and Ki of 100 nM and 40 nM, respectively, able 

to reduce the secretion of the IL-21 and IL-17 proinflammatory cytokines by leukocytes. It is 

presently evaluated in an ongoing phase II trial. Tanzisertib/CC930 (71), a potent, selective, and 

orally active anti-fibrotic inhibitor of the MAPK/JNK pathway (IC50 values 61 nM, 7 nM, 6 nM, 480 

nM, and 3400 nM for JNK1, JNK2, JNK3, ERK1, and p38α, respectively) was evaluated in a phase 

II trial for the treatment of IPF. CC90001 (72), a second generation JNK inhibitor, selective for JNK1, 

has completed phase I and is presently evaluated in a phase II trial.180 Several EGFR kinase inhibitors 

have been approved for clinical use, mostly in the context of cancer. Gefitinib/ZD1839 (73) was the 

first selective antagonist of EGFR, inhibiting the ATP-binding site of the enzyme and the anti-

apoptotic Ras signal transduction cascade. Erlotinib (74), the second approved EGFR inhibitor, 

reversibly binds to the ATP site of the receptor. Afatinib (75), is an irreversible covalent inhibitor of 

EGFR and ErbB-2/HER2. Lapatinib (76), is an orally active dual HER2/EGFR inhibitor of the ATP-

binding pocket of the kinase domains. Brigatinib/AP26113 (77), is a dual ALK/EGFR inhibitor, able 

to overcome resistance conferred by the EGFR C797S mutation when combined with an anti-EGFR 

antibody. Icotinib/BPI-2009H (78) is a highly selective, first generation EGFR tyrosine kinase 
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inhibitor, solely approved and marketed in China. Osimertinib/AZD9291 (79) is a third-generation 

irreversible and specific inhibitor of T790M or L858R mutated EGFR or of EGFR with exon 19 

deletion. Imatinib (80, Glivec) and sorafenib/BAY43-9006 (81) are active on PDGFR and VEGFR. 

Synthesizing selective inhibitors of IGF-1R is difficult, but includes ChEBI:75252 (82), BMS-

754807 (83) and NVP-AEW541 (84). The tyrphostins AG538 (85) and AG1024 (86) are in early pre-

clinical testing. They do not appear to be ATP-competitive and show some selectivity towards IGF-

1R. K252a (87), a staurosporine analog, is a cell permeable inhibitor of CaM kinase and 

phosphorylase kinase (IC50 = 1.8 and 1.7 nM, respectively). Monoclonal antibodies, such as 

figitumumab, are probably the most specific and promising therapeutic compounds currently 

undergoing trials. 
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Figure 9. Examples of kinase inhibitors. 

 

Inhibitors of cellular signaling pathways (Figure 10). Activation of fibroblasts depends on the 

profibrotic cytokines IL-4 and IL-13, resulting in activation of JAK3 and phosphorylation of STAT6, 

which translocates to the nucleus and promotes responsive gene transcription, production of ECM 

proteins (fibronectin and collagen I) and fibrosis. These effects can be antagonized by JAK3 

inhibition.70 Tofacitinib/CP-690550 (88) is a selective JAK3 inhibitor with an IC50 of 1 nM, that 

governs lymphocyte survival, proliferation, differentiation, cytokine and chemokine production and 

apoptosis. Treatment with 88 was shown to significantly reduce myofibroblast transformation and 

fibrosis development in a murine model of kidney fibrosis.70 ZM 39923 (89) is a dual JAK1/3 

inhibitor. WHI-P154 (90) is a JAK3 inhibitor with an IC50 of only 1.8 μM, but selective versus JAK1 

or JAK2, preventing STAT3, but not STAT5 phosphorylation, and also inhibiting EGFR, VEGFR 

and MAPK. Cerdulatinib/PRT-062070 (91) is an orally active non-specific kinase inhibitor with an 
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IC50 of 12 nM, 6 nM or 8 nM for JAK1, JAK2 or JAK3, respectively. The Wnt/β-catenin-TCF 

signaling pathways are a group of highly conserved cell surface receptors and signal transduction 

pathways, mediating sustained fibroblast activation in fibrotic diseases, including systemic sclerosis. 

The binding of a Wnt-protein ligand to a receptor of the Frizzled family activates downstream 

signaling to the Dishevelled protein, which leads to gene transcription, cytoskeleton reorganization, 

intracellular calcium regulation and cell proliferation and migration. The Wnt-dependent pathways 

are necessary in embryo development, tissue regeneration and cancer progression, making 

interferences with these pathways prone to side-effects. PKF118-310 (92) disrupts the TCF4/β-

catenin complex and inhibits the expression of TCF4-responsive genes and of survivin. ICG-001/PRI-

724 (93) antagonizes Wnt/β-catenin/TCF-mediated transcription by specifically binding to CREB-

binding protein (CBP) with an IC50 of 3 μM, it is presently in phase II clinical trials.92 XAV-939 (94) 

selectively inhibits Wnt/β-catenin-mediated transcription through tankyrase1/2 inhibition with an 

IC50 of 11 nM, it does not affect NF-κB or TGF-β.92 Lectin antagonism has also been examined. 

TD139 (95) is a high-affinity inhibitor of galectin-3 carbohydrate binding domain with a Kd of 14 nM 

able to decrease TGF-β1–induced β-catenin phosphorylation and translocation to the nucleus, 

reducing fibrosis. In a completed phase Ib/IIa clinical trial for IPF, it was shown that inhaled 95 is 

effective, safe and well-tolerated. The Notch signaling pathway is a highly conserved cell signaling 

system. The single-pass transmembrane receptor Notch is activated by direct cell-cell contact. 

Binding of protein ligands to the extracellular domain induce sequential proteolytic cleavage, in 

particular involving γ-secretase, releasing the intracellular domain, which migrates to the cell nucleus 

to modify gene expression. We have previously reviewed in detail Notch inhibition and the associated 

therapeutics.85 Notch antagonism is mainly based on the use of γ-secretase inhibitors, such as MK-

0752  (96, IC50=5 nM, LY411575 (97, IC50=0.39 nM), RO4929097 (98, IC50=5nM), 

avagacestat/BMS-708163 (99, IC50=58 nM), semagacestat/LY450139 (100, IC50=14 nM) and LY-

900009 (101, IC50=27 nM). Inflammatory signaling has also been targeted. The CXCR4 and CCR2 

receptors are inhibited, respectively, by plerixafor/AMD3100 (102), recently approved for 

hematopoietic stem cell mobilization, and CCX140B (103). Antagonists have been developed for the 
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c-Met/hepatocytes growth factor receptor/scatter factor (HGFR/SF). HGFR/SF tyrosine kinase is 

essential for wound healing and angiogenesis and the cMet ligand expressed on tumor cells is 

involved in tissue invasion and metastasis. SU11274 (104) is a selective c-Met inhibitor with an IC50 

of 10 nM inactive on PDGFRβ, EGFR and Tie2. PHA665752 (105) is a potent, selective ATP-

competitive c-Met inhibitor with an IC50 of 9 nM. Antagonists to the prostacyclin receptor, such as 

the PGI2 analog treprostinil (106), to the purinergic P2X2/3 receptor, such as 

gefaxinant/AF219/MK7264 (107) or to Hedghog, such as vismodegrib (108), are in clinical trials. 

Controlling the integrins and cadherins-associated pathways is also of interest in fibrotic therapies181 

as the integrin α3β1 and the cadherin-11 adhesion molecule are mediators of tissue fibrosis and the 

integrin αvβ6 activates latent TGF-β. Naphthyridine derivatives, such as GSK3008348 (109) have 

been developed for the treatment of fibrotic diseases as antagonists of the integrin αvβ6.  
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Figure 10. Examples of inhibitors of cell signaling pathways. 

 

In summary, inhibitors of kinases and antagonists to cellular pathways are likely to play an indirect 

role by modifying the functions of activated myofibroblasts as well as fibrosis-associated cells other 

than fibroblasts. More information from the outcome of clinical trials is needed to define the most 

relevant pathway(s).  

 

3.8. Inhibitors of metabolic pathways (Figures 11 to 14). 

Several metabolic pathways, including oxidative stress, FXR and PPAR receptors and fatty acid 

synthesis have been targeted with small molecules in the aim to achieve treatment of fibrosis and able 

to modulate the level of activity of these pathways.   

 

Inhibitors of oxidative stress (Figure 11). In humans, oxidative stress is involved in the development 

of many diseases, including fibrosis. Oxidative stress reflects an imbalance between the production 

of reactive oxygen species (ROS) and detoxification mechanisms. Oxidative stress disrupts normal 

mechanisms of cellular signaling and damages all components of the cell, including proteins, lipids 

and nucleic acids. Oxidative stress plays a role in the inflammatory cascade in ischemic-reperfusion 

injury, an important problem in solid organ transplantation procedures. But some ROS also act as 
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cellular messengers in redox signaling, and the immune system uses the lethal effects of oxidants in 

its mechanism of killing pathogens. ROS under normal conditions in humans are produced by the 

mitochondria during oxidative phosphorylation as well as by various oxidases. Some organic 

compounds, such as quinones cycling with their conjugate semiquinones and hydroquinones, in 

addition to metal redox catalysts can produce ROS. Cellular antioxidant enzymes encompass 

superoxide dismutase, catalase, glutathione peroxidase, glutathione-S transferases and various 

aldehyde dehydrogenases. Several physiological pathways, such as TGF-β signaling and the RAS, as 

well as some pathologic conditions, such as type-2 diabetes, have been associated with oxidative 

stress. Therefore, drugs developed to control these pathways are of interest in controlling oxidative 

stress. In addition, small molecules have been developed as more specific anti-oxidative therapeutics. 

The natural anti-inflammatory and anti-fibrotic compounds 110 and curcumin (111) are antioxidant, 

protecting DNA and regulating the immune system. Melatonin/N-acetyl-5-methoxytryptamine (112), 

a regulator of circadian rhythm, S-nitroso-N-acetylcysteine (113), a nitric oxide donor and 

antioxidant, regulates proteolytic balance, collagen deposition and TGF-β activation.182 α-Lipoic acid 

(114) is a mitochondrial fatty acid organosulfur compound essential for aerobic metabolism. As a 

dietary supplement it is an antioxidant, with protective effects in inflammatory diseases. The 

approved antioxidant and free-radical scavenger compounds edaravone (115) can reduce cardiac 

fibrosis by decreasing TGF-β1/Smad2/3 signaling, collagen I synthesis and AT1R signaling, while 

up-regulating AT2R. They also decrease the recruitment of macrophages and myofibroblasts to the 

myocardium,183,184 attenuating or even reversing fibrosis as shown in animal and clinical studies. The 

antioxidant NOX1/4 inhibitor GKT137831 (116) is in phase II for diabetic nephropathy.  
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Figure 11. Examples of inhibitors of oxidative stress. 

 

PPAR and FXR agonists (Figure 12). FXR is a nuclear receptor that, when activated, translocates to 

the cell nucleus, where it forms a heterodimer with retinoid X receptor (RXR) and binds to hormone 

response elements on DNA. This regulates gene expression, in particular cholesterol 7 alpha-

hydroxylase, the rate-limiting enzyme in bile acid synthesis and hepatic triglycerides. FXR agonists 

are under investigation in early clinical and preclinical trials as potential therapeutics for NASH. 

Several FXR agonists are presently in phase I or II development for NASH, such as 117 and 118. The 

synthetically modified bile acid obeticholic acid/ocaliva (119) is a potent agonist of FXR used to 

treat liver diseases. The FXR agonists EDP-305 (structure not disclosed) and tropifexor/LJN452 

(120) were shown to perturb FXR-dependent gene expression and reduce hepatocyte ballooning and 

liver fibrosis in animal models. 120 was successfully tested in the phase II FLINT trial, showing a 

reduction of fibrosis and scaring. oral antidiabetic agents belonging to the thiazolidinedione class or 

GS-9674 (121). FXR can interact with PPAR-γ coactivator 1-alpha. The PPAR subfamily of nuclear 

receptors can form heterodimers which regulate transcription of various genes. The nuclear PPAR-

γ/glitazone regulates fatty acid storage and glucose metabolism and is implicated in the pathology of 

numerous diseases. Many naturally occurring agents directly bind with and activate PPAR-γ, 

including various polyunsaturated fatty acids like arachidonic acid. PPAR-γ agonists decrease the 

inflammatory response. Many insulin-sensitizing drugs, the “thiazolidinediones”, used in the 

treatment of diabetes activate PPAR-γ. Compounds that more weakly activate PPAR-γ as partial 
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agonists, such as the medium-chain triglyceride decanoic acid, are currently under study. 118 is also 

a PPAR-γ agonist, acting on adipocytes, hepatocytes and muscle cells to inhibit TGF-β profibrotic 

effects. Its combination with anti-cholesterol agents, the “statins”, and omega 3 fatty acids or vitamin 

E has been proposed 24,25 but only limited clinical trial data are presently available. 117 is another 

antidiabetic drug of the thiazolidinedione class that works as an insulin-sensitizer by binding to 

PPAR-γ in fat cells. Elafibranor/GFT505 (122), a dual PPAR-α/δ agonist,28 developed for the 

treatment of metabolic disorders, and in particular NASH, produced mixed results in phase II trials.  

                    

Figure 12. Examples of FXR and PPAR-γ modulators. 

 

Fatty acid synthesis and phosphodiesterases (Figure 13). Lysophospholipids (LPs), which include 

S1P and lysophosphatidic acid (LPA), are bioactive phospholipids that transduce signals through their 

specific cell-surface GPCRs, S1P1-5R and LPA1-6R, respectively. LPs and their receptors have been 

implicated in both physiological and pathological processes, including fibrosis. S1P has been 

discussed separately in paragraph 3.4. Targeting the biosynthesis of fatty acids has been attempted, 

mostly in the liver, using either inhibitors of ACC and of 3-hydroxy-3-methylglutaryl-coenzyme A 

(HMG-CoA) reductase or antagonists to the LPARs-MAPK signaling pathways, involved in the 

production of pro-inflammatory cytokines. NDI-010976/ND630 (123) is a potent liver-directed 

inhibitor of ACC in NASH. Pyrazole- and triazole-derived carbamates, such as RO6842262 (124), 

are selective antagonists for LPA1R (IC50 25 nM) versus LPA3R. They inhibit the proliferation and 

contraction of normal human lung fibroblasts following LPA stimulation, suggesting a potential novel 
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approach for the treatment of IPF.50 The clinically-approved cholesterol lowering agents, the “statins” 

family, diminish EMT, TGF-β signaling and oxidative stress in glomerular cells.75,154-156 GLPG1690 

(125), an ATX inhibitor, the major enzyme generating the LPA, is presently in a phase II clinical 

trial. BMS-986020/AM152 (126) is a LPAR antagonist presently tested in a completed phase II trial. 

Inhibitors of PDEs have also attracted interest as potential anti-fibrotic therapeutics. As already stated, 

127, an orally active, selective, long-acting inhibitor of the enzyme PDE-4 with anti-inflammatory 

effects, was approved for the treatment of inflammatory conditions of the lungs.144 Pentoxifylline 

(128), a methylxanthine non-specific PDE inhibitor developed for vascular diseases, displaying also 

anti-inflammatory and anti-oxidative properties, is under one phase III and two phase IV clinical 

trials. The cyclic GMP-specific PDE5A-selective inhibitors sildenafil (129) and PF00489791 (130), 

in phase II for diabetic nephropathy and the PDE4-selective inhibitor 15, approved for chronic 

obstructive pulmonary disease, are less potent therapeutics for fibrotic disorders. In the first proof-

of-concept human study, 129 was shown to reduce TGF-β in IPF;146 however, fibrosis parameters 

were not measured.   

                      

Figure 13. Inhibitors of fatty acid synthesis and phosphodiesterases. 

 

Others (Figure 14). Therapeutic attempts have also included targeting histone H4 acetylation, 
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inhibition of the Ca2+-activated K+ channel (KCa3.1), the mineralocorticoid/aldosterone receptors or 

the vitamin D-dependent pathways. TGF-β1- or PDGF-mediated profibrotic and inflammatory 

responses in lung fibroblasts of patients with IPF were attenuated by the bromodomain 4 (Brd4) 

inhibitor JQ1 (131).185 Inhibition of KCa3.1 channel by TRAM34 (132) suppresses TGF-β-induced 

upregulation of ECM-associated genes in renal fibroblasts.69 Inhibitors of the 

mineralocorticoid/aldosterone receptor, such as spironolactone (133) tested in the RALES trial, 

finerenone/BAY-94-8862 (134) in a phase III trial, esaxerenone/CS-3150 (135) or PF-03882845 

(136), can suppress fibrosis development in the heart and the kidney.186 Stimulation of the adenosine 

A2BR has anti-fibrotic properties, mediated by antagonizing ET-1 effects on fibroblasts.187 Adenosine 

receptor antagonists include caffeine, theophylline or theobromine and the pharmaceutical drug 

regadenoson (137).  

                  

Figure 14. Examples of various pathways modulators of potential interest in fibrosis treatment. 

 

In summary, modulators of metabolic pathways and FXR and PPAR-γ agonists display anti-fibrotic 

properties and anti-inflammatory properties. They may be of therapeutic interest in combination 

therapy regimens, but they are likely to act in the early phase of fibrosis. 

 

3.9. Natural products (Figure 15). 

Several natural products with antioxidant properties as well as immunomodulatory and anti-

inflammatory activities, such as 110, 111 or 112 (structures in Figure 11), have been evaluated as 
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anti-fibrotic therapeutics. Schisandrin B (138) reduces ROS formation, inhibits the apoptotic 

mitochondrial pathway and is a regulator of TGF-β signaling.188 Astragaloside IV (139), a glycoside 

of cycloartane-type triperpene, protects against fibrosis development in several organs by attenuating 

ECM deposition.189 Echinacoside (140) was demonstrated to inhibit the TGF-β signaling pathway.190   

                  

Figure 15. Examples of natural products of potential interest in fibrosis treatment. 

 

In summary, natural products display anti-fibrosis properties and may be of therapeutic interest as 

potential leads for the development of anti-fibrotic therapeutics. 

 

3.10. Regenerative cell therapeutics for fibrosis treatment (Figure 16). 

Healing from tissue injury depends on the regeneration of damaged tissue cells through de-

differentiation of surviving cells and/or the ability of resident progenitor cells to proliferate and 

differentiate into new organ-specific cells. Since, for end-stage fibrotic diseases, the only treatment 

is organ transplantation and as donor organs are in very short supply, facilitating tissue regeneration 

is a key component to treating both acute and chronic organ diseases. Besides fetal-derived tissues,101 

many adult tissues contain stem and progenitor cells able to proliferate and differentiate, and to 

maintain tissue homeostasis and repair. In the kidney, mesenchymal stromal cells (MSCs, also called 

mesenchymal progenitor/stem cells) have been shown to have beneficial paracrine-mediated effects, 

both on the initial acute recovery from ischemia-reperfusion injury and in preventing the development 

of further chronic kidney disease.78 This demonstrates that effective treatment may be possible, either 

through adoptive cell therapy or through stimulation of paracrine responses from resident MSCs after 

injury.100 Direct transfer of autologous or allogeneic MSCs, mostly by injecting them in the blood or 
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following encapsulation into a polymeric device, is presently under evaluation in a large amount of 

clinical trials, mainly, but not only, for the treatment of acute liver injury and chronic fibrosis. Thus, 

efforts have been made to enhance these regenerative cell populations using small molecules. 102 

(structure in Figure 10), a CXCR4 antagonist, SB497115/eltrombopag (141), a thrombopoietin 

mimetic, FT1050/16,16-dimethyl prostaglandin E2 (142), a PGE2 analog, and Isx-9 (143), a GPR68 

agonist,103 are under evaluation to enhance proliferation and differentiation of stem and progenitor 

cells.  

                   

Figure 16. Examples of small molecules of potential interest in regenerative cell therapy for 

fibrosis. 

 

In summary, recent progress in regenerative medicine has opened new therapeutic perspectives in the 

treatment of fibrosis, in particular the possibility to induce the repair of diseased tissues rather than 

reverse progression. 

 

4. Lessons from clinical trials for the treatment of fibrosis. 

Several hundreds of molecules able to interfere with the fibrotic process at each of its phases of 

progression have been designed, prepared and evaluated in preclinical models. The most promising 

of them have been evaluated in human clinical trials for possible therapy of fibrosis. Again, hundreds 

of trials, either phase I, II or III or IV trials, have been performed, much too many to discuss all of 

them in this Perspective. In this part, we will focus the discussion on clinical trials, either terminated 

or ongoing, which have the potential to provide therapeutics for the prevention and treatment of 

fibrosis. We will concentrate on small molecule drugs, excluding antibodies, fusion proteins, 

modified proteins or protein fragments, or genetic tools. Toward this aim, we have compiled the US 

clinical trials registry (ClinicalTrials.gov), published reviews and original manuscripts describing and 
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discussing the outcomes of these trials.5,6,42,63,82,124,135,136,163 The information obtained is summarized 

in Table 1. 

 

Table 1. Selected clinical trials for small molecule modulators of fibrotic pathways. 

 

drug / target  trial code  organ         phase/status/outcome 

1 / TGF-β  NCT00287729 lung  III, positive results 

   /CAPACITY 

   NCT01366209 lung  approved 

  NCT00001959 kidney GS II, completed 

  NCT00063583 kidney DN I/II, completed 

15 / COX  NCT02499562 liver  II, no information 

16 / mTOR   NCT01462006 lung  II, worsening, unpublished 

19 / CCR2/5  NCT02217475 liver  II, completed 

   /CENTAUR 

NCT03028740 liver  III, ongoing 

/AURORA 

21 / inflammation NCT00162760 lung  II, completed, unpublished 

22 / inflammation NCT01135199 lung  II, withdrawn 

23 / CTGF  NCT02538536 lung  II, open, completed, no results 

24 / NFκB  NCT01351675 kidney  III, terminated for safety concerns 

37 / AT1R  NCT00298714 liver   IV, completed, improvement 

   NCT00879879 lung  pilot, stabilized lung function 

   NCT01150461 heart          II, completed, lower progression 

   NCT01051219 liver  III, no information 

   /FELINE 

40 / ETA/B  NCT00070590 lung  II, completed, no improvement 

   /Build2 

   NCT00631475 lung  open label, failed 

   /Build3 

   NCT00319696 digital ulcers  III, completed 

/RAPIDS-1 

   NCT01395732 digital ulcers IV, completed, approved 

   /RAPIDS-2 

41 / ETA/B  NCT00903331 lung        II, completed, no improvement 

https://en.wikipedia.org/wiki/CCR2
https://en.wikipedia.org/wiki/CCR5
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   /MUSIC 

43 / ETA  NCT00879229 lung  III, fail 

   /ARTEMIS-PH 

NCT01051960 Ssc  IV, terminated, unknown 

     NCT00768300 lung              III, ineffective, halted 

  /ARTEMIS-IPF 

44 / ETA  NCT00120328/ kidney      III, lower proteinuria, halted 

   ASCEND 

46 / ETA  EARTH  heart  ineffective 

48 / AT1R/ETA NCT01613118 kidney  II, active 

58/ LOXL2  NCT02852551 several organs I, safety in volunteers, completed 

62 / PDE3/LO /LTR NCT02503657 lung  II, ongoing 

63 / PDGFR/VEGFR NCT00514683 lung  II, positive results 

   /INPULSIS 

       NCT01335464 lung  III, completed, approved 

   /INPULSIS 

NCT 01335477 lung  III, completed, approved  

       NCT02597933 Ssc  III, ongoing 

   /SENCSIS 

64 / PDGFR  NCT00764309 lung (Ssc) II, completed, ineffective 

69 / PI3K/mTOR NCT01725139 lung  I, completed, no published data 

70 / ROCK2  NCT02688647 lung  II, open label, ongoing 

71 / JNK   NCT01203943 lung  II, discontinued for side effects 

80 / PDGFR  NCT00131274 lung  II/III, failed 

  NCT006677092 lung  II, completed  

81 / PDGFR/VEGFR NCT01425216 keloids  II, terminated; approved 

95 / galectin-3  NCT02257177 lung  I/II, completed, no information 

103 / CCR2  NCT01028963 kidney  II, completed 

   NCT01440257 kidney  II, completed 

   NCT01447145 kidney  II, completed 

109 / integrin αvβ6 NCT02612051 lung  II, safety and tolerability 

106 / prostacyclin R NCT00703339 lung/PH, IPF II, completed, early termination  

107 / purinergic R NCT02502097 lung /cough     II, completed, unpublished 

116 / NOX1/4  NCT02010242  kidney DN II, completed 

119 / FXR  NCT01265498/ liver NASH II, completed  

   FLINT   
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       NCT02548351 liver NASH III, completed 

   /REGENERATE 

120 / FXR   NCT02855164 liver   II, recruiting 

122 / PPARα/δ  NCT01694849.  liver NASH    II, resolution no fibrosis worsening 

123 / ACC  NCT02876796  liver  I, safety, overweight volunteers 

125 / ATX  NCT02738801 lung  II, partial report, stabilization 

126 / LPAR   NCT02588625 Ssc  II, completed, no results 

NCT01766817 lung  II, withdrawn  

128 / PDEs   NCT00285298 kidney DN III, completed 

   NCT01382303 kidney DN IV, ongoing 

   NCT01377285 kidney  DN IV, ongoing 

130 / PDE5  NCT01200394 kidney DN II, ongoing 

 

Drug combinations 

1+63 /TGF-β +PDGF/VEGF NCT02598193  lung  IV, tolerability, completed 

    NCT02579603 lung  IV, tolerability, completed 

1+108 / Hedghog+TGF-β  NCT02648048 lung  I, completed, no results 

37+FOLFIRINOX      NCT01821729 cancer  II, ongoing 

  / AT1+therapy regimen 

44+37 / ETA+AT1R  ASCEND follow-up kidney  tolerability, no information 

110+64 / anti-ox+PDGF NCT02874989  lung  I, open label, ongoing 

___________________________________________________________________________ 

ACC: acetyl-CoA carboxylase; AT1R: angiotensin receptor 1; ATX: autotaxin; CCR: C-C chemokine 

receptor; COX: cyclooxygenase; CTGF: connective tissue growth factor; DN: diabetic nephropathy; 

ETA: endothelin receptor A; ETA/B:  endothelin receptors A and B; GS: glomerulosclerosis; IPF: 

idiopathic pulmonary fibrosis; LO: lipoxygenase; LOX-L: lysyloxidase-like; LPAR: 

lysophosphatidic acid receptor; LTR: leukotriene receptor; PDE: phosphodiesterase; PH; pulmonary 

hypertension; PPAR: peroxisome proliferator activated receptor; ROCK: Rho-associated protein 

kinase; Ssc: systemic scleroderma. 

 

In summary, most completed and published clinical trials were rather disappointing, showing only 

limited efficacy to reverse established fibrotic diseases. The majority of recent and previous trials 

were performed using drug monotherapy and were aimed at the treatment of IPF, many with not yet 

published results. Trials of combination therapies and new anti-fibrotic agents are underway.51,137 

https://en.wikipedia.org/wiki/PPAR_agonist
http://clinicaltrials.gov/show/NCT01694849
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Two very recent clinical reviews have analyzed clinical trials performed for IPF.135,136 both reviews 

concluded that compounds that have shown efficacy in preclinical studies failed to demonstrate 

positive effects when translated into humans, due to the limitations of animal models. TGF-β is central 

to fibrosis development and small molecules able to decrease TGF-β production and inhibitors of the 

kinase activity of the TGF-β receptors or the intracellular signaling proteins Smads have been 

evaluated in clinical trials. However, they were associated with adverse cardiovascular and hepatic 

side-effects.191,192 Only 1, which decreases TGF-β production, and 63, a multikinase inhibitor, have 

been approved for the treatment of IPF in humans; 1 is under trials for fibrosis therapy in other organs. 

The endothelin and angiotensin systems are also central to fibrosis development, promoting the 

myofibroblast phenotype and the production of TGF-β. Drugs able to control the endothelin and 

angiotensin pathways are in clinical use since many years for cardiovascular and hypertensive 

diseases. Clinical trials have evaluated ETA-selective, ETB-selective or dual ETA/B antagonists in 

disorders of the lung, liver, heart, kidney and the skin.42,154 The primary objective of reducing 

mortality/morbidity was generally not achieved, with however, a positive trend. In the context of 

digital skin ulcer, even if 40 was not able to shorten the time to healing, it was effective in preventing 

the formation of new ulcers, suggesting that dual ETA/B antagonists may be interesting tools to prevent 

fibrosis in medical situations. Ang II interaction with AT1R stimulates fibroblast proliferation and 

collagen synthesis. To the best of our knowledge, only very few dedicated clinical trials have been 

performed to test per se antagonism of the RAS to treat fibrosis. Most of the trials evaluated anti-

fibrotic drugs in patients already on RAS inhibition for cardiovascular or diabetic disorders. Ang II 

receptor blockers, ACEI or mineralo-corticoid receptor antagonists demonstrated however, some 

potential to improve fibrotic processes by controlling the underlying diseases. Inflammatory 

mediators are involved in the initiation and progression of fibrosis, in some clinical situation like 

kidney fibrosis, but not in IPF, for example. Clinical trials attempting to decrease cytokine and 

chemokine secretion using kinase inhibitors or antagonists to their cognate receptors were performed. 

To date, mainly fusion proteins or blocking antibodies were used; the RENEWAL study152 examined 

the effect of the TNF-α fusion protein antagonist etanercept and in the ATTACH trial the anti-TNF-

http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B5
http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B5
http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B5
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α monoclonal antibody infliximab was tested. These trials were halted for inefficacy regarding the 

primary outcome or for side-effects. The cholesterol-lowering agents statins are also anti-

inflammatory. Two large-scale clinical trials, the CORONA and GISSIF-HF trials155-157 demonstrated 

only a neutral effect of statins. PPAR agonists have anti-inflammatory properties, however, their 

cardiac safety profile is controversial.193 Overall, there is yet a lack of effective fibrosis inhibitors in 

patients. 

 

Conclusion and Perspective 

Fibrosis proceeds in three steps: an initial phase of injury, an inflammatory phase in most clinical 

situations and a remodeling phase. Then, in normal situations, the third phase is followed by a fourth 

phase of resolution, which does not happen in the context of progressive fibrosis. Anti-fibrotic 

treatments under development and (pre-)clinical evaluation include small molecules, antibodies, 

genetic tools, peptides, protein analogs and receptor decoys. Progression to fibrosis is mediated by 

the activation of TGF-β-associated signaling pathways and the appearance of myofibroblasts 

producing an altered ECM. Thus, blockade of the TGF-β pathways is an obvious target for the 

treatment of fibrotic diseases. However, due to the ubiquitous and pleiotropic physiological functions 

of TGF-β, depending on the local microenvironment and the organ, a challenge to be addressed will 

be to achieve its targeted inhibition. Therefore, despite its critical importance in fibrosis, systemic 

and non-selective inhibition of TGF-β may not be the best approach to treat fibrosis. The same 

consideration applies for inhibition of other important signaling pathways, such as the Wnt or Notch 

pathways. Thus, one major challenge in anti-fibrotic therapy is selectivity and specificity of the drugs 

aimed at controlling fibrosis.194 Functionalized therapeutics with tissue- and/or cell-selective 

molecules must be designed. For example, in a recent approach,85.195 we used experimental rodent 

models of acute inflammatory and profibrotic kidney diseases to selectively target Notch1 signaling 

activation. We developed γ-secretase inhibitor-based prodrug strategies for enzymatic activities 

specifically expressed in injured kidneys. Using these functionalized prodrugs, we could demonstrate 

a nephroprotective effect without systemic toxicity. Drug-delivering nanoparticles displaying at their 

http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B1
http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B58
http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B58
http://journal.frontiersin.org/article/10.3389/fphar.2017.00186/full#B52
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surface reconnaissance molecules for overexpressed targets in fibrosis-associated cells may represent 

another approach to solve some of the problems of off-target side-effects, as shown in a rat model of 

pulmonary fibrosis.196   

Drugs able to modulate physiological pathways other than the TGF-β, such as oxidative stress, lipids, 

enzymes, kinases or peptide receptors, have been evaluated. Most clinical trials were disappointing, 

although the molecules had shown efficacy in preclinical animal models of the diseases. The majority 

of the therapeutics evaluated in preclinical models were selected to prevent the development of the 

fibrotic process. Novel compounds are often tested in patients with diseases that did not respond to 

established therapies, meaning that many compounds are tested at the later refractory stages of 

disease. Animal models do not recapitulate the complex nature of human fibrotic diseases, since in 

these simplified models, treatment is initiated in the early phase of the disease. In humans, fibrosis 

takes decades to develop and has often reached a no-return point when therapeutic intervention is 

attempted, requiring long-term treatment to diminish its progression. The type of fibrosis, its tissue 

origin, its stage of progression, the exact cells involved and the level of heterogeneity between organs 

and diseases must be also considered. But this is generally not realistic in the medical context. In 

addition, young and healthy animals were studied, while patients with fibrosis are generally at a more 

advanced age, and may have other co-morbidities, suggesting that drug combination regimens must 

be considered to achieve optimal therapeutic efficacy with limited toxicity. It remains to be 

demonstrated however, which adjuvant drug(s) may be more appropriate and which combined-

schedule therapy should be proposed to patients according to their level of risk. In order to improve 

clinical translation, it is important in the future to design more clinically-relevant research models, 

and to perform clinical trials that include larger cohorts of suitable patients.  

Presently, end-stage chronic fibrotic diseases of the lung, kidney, liver, heart and skin require 

organ/tissue replacement by either autologous or allogeneic transplantation, or the implantation of 

artificial medical devices. In these processes, the time of injury is known but unavoidable, either due 

to ischemia/reperfusion injury or due to the presence of a foreign body and an accompanying 

inflammation. Therefore, anti-fibrotic therapies should ideally be delivered at the time of 
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transplantation/implantation. Recent progress in regenerative medicine to induce the repair of 

diseased tissues, rather than reverse progression, has open new therapeutic perspectives in the 

treatment of fibrosis.  

In conclusion, to control and possibly reverse fibrosis progression, treatment approaches require the 

control of key pathways that influence cell functions and the development of a permissive 

environment, mainly composed of activated (myo)fibroblasts. In order to achieve clinically 

meaningful results in human trials, the strategy to treat fibrosis should include the three following 

challenges: 1) a targeted/addressed delivery of therapeutic drugs to the organ or to the tissue to avoid 

systemic side-effects; 2) an upfront combination therapy with molecules targeting different pathways; 

3) a treatment administered very early in the course of the disease, since organ dysfunction is unlikely 

to regress significantly once present. We believe that selectively blocking the TGF-β signaling 

pathways will be necessary. Blocking the RAS was shown to improve fibrosis therapy. Thus, 

combining RAS blockade with the approved anti-fibrotic drugs 1 or 2 may be an option. Therapeutics 

able to modulate the endothelin pathway must also be considered in combination therapeutic 

regimens. Controlling inflammation and oxidative stress is probably not of interest in the late phase 

of the fibrotic processes. As several kinases, the PPAR, FXR and fatty acid pathways such as S1P, 

mediate a variety of pro-fibrotic effects in many tissues and organs, kinases and receptor-specific 

agonists or antagonists may be of interest.  
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endothelial growth factor. 
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