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ABSTRACT: CsPbI3 is a promising material for optoelectronics owing to
its thermal robustness and favorable bandgap. However, its fabrication is
challenging because its photoactive phase is thermodynamically unstable at
room temperature. Adding dimethylammonium (DMA) alleviates this
instability and is currently understood to result in the formation of
DMAxCs1−xPbI3 perovskite solid solutions. Here, we use NMR of the 133Cs
and 13C local structural probes to show that these solid solutions are not
thermodynamically stable, and their synthesis under thermodynamic
control leads to a segregated mixture of yellow one-dimensional DMAPbI3
phase and δ-CsPbI3. We show that mixed-cation DMAxCs1−xPbI3 perov-
skite phases only form when they are kinetically trapped by rapid
antisolvent-induced crystallization. We explore the energetics of DMA incorporation into CsPbI3 using first-principles
calculations and molecular dynamics simulations and find that this process is energetically unfavorable. Our results provide a
complete atomic-level picture of the mechanism of DMA-induced stabilization of the black perovskite phase of CsPbI3 and
shed new light on this deceptively simple material.

Organic−inorganic halide perovskite solar cells (PSCs)
have been developed within a decade to achieve
remarkable power conversion efficiencies (PCEs) of

over 25%.1,2 However, their thermal stability has been a major
bottleneck due to the volatility of the organic components at
elevated temperatures, which leads to irreversible degradation
of device performance over time.3−7 All-inorganic PSCs based
on cesium lead halides have attracted significant attention
owing to their higher thermal stability and have reached PCEs
on the order of 20%, albeit typically with various organic
additives.8−16 CsPbI3 has been identified as one of the most
promising solar cell materials due to its bandgap (Eg = 1.71
eV) which is close to the radiative efficiency limit.8,17 However,
its perovskite α phase (Pm3̅m) is thermodynamically stable
only above ca. 300 °C. On cooling, it transforms first to the
tetragonal β phase (P4/mbm) and then the orthorhombic γ
phase (Pbnm) with distorted corner-sharing octahedra (Figure
1A).8,18,19 The γ phase is metastable at room temperature and
readily transforms to an orthorhombic nonperovskite δ-phase
(Pnma). The metastable perovskite phase (γ-CsPbI3) has been
stabilized using several strategies to date to enable its use in
optoelectronic devices. These strategies include incorporating
Br− and F−;13,16,20−22 solvent-controlled growth;23,24 the use of
intermediate phases;25 doping with metal ions such as Bi3+,26,27

Sn2+,21 Sb2+,28 and Eu2+;16,29 passivation with small organic
molecules;30−32 and addition of hydroiodic acid (HI) to the
precursor solution.33−35 The last strategy has been remarkably
successful and has been adopted as the primary method to
fabricate all-inorganic PSCs based on CsPbI3.36−38 In 2018, Ke
et al. reported that the addition of HI catalyzes the acidic
hydrolysis of the commonly used solvent, dimethylformamide
(DMF), leading to dimethylammonium (DMA) as a
degradation product. DMA was thought to incorporate into
the perovskite structure as an A-site cation leading to
DMAxCs1−xPbI3 phases.34 Further, Wang et al. showed that
DMA can affect CsPbI3 crystallization kinetics and thin film
morphology.38 DMA has also been used in hybrid PSCs in an
attempt to modulate electronic properties,39 stability,36−38,40

and efficiency.34,36−38 However, the speciation and micro-
scopic mechanism of action of DMA in mixtures with CsPbI3
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in the solid state have been elusive. More recently, Marshall et
al. concluded that mixed-cation DMAxCs1−xPbI3 phases form
using a combination of optical spectroscopies and XRD.41

Recent progress in characterizing the role of DMA in
perovskite solar cells has recently been reviewed.62 While
those techniques provide insight into the long-range structure
and bulk properties of materials, there is a critical need to
investigate the local structure of the individual components to
assess their structure and role at the atomic level.

Solid-state NMR spectroscopy has emerged as a powerful
local structure characterization technique to determine the
speciation of dopants.42−44 Here, we use it to show that the
formation of mixed-cation iodoplumbates of DMA and Cs, i.e.,
compositions with the nominal formula DMAxCs1−xPbI3, is
determined by an interplay of kinetic and thermodynamic
reaction control factors. We experimentally show that

thermodynamic reaction conditions (mechanosynthesis, sol-
ution processing without an antisolvent) lead to materials
completely segregated into δ-CsPbI3 and DMAPbI3, while
kinetic reaction control (spin coating with rapid crystallization
induced by antisolvent dripping) leads to a mixed-cation solid
solution. From this, we conclude that the atomic-level
mechanism of γ-CsPbI3 stabilization with DMAI in thin films
processed with an antisolvent involves incorporation of DMA
into the perovskite structure. We elucidate and rationalize the
composition of the resulting materials using a combination of
long-range (X-ray diffraction) and local structure (solid-state
NMR) probes and density functional theory (DFT)-based
calculations and molecular dynamics (MD) simulations.

We first focus our attention on compositions corresponding
to the nominal formula DMAxCs1−xPbI3 (x = 0.01, 0.10, 0.30,
0.50, 0.70, 1.0) prepared using solid-state mechanosynthesis

Figure 1. Characterization of the DMAxCs1−xPbI3 materials. (A) Crystal structures of the compositional end members showing the PbI6
connected octahedra in gray, Cs+ in green, and DMA cations (C, black; N, blue); (B) powder XRD (see Figure S2 for enlarged view), (C)
133Cs MAS, and (D) 1H−13C CPMAS solid-state NMR spectra. All experiments were carried out at room temperature (ca. 294 K). The NMR
spectrum of the x = 0.01 material was recorded using a Hahn echo to avoid baseline distortions. † indicates trace (<2 wt % based on the 1H
spectrum) polypropylene (PP) used as the grinding jar material, peaks at 21.5, 26.1, and 44.3 ppm. The x = 0.01 material was ground in an
agate jar to avoid PP contamination. The full 133Cs spectra and further experimental details are given in Figure S1 and Tables S1 and S3.
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followed by annealing at 100 °C (see Methods in the SI). All
of the resulting polycrystalline powders were yellow. Powder
X-ray diffraction (pXRD) data show that the mixed DMA/Cs
samples are mixtures of two nonperovskite hexagonal phases:
DMAPbI3 and δ-CsPbI3 (Figure 1B). The composition-
dependent evolution can be readily followed in the 2θ = 9−
12° region where δ-CsPbI3 yields reflections at 9.8° and 10.0°,
while DMAPbI3 has a reflection at 11.6°. The diffractograms of
mixed DMA/Cs compositions correspond to mixtures of δ-
CsPbI3 and DMAPbI3, with no new mixed-cation phases being
present.

To gain a more detailed picture of Cs/DMA mixing, we
elucidate the local structure of Cs and DMA using magic-
angle-spinning (MAS) 133Cs and 13C solid-state NMR,
respectively. 133Cs NMR is particularly useful for studying
Cs-containing metal halide perovskites (MHPs) as it can be
used to evidence Cs incorporation into hybrid MHPs46 since
its shift strongly depends on the structure topology and halide
composition.45 Figure 1C shows the 133Cs MAS NMR spectra
of the materials. The reference CsPbI3 sample was annealed at
300 °C before the measurement to capture the metastable γ
perovskite phase (158 ppm). The transformation back to the
orthorhombic δ phase (240 ppm) occurs on the time scale of
minutes (half-life of γ-CsPbI3 at RT is about 30 min),45 so it
possible to record a high-quality spectrum of each phase by
taking a measurement immediately after annealing (phase-pure
γ-CsPbI3) and after a few hours (phase-pure δ-CsPbI3). For
comparison, a spectrum of this material midtransition is shown
as a reference in Figure 2A. 133Cs spectra of the compositions
formally denoted as DMAxCs1−xPbI3 (x = 0.01, 0.1, 0.3, 0.5,
0.7) show a single peak corresponding to δ-CsPbI3 with no
substantial shift or line width variation as a function of the
DMA/Cs ratio (see also Table S1). The γ phase was not
detected in any of the samples, consistent with their yellow
appearance. To elucidate the speciation of DMA, we recorded
room-temperature 13C cross-polarization (CP) MAS NMR
spectra (Figure 1D). While the 13C chemical shift of DMA in
the DMAxCs1−xPbI3 (x = 0.1, 0.3, 0.5, 0.7) compositions is
consistent with it being present as DMAPbI3, in agreement
with the XRD data, we found remarkable variation in line
width, which is uncorrelated with the DMA/Cs ratio (Table
S2). For example, the line widths are 0.224 ± 0.006 ppm for
DMAPbI3, 1.35 ± 0.03 ppm for DMA0.7Cs0.3PbI3, and 3.48 ±
0.04 ppm for DMA0.01Cs0.99PbI3. Since broader line widths
correspond to more disordered local environments, we
attribute this effect to the presence of nanosized regions and
disorder of DMAPbI3 formed as a result of mechanosynthesis.
Interestingly, in the case of the x = 0.01 material, the 13C signal
of DMA is shifted to lower frequencies, indicating a
substantially different local environment. This effect may
result from the interaction of the nanosized grains of DMAPbI3
with the surface of δ-CsPbI3 owing to the high level of
dispersion of the hybrid phase within the all-inorganic matrix.
The effect is only visible in the most dilute material where we
recorded the 13C spectrum over 214 h. We suggest that this
effect could be further investigated using surface-enhanced
NMR spectroscopy.51 Taken together, these XRD and solid-
state NMR results show that DMA has no propensity to form
thermodynamically stable mixed-cation phases with CsPbI3
and instead forms DMAPbI3, i.e., the two cations do not mix at
the atomic level. However, the formation of a black perovskite
phase in this phase diagram has been repeatedly reported by
multiple groups using solution synthesis,33,34 which led us to

Figure 2. Characterization of DMA0.2Cs0.8PbI3 materials prepared
by solution processing. (A) 133Cs MAS solid-state NMR spectra of
DMA0.2Cs0.8PbI3 made with and without the use of an antisolvent
(chlorobenzene). Rapid antisolvent-induced crystallization leads
to kinetic trapping of a mixed-cation perovskite with DMA
incorporated into the perovskite structure. Its NMR signature its
similar to that previously observed for FAxCs1−xPbI3 solid
solutions (Adapted with permission from J. Am. Chem. Soc.
2017, 139 (40), 14173−14180. Copyright 2017, American
Chemical Society). Asterisks indicate spinning sidebands. (B)
Photographs of films made with and without the use of an
antisolvent. (C) 1H−13C CPMAS solid-state NMR spectrum of
DMA0.2Cs0.8PbI3 showing that DMA is only present as DMAPbI3.
All experiments were carried out at room temperature (ca. 294 K).
(D) Correlation between the 133Cs shift of black perovskite solid
solutions of AxCs1−xPbI3 where A = DMA and FA. The error bars
are taken as the corresponding full width at half-maximum (fwhm)
values. The solid-solution stability regions are indicated based on
refs 41 and 46. The linear weighed regression equation is δCs
[ppm] = −164x + 159. Further experimental details are given in
Figure S1 and Tables S2 and S3.
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investigate solution-processed DMA0.20Cs0.80PbI3. We chose
this composition because it has a high DMA/Cs ratio while
still falling within the stability range of the solid solution
reported by Marshall et al.41 While we have previously shown
that qualitative chemical reactivity tends to be identical in
solution and mechanosynthesized materials,46,47 it appears that
in this case solution processing is key to the formation of the
black perovskite phase. We first attempted to make the
solution-processed material by drop casting without the use of
an antisolvent, and it behaved in analogy to the materials made
by mechanosynthesis; i.e., we observed complete phase
segregation into δ-CsPbI3 and DMAPbI3 (Figure 2A,C).
However, all previous works reporting DMA-assisted for-
mation of a stable black phase used an antisolvent in their
deposition process. The role of an antisolvent is to induce
rapid crystallization of an intermediate phase by reducing its
solubility, which is transformed into the perovskite phase
during annealing. Those results suggested to us that the use of
an antisolvent may be key to understanding the CsI-DMAI-
PbI2 phase diagram. After optimizing the deposition process
(see the Experimental Section in the SI for details), we found
that chlorobenzene reproducibly yields black films, which are
stable, if humidity is strictly excluded (Figure 2B). The 133Cs
MAS NMR spectrum of this black form shows a new very
broad peak centered at about 100 ppm with a line width of 42
ppm (Figure 2A). This NMR signature is reminiscent of Cs+

incorporated into FAPbI3 (Figure 2A, bottom), with the
remarkably large line width resulting from substantial static
disorder, i.e., the presence of a distribution of different nearest
and next-nearest neighbor local environments. For example, in
the cubic perovskite aristotype CsPbI3, Cs has six nearest
neighbors at 6.3 Å (neighboring cubooctahedra), 12 nearest
neighbors at 8.9 Å (across the [PbI6]4− vertices), and eight
more at 10.9 Å (across the [PbI6]4− octahedra). Including all
the next-nearest neighbors within the 20 Å radius, it has a total
of 146 Cs+ ions surrounding it, each of which can be replaced
by DMA, leading to a slight change in 133Cs shift. The
convolution of these possibilities leads to the experimentally
observed broad line shape. Despite all of the precautions taken
(handling inside an argon glovebox, transfer of the rotor in an
airtight Schlenk flask, spinning using dry nitrogen), we found
that this phase disappears within 3−4 h of starting the
measurement. Figure S3 shows the evolution of this spectrum
as a function of time. We were unable to record a 13C spectrum
of this material (no signal after 8 h of acquisition), presumably
because of the small amount of material and substantial
disorder of the degraded phase leading to signal broadening.
The spectrum shown in Figure 2A is a sum of spectra taken
during the first 8 h of the measurement. Another interesting
aspect of this spectrum is that the signal corresponding to δ-
CsPbI3 has a broad underlying component, which corresponds
to a δ-CsPbI3 in which some Cs was replaced by DMA. This
result is similar to what we have previously observed in Cs-rich
FAPbI3 compositions such as FA0.16Cs0.84PbI3.48 These results
evidence that DMA can be incorporated into the perovskite
phase of CsPbI3, with the prerequisite being fast antisolvent-
induced crystallization, which leads to kinetic stabilization of
the metastable phase. On the other hand, when the material is
prepared under thermodynamic conditions (mechanosyn-
thesis, slow solvent evaporation), complete phase segregation
into δ-CsPbI3 and DMAPbI3 results. This behavior contrasts
with that observed for Cs/FA and Cs/GUA, which yield
mixed-cation iodoplumbate phases under thermodynamic

conditions.46,48,49,61 The importance of kinetic reaction control
also has potential bearing on the role and speciation of Rb+ and
K+ in hybrid MHPs doped with these cations, where we have
previously observed complete segregation of the inorganic
dopants under thermodynamic control.46,50 It is also note-
worthy that the overall structure topology affects the
incorporation of small organic cations into halide perovskite
cages. For example, while large cations, such as DMA and
GUA do not form 3D perovskites on their own owing to their
large size, they can be incorporated into the cubooctahedral
space in 2D/3D Ruddlesden−Popper phases.63−65 The lack of
thermodynamic stability of Cs/DMA iodoplumbate phases can
be rationalized by the difference in ionic radii of Cs and DMA.
The smaller Cs is replaced by the larger DMA, imposing
distortions in the lattice. On increasing the DMA/Cs ratio, the
volume of the unit cell is expected to increase proportionally.
On the one hand, the incorporation of DMA alleviates the
initial strain in γ-CsPbI3. On the other, because of the
antibonding character of the valence band maximum, the
reduction of the lattice distortion leads to an increase in the
overlap of the I p and Pb s orbitals, which in turn leads to
destabilization of the mixed-cation perovskite phase. We have
previously also observed this phenomenon in Cs-rich
CsxFA1−xPbI3 solid solutions.48 For reference, on the basis of
Bader volume calculations, DMA has an effective radius of 2.67
A, while MA and FA have effective radii of 2.37 and 2.48 Å,
respectively. Guanidinium (GUA), which has been shown to
form mixed GUA/MA and GUA/FA 3D perovskite phases,
has an effective radius of 2.68 Å.61 Finally, we also noticed that
the 133Cs shift of the Cs+ inside the perovskite phase is
correlated with the content of the organic cation present in the
solid solution (Figure 2D). There are two regions correspond-
ing to stable AxCs1−xPbI3 solid solutions: 0−25 mol % (A =
DMA, kinetic stability) and >70 mol % (A = FA,
thermodynamic stability). Interestingly, there are currently
no known organic cations that lead to stable AxCs1−xPbI3
phases for x in the 25−70 mol % range.

To gain further insight into the potential miscibility of DMA
and Cs iodoplumbates, we next studied their mixing free
energy using DFT calculations.52,53 We used the Perdew−
Burke−Ernzerhof (PBE) functional54 to determine the relative
stability of perovskite and nonperovskite phases of hypothetical
DMAxCs1−xPbI3 mixtures at 0 K with up to 50 mol % of Cs
replaced by DMA according to

E

E xE

x E

(DMA Cs PbI )

(DMA Cs PbI ) (DMAPbI )

(1 ) (CsPbI )

x x

x x

phase 1 3

phase 1 3 phase 3

phase 3

= [

+ ]

We found that the energy difference between various
substitution patterns at any concentration is only on the
order of 0.01 eV per stoichiometric unit for both the γ and δ
phases. This small amount justifies the use of the analytical
formula for ideal alloys to estimate the mixing entropy
contribution to the free energy.55

T S k T c c iln( )
i

n

imix B
1

= |
=

where kB is the Boltzmann constant, T is the temperature, n is
the number of components, and ci is the atomic fraction of
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component i. In the case of DMAxCs1−xPbI3 mixtures, the
above equation leads to the following:

T S

k T x x x x

(DMA Cs PbI )

ln (1 ) ln(1 )

x xphase 1 3

B= [ + ]

where x is the mol % of DMA incorporated into the CsPbI3
structure.

Figure 3A shows the energetic and entropic contributions to
the free energy of mixing as a function of x for the two phases.
For the γ phase and low DMA molar fractions, the replacement
of Cs with DMA induces a negligible or slightly positive
energetic contribution on the order of 0.01 eV per
stoichiometric unit, i.e., energies on the same order of
magnitude as the variations between different substitution
patterns. Since the values of the mixing free energy for molar
fractions of DMA below 37.5 mol % lie within the intrinsic
error of the calculations, it is not possible to unambiguously
conclude if DMA/Cs mixing in the γ phase leads to marginal
stabilization relative to the single-cation end members. On the
other hand, for DMA fractions larger than 37.5 mol %, both
energetic and entropic contributions favor the formation of
mixed-cation phases. In contrast, in the δ phase, cation mixing
leads to significant energetic destabilization for all
DMAxCs1−xPbI3 compositions. The mixing entropy contribu-
tion to the free energy calculated at room temperature (298 K)
is not sufficient to compensate for this penalty; i.e., in the δ
phase, all mixtures in this molar fraction range are predicted to

be unstable with respect to demixing into single-cation phases.
For a possible reversion of relative phase stability between the
γ and δ-phases in the mixed compounds, the energetic
stabilization of the γ phase and the simultaneous destabiliza-
tion of the δ phase would have to be large enough to
compensate for the initial energy penalty between the two
phases, which however turns out not to be the case (Figure
3B).

Table 1 shows the relative energetics per stoichiometric unit
between the δ and the γ phases at 0 K. The δ phase remains

energetically preferred at 0 K, but the energy difference is
substantially reduced upon mixing, consistent with the
energetic trends in the mixing free energies.

The stability of mixed component phases at room
temperature can be substantially affected by vibrational
entropy which is absent in the calculations carried out at 0
K. In the case of lead halide perovskites, the calculation of

Figure 3. Energetics of Cs/DMA mixing in the γ and δ phases. (A) Variation of the free energy of mixing expressed as ΔF = ΔE − TΔS (black
line), the internal energy, ΔE (green line), and the mixing entropy contribution, TΔS (for T = 298 K, blue line), as a function of the molar
fraction of DMA in DMAxCs1−xPbI3 mixtures for the perovskite and δ phases, respectively. (B) Variation of the free energy of mixing plotted
relative to the pure δ phase as a reference. Energies are given per stoichiometric unit. Potential energy per stoichiometric unit for perovskite
and δ phases from first-principles MD simulations in a constant-temperature, constant-volume (NVT) ensemble at 300 K for (C)
Cs0.625DMA0.375PbI3 and (D) Cs0.5DMA0.5PbI3. The y axis shows energy per stoichiometric unit. Full details of the calculation methods are
given in the SI.

Table 1. Relative Energetics Given by ΔE = Eγ − Eδ per s.u.
of the γ Relative to the δ Phase in DMAxCs1−xPbI3

x (mol %) ΔE (eV)

0 0.12
12.5 0.07
25 0.01
37.5 0.02
50 0.01
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vibrational corrections is not trivial and leads to the appearance
of imaginary modes in harmonic and quasi-harmonic phonon
calculations.56 This artifact has been addressed by including
anharmonic phonon−phonon interactions in halide double
perovskites.57,58 However, in all-inorganic lead halide perov-
skites, vibrational instabilities are present that are associated
with octahedral tilting in the high-temperature phase.59,60

Consequently, we approached the question of assessing relative
phase stabilities at finite temperatures by carrying out direct
MD simulations (full details are given in SI). Figure 3C and D
show potential energies per stoichiometric unit for γ and δ
phases of Cs0.625DMA0.375PbI3 and Cs0.5DMA0.5PbI3 from first-
principles MD simulations at 300 K. Figure 3C and D show
that the δ phase remains thermodynamically more stable than
the perovskite phase even when finite temperature effects are
fully taken into account. Given the time scale of first-principles
MD simulations (of a few picoseconds) and considering that
the systems do not contain any vacancies that might accelerate
demixing, no spontaneous phase segregation toward the pure
phases is expected to be observed, although the calculated
mixing free energies show that all mixtures in the δ-phase are
unstable with respect to demixing.

In conclusion, we have assessed the possibility of
incorporating DMA into the CsPbI3 lattice using a
combination of long-range and local structure probes and
static and dynamic first-principles calculations. Our results
show a remarkable dependence on the reaction conditions,
with kinetic control leading to stabilization of the mixed-cation
DMAxCs1−xPbI3 perovskite phase and thermodynamic control
resulting in complete phase segregation into a physical mixture
of δ-CsPbI3 and DMAPbI3. These experimental findings are
rationalized by DFT calculations, which show that, although
cation mixing in the perovskite phase is possible, the overall,
thermodynamically most stable phase is the demixed δ-phase.
We contend that further multimodal studies into the chemical
transformations of CsPbI3 and its solid solutions are urgently
needed to improve our understanding of these materials.
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