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Abstract. The populations of Capercaillie (Tetrao urogallus), the largest European grouse,
have seriously declined during the last century over most of their distribution in western and central
Europe. In the Jura mountains, the relict population is now isolated and critically endangered
(about 500 breeding adults). We developed a simulation software (TetrasPool) that accounts for
age and spatial structure as well as stochastic processes, to perform a viability analysis and explore
management scenarios for this population, capitalizing on a 24 years-long series of field data.
Simulations predict a marked decline and a significant extinction risk over the next century, largely
due to environmental and demographic stochasticity (average values of life-history parameters
would otherwise allow stability). Variances among scenarios mainly stem from uncertainties about
the shape and intensity of density dependence. Uncertainty analyses suggest to focus conservation
efforts on enhancing, not only adult survival (as often advocated for long-lived species), but also
recruitment. The juvenile stage matters when local populations undergo extinctions, because it
ensures connectivity and recolonization. Besides limiting human perturbations, a silvicultural
strategy aimed at opening forest structure should improve the quality and surface of available
patches, independent of their size and localization. Such measures are to be taken urgently, if the
population is to be saved.

Introduction

Habitat loss and fragmentation is threatening an increasing number of species.
Fragmentation breaks down large natural populations into series of small-sized
demes, which are highly susceptible to stochastic fluctuations and local
extinctions (Akgakaya and Baur 1996). This, however, does not necessarily
lead to a global extinction: fragmented populations may survive for some time
in disequilibrium dynamics, if the specific dispersal ability and landscape
structure allows recolonization events to balance local extinction rates
(Gutiérrez et al. 1999). Such metapopulation dynamics is becoming a central
issue in conservation biology (Hanski et al. 1996).
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Population viability analyses (PVA) are aimed at assessing the extinction risk
of focal populations within a specified time horizon, and to compare alterna-
tive management options (Bustamante 1996). The introduction of quantitative
elements into risk assessment is indeed crucial if management decisions are to
be made on a priori clear expectations of population responses, and not on the
ease of implementation or accessibility of a life stage (Crouse et al. 1987).

Analytical approaches are only of limited help in this context: the simplifying
assumptions made for tractability are normally incompatible with the com-
plexity of real situations. Details of life-histories and spatial structures in
particular can usually not be dealt with analytically, but have important
consequences on populations (Hanski 1991). Computer simulations, as an
alternative, have the potential to account for a great deal of biological realism.
But they also incur some risks and limitations, due to their lack of generality,
and to the difficulty of converting real-world complex interactions into a
functional model (Reed et al. 1998). Introducing too much complexity in a
model is not only useless, it may be detrimental. Sophisticated models may
require too detailed field information without providing much additional in-
sights. To be useful and reliable, PVAs require careful parameter estimations
(Saether et al. 1998), which are often missing or imprecise for rare or endan-
gered species. The trade-off between complexity and functionality is thus
bound to depend on the characteristics of the species in concern, on the
availability of data, and on the question addressed (Burgman et al. 1993).

Capercaillie (Tetrao urogallus), the largest European grouse, is listed as
threatened in western, central and south-eastern Europe (IUCN 1996). Though
the species still occupies most of its original range throughout northern Europe
and Asia, western and central Europe populations have experienced important
declines and local extinctions over the past decades, owing to habitat losses,
habitat fragmentation and human disturbance (Storch 2000). Rainy conditions
during egg incubation and young rearing, as well as predation (Storch 1991)
can locally amplify population decline. Remnant populations are restricted to
mountain regions where habitats are often isolated and fragmented (Blair et al.
1997).

The capercaillie is strictly associated with boreal or mountain forests with
highly specific habitat requirements in terms of structure and composition that
are in most cases best met by old stands (Picozzi et al. 1992). Bilberry (Vac-
cinium myrtillus) represents the major part of its summer diet, while in central
Europe, fir (Abies alba) is required as winter food. Annual home range varies
from 100 to 1000 ha (Gjerde and Wegge 1989; Ménoni 1991) for adults of both
sexes according to local conditions. These characteristics, together with a high
sensitivity to human perturbations (especially during the winter period and the
reproductive season), make capercaillie an indicator of undisturbed forest
ecosystems (Storch 1993).

In Switzerland, several populations have been extinct and capercaillie dis-
tribution showed a drastic reduction of 20.6% between 1972-1976 and 1993—
1996 (Schifferli et al. 1980; Schmid et al. 1998). The Jura Mountains, Schwytz
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Alps and Grison Alps are the only demes left in Switzerland with more than
100 birds (Schmid et al. 1998). As the result of cattle farming and silvicultural
practices started as early as the 14th century (Leclercq 1987b), the distribution
of capercaillie populations in the Jura mountains (lat. 47°25” N; long. 6°42" E)
has long been patchy. It has, however, drastically regressed since the 1960s,
being now restricted to altitudes 1200 m and above (up to 1550 m). The
remaining metapopulation is distributed over 35 forest patches, 24 of which in
France (Montadert and Chamouton 1997) and 11 in Switzerland (Déandliker
et al. 1993), covering 542 km? in total. Population size is estimated at about
500 reproductive birds (Montadert and Chamouton 1997).

In Switzerland, concerns raised by capercaillie’s rapid decline resulted in
financial support for silvicultural practices that would improve its habitat
conditions. Political pressure to invest money in a cost-effective way called for
a comprehensive approach aimed at identifying crucial life-history stages and
potential effects of habitat improvements.

In the present paper, we present a viability analysis for the endangered
capercaillie metapopulation of the Jura mountains, Central Europe. Field
studies on this focal population started in 1976. Its specific life-history
parameters and decline are thus well documented. The analysis was performed
on a series of computer simulations performed with the software TetrasPool
1.0.2, (Sachot 2000) specifically developed to make full use of the detailed
information currently available on capercaillie biology. Our specific goals were
to define crucial life-history stages, to explore the relative benefits of several
management scenarios and to locate gaps in the knowledge of the species
demography to focus future studies.

Methods
Outline of the model

TetrasPool was explicitly built to match capercaillie natural history, but would
suit any species with similar life cycle. The model considers females only,
assuming males are not limiting in lekking species. Time steps are annual, and
age-structure is restricted to two classes (juveniles for the first year of life,
adults thereafter), with different survival rates (Figure 1). Juveniles disperse
away from the natal territory after fledging (autumn and early winter), then
establish a breeding territory (Storch 1995). A single reproductive bout occurs
per year, in which only a proportion of the females participate.
Under these assumptions, the finite rate of increase reads:

where S, is adult female survival, S; juvenile survival, p the proportion of

females breeding in any given year, f their fecundity, and r the primary sex ratio
(proportion of females in broods).
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Figure 1. Locations of the 35 capercaillie populations in the Jura Mountains. Refer to Table 2 for
relationships between population number, initial abundance and estimated carrying capacities.

Local dynamics

Density dependence in local dynamics most likely stems from the failure of
young females to obtain a territory, which impairs their ensuing survival and
breeding success (Ménoni 1991). We thus implemented density dependence
through a negative effect of adult density on juvenile recruitment. The available
evidence suggests a linear effect of density per capita rate of growth (Cattadori
et al. 2000), but, owing to the scarcity of empirical data, both ceiling- and
logistic relationships were explored. In the ceiling type, juvenile recruitment (in
Eq. (1)) was kept constant at observed value (Table 1), baring stochastic
variations, as long as local populations were below their capacity, and trun-
cated otherwise. Under logistic control, recruitment declined linearly with
density:

So— S
K

where K is the local carrying capacity (number of breeding territories on the
local patch), N, the local density of adult females for the year considered, S;;

Sji=So — Ni, 2)
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Table 1. Baseline parameter estimates used in the simulations of capercaillie persistence in the Jura
Mountains, western Switzerland.

Parameter Value (£SD) Source

Sex ratio (proportion of 0.5 Leclercq (1987)

female hatchlings)

Fecundity 7.54 (£0.6)  Derived from Leclercq (1987a)

Proportion of reproductive females 0.25 (£0.2)  Derived from Leclercq (1987a)
and and Leclercq (unpublished data)

Female juvenile survival 0.19 (£0.15) Leclercq (1987a)

Female maximum juvenile survival 0.3 Storch (2000)

Female adult survival 0.82 (£0.24) Leclercq (1987a)

Female summer home range size (ha) 50 Storch (1993), Ménoni (1991)
Average dispersal distance (m) 8000 Wegge et al. (1981), Koivisto (1963)
Dispersal rate (%) 0.1 (£0.2) Meénoni (1991)

the average recruitment for this year, Sy the maximal recruitment (reached
when adult density tends to 0 so that all breeding territories are available), and
S the recruitment at equilibrium (recruitment probability when N=K, i.e., the
value of §; that makes A=1 in Eq. (1).

Spatial structure

The metapopulation consisted in a number of local populations with different
carrying capacities but similar life-history parameters, baring stochasticity (see
below). Juveniles dispersed from their natal patch with probability. Among the
pool of juveniles dispersing from patch i, the probability of successfully
attaining patch j was modeled as:

1 R; 5
L tretan( B0/ :
my = rcan(D)e (3)

ij

where R; is the radius of the target population, D;; the distance between patch
centroids, and D the average dispersal distance. Thus, connectivity among
patches increased with their size and proximity.

Stochasticity

Environmental stochasticity was introduced by sampling the patch-specific
value of a parameter (e.g., dispersal probability) from a beta distribution, with
mean and standard deviation defined for the whole metapopulation (Table 1).
Demographic stochasticity was introduced by assigning individual status (i.e.,
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whether the focal individual survived or not, reproduced or not, dispersed or
not) from a binomial sampling, and individual fecundity from a Poisson
sampling, with parameter set to the patch-specific value.

Estimation of life-history parameters

Fecundity was estimated as the mean number of eggs in all clutches (n=28)
discovered during field sampling of the French Jura population 21 (Figure 2)
between 1976 and 1999.

Baseline demographic parameters estimations (Table 1) were issued from
route census of this same population performed between the 15th and 30th of
July (i.e., 3 months after egg laying) from 1976 to 2000 (Leclercq 1987¢). A line
of 3-8 persons arranged at 25 m intervals walked simultaneously through
entire forest patches and counted flushed juveniles, adult males and adult
females capercaillic. Age- and sex-undetermined birds were omitted from
demographic parameters calculations.

The proportion of reproductive females was set to the average proportion of
females observed with a brood during a census. The average survival rates of
Jjuveniles (S)) and adults (S,) used in Eq. (1) were estimated by Leclercq (1987c)
from the linear regression:

S =8.— R,(S,, - S_/) (4)

where S(7) is the population average survival from year ¢ to ¢+ 1, calculated by
dividing the number of adults at year 1+ 1 by the total number of individuals
(adults plus juveniles) at year ¢, and R(t) is the proportion of juveniles at year ¢,
calculated as the ratio of the number of juveniles to the total number of
individuals (adults plus juveniles). Maximal juvenile survival rate (Sy) was set
to 0.3 according to (Storch 2000).

Prop. of reproductive females Fertility Juvenile survival

Immigration Emigration

Total number
of females
(time t+1)

Totalnumber
of females
(time t)

Juvenile
females

Reproductive
females

Adult survival

Figure 2. Annual life history traits of capercaillie females considered in the model. Fertility ac-
counts for both fecundity and sex ratio.
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Local carrying capacities were calculated by dividing patch size by female
spring home range (Sachot 2002; Table 2), estimated to be ca 50 ha during the
breeding season (Ménoni 1994). In absence of local information on dispersal,
we used values published from other West-European populations, namely an
average juvenile dispersal distance of 8 km (Wegge et al. 1981) and a dispersal
rate of 10% (Ménoni 1991).

Initial abundance of males is the total number of males counted at the leks in
each population during spring 2000. We assumed a 1:1 sex ratio in each
population to extrapolate female initial abundance (Table 2).

Table 2. Capercaillie initial abundance (adult females only) and carrying capacity (K) for the 35
populations of the Jura Mountains.

Population number Initial abundance (female only) K
1 1 17
2 1 1
3 1 6
4 1 4
5 7 16
6 2 4
7 6 6
8 13 30
9 3 3
10 1 4
11 1 3
12 30 22
13 3 9
14 2 5
15 7 8
16 12 14
17 12 14
18 16 31
19 1 3
20 12 20
21 64 117
22 2 70
23 2
24 23
25 6
26 3
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Simulation scenarios

We caution that these metrics should not be interpreted literally, because of the
many assumptions necessary in any PVA model, but rather be used to compare
the influence of parameters sets and enhancement scenarios on PVA predic-
tions. A first set of simulations was run using the baseline demographic
parameter values (Table 1) and initial population sizes (Table 2), with density-
dependence of either ceiling- or logistic type. Further simulations were then
conducted with one parameter changed at a time, all other parameters being
held to their baseline value. The parameter changed was set to either a low or a
high value, representing extreme estimates derived from a compilation of all
known capercaillie data reported in published papers for other European
populations (Hoglund 1952; Koivisto 1963; Wegge et al. 1981, 1990; Moss and
Oswald 1985; Leclercq 1987a, ¢; Moss and Weir 1987). Finally, we tested a
series of ecological scenarios corresponding to changes in habitat availability
and/or quality. The first scenario involved a yearly reduction of the carrying
capacity by 0.43%, which reflects habitat loss during the last decade (Sachot
2002; Sachot unpublished data). The other scenarios involved habitat
enhancement. Present political context and financial resources make
improvement of about half of the available area a realistic measure. Accord-
ingly, our habitat enhancement scenarios consisted of a 50% increase of the
surface of (1) all patches, as suggested by Ménoni (1994), (2) the two largest
patches only, to explore the influence of potential source populations, sensus
Burgman et al. (1993), (3) the 12 smallest patches only, to maintain population
connectivity that may lead to recolonization of empty patches by immigration
from other extant populations (Ak¢akaya and Baur 1996).

Cycles started with an initial number of females specified for each patch
(Table 2), estimated at the onset of the breeding season. For each scenario,
1000 replicates, including both demographic and environmental stochasticity,
were performed over 100 years, at which time frequency distributions,
extinction probabilities as well as median time to extinction (for extinct runs),
were computed.

Results
Risk analysis

Even though the deterministic rate of increase, calculated by inserting demo-
graphic parameter values (Table 1) in Eq. (1), would predict long term stability
for the population, our stochastic and spatially structured simulations predict a
significant decrease over time. The results of risk analysis with ceiling and
logistic density dependence are presented in Table 3. Ceiling or logistic density
dependence provided contrasted results in terms of extinction risk and time to
extinction; logistic density dependence provided smaller extinction risks
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because the per capita growth rate increases as population decreases. The
populations of capercaillie were severely endangered according to the baseline
life-history traits assuming ceiling density dependence, with an extinction risk
of 56.8%, and a median time to extinction of 77 years. If logistic density
dependence was assumed, a marginal risk of 0.05%, and a median time to
extinction of 99 years were recorded.

Uncertainty analyses also provided contrasted results depending on the
shape of density dependence. Under ceiling assumptions, extinction risks
proved to depend strongly on a series of parameters, among which female adult
survival, sex ratio of broods, proportion of reproductive females, and female
juvenile survival were the most important, followed by fertility (Table 3).
Dispersal rate had a minor effect, but dispersal distance did not.

Under logistic density dependence, by contrast, adult survival was the single
most important parameter affecting extinction risk (Table 3). Brood sex ratio
and proportion of reproductive females had some effects, while all other
parameters had only marginal effects if any.

Management scenarios

A first assessment with default parameters and annual decrease of the carrying
capacity largely affected the risk analysis results (Table 4). The mean risk in-
creased from 56.8 to 63.6% under the assumption of ceiling density dependence
and from 0.05 to 18% in the case of logistic density dependence assumption.

An increase in available suitable habitats had a very small impact on esti-
mated capercaillie persistence. Assuming ceiling density dependence, the risks
were approximately the same as for the default simulation and around 50%.
Not unexpectedly, enhancing habitat for all 35 populations had the largest
effect, reducing extinction risk to 45.4%. If logistic density dependence was
assumed, the risks were the same as for the default simulation, and close to 0%.

Table 4. Results of a PVA examining habitat loss and improvements for the Jura capercaillie
metapopulation, projected for 100 years.

Scenario® Ceiling density dependence Logistic density dependence
Extinction Median time Extinction Median time
risk (%) to extinction risk (%) to extinction

1 63.6 76 18 92

2 454 81 0 0

3 52.7 79 0 0

4 53.3 77 0 0

9K is annually decreased by 0.43% in all populations (Scenario 1). K is increased by 50% for all
populations (Scenario 2), in the two major populations (Scenario 3), in the 12 smaller populations
(Scenario 4).
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Discussion

A widespread shortcoming of PVAs is the lack of accurate estimations of
parameter means and variances (Reed et al. 1998). Despite the fact that the
present analysis relied on an unusual 24-years long data base, specifically
collected from the population we are modeling, the predicted extinction risks
still varied largely, owing to uncertainties about some crucial assumptions in
the model.

A large part of this variance was linked to uncertainty about the shape of
density dependence: the logistic relationship predicted a less threatened future
for capercaillie populations than did the ceiling relationship (an expected
outcome since the logistic equation allows the per capita growth rate to increase
as population declines; (Burgman et al. 1993). Lack of information about
density dependence is a recurrent problem in PVA studies: though density
dependence in reproduction or survival is known to play a crucial role in
regulating population numbers (Sinclair 1989), its precise form and strength
remains poorly documented in general, much debated and awaiting closer
empirical scrutiny (Yearsley et al. 2003).

A linear decline of the per capita growth rate with density was documented in
capercaillie (Cattadori et al. 2000), supporting the logistic option. In central
Europe, the size and quality of capercaillie territories correlate negatively with
density (Storch 1995), which should indeed generate a logistic response (a
ceiling response would result from fixed territory size or quality). Regarding
mechanisms, fecundity is unlikely to vary much with density in capercaillie,
because female exhibit constant clutch size throughout the European distri-
bution range, even in declining populations (Storaas and Wegge 1984). Juvenile
recruitment, including both survival and access to reproduction, seems a more
likely target. Many bird studies (though not all) document a decline in survival
with increasing density (see Sinclair 1989 for a review), and juvenile birds often
appear more vulnerable to breeding density and environmental disturbances in
general (e.g., Both 1988). Capercaillie densities are currently low in the Jura
Mts (Table 2) and thus very unlikely to affect juvenile birds’ survival. By
contrast, environmental disturbances strongly increased during the last decades
(Ménoni 1994) and might largely decrease juvenile survival.

The shape and target of density dependence thus appears as a crucial
empirical question for capercaillie conservation prospects. The (limited) sup-
port for a logistic relationship might appear as good news, given the outcome
of our simulations, but the point remains that several factors likely to affect the
extinction rate, including possible Allee effects (Burgman et al. 1993) for which
we had no information, were not included in our simulations.

The most appropriate use of PVAs, however, does not lie in the absolute
values of extinction risks provided, but in the ranking of threats and manage-
ment options (Ak¢akaya and Altwood 1997), as well as sensitivities of life-
history transitions. In this respect, adult female survival appears as the most
important parameter acting on the viability of capercaillie populations, as is
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often the case in long-lived birds (Trouvilliez et al. 1988). However, recruitment
also takes some importance, as expressed through a series of parameters
including proportion of reproductive females, sex ratio of clutches, and juvenile
survival. This result corroborates Moss et al. (2001) conclusions, who showed
the overall decline of a Scottish capercaillie population to be due to a reduced
recruitment of young birds as much as to an increased mortality of adults.

It is worth noting that recruitment took a particular importance under
ceiling density dependence, i.e., under conditions of declining population and
increased levels of local extinctions. This might partly stem from the spatial
structure of the model: because dispersal is essentially a juvenile feature,
recruitment might become a key parameter under non-equilibrium dynamics,
since it provides the most effective way to counteract local patch extinction, by
rescuing vanishing demes or recolonizing extinct patches. Accordingly, dis-
persal rate also significantly affected extinction risk under ceiling dependence
(Table 3).

Source-sink dynamics seem a common feature of capercaillie populations in
anthropogenic, fragmented landscapes (Segelbacher and Storch 2002). Despite
their low numbers, immigrants appear essential to maintain the viability and
genetic variability of small and isolated populations.

Dispersal distance, by contrast, had very limited effect, presumably because
of the close spatial proximity of the several patches forming the metapopu-
lation. Mean distance between two adjacent patches is 4.6+2.4 km, while
capercaillie dispersal abilities are well beyond this limit (Ménoni 1991).
Within the present-day Jura network of patches, capercaillie dispersal abilities
ensure correct connectivity for even the most remote of the occupied patches.
Considering the small size and close geographical proximity of most suitable
capercaillie habitat patches in the Jura Mts, it is likely that most small
patches survive thanks to their connectivity to other populations (Sachot
2002).

Prospects obviously worsen if carrying capacity continues to decline at
present rate (Table 4). Capercaillie need an open-forest structure (Sachot et al.
2003), and one important reason for its decline in the Jura may lie in the
modifications of silvicultural and grazing practices over the last century
(Leclercq 1987b), that led to the closing of the forest in many places. If this
trend continues, the extinction risk will obviously become more serious, and
the values provided in this study may underestimate real threats. However, as
our simulations show (Table 4), stopping this trend or even reversing it appears
insufficient to significantly improve survival chances. This must be accompa-
nied by measures enhancing the quality of present-day habitat patches, thereby
improving adult survival and recruitment (Table 3).

Adult survival in capercaillie is very sensitive to human disturbance, mainly
during winter (Ménoni et al. 1994) while recruitment depends on many factors
varying among years and sites (Leclercq 1987a), including climate (cold and
rainy weather between April and June), insect availability, cables, predation,
and human disturbance (Picozzi et al. 1999; Moss et al. 2001).
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One important action should be to limit human disturbance by restricting
access into breeding and wintering sites. Despite detailed inquires, capercaillie
collisions with fences and wires, recorded in France and Scotland as an
important extra natural mortality factor, were presumed only in one Jura
population at the end of the seventies (Leclercq 1987a). This probably results
from the absence of fences within forests and long distances from ski station
cables to present capercaillie populations. Predation can hardly be controlled
directly. Summers et al. (2004) showed a moderate effect of crows and foxes
control on capercaillie productivity, despite intense efforts. Larger scale and
longer term predator control might have a stronger effect on capercaillie
breeding success but this involves substantial additional material and financial
resources. A positive indirect effects might result from forest management
actions. Limiting forest fragmentation may efficiently control some predator
species (Angelstam 1986), while maintaining an open structure to the forests
will favor ground vegetation, thereby providing food for capercaillie and
shelter from predators. Grouse-adapted forest management positively influence
capercaillie and could act on food availability and predator numbers (Storch
1993).

Our results thus suggest that effective conservation will require several
simultaneous actions, aimed at decreasing adult female mortality and
increasing recruitment through enhancing habitat suitability. Besides limiting
human perturbations, an appropriate silvicultural strategy should improve the
quality and surface of present patches, independent of their size and localiza-
tion. Preliminary attempts in the Jura Mts suggest that forest structure and
composition can be improved through rejuvenation cutting at reasonable costs
(S. Sachot, G. Dandliker, O. Schneider, unpublished data). However, action is
required on a large geographic scale and over several years. Capercaillie
populations, furthermore, may take some time before responding quantita-
tively. Thus, actions at the two levels delineated here above should be initiated
rapidly if the Jura capercaillie population is to be saved.
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