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Abstract

The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth
and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor
angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by
bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-
associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer
transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely,
pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are
detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial
cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent
on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-
associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in
lymphatic vessel formation.
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Introduction

In the adult, the vascular network is usually expanded and

remodeled by sprouting and proliferation of endothelial cells from

pre-existing blood and lymphatic vessels, processes called angio-

genesis and lymphangiogenesis, respectively. In addition to tissue

resident cell types, several studies have demonstrated that BMDC

are recruited to angiogenic sites to support the establishment of

new vessels [1–3]. BMDC are typically sub-classified into

hematopoietic progenitor cells (HPC) and endothelial progenitors

cells (EPC). In various tumor models, HPC have been shown to

contribute to blood vessel angiogenesis by secreting angiogenic

factors and proteases required for the activation of latent forms of

angiogenic factors [4,5]. HPC have also been implicated in the

preparation of a pre-metastatic niche in organs that are colonized

by disseminating cancer cells [6]. EPC on the other hand have

been shown to directly integrate into growing blood vessel walls,

however, to varying extents, ranging from 0 to 50% and thus

raising questions about their functional contribution to blood

vessel angiogenesis in various physiological and pathological

conditions [1,7,8]. Recently, it has been reported that also cells

of the myeloid lineage are able to differentiate into bona fide blood

endothelial cells [9].

Only few studies have addressed the role of BMDC in

lymphangiogenesis. Hematopoietic stem cells (HSC) and BMDC

have recently been shown to contribute to lymphatic endothelium in

various organs and during embryonic development [10–12].

BMDC contribution to lymphatic vessels has also been reported

under inflammatory conditions. For example, experiments employ-

ing a cornea angiogenesis model have revealed incorporation of

BMDC in newly formed lymphatic vessels [13]. Furthermore,

following rejection of human kidney transplants, lymphatic vessels

within the rejected organs have been described to contain host-

derived lymphatic endothelial cells, supporting the existence of bone

marrow-derived lymphatic endothelial progenitor cells [14]. More

specifically, myeloid cells present in the murine inflamed conjunc-

tiva were found to express the lymphatic endothelial specific marker

VEGFR-3 and to integrate into lymphatic structures that develop in

mouse cornea transplants [15,16]. In addition, macrophage

depletion appeared to cause reduced lymphangiogenesis and

impaired wound healing in diabetic mice [17].

The contribution of BMDC to tumor lymphangiogenesis is

rather controversial. While two independent studies report a

BMDC contribution to tumor lymphatics [10,13], transplantation

of Lewis Lung Carcinoma or B16-F1 melanoma cells in syngeneic

mice has not revealed any integration of BMDC into newly

formed lymphatic vessels [18]. Here, we have employed the

Rip1Tag2 transgenic mouse model of pancreatic b cell carcino-

genesis as well as subcutaneous transplantation of TRAMP-C1

murine prostate cancer cells in syngeneic C57Bl/6 mice to

demonstrate that cells derived from the myeloid lineage can

contribute to tumor lymphangiogenesis by integrating into tumor-
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associated lymphatic vessels. Moreover, in vitro culture assays

reveal that macrophages can convert into lymphatic endothelial

cells and integrate into cord-like structures formed by lymphatic

endothelial cells. These data support and extend previous findings

on the controversial role of hematopoietic cells in newly formed

lymphatic vessels.

Results

BMDC integrate into tumor lymphatics
We have used the Rip1Tag2 (RT2) mouse model of multistage

pancreatic b cell carcinogenesis to investigate the contribution of

BMDC to tumor angiogenesis and lymphangiogenesis [19]. RT2

transgenic mice recapitulate hallmarks of tumor progression,

including the regulated onset of tumor angiogenesis, the functional

contribution of tumor-infiltrating immune cells to a pro-angio-

genic tumor microenvironment, and the transition from adenoma

to carcinoma [20–22]. When crossed to Rip1VEGF-C (VC) mice,

double-transgenic RT2;VC mice develop tumors with high

peritumoral lymphangiogenesis and lymph node metastasis [23].

To investigate whether BMDC integrate into tumor blood and

lymphatic vasculature in the RT2 model, lethally irradiated single

transgenic RT2 and double-transgenic RT2;VC mice were

transplanted with bone marrow isolated from actin-GFP trans-

genic mice (Figure 1A). FACS analysis of peripheral blood (PB)

showed efficient hematopoietic reconstitution with more than 90%

chimerism (data not shown). Immunofluorescence analysis of

tumor sections revealed that the proportion of GFP+ tumor-

infiltrating BMDC was invariant in the range of 3.5% of total

cellularity, independent of the transplantation of single transgenic

RT2 mice or double-transgenic mice expressing VEGF-C (Figure

S1). From the GFP+ BMDC within the tumors, approximately

80% were F4/80+ macrophages (Figure S1). Immunofluorescence

co-staining for F4/80 and the hyualuronan receptor LYVE-1

identified LYVE-1+ macrophages in the tumor periphery with

relatively large size compared to intra-tumoral macrophages (data

not shown) [24,25]. In contrast, Podoplanin or Prox-1 were not

expressed by these tumor-associated macrophages (TAM). These

observations instructed us to carefully differentiate between tumor

lymphatic endothelium, defined as a continuous LYVE-1+ vessel

lining, and isolated, peritumoral LYVE-1+ TAM.

The potential contribution of BMDC to intra-tumoral blood

vessels was analyzed by confocal microscopy and subsequent 3D

reconstitution on pancreatic sections of transplanted RT2 and

RT2;VC mice stained for the endothelial marker CD31 and for

GFP. Bone marrow-derived, GFP+ cells were mainly found in

close proximity of tumor blood vessels, yet a significant direct

incorporation of BMDC into the blood vasculature was not

detectable (data not shown).

In contrast, BMDC had incorporated into lymphatic vessels

surrounding VEGF-C expressing b cell tumors of transplanted

RT2;VC mice. Pancreatic sections from these mice were stained

for the three lymphatic markers Podoplanin, Prox-1 and LYVE-1

and for GFP. Confocal imaging revealed that 3% of Podoplanin+

tumor lymphatic endothelial cells (TLEC) as well as 3.5% of Prox-

1+ or LYVE-1+ TLEC co-expressed GFP, indicating that

approximately 3% of tumor-surrounding lymphatic endothelial

cells are derived from the bone marrow (Figure 2A). Routine 3D

reconstitution analysis by compiling the Z-stacks of the confocal

images enabled us to distinguish integrated GFP+ BMDC cells

from cells located in the close vicinity of lymphatic vessels or

transmigrating through the lymphatic endothelial barrier, as

shown in Supplemental Movie S1 and S2. Furthermore, VE-

cadherin, an endothelial-specific adherens junction molecule

reported to connect lymphatic endothelial cells in lymphatic

vessels [26], was expressed on host as well as on bone marrow-

derived TLEC, further demonstrating a functional integration of

BMDC into tumor lymphatic vasculature (Figure 3). Note that in

contrast to blood endothelial cells, where VE-cadherin principally

clusters at cell-cell junctions (Figure 3, arrows), VE-cadherin

staining on lymphatic endothelium was more homogenously

distributed throughout the membrane [26].

To assess the general significance of the findings in the RT2

insulinoma model as well as to test whether the observed

integration of BMDC occurred also in the absence of transgenic

expression of VEGF-C, we employed the TRAMP-C1 murine

prostate adenocarcinoma cell line previously shown to induce

robust tumor lymphangiogenesis upon transplantation into

syngeneic C57Bl/6 mice [27,28]. TRAMP-C1 cells were injected

s.c. into one flank of C57Bl/6 mice that had been previously

transplanted with GFP+-labeled bone marrow (Figure 1B). In the

resulting tumors, the number and morphology of BMDC that had

integrated into tumor lymphatic vessels were comparable to the

results obtained with RT2;VC mice. GFP+ cells were detected in

lymphatic vessels staining for LYVE-1 and Podoplanin (Figure 2A)

and constituted 2.8% of LYVE-1+ and 4.1% of Podoplanin+ cells

within lymphatic vessel structures. GFP expression was also

detected in Prox-1+ TLEC (Figure 2A), however to a lower extent

as compared to LYVE-1 or Podoplanin. This might be explained

by the fact that overall only a subset of LYVE-1+ TLEC express

Prox-1 (data not shown).

To corroborate the simultaneous expression of lymphatic

markers and GFP in individual cells, single cell suspensions from

tumors of GFP+ bone marrow-transplanted or control non-

transplanted mice were analysed by FACS (Figure 2B). TLEC

were identified by co-expression of CD31 and Podoplanin

(Figure 2B, left panels; note that similar to blood vessel endothelial

cells TLEC express CD31, albeit at slightly reduced levels). In

tumors derived from RT2;VC and TRAMP-C1 mice, 9.4+/

24.1% and 10+/24.6% of TLEC, respectively, were GFP+,

confirming the immunofluorescence data. As expected, GFP+

TLEC could not be observed in non-transplanted mice (Figure 2B,

right panels). In order to avoid detecting false positives by cell

duplets containing GFP+ BMDC and TLEC that would appear as

CD31+/Podoplanin+/GFP+ triple-positive, such events were

rigidly excluded by forward scatter pulse width (data not shown).

We next investigated whether BMDC integration into newly

formed lymphatic structures occurred only in a tumor microen-

vironment by transplanting non tumor-bearing, single-transgenic

VC mice with GFP-labeled bone marrow. Notably, no GFP+ cells

were found incorporated into the lymphatic vessels surrounding

normal islets of Langerhans in these mice [23] (Figure S2). These

results demonstrate that in the experimental systems investigated

here, BMDC only incorporate into tumor-associated- lymphatic

vessels but not into newly forming lymphatic vessels of normal

tissue.

Integrated BMDC are of myeloid origin
Myeloid cells have been reported to give rise to blood

endothelium and, under inflammatory conditions, to lymphatic

endothelium [9,16,17]. To investigate whether BMDC contribut-

ing to tumor lymphangiogenesis express macrophage markers,

pancreatic sections of transplanted RT2;VC mice were stained by

immunofluorescence for the lymphatic marker LYVE-1, the

macrophage marker F4/80 and GFP (Figure 4A). Triple-positive

GFP+/LYVE-1+/F4/80+ cells were readily observed within the

lymphatic vessel lining surrounding the tumors. Interestingly, not

all BMDC that had integrated into the lymphatic vasculature

Tumor Lymphangiogenesis
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Figure 1. Bone marrow transplantation strategies. (A) For total bone marrow transplantations, 56106 T cell-depleted total bone marrow cells
from donor mice were injected i.v. into lethally irradiated (26550 cGy) mice, as indicated. Semi-lethally irradiated (450 cGy) mice were injected with
FACS-sorted 46105 CD11b+ myeloid cells, 46105 CD19b+ B cells or 46104 common myeloid progenitors (CMP) cells. 46105 CD11b+ myeloid cells
were also transferred into non-irradiated mice. After 3 weeks mice were sacrificed, engraftment of transplanted bone marrow was evaluated by FACS
and pancreata were analyzed by histology for the presence of bone marrow-derived cells at the tumor site. (B) Schematic illustration of syngeneic
TRAMP-C1 tumor experiments. 56105 TRAMP-C1 cells were injected into the flank of either C57BL/6 previously reconstituted with bone marrow of
beta-actin-GFP transgenic mice or bone marrow of double-transgenic CD11b-Cre;Z/EG mice, and tumors were allowed to grow for 3 to 4 weeks. FACS
analysis was used to assess bone marrow reconstitution or Cre recombinase-mediated GFP expression, respectively. Histological sections from
TRAMP-C1 tumors were analyzed by immunofluorescence for the presence of GFP+ cells. (C–E) Flow cytometry-based strategy for cell sorting. (C)
Within a scatter gate excluding lymphocytes, CD11bhigh/GFPhigh cells were isolated by FACS. (D) CD19+ was used as marker for the isolation of B
lymphocytes. (E) CMP cells were sorted as lin2/Sca-12/IL7Ra2/cKit+ as described in Methods.
doi:10.1371/journal.pone.0007067.g001

Tumor Lymphangiogenesis
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Figure 2. BMDC integrate into tumor-associated lymphatic vessels. (A) Lethally irradiated RT2;VC mice (5 mice) were reconstituted with GFP-
labeled bone marrow. 20 mm histological pancreatic sections were stained for the lymphatic markers Podoplanin, Prox-1, LYVE-1 and for GFP as
indicated and analyzed by confocal microscopy and subsequent 3D reconstitution. Representative tumor sections per lymphatic marker are shown.
3% of Podoplanin+ TLEC (7 Podoplanin+/GFP+ cells out of 227 Podoplanin+ cells) as well as 3.5% of Prox-1+ or LYVE-1+ TLEC (14 Prox-1+/GFP+ cells out
of 400 Prox-1+ cells and 17 LYVE-1+/GFP+ cells out of 485 LYVE-1+ cells) are bone marrow-derived. TRAMP-C1 tumors were subcutaneously implanted
in C57BL/6 mice (4 mice) previously reconstituted with GFP-labeled bone marrow. 7–20 mm histological tumor sections were stained as described
above. 4.1% of Podoplanin+ TLEC (14 Podoplanin+/GFP+ cells out of 334 Podoplanin+ cells) as well as about 2.8% of LYVE-1+ TLEC (11 LYVE-1+/GFP+

cells out of 395 LYVE-1+ cells) are bone marrow-derived. Arrows indicate double-positive cells and arrowheads indicate double-positive cells shown in
inset magnifications. Insets show merged and individual channels. DAPI stains nuclei (blue). Scale bars: 40 mm. (B) Tumors of GFP-labeled bone
marrow-transplanted RT2;VC mice or TRAMP-C1 tumors grown in GFP-labeled bone marrow-transplanted C57BL/6 mice were enzymatically digested
(3 mice each). Single cell suspensions were stained for the pan-endothelial marker CD31 and the lymphatic endothelial marker Podoplanin and
analyzed by FACS (left panels). 9.4+/24.1% (RT2;VC) and 10+/24.6% (TRAMP-C1) of CD31+/Podoplanin+ TLEC were GFP+, indicating their bone
marrow origin (middle left panels). As control, the anti-Podoplanin antibody was omitted resulting in no separation between TLEC and TBEC (middle
right panels). Furthermore, similar analysis of tumors grown in non-transplanted mice showed no GFP+ cells within TLECs (right panels).
doi:10.1371/journal.pone.0007067.g002
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expressed F4/80, suggesting that macrophages physically contrib-

uted to tumor lymphatics but eventually lost their macrophage

features upon integration, as previously reported [17].

Next, we performed various independent lineage-tracing

experiments to assess whether cells of the myeloid lineage were

indeed able to incorporate into tumor lymphatic vessels. First,

lethally irradiated RT2;VC mice were transplanted with bone

marrow isolated from either CX3CR1+/GFP mice or CD11b-

Cre;Z/EG mice (Figure 1A). In CX3CR1+/GFP mice, the coding

region for EGFP had been inserted in the CX3CR1 gene, a

receptor expressed mainly by monocytes and to a minor extent by

a subset of lymphocytes, resulting in monocyte-specific GFP

expression [29] (Figure S3A). The Z/EG transgene contains,

under the control of an ubiquitous promoter, a lacZ gene/stop

cassette flanked by loxP recombination sites and followed by

EGFP [30]. When crossed to CD11b-Cre mice, expressing Cre

recombinase under the control of the myeloid specific CD11b

promoter, Cre-mediated excision of the lacZ gene/stop cassette

induced permanent GFP expression exclusively in cells having

passed through a CD11b-positive, myeloid stage [31]. Pancreatic

sections of transplanted RT2;VC were stained for the lymphatic

markers Podoplanin or LYVE-1 and for GFP, and double-positive

cells were scored. In both transplantation settings, GFP+ cells were

found integrated into the tumor lymphatic vasculature, demon-

strating that cells of the myeloid lineage physically contributed to

tumor lymphangiogenesis (Figure 4B, upper panels).

We also tested whether CD11b+ cells integrated into tumor

lymphatics without prior bone marrow transplantation by

transplanting TRAMP-C1 cells into CD11b-Cre;Z/EG mice

(Figure 1B). Specific Cre-mediated recombination within the

myeloid lineage of these mice was confirmed by FACS analysis of

PB cells (Figure S3B). In the resulting tumors, GFP+ cells were

found incorporated into LYVE-1+ and Podoplanin+ lymphatic

vessel lining (data not shown). Triple-staining for LYVE-1, Prox-1

and GFP further showed that formerly myeloid cells expressed two

lymphatic markers simultaneously (Figure 4C, arrowhead),

Figure 3. BMDC integrated into tumor lymphatics express vascular endothelial cadherin. A representative tumor section from RT2;VC
mice previously reconstituted with GFP-labeled bone marrow was stained for the lymphatic marker LYVE-1 (purple), for the cell junction molecule VE-
cadherin (red), and for GFP (green) and analyzed by confocal microscopy and subsequent 3D reconstitution. As indicated by arrowheads and shown
magnified in insets, VE-cadherin expression, indicative for homophilic cell-cell contact, is observed between bone marrow-derived (BMDTLEC) and
host-derived TLEC (HTLEC). Note the continuous VE-cadherin staining between lymphatic endothelial cells in contrast to the cell-cell contact
restricted staining of blood endothelial cells depicted by arrows. DAPI was used for nuclear counterstaining (blue). The DAPI-staining cells within the
lymphatic vessel represent a cluster of disseminated tumor cells. BV: blood vessel. Scale bars: 20 mm.
doi:10.1371/journal.pone.0007067.g003
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indicating a significant differentiation towards a lymphatic

endothelial phenotype. These results also revealed that integration

occurred independently of prior irradiation, which had been

previously reported to increase macrophage infiltration in human

cancer [32].

In a second series of lineage-tracing experiments, FACS-sorted

CD11b+/GFP+ cells were i.v. injected into semi-lethally or non-

irradiated RT2;VC mice (Figure 1A and C). 3 weeks after

injection, adoptively transferred GFP+ cells were observed

integrated into tumor lymphatics, identified by LYVE-1 or Prox-

1 expression (Figure 4B, lower panels). The fact that the adoptive

transfer of CD11b+/GFP+ cells into non-irradiated RT2;VC mice

resulted into an integration of the injected cells into tumor

lymphatics indicates that a full reconstitution of the hematopoietic

system by stem cells is not a prerequisite for BMDC contribution

to tumor lymphangiogenesis.

To assess whether common myeloid progenitor cells (CMP) [33]

provide the cells that incorporate into tumor lymphatics, FACS-

sorted CMP cells (lin2/Sca-12/IL7Ra2/cKit+/GFP+; Figure 1E)

were adoptively transferred into semi-lethally irradiated RT2;VC

mice. FACS analysis of PB cells 3 weeks post-injection revealed

that transplanted CMP contributed to the generation of CD11b+/

F4/80+ monocytes and CD11b+/F4/802 granulocytes but not to

CD19+ B lymphocytes or CD3+ T lymphocytes (Figure S3C). Also

here, GFP+ cells were found integrated into tumor-associated

lymphatic endothelium, detected by LYVE-1 or Podoplanin

expression (Figure S4). In contrast, adoptive transfer of FACS-

sorted CD19+/GFP+ B cells (Figure 1A and D) did not result in

any incorporation of these cells into tumor lymphatic vessels

(Figure S5), underscoring the exclusive ability of myeloid cells to

contribute to tumor lymphangiogenesis and excluding the

possibility that minor contaminations of hematopoietic stem cells

in the FACS-sorted fractions may have contributed to the GFP+

cells that incorporated into tumor lymphatics. Finally, FACS

analysis of tumors from non-transplanted RT2;VC mice revealed

that some bona fide CD31+/LYVE-1+ TLEC express the myeloid

marker CD11b (Figure S6), indicating that the integration of cells

of the myeloid lineage into tumor lymphatics and their

simultaneous expression of lymphatic endothelial cell markers

occurs also in the absence of any bone marrow transplantation.

In order to assess potential fusion events between bone marrow-

derived cells and pre-existing lymphatic endothelial cells, lethally

irradiated triple-transgenic RT2;VC;Z/EG mice were transplant-

ed with bone marrow isolated from CD11b-Cre mice (Figure 1A).

Fusion of CD11b+-BMDC, expressing the Cre recombinase, with

host (tumor lymphatic endothelial) cells would result in GFP

expression from the recombined Z/EG locus. Seven weeks after

transplantation, no GFP+ cells were detected in or around

Figure 4. Myeloid origin of bone marrow-derived TLEC. (A)
20 mm histological pancreatic sections of GFP-labeled bone marrow-
transplanted RT2;VC mice were stained for the lymphatic marker LYVE-1
(purple), for the macrophage marker F4/80 (red), and for GFP (green) as
indicated and analyzed by confocal microscopy and subsequent 3D
reconstitution. Two representative tumor sections are shown. Left
panel: BMDC that have integrated into tumor lymphatics express the
macrophage marker F4/80. Arrows indicate triple positive cells and the
arrowhead indicate a triple-positive cell shown in inset magnifications.
Right panel: not all integrated cells express F4/80. The arrowhead
indicates an integrated cell (LYVE-1+/GFP+) that does not express F4/80.
Inset magnifications of this double-positive cell are shown. Insets show
merged and individual channels. (B) 20 mm histological pancreatic
sections of RT2;VC mice transplanted with bone marrow isolated from
either CX3CR1+/GFP (2 mice) or CD11bCre;Z/EG mice (3 mice), or
adoptively transferred with FACS-sorted CD11b+ cells were stained for
the lymphatic markers LYVE-1, Podoplanin or Prox-1 (red) as well as for
GFP (green) and analyzed by confocal microscopy. Representative

tumor sections are shown. In both transplantation settings, myeloid
cells were found integrated into the lymphatic vasculature surrounding
the tumors. Arrowheads indicate double-positive cells shown in inset
magnifications (first inset: merged channels, second and third insets:
red and green channel, respectively). DAPI stains nuclei (blue). Scale
bars: 20 mm. (C) CD11b+ lineage tracing experiments demonstrate the
myeloid origin of TLEC in a transplantation-independent setting.
TRAMP-C1 tumors were grown subcutaneously in CD11b-Cre;Z/EG
mice (3 mice). In these mice, cells that have passed through a CD11b+

myeloid lineage express GFP. Fluorescent triple staining of histological
tumor sections reveal co-expression of LYVE-1 and Prox-1 by myeloid-
derived GFP+ cells integrated into lymphatic vessels (arrowhead). The
right panel represents a magnification of the relevant region with
individual channels combined. Note that GFP+ cells not connected to
vascular structures do express neither LYVE-1 nor Prox-1 (arrow). DAPI
stains nuclei (blue). Scale bars: 20 mm.
doi:10.1371/journal.pone.0007067.g004
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lymphangiogenic insulinomas, indicating that Cre-expressing,

bone marrow-derived myeloid cells had not fused with

RT2;VC;Z/EG lymphatic endothelial cells or any other host cell

(data not shown).

These results demonstrate that cells found integrated into

growing tumor lymphatic vessels can have a myeloid origin and

that bone marrow-derived lymphatic progenitor cells are at least in

part derived from the already myeloid committed hematopoietic

lineage.

Depletion of macrophages
To investigate the functional contribution of macrophages to

tumor lymphangiogenesis, RT2;VC mice were treated with

liposome-encapsulated Clodronate (ClodroLip) or PBS as vehi-

cle-control for 4 weeks to ablate TAM [34,35]. Successful

macrophage depletion was achieved as shown by reduced F4/80

immuno-reactivity in ClodroLip treated mice (Figure 5A). Peri-

tumoral lymphatic vessel density (LVD) was significantly decreased

in ClodroLip vs. PBS treated mice (Figure 5B; treated: median

70%, mean: 61% vs. control: median 90%, mean 74.9%; P,0.01).

Notably, the formation of lymph node metastasis was not affected

by the significant but rather moderate reduction of tumor

lymphangiogenesis (data not shown). In contrast to a recent study

where ClodroLip reduced tumor growth of xenotransplants in

immuno-compromised mice [36], average tumor volume, tumor

incidence and blood vessel density were not significantly reduced

in our experiments (Figure S7). To evaluate the amount of VEGF-

C, VEGF-D, FGF-1 and FGF-2 provided by TAM, CD11b+ cells

were FACS-isolated from RT2;VC tumors and mRNA levels were

assessed by quantitative RT-PCR and compared to levels in total

tumors and FACS-isolated tumor cells. The expression of

endogenous murine VEGF-C, VEGF-D, and FGF-1 in total

tumors and tumor cells (not considering the high levels of

transgenic human VEGF-C expression in RT2;VC mice) was

Figure 5. Depletion of macrophages reduces peritumoral lymphatic vessel density. (A) RT2;VC mice were treated with liposome-
encapsulated Clodronate (ClodroLip). Pancreatic sections representing a total of 5 PBS vehicle control-treated mice (97 tumors) and 6 ClodroLip-
treated (132 tumors) mice were analyzed. Successful depletion of intra- and extra-tumoral macrophages in ClodroLip-treated mice is illustrated by the
reduction of F4/80 immunoreactivity (red). Co-staining with the lymphatic endothelial marker LYVE-1 (green) reveals a reduced coverage of tumors
by lymphatic vessels in ClodroLip-treated mice vs. in PBS-treated mice. DAPI was used for nuclear counterstaining (blue). T: tumor. Scale bar: 50 mm.
(B) Tumors of ClodroLip and control-treated mice were analyzed by immunofluorescence staining with antibodies against LYVE-1 for the extent of
lymphatic vasculature surrounding the perimeter of the tumors. Tumors of control-treated mice were surrounded by 90% or more with lymphatic
vessels (median 90%, mean 74.9%), whereas tumors of ClodroLip-treated mice had significantly lower coverage (median 70%, mean 61.1%; P,0.01,
Mann-Whitney test). (C) Tumor-associated CD11b+ macrophages (TAM) and tumor cells were isolated from tumors of RT2;VC mice by flow cytometry,
and mRNA levels for murine VEGF-C, VEGF-D, FGF-1 and FGF-2 were determined using quantitative RT-PCR and compared to levels in total tumors.
Shown is the result of three independent cell isolations. DCT values have been calculated and normalized to internal control (RPL19) CT value. The
results are displayed as mRNA copies per 1000 copies of control RPL19 mRNA to visualize the relative levels of mRNA of interest to internal RPL19
control mRNA.
doi:10.1371/journal.pone.0007067.g005
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higher than in TAM (Figure 5C). FGF-2 was not found expressed

at significant levels in any of the samples, surprisingly not even in

FACS-sorted CD11b+ TAM. However, the lack of FGF-2

expression is not unexpected, since FGF-2 expression has been

repeatedly found to be very low to undetectable in Rip1Tag2

tumors (and thus also in infiltrating macrophages). From these

results we conclude that macrophages contribute to tumor

lymphangiogenesis in RT2;VC mice by processes other than the

secretion of main lymphangiogenic factors.

Macrophages form and contribute to lymphatic-like
structures in vitro

We next investigated whether bone marrow-derived-macrophag-

es had an intrinsic capability to form lymphatic vessel-like

structures. Bone marrow cells were cultured for 7 days in 30% M-

CSF containing-medium to induce the specific differentiation of

progenitor cells into non-activated macrophages [37]. Flow

cytometric analysis confirmed the macrophage identity (CD11b+/

F4/80+) of these cells (Figure 6A). The bone marrow-derived-

macrophages were then activated with LPS and seeded on Matrigel

to monitor differentiation and tube formation. After two days in

endothelium-specific medium supplemented with defined growth

factors, macrophages associated in clumps, before forming cord-like

structures with increasing connections between days 3 and 15

(Figure 6A). Confocal immunofluorescence microscopy analysis at

day 12 revealed that only macrophages that had formed cord-like

structures and not single isolated cells expressed the lymphatic

marker Podoplanin (Figure 6B). Furthermore, quantitative RT-

PCR analysis of mRNA from macrophages isolated either before or

after the cord formation process revealed a marked up-regulation of

the lymphatic markers LYVE-1, Prox-1, VEGFR-3, FoxC2 and

FoxC1 as well as a down-regulation of the hematopoietic/

monocytic markers CD45 and CX3CR1 during cord formation

(Figure 6B). Exclusion of individual growth factors revealed the

requirement of FGF-2 for cord formation (Figure 6C), whereas the

other supplemental growth factors (VEGF-A, IGF-1, EGF,

hydrocortisone) were dispensable. Accordingly, mRNA levels of

FGF receptor-1 and 2 were up-regulated during cord formation, as

revealed by quantitative RT-PCR analysis (Figure 6C).

In order to explore the capacity of myeloid cells to integrate into

lymphatic structures in vitro, GFP-labeled macrophages were

generated as described above from bone marrow of actin-GFP

transgenic mice and subsequently cultured on Matrigel alone or in

combination with SV40 T antigen-immortalized murine lymphat-

ic endothelial cells (SV-LEC) [38]. Five days later, the cultures

were stained for Podoplanin. Cultured SV-LEC formed cord-like

structures positive for Podoplanin expression (Figure 6D/i), and

cultured in vitro activated macrophages were positive for GFP

(Figure 6D/ii). In mixed cultures, bone marrow-derived macro-

phages lined up with SV-LEC, incorporating into cord-like

structures and expressed Podoplanin (Figure 6D/iii–vi). Interest-

ingly, GFP+ macrophages were predominantly located at the tips

and at branch points of growing cord-like structures (Figure 6D/

iii–vi) and seemed to guide SV-LEC to form a new sprout as

observed by time-lapse video microscopy (Figure S8, Supplemen-

tal Movie S3). The live visualization of GFP+ macrophages

guiding LEC together with the observation that macrophages

located at the tip of the lymphatic sprout exhibit filopodia-like

structures (Figure 6D/iii–vi) strongly suggest that instead of

capping the exposed ends, they actively instigate the new sprout.

These results demonstrate that bone marrow-derived macro-

phages have the ability to form lymphatic tube-like structures in

vitro, a process requiring FGF signaling. Their preferred incorpo-

ration at tips and branchpoints of pre-existing lymphatic cord-like

structures data suggest a role of macrophages in lymphatic

endothelial cell sprouting.

Discussion

Research on BMDC in patho-physiological processes, such as

atherosclerosis, limb/heart ischemia and cancer, has in the past

mainly focused on the importance of hematopoietic cells in

promoting or attenuating inflammation, in clearing cancer cells, or

in inducing immunological tolerance to neoplastic lesions.

However, recent findings indicate that the bone marrow is also

a rich source of progenitor cells with mesenchymal and endothelial

potential [39,40]. In the case of endothelial progenitor cells, the

lineage relationship to the hematopoietic system is not clear. While

some experiments have recently revealed that during development

hematopoietic cells arise from a specialized endothelium named

the hemogenic endothelium [41–43], other reports provide

evidence that the reverse direction of cellular conversion is also

possible, i.e. that myeloid cells can contribute to the formation of

blood endothelial cells [9,44].

Here, we have used bone marrow transplantation experiments

in two different mouse models of carcinogenesis to demonstrate

that BMDC significantly contribute to tumor lymphangiogenesis,

but rarely integrate into tumor blood vessels. We have performed

lineage-tracing experiments to obtain insights into the ontogeny of

bone marrow-derived TLEC. First, transplantations of FACS-

sorted bone marrow fractions representing different hematopoietic

lineages or of total bone marrow expressing GFP under a myeloid

specific promoter indicate that integrated BMDC are derived from

the myeloid lineage. Second, genetic tagging of myeloid cells with

GFP confirms this notion; cells that have passed through the

myeloid lineage are found integrated into the lymphatic

vasculature surrounding tumors. Third, depletion of tissue

macrophages using ClodroLip significantly reduces peri-tumoral

lymphatic vessel density, demonstrating a functional role of

macrophages in tumor lymphangiogenesis. Fourth, the intrinsic

ability of myeloid cells to give rise and incorporate into lymphatic-

like structures is recapitulated in two in vitro assays. Taken together,

in vitro and in vivo experimentation strongly suggest that cells of the

myeloid lineage physically contribute to tumor lymphangiogenesis.

The statement that BMDC can also contribute to lymphangio-

genesis in a paracrine-independent manner is highly debated. As

with any controversial scientific discussion, well-controlled studies

conducted in different laboratories and leading to similar

conclusions constitute the basis to overcome skepticism. Along

these lines, the present study is consistent with previously described

observations that hematopoietic cells can contribute to lymphatic

endothelium, in normal organs, during embryonic development,

in inflammatory conditions, and in a tumor microenvironment

[10–17]. The experimental results presented here extend these

findings by identifying that cells of the myeloid lineage can

contribute to lymphatic endothelium in a tumorigenic context.

The existence of specific lymphatic progenitor cells (LPC),

distinct from hematopoietic as well as blood endothelial progenitor

cells, has not been established. Based on a number of control

experiments, such as the transplantation of FACS-sorted CD19+ B

cells or the adoptive transfer of CD11b+ myeloid cells into non-

irradiated recipients, we exclude the possibility that FACS-sorted

cell fractions may have contained hematopoietic stem cells that

also reconstitute potential LPC. Rather, our data indicate a

myeloid origin of cells that integrate into tumor-associated

lymphatic endothelial cells, thus supporting the notion that LPC

reside at least partially within an already committed hematopoietic

lineage. It is interesting to note that the myeloid contribution to
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lymphatic vessels has thus far only been described to occur under

inflammatory conditions, such as corneal transplantation and

wound healing [16,17]. In contrast, the existence of LPC within

the HSC population, but distinct from the myeloid lineage, has

been reported to play a role in steady state lymphangiogenesis in

normal liver, stomach, and intestine of HSC-transplanted mice

[10]. The contribution of hematopoietic cells to lymphangiogen-

esis has been also shown during embryonic development. Mice

Figure 6. Bone marrow-derived-macrophages form and contribute to lymphatic-like structures in vitro. (A) In vitro generated
macrophages showed a specific marker expression profile (CD11b+/F4/80+) (upper left panel). Tube formation on Matrigel was monitored by phase-
contrast microscopy. At day 2, macrophages formed clusters. Between days 3 and 15, they developed into cord-like structures with numbers of branches
increasing over time. Scale bar: 100 mm. (B) Immunofluorescence staining against Podoplanin (Pdpn) revealed that macrophages having formed cord-
like structures express Podoplanin whereas single cells do not. Staining of the tubular structures in the absence of any primary antibody was used as a
control (2uAb). DAPI stains nuclei (blue). Scale bar: 100 mm. Quantitative RT-PCR analysis revealed that upon tube formation, macrophages up-regulate
lymphatic markers (LYVE-1, Prox-1, VEGFR-3, Foxc2, Foxc1) and down-regulate hematopoietic/myeloid marker (CD45, CX3CR1). DDCT corresponds to the
difference between the normalized CT values of macrophages forming tubes (day 8) and macrophages not having yet formed tubes (day 1). (C) FGF-2 is
required for the formation of cord-like structures by macrophages, as its specific exclusion from culture medium abrogated this process (left panel).
Furthermore, analysis of mRNA levels revealed up-regulation of FGF receptors -1 and 2 during cord formation. (D) Immortalized Podoplanin+ murine
lymphatic endothelial cells (SV-LEC) (i), GFP-labeled bone marrow-derived-macrophages (ii), and mixed cultures of macrophages and SV-LEC (iii-vi) were
seeded in Matrigel. At day 5, cells were stained for Podoplanin (red) and analyzed by confocal microscopy. Mixed cultures demonstrate that bone
marrow-derived macrophages contribute to SV-LEC-mediated cord formation: GFP+ cells (green) are found integrated into Podoplanin+ cord-like
structures (iii–vi). Note the preferential integration of bone marrow-derived macrophages at the tips and branch points of sprouting cord-like structures
formed by SV-LEC (magnified in panel vi). DAPI stains nuclei (blue). Scale bars: 100 mm (i–ii) and 50 mm (iii–vi).
doi:10.1371/journal.pone.0007067.g006
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lacking the hematopoietic signaling molecules SLP-76, Syk and

PLCc2 fail to separate emerging lymphatic vessels from blood

vessels [11,45]. Notably, this phenotype depends on the expression

of these signaling molecules in hematopoietic progenitor cells that

give rise to circulating endothelial progenitor cells, thus demon-

strating a cell-autonomous contribution of hematopoietic cells to

vascular development [11,12].

The low frequency of bone marrow-derived lymphatic endothelial

cells is a recurrent observation among the different studies, raising

questions towards the functional contribution of these cells to

lymphangiogenesis. However, the pharmacological depletion of

tumor-associated macrophages results in a decrease in lymphangio-

genesis [16] (Figure 5). Moreover, our results indicate that

macrophages are not the main source of lymphangiogenic factors

in the RT2 tumor model, leading us to conclude that macrophages

contribute to tumor lymphangiogenesis, at least in this model, by

processes other than the paracrine secretion of lymphangiogenic

factors. Rather, when co-cultured in vitro with lymphatic endothelial

cells, bone marrow-derived macrophages incorporate predominant-

ly at the tips and branch points of growing cord-like structures. In vitro

time-lapse video microscopy confirms this notion and shows that

macrophages, after being recruited to lymphatic endothelial cells, are

able to instigate lymphatic sprouts. These observations suggest that

myeloid-derived lymphatic endothelial cells may exert a specific

functional role, which may explain the need of only a low number of

these cells for the complete process of lymphangiogenesis.

In summary, we demonstrate here that in the context of tumor

growth, cells of the myeloid lineage can contribute to the

formation of tumor-associated lymphatic endothelium. Since

tumor lymphatic vessels provide a route for metastatic dissemina-

tion, understanding the functional role of bone marrow-derived

tumor lymphatic endothelial cells seems warranted.

Methods

Mouse strains
Generation and phenotypic characterization of Rip1Tag2,

Rip1VEGF-A and Rip1VEGF-C mice have been described

previously [19,23,46]. C57BL/6-Tg(ACTB-EGFP)mice [47] and

Z/EG mice [30] were provided by K. Hafen (University of Basel).

CD11b-Cre mice [31] and CX3CR1+/GFP mice [29] were

obtained from J. Vacher (University of Montreal) and C. Rüegg

(CePO Lausanne), respectively. All experiments involving mice

were performed in accordance with the guidelines of the Swiss

Federal Veterinary Office (SFVO) and the regulations of the

Cantonal Veterinary Office of Basel-Stadt.

Total bone marrow transplantations
Bone marrow cells were extracted under sterile conditions from

femurs and tibiae from donor mice indicated in Figure 1. After T

cell depletion [48], 56106 cells were injected in the tail vein of

lethally irradiated (26550 cGy) 6 week old mice which were

sacrificed for further analysis 5 to 7 weeks after transplantation.

TRAMP-C1 subcutanous tumor model
56105 TRAMP-C1 cells [49] (provided by N. Greenberg,

FHCRC, Seattle) were injected into the flank of either GFP-

labeled bone marrow transplanted C57BL/6 mice (4 weeks after

transplantation) or CD11b-Cre;Z/EG mice and grown for 3 to 4

weeks.

Flow cytometric analysis
Cells were washed in PBS supplemented with 5% FBS, Fc-

blocked with a monoclonal antibody against mouse CD16/CD32

(Clone 2.4G2, Pharmingen), and stained with directly-labeled

monoclonal antibodies against mouse CD19 (Clone MB19-1,

eBioscience), CD3 (Clone 145-2C11, eBioscience), CD11b (Clone

M1/70.15, CALTAG), F4/80 (Clone CI:A3-1, Serotec), LYVE-1

(Clone ALY7, CliniSciences), CD31 (Clone 390, eBioscience).

Podoplanin expression was revealed by hamster anti-mouse

Podoplanin (Clone 8.1.1), followed by biotinylated anti-hamster-

IgG antibody and streptavidin-PE (eBioscience). Stained cells were

analyzed on a FACSCanto II using DIVA software (Becton

Dickinson). Dead cells were excluded by a combination of light

scatter and PI fluorescence. Cell duplets were excluded by forward

scatter pulse width. Peripheral blood mononuclear cells were

isolated by Ficoll–Histopaque (SIGMA) density-gradient centrifu-

gation. Bone marrow cells were extracted from mouse femurs and

tibiae by flushing. Tumor single cell suspensions were obtained by

digestion for 45 minutes at 37uC using the following digestion

buffers: TRAMP-C1: HEPES buffered saline, 0.1 mg/ml DNaseI

(Roche), 1 mg/ml collagenase I (SIGMA); RT2: DMEM, 5% NU

serum (Becton Dickinson), 0.2 mg/ml DNaseI, 1.2 U/ml Dis-

paseII (Roche Applied Science).

CD11b+ and CMP cell sorting and adoptive transfer
Bone marrow cells were extracted from femurs and tibiae of

female C57BL/6-Tg(ACTB-EGFP) mice, washed in PBS/2%

BSA, Fc blocked and stained with a phycoerythrin (PE)-conjugated

monoclonal antibody against mouse CD11b (CALTAG) or, for

CMP isolation, lineage markers, CD3, CD4 (Clone GK1.5), CD8

(Clone 53-6.7), Ter119 (Clone TER-119), B220 (Clone RA3-6B2),

CD19, Gr-1 (Clone RB6-8C5), Sca-1 (Clone D7), IL7Ra (Clone

A7R34) and Allophycocyanin-labeled anti-cKit (Clone 2B8) (all

from eBioscience). CD11b+ GFP+ or CMP (lineage2/Sca-12/

IL7Ra2/cKit+) cells were sorted on a FACSAria (Becton

Dickinson) with a purity .98%. 46105 CD11b+ or 46104 CMP

were injected in the tail vein of semi-lethally (450 cGy) or non

irradiated 9 week old RT2;VC mice, which were sacrificed 3

weeks after transplantation.

Histological analysis
7 or 20 mm cryosections from pancreata or TRAMP-C1 tumors

were prepared and stained as described [9]. Briefly, harvested

tissues were fixed in 4% paraformaldehyde for 2 hours at 4uC,

incubated in 30% sucrose overnight and then cryopreserved in

OCT medium. Tissue sections were incubated at RT for 30

minutes with blocking buffer (5% goat serum in PBS) prior to

overnight incubation at 4uC with the primary antibodies. When

required, PBS/0.2% Triton-X-100 was used for permeabilization.

The following primary antibodies were used at the dilutions

specified in brackets: rat anti-mouse LYVE-1 (1:200) (Clone ALY-

7, MBL, Japan), rabbit anti-mouse LYVE-1 (1:200) (Reliatech,

Germany), rabbit anti-mouse Prox-1 (1:100) (K. Alitalo, University

of Helsinki), goat anti-human Prox-1 (1:100) (R&D Systems),

rabbit anti-Podoplanin (1:100) (D. Kerjaschki, Medical University

Vienna), hamster anti-mouse Podoplanin hybridoma supernatant

(1:20) (Clone 8.1.1), rat anti-mouse VE-Cadherin hybridoma

supernatant (1:50) (Clone B14, E. Dejana, University of Milano),

rat anti-mouse F4/80 (1:200) (Clone CI:A3-1, Serotec), rat anti-

mouse CD11b (1:100) (Clone M1/70.15, Serotec) and rat anti-

mouse CD31 (1:50) (Clone MEC 13.3, Pharmingen). Alexa Fluor

488-, 568- and 633-labeled secondary antibodies (Molecular

Probes) were used (1:400). Alexa Fluor 488-conjugated rabbit

anti-GFP antibody (1:500) (Molecular Probes) was employed for

the detection of GFP. DAPI (SIGMA) was used for nuclear

counterstaining. Sections were analyzed on a Nikon Diaphot 300

immunofluorescence microscope (Nikon) using Openlab 3.1.7.
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software (Improvision) or with a LSM 510 Meta confocal

microscope using LSM software for 2D and 3D analysis (Zeiss).

Videos were created using Imaris 6.1.1 software (Bitplane

Scientific Solutions, Zurich, Switzerland).

ClodroLip-mediated macrophage depletion
Eight week old RT2;VC mice were injected i.p. every 4 days for

4 weeks with 80 mg/kg body weight (first injection) or 40 mg/kg

body weight (following injections) ClodroLip or with an equal

volume of PBS as control. 2 days after the last injection, mice were

sacrificed, pancreata were embedded in OCT and snap frozen in

liquid nitrogen. Tumor macrophage depletion and tumor

lymphatic vessel coverage were determined by immunofluores-

cence stainings with anti-F4/80 antibodies and anti-LYVE-1

antibodies, respectively, and ImageJ software (http://rsb.info.nih.

gov/ij/). Statistical analysis and graphs were performed with

GraphPad Prism software (GraphPad Software Inc.). Non-

parametric Mann-Whitney tests were used to compare tumor

lymphatic vessel coverage of treated versus control mice.

Isolation of tumor-associated macrophages (TAM) and
tumor cells

Single cell suspensions of tumors from 13–14 week old RT2;VC

mice were obtained as described above, washed in FACS buffer

(PBS/2% BSA/5 mM EDTA) and stained with anti-CD11b-PE

and anti-CD31-APC. 209000–509000 CD11b+ cells (TAM) or

CD11b2 CD312 cells (tumor cells) were sorted on a FACSAria

directly into TRIZOL reagent (Invitrogen).

Quantitative RT–PCR
Total RNA was prepared using TRIZOL (in the case of RNA

isolation from Matrigel cultures, two consecutive rounds of TRIZOL

purification were performed), and reverse transcribed with random

hexamer primers using M-MLV reverse transcriptase (SIGMA).

cDNA was quantified on a ABI Prism 7000 light cycler (Applied

Biosystems) using SYBR green PCR MasterMix (Fermentas) using

the following primers: mVEGFC: fwd: 59-AGCAGCCACAAA-

CACCTTCTT-39, rev: 59-TCAAACAACGTCTTGCTGAGG-

39; mVEGFD: fwd: 59-GCACCTCCTACATCTCCAAACAG-39,

rev: 59-GGCAAGCACTTACAACCCGTAT-39; mFGF1: fwd: 59-

CCGAAGGGCTTTTATACGG-39, rev: 59-TCTTGGAGGTG-

TAAGTGTTATAATGG-39; mFGF2: fwd: 59-CGGCTCTAC-

TGCAAGAACG-39, rev: 59-TGCTTGGAGTTGTAGTTTGA-

CG-39; mFGFR1: fwd: 59-TGTTTGACCGGATCTACACACA-

39, rev: 59-CTCCCACAAGAGCACTCCAA-39; mFGFR2: fwd:

59-TCGCATTGGAGGCTATAAGG-39, rev: 59-CGGGACCA-

CACTTTCCATAA-39; mLYVE-1: fwd: 59-GGTGTCCTGA-

TTTGGAATGC-39, rev: 59- AGGAGTTAACCCAGGTGTCG

-39; mProx-1: fwd: 59-AAGAGAGAGAGAAAGAGAGAGAGT-

GG-39, rev: 59-TGGGCACAGCTCAAGAATC-39; mVEGF-R3:

fwd: 59-CGTGTGTGAAGTGCAGGATAGG-39, rev: 59-TCA-

CTCACGTTCACCAGGAGGT-39; mFoxC1: fwd: 59-GCTTT-

CCTGCTCATTCGTCTT-39, rev: 59-AAATATCTTACAGGT-

GAGAGGCAAG-39; mFoxC2: fwd: 59-GACCCTAGCTCGCT-

GACG-39, rev: 59-CACCAGCCCTTCCGAGT-39; mCD45: fwd:

59-CAAAAGCAGATCGTCCGGA-39, rev: 59-TGTCGGCCGG-

GAGGTT-39; mCX3CR1: fwd: 59-AAGTTCCCTTCCCAT-

CTGCT-39, rev: 59-CAAAATTCTCTAGATCCAGTTCAGG-

39; mRPL19: fwd: 59-ATCCGCAAGCCTGTGACTGT-39, rev:

59-TCGGGCCAGGGTGTTTTT-39. Ct values were normalized

against ribosomal protein L19 (RPL19) and the levels of expression

were presented as DDCT or as mRNA copies per 1000 copies of

RPL19 control mRNA.

Tube formation assay using bone marrow-derived-
macrophages

Bone marrow cells were extracted from femurs and tibiae of

C57BL/6 or C57BL/6-Tg(ACTB-EGFP) mice and cultured on

Teflon plates for 7 days in DMEM supplemented with 10% FBS,

2 mM glutamine, 100 units/ml penicillin and 30% L929 cell

conditioned media containing M-CSF. Bone marrow-derived-

macrophages were collected with PBS/1 mM EDTA. Matrigel

(Becton Dickinson) was mixed 1:1 with endothelial cell medium

(EGM-2 MV, Cambrex) and allowed to solidify for 1 hour at 37uC
in 8-chamber slides. 2236105 bone marrow-derived macrophages

or immortalized lymphatic endothelial cells (SV-LEC) or a

mixture of 1.56105 cells each in EGM-2 MV supplemented with

1 mg/ml LPS were seeded onto the polymerized matrigel and tube

formation was monitored up to 20 days. Immunofluorescence

staining of cord-like structures was performed as described [50].

For time-lapse video microscopy, Hoechst labeled SV-LEC and

GFP+ macrophages were co-cultured as described above and

pictures were taken every 10 minutes for a period of 12 hours

using a Zeiss Axiovert 35 M microscope (Zeiss), Princeton

Instruments CCD camera and Metamorph Imaging software

(Universal Imaging Corporation).

Supporting Information

Movie S1 3D reconstitution of a 20 mm tissue section of a tumor,

derived from a RT2;VC mouse transplanted with GFP labeled bone

marrow. Arrow indicates a GFP+ cell (green) integrated in the

Podoplanin+ (red) lymphatic vessel. Arrowhead indicates a GFP+
cell not completely integrated (noticeable only at certain angles). Ex:

exocrine pancreas, L: lymphatic vessel lumen, T: tumor.

Found at: doi:10.1371/journal.pone.0007067.s001 (2.86 MB

MOV)

Movie S2 3D reconstitution of a 7 mm tissue section of a

TRAMP-C1 tumor, grown in a GFP labeled bone marrow

transplanted C57BL/6 mouse. Arrow indicates a GFP+ cell

(green) integrated in the Podoplanin+ (red) lymphatic vessel.

Found at: doi:10.1371/journal.pone.0007067.s002 (0.82 MB

MOV)

Movie S3 Macrophages initiate lymphatic endothelial cell tube

formation in in vitro co-culture. Time-lapse video microscopy after

24 h co-culture of SV-LEC and GFP+ macrophages on Matrigel.

GFP+ macrophages were distinguished from SV-LEC by their

bright signal in phase-contrast. The movie shows a GFP+
macrophage located at the rim of SV-LEC compact structure

initiating outgrowth of a tube-like structure. As also visible in

Figure S8, the SV-LEC follow the tube-leading macrophage in the

newly forming tube-like structure.

Found at: doi:10.1371/journal.pone.0007067.s003 (1.08 MB

MOV)

Figure S1 Infiltration of transplanted BMDC in RT2 tumours.

Lethally irradiated RT2 and RT2;VC mice were transplanted

with GFP-labeled bone marrow, as indicated. Approximately 3–

3.5% of tumour-constituting cells were GFP+ (green) and thus

bone marrow-derived, and approximately 80% of GFP+ cells co-

expressed the monocyte/macrophage marker F4/80 (red). White

rectangles indicate area of higher magnification shown below, with

merge picture on the left, F4/80 in the middle, and GFP on the

right. F4/80+ macrophages are either donor-derived (co-express-

ing GFP, indicated by arrows) or host-derived (no GFP expression,

arrowheads). 3 mice per genotype with 16–29 tumours each were

analyzed. DAPI was used for nuclear counterstaining (blue). Scale

bar: 50 mm.
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Found at: doi:10.1371/journal.pone.0007067.s004 (1.95 MB JPG)

Figure S2 BMDC do not integrate into lymphatic vessels

surrounding normal islets. VC single-transgenic mice were

transplanted with GFP-labeled bone marrow. Pancreatic sections

of transplanted mice were stained for the lymphatic markers

LYVE-1 (red) and GFP (green) and analyzed by confocal

microscopy. Two representative pancreatic sections with islets of

Langerhans are shown. No GFP+ cells were found integrated into

islet-surrounding lymphatic structures. DAPI stains nuclei (blue).

Scale bar: 20 mm.

Found at: doi:10.1371/journal.pone.0007067.s005 (1.17 MB JPG)

Figure S3 FACS analysis of lineage tracing experiments. (A)

FACS analysis of peripheral bood cells from a representative

RT2;VC mouse reconstituted with bone marrow isolated from

CX3CR1+/GFP mice indicates GFP expression mainly in

CD11b+ cells. A minor fraction of CD19+ B-cells and CD3+ T-

cells also expressed GFP. (B) FACS analysis of peripheral blood

cells from CD11b-Cre;Z/EG mice transplanted with TRAMP-C1

tumours indicates effective Cre-mediated recombination and

subsequent expression of GFP predominantly in F4/80+ mono-

cytes and to much lower extent in B or T lymphocytes. (C) FACS

analysis of peripheral blood cells from RT2;VC mice reconstituted

with common myeloid progenitor (CMP) cells indicates that GFP+
cells are present within the CD11b+/F4/80+ monocyte fraction

and the CD11b+/F4/802 granulocyte fraction but not in B or T

lymphocytes.

Found at: doi:10.1371/journal.pone.0007067.s006 (2.92 MB JPG)

Figure S4 Pancreatic sections of RT2;VC mice adoptively

transferred with FACS-sorted GFP+ common myeloid progenitor

cells (CMP) (3 mice) were stained for LYVE-1 or Podoplanin as

well as for GFP and analyzed by confocal microscopy. Represen-

tative tumor sections are shown. Double positive cells for GFP

(Green) and LYVE-1 or Podoplanin (red) are observed, demon-

strating that CMP provide cells that incorporate into tumor

lymphatics. DAPI stains nuclei (blue). Scale bars: 20 mm.

Found at: doi:10.1371/journal.pone.0007067.s007 (1.54 MB JPG)

Figure S5 CD19+ B lymphocytes do not integrate into tumour-

associated lymphatics. FACS sorted CD19+/GFP+ cells were

adoptively transferred into semi-lethally irradiated RT2;VC mice

(2 mice). 3 weeks after transfer, mice were sacrificed and tumour

sections were stained for the lymphatic marker LYVE-1 (red) and

for GFP (green) and analyzed by confocal microscopy. No GFP+
cells co-expressing LYVE-1 could be observed. DAPI was used for

nuclear counterstaining (blue). Scale bars: 20 mm.

Found at: doi:10.1371/journal.pone.0007067.s008 (1.37 MB JPG)

Figure S6 Tumors of non bone marrow-transplanted RT2;VC

mice were enzymatically digested. Single cell suspension were

stained for the pan-endothelial marker CD31, the lymphatic

endothelial marker LYVE-1 and the myeloid marker CD11b and

analyzed by FACS. 6.2+/24.5% of CD31+/LYVE-1+ TLEC co-

expressed CD11b.

Found at: doi:10.1371/journal.pone.0007067.s009 (0.76 MB JPG)

Figure S7 Macrophage depletion does not affect tumor growth.

RT2;VC mice were treated for 4 weeks either with PBS (vehicle

control) or with ClodroLip in order to deplete intra- and

peritumoral macrophages. Tumor volume has been determined

as the total volume of tumors per mouse (A), tumor incidence is the

number of tumors larger than 1 mm per mouse (B), and blood

vessel density is the % area fraction of CD31 staining (C), as

determined by ImageJ image analysis software. None of these

parameters was significantly altered between ClodroLip and

control-treated mice.

Found at: doi:10.1371/journal.pone.0007067.s010 (1.16 MB JPG)

Figure S8 Macrophages initiate lymphatic endothelial cell tube

formation in an in vitro co-culture system.

Found at: doi:10.1371/journal.pone.0007067.s011 (0.97 MB JPG)
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