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Abstract: Mathematical metabolic modelling is a systematic endeavour to allow identifying
the main causes of an observed metabolic change and to estimate the consequences of an
imposed metabolic perturbation regarding a biosystem. Dynamic Constraint-based modelling
(DCBM) has delivered promising results in metabolic engineering and in bioprocess design
by providing mechanistically relevant systems-level knowledge of a network of bioreactions.
Here, we seek to establish a DCBM approach that leverages convex optimization and nonlinear
regression mathematical toolkit to estimate dynamic intracellular metabolic flux distributions
in stored Red Blood Cells (RBCs) for transfusion purposes. First, we developed an ad-hoc
metabolic network including 77 reactions and 74 metabolites, second, we adapted Flux
Variability Analysis (FVA) technique to quantify the connection between exometabolomic
dynamics and the dynamics of feasible intracellular reaction flux ranges. We have obtained
fine-grained flux range dynamics of the intracellular reactions for the benchmark data published
in (Bordbar et al., 2016). Then, we defined four objective functions regarding the accumulation
of oxidative stress in stored RBCs for performing a dynamic Flux Balance Analysis (DFBA). In
all four cases, time-resolved flux predictions were obtained respecting the imposed equality and
inequality constraints. Last, we adapted a quadratic programming (QP) approach to calculate
the Euclidean distance between the dynamic optimum flux vectors. The DCBM approach we
have developed herein along with the developed metabolic network showed being suitable for
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1. INTRODUCTION

The integration of metabolomics data into mechanis-
tic models can provide a practical understanding of a
metabolic network at the system level. Guiding model
construction and validation, the availability of experimen-
tal data allows elucidating mechanisms behind an ob-
served metabolic change. Thus, mathematical modelling
enables researchers to estimate consequences of an im-
posed metabolic perturbation in several research interests
such as looking at metabolic energy states, bioproduc-
tion optimization, computational strain design and drug
development (Lakrisenko and Weindl, 2021; Laflaquiere
et al., 2018). The current state of metabolic modelling
approaches and computational systems biology methods
have been reviewed recently (Yasemi and Jolicoeur, 2021;
Volkova et al., 2020). In this work, we have selected qui-
escent non-growing stored Red Blood Cells (RBCs) as the
biosystem under study, integrating metabolomics data to
study the accumulation of storage lesions in stored RBCs
(Paglia et al., 2016; Roback et al., 2014; Bardyn et al.,
2020, 2017a; Bordbar et al., 2011). In transfusion medicine,
the storage lesions may have detrimental health conse-
quences for the patients transfused with old stored RBC
concentrates (Bardyn et al., 2017b; Yoshida et al., 2019).
Here, we developed an in-silico workflow for investigating
the dynamics of the enzymatic and non-enzymatic oxida-
tive stress defence mechanisms in RBC storage conditions.

In this study, we present a dynamic constraint-based mod-
elling (CBM) workflow that integrates the extracellular
time series data of stored RBC for an ad-hoc metabolic
network of RBC. The goal is to predict the unknown intra-
cellular fluxes, from a combination of measured transport
fluxes, without any a priori assumptions regarding poten-
tial metabolic shifts in the metabolic network magnitude
and direction during the RBC storage time.

2. STOICHIOMETRIC MODEL RECONSTRUCTION
AND PARTITIONING

The stoichiometric model of the RBC metabolic network
was reconstructed iteratively from the physiological knowl-
edge on RBCs and the previously published genome-wide
metabolic model for this biological system (Bordbar et al.,
2011). The stoichiometric matrix was partitioned based on
a distinction between the intra- and extracellular spaces as
given in equation (2),

∆Mint

∆t
= S.v

= [SII SIT ]

[
vIntra

vTransport

]
= bm, (1)

lb ≤ v ≤ ub (2)

where the vector ∆Mint is a vector of dimension m of
intracellular metabolites change, the vector v represents
reaction fluxes with dimension n, which stands for the
collective set of vIntra and vTransport. The stoichiometric
matrix S of dimension m× n is divided into SII represent-
ing the stoichiometric relation of intracellular metabolites

to the intracellular reactions and SIT , which represents the
relationship between the metabolites passing the system
boundary and transport reactions. The vector bm is non-
zero right-hand side of the equation, lbn and ubn are the
lower and upper bounds of the flux vector, respectively.
We adapted the pseudo steady state assumption if ∆t <<
sample intervals with t being a continuous time vector.
Thus, in equation (2) we consider bm = 0 (Segel and
Slemrod, 1989).

In the iterative procedure of the metabolic network recon-
struction, we modified the metabolites by lumping and
distributing, and we modified the reactions by adding
(or removing) transport and sink reactions followed by
explanatory simulations. The final version of our stoichio-
metric model describing the metabolic network was used
throughout the next sections (table 1).

3. NONLINEAR FITTING OF THE
EXOMETABOLOMICS

To avoid model infeasibility due to the inaccuracies emerg-
ing from noisy experimental measurements, we run a
nonlinear regression data-fit for each of the twelve mea-
sured extracellular metabolites. A set of independent ex-
ponential continuous functions is fitted to the extracellular
metabolites concentration curves as described in equation
(3).

Msim
ext (p, t) = p1 ∗ exp (p2 ∗ t) (3)

where p is the vector of parameters to be estimated, and
Msim

ext represents the simulation values of extracellular
metabolites as a function of the continuous time vector t.
The parameter estimation formulation and the nonlinear
objective function are given in equation (4).

min
p∈R2

f(p) :=

N∑
k=1

(
Mext(tk)−Msim

ext (p, tk)

)2

Such that t1 = 0, tN = 42, k ∈ {1, 2, . . . , N}
N = 14

(4)

Mext(tk) represents the experimental value of an extra-
cellular metabolite at time point tk (in days), where k
is the number of experimental data acquisition ending at
day 42 after a total of N = 14 observations (see (Bordbar
et al., 2016) for detailed explanation of the experimental
setup). Then, the 95% confidence interval of the estimated
parameters is determined by nlparci function in MATLAB
using the Jacobian of the nonlinear fit function. We used
the derivative of the smooth fit functions to calculate in-
stantaneous transport fluxes. Noteworthy, the derivatives
were calculated at the lower and upper bounds of the esti-
mated parameters, as well as at the estimated parameter
values (Fig. 1). As such, we accounted for uncertainty in
the measurements and determined transport flux bounds
in section 5. The derivatives were calculated as in equation
(5).

∂Msim
ext (p, t)

∂t
= p1 ∗ p2 ∗ exp (p2 ∗ t) (5)

Table 1. The RBC metabolic model configuration

Model component Total Number # Intracellular # Transport or Extracellular (measured) # Sink # Blocked or Dead end

Reactions 77 53 16 (12) 8 0
Metabolites 74 57 17 (12) N/A 0
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Fig. 1. Nonlinear regression fit of the blood bag ingredients concentration values and the associated
transport flux rates The exponential regression fit curves (solid black lines) with 95% confidence interval of
the estimated parameters (dashed black lines). The lower and upper bounds of the twelve transport flux rates are
assigned based on this panel. The bag numbers and experimental values (circles) for N = 14 experimental time
points are taken from the second supplementary document of (Bordbar et al., 2016).

4. DEFINING SIMULATION TIME

We define a separate time vector tsim to use in the
following sections, this is the time vector on which our
constraint-based modelling method goes forward in time
until ending at tsimL = tN = 42 (days).

t1 ≤ tsimq ≤ tN
Such that q ∈ {1, 2, . . . , L}

L = 45

(6)

where L represents the number of simulation points. In
this study, we defined this number equal to 45 in a
trade-off between model feasibility and the predefined
computational cost limit. Moreover, the simulation time
points are linearly distributed and each interval is roughly
equal to one day in the experimental context.

5. DYNAMIC FLUX VARIABILITY ANALYSIS
(DFVA) TO IDENTIFY THE ALLOWABLE

INTRACELLULAR FLUX RANGES

We ran FVA at each of the simulation time points to
identify the intracellular flux bounds based on the solu-
tion of 2n number of Linear Programming (LP) prob-
lems optimizing for min/max of each reaction flux. The
advantage of calculating intracellular flux ranges by this
method is that the estimated ranges are unbiased with
respect to any assumed objective function for the cell
functioning during the storage time. However, for the
calculated ranges to be surrounded by default flux bounds,
i.e., not to be redundant, iterative modification of the
metabolic network structure was required. The ranges

identified by DFVA were narrower than the default −1000
to 1000 (mmol.L−1.day−1) range for 83% of the intracel-
lular fluxes.

min / max
v∈Rn

f(v) := vi vi ∈
[

vIntra

vTransport

]

Subject to S.v = 0;
lbj ≤ vj ≤ ubj , vj ∈ vTransport

(7)

where lbj and ubj values were calculated in section 3.

6. DYNAMIC FLUX BALANCE ANALYSIS (DFBA)
BASED ON SEVERAL THEORETICAL OBJECTIVES

First, we constrained a sub-set of the transport fluxes
vTransport including twelve fluxes as shown in Fig. 1.
The selected measured consumption/secretion rates con-
stituted 75% and 21% of transport and intracellular fluxes,
respectively (table 1). Then, we defined four different
objective functions and studied the solutions (see Results
and Discussion). The objective functions were set to the
following fi(v)’s (reactions are given in Fig. 3).

(1) Set 1: Limited glucose (−v1).
(2) Set 2: Maximal ROS tolerance (v53).
(3) Set 3: Minimal ROS tolerance (−v53).
(4) Set 4: Maximal Oxidative PPP (Ox-PPP) activity

(v14).

We considered Set 1 the nominal scenario, Set 2 the ideal
antioxidant scenario within the experimental constraints,
Set 3 the worst case scenario, and Set 4 as a relevant
metabolic scenario of interest. Thus, the LP problem in
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Table 1. The RBC metabolic model configuration

Model component Total Number # Intracellular # Transport or Extracellular (measured) # Sink # Blocked or Dead end

Reactions 77 53 16 (12) 8 0
Metabolites 74 57 17 (12) N/A 0

0 5 10 15 20 25 30 35 40 45
10

15

20

25

0 5 10 15 20 25 30 35 40 45
-500

-450

-400

-350

-300

-250

-200
0

0.02

0.04

0.06

Time (days)
0 5 10 15 20 25 30 35 40 45

0

0.5

1

1.5

2

M
et

ab
ol

ite
 c

on
c.

 
in

 th
e 

bl
oo

d 
ba

g 
[m

M
]

Tr
an

sp
or

t f
lu

x 
ra

te
[m

M
/d

ay
]

GLC[e] GLU[e]

0 5 10 15 20 25 30 35 40 45

0.05

0.1

0.15

0 5 10 15 20 25 30 35 40 45
-2

-1.5

-1

-0.5

0

0.5

1

GLN[e]

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

MAL[e]
nonlinear regression
confidenceinterval

estimation confidence interval

0 5 10 15 20 25 30 35 40 45

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

OXOP[e]

0 5 10 15 20 25 30 35 40 45

0.01

0.02

0.03

0.04

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

FUM[e]

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

HYPX[e]

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70 0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

CYS[e]

bag 1
bag 2
bag 3

0 5 10 15 20 25 30 35 40 45
0

0.005

0.01

0.015

0.02
GTHRD[e]

0 5 10 15 20 25 30 35 40 45
0

0.002

0.004

0.006

0.008

0.01

0.012
GTHOX[e]

0 5 10 15 20 25 30 35 40 45
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0 5 10 15 20 25 30 35 40 45

-1.5

-1

-0.5

0

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6
ADE[e]

0 5 10 15 20 25 30 35 40 45
-50

-40

-30

-20

-10

0
0 5 10 15 20 25 30 35 40 45

0.15

0.2

0.25

0.3

0.35

0.4
CIT[e]

0 5 10 15 20 25 30 35 40 45
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

Time (days) Time (days) Time (days) Time (days) Time (days)

Time (days)Time (days)Time (days)Time (days)Time (days)Time (days)

Tr
an

sp
or

t f
lu

x 
ra

te
[m

M
/d

ay
]

M
et

ab
ol

ite
 c

on
c.

 
in

 th
e 

bl
oo

d 
ba

g 
[m

M
]

Fig. 1. Nonlinear regression fit of the blood bag ingredients concentration values and the associated
transport flux rates The exponential regression fit curves (solid black lines) with 95% confidence interval of
the estimated parameters (dashed black lines). The lower and upper bounds of the twelve transport flux rates are
assigned based on this panel. The bag numbers and experimental values (circles) for N = 14 experimental time
points are taken from the second supplementary document of (Bordbar et al., 2016).

4. DEFINING SIMULATION TIME

We define a separate time vector tsim to use in the
following sections, this is the time vector on which our
constraint-based modelling method goes forward in time
until ending at tsimL = tN = 42 (days).

t1 ≤ tsimq ≤ tN
Such that q ∈ {1, 2, . . . , L}

L = 45

(6)

where L represents the number of simulation points. In
this study, we defined this number equal to 45 in a
trade-off between model feasibility and the predefined
computational cost limit. Moreover, the simulation time
points are linearly distributed and each interval is roughly
equal to one day in the experimental context.

5. DYNAMIC FLUX VARIABILITY ANALYSIS
(DFVA) TO IDENTIFY THE ALLOWABLE

INTRACELLULAR FLUX RANGES

We ran FVA at each of the simulation time points to
identify the intracellular flux bounds based on the solu-
tion of 2n number of Linear Programming (LP) prob-
lems optimizing for min/max of each reaction flux. The
advantage of calculating intracellular flux ranges by this
method is that the estimated ranges are unbiased with
respect to any assumed objective function for the cell
functioning during the storage time. However, for the
calculated ranges to be surrounded by default flux bounds,
i.e., not to be redundant, iterative modification of the
metabolic network structure was required. The ranges

identified by DFVA were narrower than the default −1000
to 1000 (mmol.L−1.day−1) range for 83% of the intracel-
lular fluxes.

min / max
v∈Rn

f(v) := vi vi ∈
[

vIntra

vTransport

]

Subject to S.v = 0;
lbj ≤ vj ≤ ubj , vj ∈ vTransport

(7)

where lbj and ubj values were calculated in section 3.

6. DYNAMIC FLUX BALANCE ANALYSIS (DFBA)
BASED ON SEVERAL THEORETICAL OBJECTIVES

First, we constrained a sub-set of the transport fluxes
vTransport including twelve fluxes as shown in Fig. 1.
The selected measured consumption/secretion rates con-
stituted 75% and 21% of transport and intracellular fluxes,
respectively (table 1). Then, we defined four different
objective functions and studied the solutions (see Results
and Discussion). The objective functions were set to the
following fi(v)’s (reactions are given in Fig. 3).

(1) Set 1: Limited glucose (−v1).
(2) Set 2: Maximal ROS tolerance (v53).
(3) Set 3: Minimal ROS tolerance (−v53).
(4) Set 4: Maximal Oxidative PPP (Ox-PPP) activity

(v14).

We considered Set 1 the nominal scenario, Set 2 the ideal
antioxidant scenario within the experimental constraints,
Set 3 the worst case scenario, and Set 4 as a relevant
metabolic scenario of interest. Thus, the LP problem in
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equation (8) was solved regarding each set at consecutive
simulation time points.

min
v∈Rn

fi(v) := cTi v i = 1, 2, 3, 4

Subject to S.v = 0;
lbi ≤ vi ≤ ubi , vi ∈ vIntra

lbj ≤ vj ≤ ubj , vj ∈ vTransport

(8)

where (lbi,ubi) and (lbj ,ubj) values were calculated in
equations (7) and (5), respectively.

7. RESULTS AND DISCUSSION

7.1 Development of an ad-hoc metabolic network

The metabolic network was reconstructed for explain-
ing RBCs oxidative metabolism, the model scope in-
volves cofactor-dependent enzymes participating in Reac-
tive Oxygen Species (ROS) termination bioreactions, and
glutathione metabolism as our central modelling objective.
Moreover, the major pathways dominating intracellular
metabolism of RBCs were accounted for as shown in
Fig. 3. To validate the developed metabolic network, we
optimized the nominal objective function (Set 1) at the N
consecutive experimental time points (N = 14) reported
in (Bordbar et al., 2016) for RBCs that were suspended
in 100 mL of SAGM (Saline, Adenine, Glucose, Manni-
tol) additive solution. At first, the reconstruction needed
several rounds of modifications to find dynamic feasible
solutions. However, when the feasible solutions appeared
for the first time, i.e., the metabolic network was validated,
the extracted stoichiometric model supported DFBA sim-
ulations for L = 45 simulation time points regarding the
four objectives with only minor modifications (Fig. 2).

7.2 Linking the transport flux rates to unbiased
intracellular flux ranges

The developed extension of CBM for describing time-
resolved dynamics of the RBC internal metabolic network
starts off from the nonlinear exometabolomics fitting (sec-
tion 3), which converts the discrete measurements into dif-
ferentiable analytical functions. However, it is noteworthy
that neither the exponential analytical functions nor the
estimated independent parameters in equation (3) have
any biological meaning. The aim of this step is to define a
set of sufficiently accurate and smooth exchange flux con-
straints that also address the solution infeasibility issue,
hindering the estimation of continuous intracellular flux
predictions in dynamic constraint-based models. Then, the
95% confidence interval of transport fluxes were imposed
as inequality constraints on vTransport vector in equation
(2). The generated ranges of intracellular fluxes estimated
by DFVA were treated as unbiased bounds with regard
to any possibly assumed objective function for the LP
problems solved in DFBA (section 6). Of importance,
it is a methodologically distinct use of FVA technique
in CBM approaches than what the authors followed in
(Mahadevan and Schilling, 2003). In their work, the LP
problem was first optimized, for example, to maximize
the growth rate and then the FVA technique was used
to determine the range of the possible alternate optima.
The ad-hoc metabolic network developed here supports the
generation of dynamic unbiased intracellular flux ranges as

Table 2. The Euclidean distance between the
DFBA solution sets.

Set 1 Set 2 Set 3 Set 4

Set 1 0 13737 1591.8 13874
Set 2 13737 0 15308 787.52
Set 3 1591.8 15308 0 15446
Set 4 13874 787.52 15446 0

described in section 5 on a personal computer with Intel(r)
Core(TM) i5-8250U CPU @ 1.60 GHz and 8 GB RAM
memory. However, a similar analysis on the genome-wide
metabolic model of erythrocytes demands significantly
higher computation power emphasizing the importance
of metabolic modelling integration with state-of-the-art
computing techniques (see (Kitano, 2002)).

7.3 Multiple alternative objective functions and analysis of
the Euclidean distance between dynamic flux distribution
optima

In section 6, we solved the DFBA problem for multiple
alternative objective functions, but within the same equal-
ity and inequality constraints. Then, we used Quadratic
Programming (QP) to calculate the Euclidean distance
between the four sets of dynamic flux distribution optima
as shown in equation (9),

dist(seti, setj) =( L∑
k=1

n∑
r=1

(
vi,k,r − vj,k,r

)2) 1
2

i, j = 1, 2, 3, 4

(9)

In fact, we intend to show that systemic generation of
multiple relevant biological objective functions followed
by model-driven analysis of the generated flux distribu-
tion optima provides a robust computational approach to
systems-level scrutiny of a metabolic network of interest.
Thus, in table 2, we reported the symmetrical matrix of
dynamic flux distributions Euclidean distance. The results
revealed that Set 2 and Set 4 are the closest dynamic flux
distribution optima.

7.4 Mitigating the solution space infeasibility issue

We know that the biosystem acquires a mass balanced car-
bon flux distribution at any point within the experimental
scope. Therefore, we expect the model to find feasible solu-
tions within the same in-silico conditions. Thus, we argue
that if the LP optimization solver cannot find a feasible
solution in the enzymatic flux vector space Rn, then, there
exist some limitations in the model (e.g., unfilled gaps,
inaccurate mechanistic assumptions, inconsistent model
scope, etc), and/or the data are not accurate. We showed
that the connectedness of the developed metabolic network
and the smoothness of the simulated exometabolomics
play important roles in tackling the infeasibility issue reg-
ularly associated with stoichiometric-based models (Mead-
ows et al., 2010; Nolan and Lee, 2012). Herein, we managed
to generate feasible time-resolved solutions for the fully
constrained system by including sink reactions only for a
small fraction of the intracellular metabolites, i.e., 14%.
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Fig. 2. The dynamics of ROS detoxification and NADPH-dependent reaction rates constrained by
dynamic intracellular flux bounds The colour-coded curves represent optimal flux dynamics associated with the
solution set of the four objectives (section 6) and the grey-shaded background represents the dynamic intracellular
flux ranges. Set 2 (maximal ROS tolerance in solid blue) and Set 4 (maximal PPP activity in solid green) overlap
in v27, v29, v36, and v53.

7.5 Using the validated model for generating systems-level
biological hypotheses

The results reported in table 2 is in agreement with pre-
vious findings supporting the positive correlation between
PPP activity and antioxidant defence mechanisms in other
biological systems (Moon et al., 2020; Christodoulou et al.,
2018). In fact, the oxidative PPP to hexokinase turnover
ratio could increase from 106% to 197% in the PPP hyper-
activity scenario (set 4). This range was from 21% at day
zero to 32% at day 42 of the storage time in the glucose lim-
ited nominal scenario (set 1). The carbon flux through the
oxidative branch of PPP with 2 moles NADPH turnover
for each mole of glucose intake represents a metabolic route
to generate reducing cofactors (NADPH), i.e., v14, v15,
and v16. We show that the termination of higher fluxes
of ROS modelled via v53 to preserve redox homeostasis
is possible through a sustained activation of this pathway.
We also found that hyper activation of the PPP pathway
can pull v2 in its reverse direction and also suppress citrate
to alpha-ketoglutarate and malate to pyruvate reactions,
possibly because the latter ones are competing for NAD
substrates. Such in-silico analysis results may suggest a ra-
tionale for increasing citrate concentrations in blood bags
to compete for the storage lesions consumption through
an alternative metabolic route. We also envisage that the
same in-silico approach could be helpful to characterize
the influence of urate on RBC metabolism during storage.
Indeed, we showed that the RBC preparation triggers a
progressive loss of urate during the first week of storage
(Bardyn et al., 2017a). The compensation of this leak by
adding urate and ascorbic acid was suspected to reroute
the metabolism (switch between oxPPP and glycolysis)
(Bardyn et al., 2020). Collectively, these simulation results
emphasize the inherent variability in dynamics of cell
metabolism and the possible implications of this hetero-
geneity for the regulation of antioxidant defence machin-
ery.

8. CONCLUSION

We have set up a constraint-based model of RBC
metabolic network for the mechanistic estimation of the
biochemical reaction network fluxes under twelve nar-
row transport reaction constraints evolving with storage
time. The model complemented with different hypothe-
ses can predict flux rates of antioxidant defence systems.
We demonstrated that the model generates time-resolved
predictions of non-measured fluxes variation with media
change, which is essential for systems-based amelioration
of the storage lesions (Bardyn et al., 2018, 2020). Finally,
we used the model to calculate the distance between the
four distinct optimal flux distribution solutions (Fig. 2).
Two considerable shortcomings of the presented dynamic
metabolic flux methodology are, first, not providing intra-
cellular metabolite levels at this stage, and also, the lack
of explicit integration of the metabolic regulation events.
Addressing these limitations will be covered in a further
modelling study.
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7.5 Using the validated model for generating systems-level
biological hypotheses

The results reported in table 2 is in agreement with pre-
vious findings supporting the positive correlation between
PPP activity and antioxidant defence mechanisms in other
biological systems (Moon et al., 2020; Christodoulou et al.,
2018). In fact, the oxidative PPP to hexokinase turnover
ratio could increase from 106% to 197% in the PPP hyper-
activity scenario (set 4). This range was from 21% at day
zero to 32% at day 42 of the storage time in the glucose lim-
ited nominal scenario (set 1). The carbon flux through the
oxidative branch of PPP with 2 moles NADPH turnover
for each mole of glucose intake represents a metabolic route
to generate reducing cofactors (NADPH), i.e., v14, v15,
and v16. We show that the termination of higher fluxes
of ROS modelled via v53 to preserve redox homeostasis
is possible through a sustained activation of this pathway.
We also found that hyper activation of the PPP pathway
can pull v2 in its reverse direction and also suppress citrate
to alpha-ketoglutarate and malate to pyruvate reactions,
possibly because the latter ones are competing for NAD
substrates. Such in-silico analysis results may suggest a ra-
tionale for increasing citrate concentrations in blood bags
to compete for the storage lesions consumption through
an alternative metabolic route. We also envisage that the
same in-silico approach could be helpful to characterize
the influence of urate on RBC metabolism during storage.
Indeed, we showed that the RBC preparation triggers a
progressive loss of urate during the first week of storage
(Bardyn et al., 2017a). The compensation of this leak by
adding urate and ascorbic acid was suspected to reroute
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(Bardyn et al., 2020). Collectively, these simulation results
emphasize the inherent variability in dynamics of cell
metabolism and the possible implications of this hetero-
geneity for the regulation of antioxidant defence machin-
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We have set up a constraint-based model of RBC
metabolic network for the mechanistic estimation of the
biochemical reaction network fluxes under twelve nar-
row transport reaction constraints evolving with storage
time. The model complemented with different hypothe-
ses can predict flux rates of antioxidant defence systems.
We demonstrated that the model generates time-resolved
predictions of non-measured fluxes variation with media
change, which is essential for systems-based amelioration
of the storage lesions (Bardyn et al., 2018, 2020). Finally,
we used the model to calculate the distance between the
four distinct optimal flux distribution solutions (Fig. 2).
Two considerable shortcomings of the presented dynamic
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Fig. 3. The ad-hoc RBC metabolic map The
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v49), Salvage pathway (v50-v52), ROS detoxification
(v53), sink and demand reactions (v54-v61), and
transport reactions (v62-v77).
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