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Abstract
Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methi-

onine synthase (MS) in brain development and function, but vitamin B12 status in the brain

across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl)

exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin

(AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively. We

measured levels of five Cbl species in postmortem human frontal cortex of 43 control sub-

jects, from 19 weeks of fetal development through 80 years of age, and 12 autistic and 9

schizophrenic subjects. Total Cbl was significantly lower in older control subjects (> 60 yrs

of age), primarily reflecting a >10-fold age-dependent decline in the level of MeCbl. Levels

of inactive cyanocobalamin (CNCbl) were remarkably higher in fetal brain samples. In both

autistic and schizophrenic subjects MeCbl and AdoCbl levels were more than 3-fold lower

than age-matched controls. In autistic subjects lower MeCbl was associated with decreased

MS activity and elevated levels of its substrate homocysteine (HCY). Low levels of the anti-

oxidant glutathione (GSH) have been linked to both autism and schizophrenia, and both

total Cbl and MeCbl levels were decreased in glutamate-cysteine ligase modulatory subunit

knockout (GCLM-KO) mice, which exhibit low GSH levels. Thus our findings reveal a previ-

ously unrecognized decrease in brain vitamin B12 status across the lifespan that may reflect

an adaptation to increasing antioxidant demand, while accelerated deficits due to GSH defi-

ciency may contribute to neurodevelopmental and neuropsychiatric disorders.

Introduction
Metabolically active forms of vitamin B12, methylcobalamin (MeCbl) and adenosylcobalamin
(AdoCbl), serve as essential cofactors for two reactions: MeCbl for folate-dependent methyla-
tion of HCY to methionine by methionine synthase (MS) in the cytoplasm, and AdoCbl for
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conversion of methylmalonylCoA to succinylCoA by methylmalonyl CoA mutase in mito-
chondria (Fig 1) [1,2]. Since MS activity determines the ratio of the methyl donor S-adenosyl-
methionine (SAM) to the endogenous methylation inhibitor S-adenosylhomocysteine (SAH),
MeCbl is poised to influence hundreds of SAM-dependent methylation reactions, affecting
nearly every aspect of metabolism. Important among these reactions is methylation of DNA
and histones, which combine to exert dynamic epigenetic control over gene expression [3].
MeCbl is also required for dopamine-stimulated phospholipid methylation, a unique activity
of D4 dopamine receptors [4], which depends upon MS activity [5] and has been proposed to
play an important role in neuronal synchronization and attention [6]. Genetic variants of the
D4 receptor have been linked to attention-deficit hyperactivity disorder (ADHD) [7,8], schizo-
phrenia risk [9,10], and drug addiction [9], as well as to human longevity [11].

Vitamin B12 is only synthesized by certain bacteria and humans obtain it from animal
source foods such as meat, dairy, eggs, and fish.[12]. A series of chaperones, transport proteins
and their receptors (e.g. haptocorrin, intrinsic factor, cubilin, amnionless and megalin) protect
vitamin B12 and facilitate its GI absorption and renal reabsorption for its retention. In the gen-
eral circulation vitamin B12 primarily exists bound to transcobalamin (TC) [13]. As illustrated
in Fig 1, cell surface receptors (TC receptor and/or megalin) bring the Cbl�TC complex into
lysosomes where Cbl is processed by MMACHC (methylmalonic aciduria type C and homo-
cystinuria, also known as CblC). MMACHC carries out dealkylation of alkylCbls and decyana-
tion of cyanocobalamin (CNCbl) in glutathione (GSH)-dependent and NADPH-dependent
reactions, respectively [2]. Formation of active cofactors MeCbl and AdoCbl is then carried out
by MMACHC in conjunction with MMADHC (methylmalonic aciduria type D and homocys-
tinuria, also known as CblD) in the cytoplasm and mitochondria, respectively.

The brain exists within a distinct compartment and levels of metabolic resources, including
vitamin B12, are reflective of their transport into and out of cerebral spinal fluid (CSF) across
the neuroepithelial barrier in the choroid plexus. While factors responsible for vitamin B12
entry into brain have not been fully elucidated, cubilin and megalin, which combine to partici-
pate in transport of vitamin B12 in other tissues, are expressed in the choroid plexus [14,15],
and a role for amnionless has been postulated based upon disturbed vitamin B12 transport into
the brain in a patient with a mutation causing Imerslund-Gräsbeck syndrome [16]. While diet
or genetic defects in transport/ processing can affect systemic vitamin B12 availability [17,18],
there have been relatively few direct studies of vitamin B12 status in human brain [19,20] and
none have provided a comprehensive analysis of different Cbl species.

Methylation of DNA and histone proteins complexly regulates gene expression and this
form of epigenetic regulation is particularly important during development, including pre- and
postnatal brain development [21]. Neural tube defects, as well as Rett and Angelman/Prader-
Willi neurodevelopmental syndromes are linked to defects in methylation-dependent epige-
netic regulation [22–24]. Turnover of DNA methylation marks is very fast in prefrontal cortex
during fetal development but is 2–3 orders lower during childhood and later life [25]. We pre-
viously showed that the level of MS mRNA in human prefrontal cortex decreases several hun-
dred-fold across the lifespan, indicating a dynamic role for vitamin B12-dependent MS activity
in brain development and function, and MS mRNA levels were prematurely decreased in autis-
tic subjects [26]. Abnormal DNA methylation [27, 28] has been reported in postmortem brain
of autistic subjects, in conjunction with low levels of the antioxidant GSH and elevated markers
of oxidative stress [29,30]. Increased oxidative stress and impaired methylation have also been
implicated in schizophrenia [31,32].

We utilized a novel HPLC/electrochemical detection-based assay to quantify individual Cbl
species in postmortem human cerebral cortex of control subjects from fetal to 80 yrs of age, as
well as autistic and schizophrenic subjects. Changes in Cbl species were compared with the
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status of methylation and antioxidant pathway metabolites and the influence of decreased GSH
production on brain Cbl levels was evaluated in glutamate-cysteine ligase modulatory subunit
knockout (GCLM-KO) mice in which GSH synthesis was impaired, leading to a brain GSH
level decrease of 60–70% [33]. Our results reveal an unexpected decrease in cortical Cbl and
MeCbl levels across the lifespan, as well as premature decreases in both autism and schizophre-
nia, which were replicated in GCLM-KOmice.

Materials and Methods

Tissue sample acquisition
Institutional approval for the use of postmortem brain samples was provided by the Northeast-
ern University IRB (# 04-11-09). Postmortem samples of frontal cerebral cortex (Brodmann
areas 9, 10, 44 or 45) were obtained from the Autism Tissue Program, now part of the Autism
Brain Network (http://www.autismbrainnet.com), the Australian Brain Bank Network (http://
www.austbrainbank.org.au) and the Harvard Brain Tissue Resource Center (http://www.

Fig 1. Cobalamin-related redoxmetabolic pathways in neuronal cells. Endocytosis brings TC-bound Cbl species to lysosomes where axial ligands are
removed by MMACHC and MeCbl or AdoCbl are subsequently formed by SAM and ATP-dependent pathways, respectively. MeCbl is a required cofactor for
methionine synthase, whose activity supports a large number of methylation reactions, including DNAmethylation, as well as dopamine-stimulated
phospholipid methylation, carried out by the D4 dopamine receptor (D4R). AdoCbl supports MMACoAmutase in mitochondria. Cysteine, which is rate-
limiting for GSH synthesis, can be provided either by cellular uptake via the cysteine/glutamate transporter EAAT3 (excitatory amino acid transporter 3) or by
transsulfuration of HCY via cystathionine. The latter pathway is restricted in human brain, increasing the importance of growth factor-dependent cysteine
uptake by EAAT3.

doi:10.1371/journal.pone.0146797.g001
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brainbank.mclean.org). Samples included 43 control subjects of different age, from 19 weeks of
gestation through 80 yrs (Table A in S1 File), as well as 12 autistic subjects (4–9 yrs) (Table B
in S1 File) and 9 schizophrenic subjects (36–49 yrs) (Table C in S1 File). Placenta samples were
commercially obtained from Advanced Tissue Services (Phoenix, AZ). All tissues samples were
maintained in liquid nitrogen until their use and experiments were completed within four
months of their receipt.

Vitamin B12 analysis
Cbl extraction and HPLC mobile phase selection were based on a previously published method
[34]. Extraction was performed under dim-red light due to Cbl light sensitivity. Brain tissues
were thawed on ice and a 10% homogenate was prepared. 150 μL of ice-cold absolute ethanol
was added to 100 μL of each sample homogenate and incubated for 10 min. Protein precipitates
were removed by centrifugation at 10,600 RPM for 3 min at 20°C. The resulting supernatant
was evaporated to dryness, re-suspended with 300 μL PBS and passed through a syringe-driven
filter (0.22 μm). The Cbl extract was then transferred to a conical micro autosampler vial,
blown with nitrogen, capped and kept at 4°C in the autosampler cooling tray, covered by alu-
minum foil to avoid Cbl degradation. 30 μL of sample was injected into an Agilent Eclipse
XDB-C8 (3 x 150mm; 3.5 μm) and Agilent Eclipse XDB-C8 (4.6 x 12.5mm; 5 μm) guard col-
umn by the autosampler. Samples were eluted using the following step gradient: 0–2 min 0% B,
2–14 min 17% B, 14–19 min 30% B, 24–31 min 58% B, 31–32 min 100% B, then equilibrate col-
umn with 0% B for 2 min at a flow rate of 0.6 mL/min. Mobile phase A contained 0.1% acetic
acid/acetate buffer titrated to pH 3.5 with NH4OH. Mobile phase B was acetonitrile containing
0.1% acetic acid. Cbls were measured using electrochemical detection with an ESA CoulArray
with BDD analytical cell model 5040 electrochemical detector at an operating potential of 1000
mV. Examples of chromatograms for cobalamin standards and brain samples are provided
(Figures A-E in S2 File). Peak area analysis, based on standard curves generated for each com-
pound, was performed using CoulArray software (version 3.06 ESA analysis program package).
Sample Cbl levels were normalized against protein content. Based upon spiked tissue samples,
the extraction procedure resulted in recovery of 94.7 +/- 1.8% of tissue Cbl, and replication
studies yielded a coefficient of variation of 6.3%.

Thiol metabolite analysis
Thiol and thioether metabolites were measured using HPLC with electrochemical detection.
Brain samples were thawed on ice, and a 10% homogenate was prepared. 50 mL of a 0.4 N per-
chloric acid solution was added to 200 μL of the sample, and samples were gently blown with
nitrogen gas before being centrifuged at 13,000 RPM for 60 min. 100 μL of sample was added
to a microautosampler vial, blown with nitrogen gas, capped and loaded at 4°C in the autosam-
pler cooling tray. 10 μL of sample was injected into the HPLC system and measured by electro-
chemical detection. HPLC columns and running conditions were as same as previously
published [35].

Methionine synthase assay
A 5% homogenate of postmortem brain samples was prepared in lysis buffer at 4°C. The assay
was conducted under anaerobic and dark conditions, as previously described [36]. 385 μl of a
5% brain homogenate was mixed with 1 M K2HPO4, 10 mMHCY, 100 mMDTT, 3.8 mM
SAM, adding either 10 μl water or 10 μl of 5 mM OHCbl, in a final volume of 500μl. The assay
was initiated by addition of [14C-methyl] methyltetrahydrofolate, incubated for 60 min at 37°C
and terminated by heating at 98°C for 2 min. MS activity was determined by measuring
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incorporation of 14C into methionine, which was separated by passing through a Dowex 1-X8
column.

GCLM knockout mice studies
GCLM-KO mice were generated from C57Bl/6J mice [37] and kindly provided by TP Dalton
(Cincinnati University, Ohio). Experiments were performed in accordance with the guidelines
of the Veterinary Office of the Canton de Vaud, Switzerland and approved by the Swiss Federal
Food Safety and Veterinary Office (FSVO). Animals were maintained in a temperature-and
humidity-controlled environment under a 12-h light–dark cycle with free access to food and
water. Animal welfare was checked 3-times per week; mice displaying signs of dysfunction,
wounds or important loss of weight were sacrificed. Heterozygous mice were bred and after
genotyping, male littermates were decapitated at 40 and 90 days of age and sections of frontal
cortex were dissected and frozen at—80°C until analysis of thiol and Cbl levels.

Statistical analyses
Statistical analyses were carried out using Graph Pad Prism1 version 5.01. Results were
expressed as mean ± SEM. A two-tailed Student’s t-test and one-way analysis of variance
(ANOVA) with Tukey’s post hoc test were used to determine statistical significance, using
p< 0.05 as a criterion. Correlations were evaluated by Pearson’s correlation coefficient.

Results

Frontal cortex Cbl across the lifespan
Different species of vitamin B12 are distinguished by the ligand attached to the upper face of
the corrin ring cobalt atom, and they include MeCbl, AdoCbl, CNCbl, hydroxocobalamin
(OHCbl) and glutathionylcobalamin (GSCbl) (Fig 2A). These five Cbl species were detected in
postmortem frontal cortex brain samples from subjects grouped by age and we observed that
the combined Cbl total was 2.7-fold lower in 61–80 yr old vs. 0–20 yr old subjects (Fig 2B). Lev-
els of individual Cbl species were similar in 0–20 and 21–40 yr old control subjects, but signifi-
cant differences were observed in 41–60 and 61–80 yr old subjects (Fig 2C). Among individual
Cbl species, the greatest difference was an age-dependent decline in MeCbl, such that its level
in 61–80 yr old subjects was 12.4-fold lower than in 0–20 yr-olds and 6.7-fold lower than 41–
60 yr-olds. At younger ages MeCbl was the predominant Cbl species, but its level decreased
across the lifespan and was eclipsed by OHCbl, GSCbl and CNCbl in older subjects (61–80
yrs). This progressive age-dependent decrease in frontal cortex MeCbl levels was quasi-linear
(r2 = 0.61) and MeCbl was negatively correlated with age across the lifespan (p< 0.0001) (Fig
2D). AdoCbl was significantly lower in 61–80 yr old vs. 0–20 yr old subjects (p< 0.001), but its
level was not correlated with age across the lifespan. In contrast, the level of OHCbl was
increased in 61–80 yr old subjects and was positively correlated with age (p = 0.01). This sub-
stantial age-dependent decrease in total vitamin B12, MeCbl and AdoCbl in frontal cortex con-
trasts with the comparatively stable level of serum vitamin B12 levels, as reported for samples
derived from the National Health and Nutrition Examination Survey (NHANES) [38] (Fig 2D,
inset). Thus frontal cortex levels of vitamin B12 appear to be more dynamically regulated across
the lifespan than blood levels.

To investigate possible differences between prenatal and postnatal vitamin B12 status, we
compared Cbl levels in fetal frontal cortex with levels in young subjects (0–20 yrs). Strikingly,
the level of CNCbl was almost 15-fold higher in fetal samples vs. young subjects, while the level
of MeCbl was 65% higher (Fig 2E). We further examined placental vitamin B12 status as a
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potential source of higher CNCbl for fetal brain. However, total Cbl levels in placenta were
10-fold lower than fetal brain and CNCbl levels were 20-fold lower, making it an unlikely
source (Fig 2F).

Fig 2. Cobalamin status in human frontal cortex. (a) The general structure of Cbl species in which “X” represents various ligands linked to the cobalt atom,
giving rise to the five different Cbl species measured in postmortem frontal cortex. (b) Total Cbl levels in frontal cortex of control subjects divided into four age
groups: 0–20 yrs (n = 12), 21–40 yrs (n = 5), 41–60 yrs (n = 10) and 61–80 yrs (n = 12). (c) Levels of five individual Cbl species of control subjects in four age
groups. (d) Age-dependent decrease of MeCbl in human frontal cortex (n = 43). Inset: Age trends of serum Cbl, frontal cortex total Cbl and MeCbl. Serum Cbl
data is from Ref. 30. (e) Total Cbl levels in placenta (n = 6), frontal cortex of fetal (n = 4) and control (0–20 yrs) subjects (n = 12). (f) Levels of five individual Cbl
species in placenta (n = 6), frontal cortex of fetal (n = 4) and control (0–20 yrs) subjects (n = 12). * Indicates a significant difference from 0–20 yrs group (*
p < 0.05, ** p < 0.01, *** p < 0.001).

doi:10.1371/journal.pone.0146797.g002
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Frontal cortex Cbl in autism and schizophrenia
Cbl levels were analyzed in frontal cortex from young autistic subjects (<10 yrs) and compared
to levels in young control subjects (<13 yrs). As illustrated in Fig 3A, the average total Cbl level
was 3.1-fold lower in autistic subjects vs. controls (3.1 vs. 8.9 pmol/mg protein). MeCbl and
AdoCbl were each more than 3-fold lower in autistic subjects vs. control levels, although the
decrease in AdoCbl did not reach statistical significance (p = 0.07) (Fig 3B). Thus the level of
frontal cortex Cbl in autistic subjects corresponds to the level of control subjects>50 yrs. Nota-
bly, the level of GSCbl was 6-fold lower in autistic subjects, while the level of OHCbl was
>3-fold higher, consistent with impairment of GSH-dependent synthesis of MeCbl and
AdoCbl.

Cortical Cbl levels were also measured in schizophrenic subjects (ages 36–49 yrs) and com-
pared to levels in control subjects (ages 36–50 yrs). As illustrated in Fig 3C, the average total
Cbl level was 3.3-fold lower in schizophrenic subjects (7.3 vs. 2.2 pmol/mg protein). MeCbl
and AdoCbl were>5-fold lower in schizophrenic subjects vs. control levels (Fig 3D). GSCbl
was 6-fold lower in schizophrenic subjects, while the level of OHCbl was 3.5-fold higher. Thus
both autistic and schizophrenic subjects show similar abnormal patterns of frontal cortex Cbl,
including lower levels of both MeCbl and GSCbl. Moreover, the lower levels of total Cbl,
MeCbl and AdoCbl are similar to the pattern observed in elderly subjects.

Fig 3. Cobalamin status in autism and schizophrenia. (a) Total Cbl levels in frontal cortex of autistic subjects (n = 12) and aged-matched controls (n = 9).
(b) Levels of five individual Cbl species in frontal cortex of autistic subjects (n = 12) and aged-matched controls (n = 9). (c) Total Cbl levels in frontal cortex of
schizophrenic subjects (n = 9) and aged-matched controls (n = 9). (d) Levels of five individual Cbl species in frontal cortex of schizophrenic subjects (n = 9)
and aged-matched controls (n = 9). * Indicates a significant difference from control group (* p < 0.05, ** p < 0.01, *** p < 0.001).

doi:10.1371/journal.pone.0146797.g003
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Methylation and redox metabolites
Through its role as cofactor for MS, the status of MeCbl can influence the level of methionine
methylation cycle metabolites as well as metabolites in the intersecting pathways which provide
for GSH synthesis, as illustrated in Fig 1. A comparison of frontal cortex metabolite levels in
younger (0–20 yrs) vs. older (61 to 80 yrs) subjects revealed several significant differences (Fig
4A). The level of HCY was 2-fold higher in older subjects, while the level of methionine was
lower, indicative of lower MS activity. The level of SAM, whose formation is MS-dependent, was
also lower in older subjects, in association with a decrease in the SAM to SAH ratio (Fig 4B), indi-
cating an impaired methylation potential. Cysteine, GSH and GSSG levels, as well as the GSH to
GSSG ratio, were unaffected by age. Remarkably, the level of cystathionine was 10-fold lower in
older subjects. Cystathionine is an intermediate in the transsulfuration of HCY to cysteine and its
level is higher in human brain compared to other species, reflecting restricted transsulfuration
activity [39,40]. Thus the age-dependent decrease in frontal cortex MeCbl appears to be associ-
ated with a loss of this restriction, allowing increased HCY diversion toward GSH synthesis.

A comparison of methionine cycle metabolites in autistic vs. age-matched young control
subjects revealed a pattern generally similar to older subjects (Fig 4C). Thus HCY was higher,

Fig 4. Redox andmethylation metabolites in aging and autism. (a) Redox and methylation pathway metabolites in control subjects of 0–20 yrs (n = 12)
compared to subjects of 61–80 yrs (n = 10). (b) GSH/GSSG ratio (left) and SAM/SAH ratio (right) in aging. (c) Redox and methylation pathway metabolites in
frontal cortex of autistic subjects (n = 9) compared to age-matched controls (n = 9). (d) GSH/GSSG ratio (left) and SAM/SAH ratio (right) in autism. * Indicates
a significant difference from 0–20 yrs group (panels a and b) or control group (panels c and d) (* p < 0.05, ** p < 0.01, *** p < 0.001).

doi:10.1371/journal.pone.0146797.g004
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methionine and SAM levels were lower, and GSH and oxidized glutathione (GSSG) levels, as
well as the GSH to GSSG ratio, were not different from age-matched controls, while the level of
cystathionine was 3.5-fold lower in autistic subjects (Fig 4D). Similar to the influence of aging,
the SAM to SAH ratio was significantly lower in autism, indicative of impaired methylation
potential in association with an increase in transsulfuration and GSH synthesis at a younger
than normal age.

To assess methylation capacity in the context of a deficit in Cbl, we measured MS activity
(i.e. conversion of HCY to methionine) in frontal cortex samples of control and autistic sub-
jects with or without provision of exogenous OHCbl. As illustrated in Fig 5, MS activity was
3-fold lower in autistic vs. control subjects when only endogenous Cbl was available, and was
38% lower under OHCbl-supplemented conditions, confirming the functional importance of
decreased frontal cortex Cbl levels in autism.

Decreased GSH synthesis lowers brain B12 levels
Since previous studies have reported lower levels of GSH in autism [27,28] and schizophrenia
[29,30], we investigated whether a decrease in GSH affects brain Cbl levels. GCL is the rate-lim-
iting step in GSH synthesis and its modulatory subunit increases GCL activity [41]. Accord-
ingly, we examined thiol metabolite and Cbl levels in cortex of GCLM-KO mice at 40 and 90

Fig 5. Methionine synthase activity in autism.Methionine synthase activity in frontal cortex of autistic and age-matched control subjects measured either
with only endogenous Cbl or with the addition of OHCbl. * Indicates a significant difference from control group (* p < 0.05, ** p < 0.01, *** p < 0.001).

doi:10.1371/journal.pone.0146797.g005
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days of age, as compared to C57Bl/6J wild-type mice. Consistent with prior studies [42], the
level of GSH in frontal cortex of GCLM-KOmice was decreased by 85% and 89% at 40 and 90
days, respectively, in comparison to wild-type mice, along with significant (p< 0.05) decreases
in HCY and cysteine (at 90 days), while GSSG was increased at 40 days (Fig 6A). Lower levels
of GSH were associated with a significantly lower level of total Cbl (p< 0.001) in GCLM-KO
cortex, amounting to 63% and 56% at 40 and 90 days, respectively (Fig 6B inset). The decrease
affected all Cbl species, including decreases of 68% and 39% in MeCbl (Fig 6B). An age-depen-
dent decline in the level of MeCbl was evident in cortex of control mice, amounting to a
decrease of 38% between 40 and 90 days. Notably, the total Cbl level was approximately 3-fold
higher in human (20–40 yrs) vs. murine frontal cortex, while MeCbl levels were more than
4-fold higher (cf. Figs 2C and 6B).

Discussion
Here we report novel findings suggesting that levels of vitamin B12, especially its MeCbl form,
decrease with age in frontal cortex of control human subjects. Since serum Cbl levels do not
show a similar decrease with age, our results further suggest that vitamin B12 status in the brain
compartment is distinctly regulated from the rest of the body and dynamic changes in brain
MeCbl across the lifespan may play an important functional role in methylation-dependent
processes, including epigenetic regulation of gene expression. Additionally, we observed abnor-
mally lower total Cbl and MeCbl levels in subjects with autism and schizophrenia, as compared
to age-matched controls. To our knowledge, this is the first report of pathologically reduced
levels of active Cbl species in autistic and schizophrenic brain. Although the number of brain
samples analyzed was limited, our findings highlight a possible role for vitamin B12-dependent
methylation reactions in brain function and in the etiology of neurological disorders.

As a compartment distinct from the rest of the body, the metabolic environment of the
brain depends upon the bi-directional transport of nutrients and micronutrients across the
choroid plexus neuroepithelial barrier into the CSF. The aging-related decrease in total brain
levels of vitamin B12 observed in our studies is likely to reflect changes in the activity of one or
more of these transport processes across the lifespan, particularly since serum levels do not
show a similar decrease38. Although the precise molecular basis of vitamin B12 transport into

Fig 6. Redox andmethylation metabolite and cobalamin status in GCLM KOmice. (a) Redox and methylation metabolite levels in frontal cortex of
GCLM KOmice at P40 and P90 (n = 7). Results are expressed as a percentage of theWT level of each metabolite. (b) Levels of five individual Cbl species in
frontal cortex of GLCM KO andWTmice at P40 and P90. Inset indicates total Cbl levels. * Indicates a significant difference from control group (* p < 0.05,
** p < 0.01, *** p < 0.001).

doi:10.1371/journal.pone.0146797.g006
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CFS is not fully understood, one or more active and selective transport systems are likely to be
involved. Transport across the choroid plexus is an important determinant of CSF composi-
tion, and megalin, protein product of the LRP2 gene, which has been implicated in vitamin B12
transport by the distal ileum and the renal proximal tubule, is expressed in choroid plexus epi-
thelial cells, along with amnionless and cubilin [14,43]. Binding of Cbl-loaded TC to megalin
leading to Cbl uptake has been described [44]. Megalin also facilitates endocytosis of the TCR
[45] and TCR knock out mice show a deficit in brain B12 concentrations accompanied by
DNA hypomethylation [46]. A recent study showed that LRP2 is robustly expressed in the dis-
tal ileum during fetal and early postnatal development, but is not expressed in adult human
ileum [47], indicating an age-dependent decline in its expression. Thus a decline in megalin
and/or TCR activity could underlie the lower brain levels of vitamin B12 we observed in elderly
subjects. Interestingly, megalin promotes removal of amyloid precursor protein-derived Aβ
peptide by the choroid plexus and an age-related decline in megalin function has been pro-
posed as a contributor to increased brain levels of Aβ in Alzheimer’s disease (AD) [48].
Impaired MS activity and elevated HCY have been linked to AD and supplementation with
vitamin B12, folate and vitamin B6 decreases progression of cognitive impairment [49–51]. In
combination with our results, these observations suggest a coordinated normal decrease in cho-
roid plexus-mediated transport of vitamin B12 into the brain and Aβ out of the brain with
advancing age (>40 yrs), while environmental and genetic factors introduce increased risk of
neurodegenerative disorders in vulnerable individuals.

We found CNCbl to be 15-fold higher in fetal samples, as compared to 0–20 yr old subjects,
suggesting unique Cbl metabolism during fetal development. However, the underlying cause of
this higher CNCbl level remains unclear, as does the biological origin CNCbl. Maternal folate
and vitamin B12 supplementation is a common recommendation during pregnancy, which
could be a source of the elevated CNCbl we observed, although Cbl levels in placenta were
comparatively low (Fig 1F). Conversion of CNCbl to active cofactors MeCbl and AdoCbl
requires NADPH- or GSH-dependent decyanation by MMACHC [52,53] and it is possible
that the developing fetal brain has diminished decyanation capacity. The markedly higher level
of inactive CNCbl could potentially have functional consequences by competing with MeCbl
and AdoCbl, restricting their cofactor activity.

MeCbl is the most abundant Cbl species in the brain of younger subjects and its 12-fold
decrease was the largest contributor to the 2.7-fold decrease in total Cbl between 0–20 and 61–
80 yr old subjects (Fig 2C and 2D). As an essential cofactor for MS, MeCbl availability regulates
methylation capacity, reflected as a decrease in the SAM to SAH ratio in elderly subjects (Fig
4B). Among hundreds of methylation reactions which are dependent upon [SAM]/[SAH],
methylation of DNA and histones merit special attention for their contribution to epigenetic
regulation of gene expression. Dynamic changes in DNA methylation status at specific loci in
frontal cortex are closely correlated with chronological age [54], consistent with the age-depen-
dent decrease in MeCbl we observed in frontal cortex. Moreover, changes in DNAmethylation
provide an epigenetic mechanism of memory formation [55] and the capacity of the brain for
learning is therefore a reflection of its ability to modify patterns of DNA and histone methyla-
tion and to sustain these patterns over time. D4 dopamine receptor-mediated phospholipid
methylation is completely dependent upon MS activity [4] and D4 receptor activation pro-
motes gamma frequency synchronization of neural networks during attention [5,6]. Thus
MeCbl-dependent MS activity is poised to play a critical role in both attention and learning.

Autism is a complex neurodevelopmental disorder and a number of studies have reported
low plasma levels of GSH and a decrease in [SAM]/[SAH] [56–61], leading us to propose a
“Redox/Methylation Hypothesis of Autism” whereby the sensitivity of MS to oxidative stress
could lead to impairments in epigenetic regulation and D4 receptor-mediated attention [62].
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Our current finding that frontal cortex levels of MeCbl are 3.5-fold lower in autistic subjects vs.
age-matched controls (Fig 2B) lends support to this hypothesis, linking decreased methylation
capacity in the brain to the deficits in neurodevelopment and learning capacity which are hall-
marks of autism. Serum and plasma levels of vitamin B12 are reported to be normal in autism
[60,63], except under conditions of overt nutritional deficiency [64], suggesting that the lower
brain levels we observed might result from a limitation in its transport into the brain compart-
ment. While lower serum B12 levels have been reported for schizophrenia in several studies
[65–67], others found no difference [68,69] or higher levels [70]. In an earlier study we showed
that MS mRNA levels in frontal cortex decreased dramatically across the lifespan and levels in
autistic subjects were approximately one-half of age-matched controls, although protein levels
were not decreased in autistic and elderly subjects [26]. We found that MS enzyme activity is
significantly reduced in autistic subjects when measured with endogenous Cbl, and this deficit
can be largely, but not completely, reversed by addition of OHCbl (Fig 5). Thus deficits in MS
transcription and availability of its vitamin B12 cofactor may both contribute to impaired meth-
ylation in autism. It remains unclear whether these deficits occur prenatally or postnatally, or if
they reflect an acceleration of the normal age-dependent decline caused by one or more envi-
ronmental factors.

Decreased GSH levels may contribute to impaired vitamin B12 transport into the brain, as
indicated by lower total Cbl and MeCbl in GCLM-KO mice (Fig 6B). However, while total Cbl
and MeCbl levels were lower in frontal cortex of autistic subjects (Fig 3A and 3B), GSH levels
were not decreased (Fig 4C). GSH levels have been reported to be decreased in some brain
regions (e.g. cerebellum and temporal cortex) in autism, but not decreased in other regions
(e.g. frontal, parietal and occipital cortex) [29,30]. The metabolic basis for these regional differ-
ences remains obscure, but may relate to their different functional roles. For example, some
brain regions may be metabolically keyed to maintain GSH/GSSG (stable redox status), while
other regions may maintain SAM/SAH (stable methylation status). We speculate that the for-
mer would exhibit more dynamic methylation-dependent epigenetic responses and a higher
level of neuroplasticity, while epigenetic stability in the latter would favor memory. We recently
showed that vitamin B12 levels in cultured human neuronal cells is strongly linked to GSH lev-
els and neurotrophic factor activation of the PI3 kinase signaling pathway augments GSH syn-
thesis in parallel with increased MeCbl and AdoCbl levels [71]. Taken together, our results
suggest that the well-documented systemic deficit of GSH in autism, as measured in the blood
[56–61], may be linked to decreased vitamin B12 transport into the brain. However, the
GCLM-KO model, which genetically restricts GSH synthesis throughout the body, does not
replicate our brain findings in autistic subjects. Further studies are needed to assess the impact
of systemic GSH depletion on vitamin B12 transport into the brain.

A GSH deficit has been proposed to be a key factor in the etiology of schizophrenia [30–32]
and GCLM-KOmice have been extensively characterized as an animal model showing many
schizophrenia-related phenotypes [42,72–74]. GCLM-KO mice exhibit a significant decrease
in γ-frequency synchronized oscillations, a shared feature of schizophrenia and autism [75],
and D4 dopamine receptor activation in parvalbumin-expressing GABAergic interneurons is
essential for synchronized γ oscillations [76]. Since D4 receptor-mediated phospholipid meth-
ylation is absolutely dependent upon MS activity [4], lower levels of MeCbl may contribute to
diminished γ-frequency synchronized oscillations in autism and schizophrenia. Indeed, autism
was initially described as “childhood onset schizophrenia” and these two disorders share many
risk genes and core psychiatric/neurological features [77].

The finding of decreased brain vitamin B12 in autism is analogous to cerebral folate defi-
ciency (CFD) syndrome [78], and approximately 75% of autistic subjects exhibit autoantibod-
ies capable of blocking folate receptor-mediated folate transport in the choroid plexus [79].
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Megalin-directed autoantibodies are relatively common in autoimmune diseases [80], decreas-
ing its function could restrict transport of both folate and vitamin B12, combining to limit MS
and methylation activity in the brain. Decreased levels of total vitamin B12 and MeCbl in autis-
tic subjects (average age 7.5 yrs), were accompanied by a pattern of methylation and transsul-
furation metabolites more typical of control subjects 50–60 yrs of age (cf. Figs 1C and 2B),
similar to the premature decrease in MS expression we previously reported (26), which can be
expected to have neurodevelopmental consequences.

Low levels of MeCbl may help explain long-standing observations of abnormal single-car-
bon metabolism in schizophrenia. For example, as reviewed by Cohen et al. [81], more than
ten studies demonstrated that intake of 20 mg of L-methionine/day induces an acute psychotic
reaction in 40% of schizophrenic individuals, but is without effect in normal subjects. We pre-
viously reported that phospholipid methylation is significantly lower in lymphocytes from
schizophrenic subjects [4] and similarly abnormal epigenetic patterns are present in both lym-
phocytes and corticolimbic brain regions [82]. Moreover, the age-dependent decline in MeCbl
we observed in this study, in conjunction with the previously reported decline in MS transcrip-
tion [26] may be responsible for the characteristic post-adolescence onset of schizophrenia,
which is associated with elevated levels of HCY [83].

Individual risk for brain disorders associated with the age-dependent decrease in MeCbl
may depend upon genetic factors affecting methylation capacity. In accord with this notion,
single-nucleotide polymorphisms (SNPs) in genes for methionine synthase (MTR), methionine
synthase reductase (MTRR), transcobalamin (TCN2) and 5,10-methylenetetrahydrofolate
reductase (MTHFR), which limit their respective activities, are associated with increased risk of
autism [57,84] and schizophrenia [83,85,86], as well as major depression and bipolar disorder
[85,86], Parkinson’s disease [87] and Alzheimer’s disease [86,88]. The breadth of these disor-
ders indicates a central role for methylation in maintaining normal brain function and suggests
that vulnerability to brain disorders at different stages of life involves impaired methylation, in
combination with other risk factors specific to a particular disorder. Indeed, restriction of
methylation-dependent epigenetic regulation may enhance the risk of genetic variants which
might otherwise be benign.

While provision of supplemental vitamin B12 may be helpful in treating the aforementioned
brain disorders, several issues must be considered. The required dosage may significantly
exceed the Recommended Dietary Allowance (RDA) of 2.4 μg/day. Adequate absorption from
the GI tract is essential for oral dosage and transport across the choroid plexus is critical for
raising brain levels. Nasal administration may provide an alternative route of administration.
The supplemented form of vitamin B12 (commonly CNCbl) must be converted to the active
MeCbl and AdoCbl species, which requires adequate levels of GSH and NADPH, and a func-
tional vitamin B12 deficiency state may result when levels of these reducing factors are low, as
in oxidative stress [89]. Thus supplementation with supraphysiological levels of the active Cbl
species (i.e. MeCbl and AdoCbl) may be required to address an oxidative stress-related func-
tional deficiency [90].

Our findings are subject to several limitations, most important of which is the number of
samples analyzed. A larger study is warranted, particularly with regard to autism and schizo-
phrenia samples, although availability of the former is particularly limited. Despite this limita-
tion, the differences we observed are robust. We were not able to measure serum and brain B12
levels of the same subjects, which would provide more definitive comparison of age-dependent
changes. Such studies could be carried out in animals. We did not investigate gender differ-
ences, which would be particularly relevant for autism, since it is more prevalent in males. The
changes we observed in frontal cortex may not occur in other brain regions, so our findings
should not be generalized to the entire brain, subject to further studies. The absence of further
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demographic or nutritional data, including the use of vitamin supplements, did not allow us to
evaluate their potential contribution to brain B12 levels.

In conclusion, vitamin B12 levels in human frontal cortex decrease with age, especially
MeCbl, which plays a crucial role in regulating all methylation reactions, including those pro-
viding epigenetic regulation of gene expression. MeCbl deficits in autistic and schizophrenic
subjects suggest that impaired methylation may be a critical pathological component of these
brain disorders, as well as other neurological and neuropsychiatric conditions. Our findings
provide a novel redox/methylation-based perspective on the metabolic systems which support
normal brain function across the lifespan.
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