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Abstract

Medium to large phylogenetic gene trees constructed from datasets of different species density and
taxonomic range are rarely topologically consistent because of missing phylogenetic signal,
non-phylogenetic signal and error. In this study, we first use simulations to show that taxon sampling
unequally affects nodes in a gene tree, which likely contributes to controversial conclusions from taxon
sampling experiments and contradicting species phylogenies such as for the boreoeutherians. Hence,
because it is unlikely that a large gene tree can be reconstructed correctly based on a single optimized
dataset, we take a two-step approach for the construction of model gene trees. First, stable and
unstable clades are identified by comparing phylogenetic trees inferred from multiple datasets and
data types (nucleotide, amino acid, codon) from the same gene family. Subsequently, data subsets
are optimized for the analysis of individual uncertain clades. Results are summarized in form of a
model tree that illustrates the evolutionary relationship of gene loci. A case study shows how a
seemingly complex gene phylogeny becomes increasingly consistent with the reference species tree
by attentive taxon sampling and subtree analysis. The procedure is progressively introduced to
SwissTree (http://swisstree.vital-it.ch), a resource of high confidence model gene (locus) trees. Finally
we demonstrate the usefulness of SwissTree for orthology benchmarking.
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Introduction

Gene tree reconstruction is challenging. Because of the limited amount of information available, gene
trees are typically much more difficult to reconstruct than species trees. Gene trees inferred from
different datasets of the same family (e.g. nucleotide vs amino-acid sequence, varying taxon sampling)
are often topologically discordant [1]. The reasons for analysis artefacts have been studied and
discussed extensively, both stochastic (e.g. short sequences, lack of phylogenetic signal) and
systematic error (e.g. inappropriate methods or models, insufficient taxon sampling) as well as their
combinatorial effects. Methods and models are continuously enhanced, but a sizable fraction of
incorrect predictions seems unavoidable. Hence, complementary steps have to be taken to overcome
limits. As an example, because evolutionary events other than speciation (e.g. gene duplication,
horizontal gene transfer) are rare in most gene families, substantial improvements can be achieved by
tree reconstruction methods that take into account a species phylogeny (reviewed in [2]).

SwissTree is a collection of high-confidence model gene trees for the benchmarking of inferred gene
relationships. The project was developed within the Quest for Orthologs (QfO) consortium
(https://questfororthologs.org), a community effort aiming to improve orthology predictions [3]. Besides
SwissTree, two other databases of reference gene trees exist, Orthobench [4] and TreeFam-A [5].
SwissTree is comparatively small and focuses on carefully establishing a reproducible and coherent
system for reference gene tree curation. Challenges concern not only tree reconstruction,
interpretation, annotation and visualization, but also issues in benchmarking as well as the feasibility of
expeditious reactions to requests for taxa that are not part of the current QfO proteome set by the QfO
community. Important recent achievements include the construction of a consensus species tree for
organisms of the QfO reference datasets (http://swisstree.vital-it.ch/species_tree) [6], which is now
used as reference for the interpretation of gene trees in SwissTree. With regard to the QfO
benchmarking activities, we studied in detail phylogenomic database concepts to better understand
their fundamental different hierarchical levels (e.g. pairwise species comparisons, ortholog groups,
hierarchical ortholog groups, reconciled gene trees); such knowledge is important to define suitable
benchmarks [7]. Meanwhile, the Orthology Benchmarking Webservice [8] has been developed, which
provides - amongst other tests - a comparison of predicted orthologies with those inferred by
SwissTree (‘Gold Standard gene tree test’) and the correctness of an orthology-based species tree in
comparison to the reference species tree (‘Species tree discordance test’).

With overrepresented clades on the one hand and consecutive long branches on the other hand, the
78-species QfO reference set (1017; http://www.ebi.ac.uk/reference_proteomes;
http://swisstree.vital-it.ch/species_tree) is by no means simple. By empirical evidence we assume that
any single phylogenetic analysis is unlikely to correctly infer all evolutionary gene relationships of a
gene family for all species in the QfO dataset. Thus, we changed strategy and optimized datasets for
the prediction of deep divergence patterns in the gene tree as well as for the prediction of individual
clades and subclades. In the majority of cases, these phylogenetic gene trees show some
contradicting topologies. Tree inconsistency within gene families raises questions of how to distinguish
correct from incorrect, how to best summarize and visualize results and how to maintain reference
gene trees.

In this study, we first performed a simulation study in which we explored the impact of taxa sampling
on individual nodes in a gene tree and compared ways to best summarize results obtained from a set
of heterogeneous gene trees. The study leads to an analysis procedure that offers transparency with
regard to the final resulting tree, and facilitates the maintenance and extendibility of SwissTree. We
apply the approach to a gene family that is difficult to analyze and construct a highly supported model
gene tree that is concordant with the reference species tree. Finally, we discuss the perspective of this
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approach for the construction of sustainable representative gene trees and possibilities for a stepwise
automation.

Conventions. 1. Throughout this article, we use the term ‘clade’ rather than ‘split’ to specify
monophyletic groups with at least two members in a gene tree or species tree. This also applies to
unrooted gene trees when compared to a rooted - gene or species - tree. 2. When calculating the
mean basal aLRT-SH support of a clade in multiple trees, we consider in addition to predictions also
missing predictions - which can be deduced from the set of operational taxonomic units (OTUs) - by
setting the support value to ‘0’. This measure, which combines quantity and quality of clade
predictions, is referred to as ‘mean2’. 3. Gene trees can depict different incidents dependent on the
scientific context. Inferred by tree reconstruction methods, gene trees in fact reflect the divergence
pattern of individual gene lineages (variants). Often annotated with speciation and duplication events,
nodes can have other meanings. For instance in the case of incomplete lineage sorting (ILS), the
observed gene tree species tree discordance results from the erroneous interpretation of a node as
speciation event rather than the occurrence of a new gene variant. Because SwissTree is generated to
benchmark gene relationships (orthology, paralogy, xenology), we design trees to reflect gene locus
relations (Fig. 1). The term ‘locus tree’ was introduced by Rasmussen and Kellis for the development
of a joint model for phylogenetics and population genetics [9]. Here we use the term ‘gene locus tree’
as opposed to ‘gene lineage trees’; nodes of a gene locus tree represent vertical gene transfer,
duplication and lateral gene transfer, nodes of a gene lineage tree depict in addition coalescent effects
such as ILS.
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Fig. 1. Incomplete lineage sorting: difference between a phylogenetic tree (gene lineage tree)
and a gene locus tree. Species tree: evolutionary relationship of species A-D; all nodes in a species
tree represent speciation events. Phylogenetic tree: illustration of the evolutionary relationship of gene
1 for species A-D. In the case of incomplete lineage sorting, tree reconstruction methods capture
signal originating from retained gene variants that occurred prior to speciation; in this case, the
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ancestral node represents the occurrence of a new gene variant rather than a speciation event. The
difference becomes evident when comparing the gene lineage history and the gene locus history.
Gene lineage history: a new gene variant 1-ll that appears in the ancestral node is retained in species
C and disappears in species D and in the sister clade of C, prior to the speciation of A and B.
Simultaneously, the ancient variant is lost in species C, but retained in the other species. The shade of
the branch color indicates the variant frequency. Gene locus history: Because gene variants 1-1 and
1-1l occupy the same gene locus, ILS is not visible in the gene locus tree.
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Results and Discussion

To better understand how different datasets covering the same family contribute to the reconstruction
of a gene phylogeny, we first performed a simulation study. While simulation makes many simplifying
assumptions, it provides a helpful baseline in which the correct trees are known with certainty. We
then show how these results informed the strategy pursued in the construction of reference gene trees
in SwissTree. Next, we provide a case study of a family investigated using the SwissTree approach.
Based on the same principle, we highlight an efficient way for testing taxa samples for their information
content regarding specific clades without tree reconstruction. Finally, we illustrate the usefulness of
SwissTree for orthology benchmarking.

Survey on gene trees inferred from simulated data

To study the problem of gene tree inference from multiple datasets with different taxon sampling, we
generate simulation data comprising 100 taxa with 1000 1:1 orthologs that evolve under a codon
model with variable rates of sequence evolution across sites and genes. Analyses are performed on
the full dataset (“a100”) and six data subsets of 10 and 30 taxa, consisting of two nested subclades
(“a10”, “a30”), two balanced sets of taxa (“b10”, “b30”) and two sets of randomly selected taxa (“r10”,
“r30”) (for more details, see Material and Methods and Supporting Information S1). Because this study
investigates ways to generate representative gene trees from imperfect gene trees, maximum
likelihood (ML) tree reconstruction is moderately violated by choosing a fixed model of DNA, codon
and amino acid sequence evolution. Possible advantages for codon-based analyses are compensated
by a less extensive ML tree search. Gene phylogenies are inferred from the known multiple sequence
alignments (MSA), so that erroneous topologies are solely the result of missing phylogenetic signal,
non-phylogenetic signal or tree reconstruction artefacts. The final tree set consists of 21,000 trees with
597,000 clades (subtrees of at least 2 OTUs), which we analyze for correctness and support.

The species tree is challenging because it contains long branches and several short internodes (Fig.
2A). First, we explore gene trees that were reconstructed from the known alignment. For the seven
datasets (a100, a10-r30) of 1000 gene trees we observe that the fraction of correct tree topologies
decreases as the number of genes per tree increases. Remarkably, none of the trees inferred from the
full datasets (a100 DNA/codon/aa) is correct (Fig. 2B). By contrast, the fraction of correct clades is
primarily linked to the taxon composition with first the balanced subsets, then the complete sets and
finally the random subsets. Interestingly, this is less dependent on the size of the dataset. Moreover,
most trees possess a small fraction of incorrect clades and only few trees are topologically very distant
from the true tree (Fig. 2C). For the 1000 genes from all datasets and data types (21000 trees, 199000
clades), the majority of clades are correctly predicted from all the three data types (DNA, codon, amino
acid: 67.64%; 134595 out of 199000 clades); at the other end, 7.23% of the clades (14381) are
predicted solely by one of the data types and 13.58% of the clades (27036) are not recovered at all
(Fig. 2D). Not surprisingly, the largest fraction of correct clades is predicted from balanced datasets
(99.21% for b10, 97.05% for b30), because these have fewer very short (and thus difficult) branches
compared with unbalanced trees. The correlation between the level of node support and internode
length is shown for dataset a100/aa in Fig. 2E.

In summary, the simulated gene phylogenies are difficult to reconstruct because of missing
phylogenetic signal and error. None of the largest gene trees is fully correct, but only few trees are
topologically very distant from the true tree. The taxon composition of the data subsets has a strong
impact on the tree correctness.
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Figure 2. Survey on gene trees inferred from known alignment of simulated data. The simulation data comprises the
coding region of 1000 1:1 orthologs from 100 taxa (dataset a100); data subsets consist of two nested subclades of 10 and 30
taxa (a10, a30), two overlapping balanced sets of 10 and 30 taxa (b10, b30) and two sets of 10 and 30 randomly selected taxa
(r10, r30). A. Known species tree of the 100 taxa: short internodes and long branches indicate phylogenies that are likely difficult
to resolve. Nodes 63 and 78 are annotated. B. Column chart visualizing the correctness of trees inferred from the known MSA of
amino acid sequences of the full dataset and the six data subsets. The fraction of correct trees is largest for balanced and small
datasets, the fraction of correct clades is approximately consistent within the trait (balanced, all, random) of the taxon
composition. Trees inferred from nucleotide or codon sequences show a similar distribution of results with a slightly larger
fraction of true trees and true clades. C. Pyramid plot of the average fraction of incorrect clades per tree for the seven protein
sequence datasets. D. 100% stacked column chart of correct clades inferred from sequences of all character types (gray;
nucleotide, codon, amino acid), by two (blue shade), by one (magenta shade) or not predicted (black). E. Scatter plot showing
the branch support of gene trees as a function of the internode length in the species tree (a100/aa). The branch support includes
the highest aLRT-SH support for a clade (green plus), arithmetic mean of aLRT-SH support values (blue cross), and clade
occurrence frequency (red filled circle).

Clade occurrence frequency and statistical support— which clades are correct?

Since we have established that gene trees are mostly—but not fully—correct, the next question is how
can we predict which clades are correct. Here we consider three measures: bootstrap branch support
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[10], aLRT-SH branch support [11], and, since we are particularly interested in situations in which we
have multiple datasets covering a single gene family, clade occurrence.

First, we explored the boundary between correct and incorrect clades (“the twilight zone”) in terms of
these measures. (Fig. 3). For the 1000 gene trees of each dataset, clade occurrence frequencies are
consistently low for incorrect clades and more dispersed for correct clades (Fig. 3A). In contrast, clade
occurrence frequencies for incorrect clades show more variation when looking at bootstrap values (20
genes exemplarily selected by increasing alignment length from datasets b30, a30 and r30; see
Materials and Methods). This is most likely because of biased data and lack of complementary
information when compared to results from phylogenomic data (Fig. 3B). As for the aLRT-SH
statistics, support is predominantly high for correct clades and dispersed for incorrect clades, though
the median support is typically low (Fig. 3C,D). The predictive power of the two measures is thus to
some extent complementary. Significant aLRT-SH branch support (>=0.95) is mostly obtained for
correct clades; however also a minor fraction of clades (0.000093, 9/97000; a100/aa) show significant
support for incorrect predictions in trees that have an average error rate (Supporting Information S2,
Fig. S2-1). Thus, a high aLRT-SH is an indication but no guarantee of correctness, nor are strongly
supported incorrect clades an indicator of topologically highly erroneous trees.

Clades inferred from datasets with varying taxon composition vary in occurrence frequencies and
support (Fig. 3E, Supporting Information S2, Fig. S2-2). For balanced trees (b10, b30), the values for
both measures are on average higher than for trees obtained from other datasets, but also trees from
random datasets (r10, r30) possess nodes with higher occurrence frequencies and support which can
be explained by extended internode lengths due to the lower taxon density. Importantly, this does not
mean that smaller datasets generate more accurate phylogenies, which would contradict previous
findings ([12], [1]): Fig. 3E also shows that clades with a low occurrence frequency in trees of the full
dataset (a100) rarely occur in balanced trees. An easy way to compare tree correctness of large and
small datasets is by pruning the larger dataset to the taxa of data subsets. By doing so, the fraction of
correct predictions increases for all datasets and data types (dna, codon, aa) with up to 21,3% for
trees and up to 15.3% for clades (r10/DNA) (Fig. 3F). Hence, more data generates more accurate tree
topologies and multiple datasets a wider spectrum of results. Taken together, concordance between
tree topologies from datasets with different taxon sampling constitutes a good indicator for clade
correctness.

Further traits of correct topologies are highly supported clades with long basal branch length.
Occasionally, an incorrect clade shows similar features (Supporting Information S2, Fig. S2-3), but it is
usually not stable and can be easily distinguished from correct clades when summarizing results from
multiple analyses (Fig. 3G). Thus, the twilight zone for clade predictions is characterized by rather low
- but not lowest - occurrence frequencies and short basal internode distances.

In summary, different taxon sampling have different strengths and weaknesses when it comes to
resolve individual nodes. Therefore, it is worthwhile considering multiple datasets of the same gene
family when inferring a gene phylogeny.
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Figure 3. Clade occurrence frequency, branch support and internode length. A-D. Boxplot of clade occurrence frequencies
in 1000 genes from dataset a100/aa (A), in trees inferred from 1000 bootstrap replicates for a small data subset of datasets
a30/aa, b30/aa and r30/aa. (B), aLRT-SH branch support for the same data as in B (C), aLRT-SH branch support for 1000
genes from dataset a100/aa (D). The box illustrates the Q1-Q3 interquartile range (IQR), the bold line shows the median and
whiskers delimit the upper and lower 1.5 IQR; circles depict outliers; support for correct clades is shown in green, support for
incorrect clades in red. E. Scatterplot of clade occurrence frequency for corresponding clades of trees from datasets with
different taxon composition, sorted by descending support for the dataset a100/aa. Occurrence frequencies of (compatible)
clades 63 and 87 from different datasets are marked by circles; colors correspond to the relevant dataset. F. Distribution of the
fraction of correct clades per tree for dataset r10 (green dashed lines) and for the corresponding clades from pruned trees of
datasets a100 (blue dashed lines); results for the consensus gene trees (DNA/codon/aa) are shown as continuous lines. G.
3D-scatterplot (angle: 300) with clade occurrence frequency (x), mean2 aLRT-SH clade support (y) and the mean basal
internode length of each clade (z) (dataset a100/aa).


https://doi.org/10.1101/181966
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/181966; this version posted September 5, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Can we predict correct clades from the sequence alignment?

Phylogenetic trees are typically inferred from MSAs, which means, the alignment contains the
phylogenetic information. In cladistics, shared derived characters (synapomorphies, phylogenetic
signal) are used to infer species relationships, and in comparative genomics, assumed shared derived
(‘synapomorphic’) characters (e.g. nucleotides, codons, amino acids) can be read directly from the
MSA for each clade of a tree. However, phylogenetic tree reconstruction methods also have to deal
with contradicting (non-phylogenetic) signal, which are signals supporting topologies other than the
correct tree. If there exists a correlation between clade occurrence and the fraction of synapomorphic
signal, we should be able to efficiently predict suitable taxa samples prior to tree reconstruction.

A simple approach to quantify phylogenetic signal is to determine from the 1000 MSAs the fraction of
synapomorphic characters. To further ease the analysis, we focus on individual internodes in the
known species tree and determine synapomorphic positions for the known correct tree topology as
well as for the two alternative tree topologies around the selected internodes (Fig. 4A). Thereby, we
distinguish three modes ‘stringent’, ‘medium’ and ‘relaxed’, which differ in the level of conserved
positions within the three subclades and the outgroup (Fig. 4B). Exemplarily, two clades with different
occurrence frequencies are chosen from Fig. 3E. The first example, clade 87, is predicted 399 times
from dataset a100, but compatible clades are inferred 975 and 985 times from datasets r10 and r30,
respectively. The search for synapomorphic sites in the MSAs reveals that there is on average more
synapomorphic signal per gene (r10: 11.2, r30: 6.1) and less contradicting signal per gene (r10: 1.7,
r30: 0.2) in the random datasets than for the full dataset (a100; synapomorphic: 2.2, contradicting: 1.9)
(Fig. 4C). We observe a clear correlation between the fraction of synapomorphic signal
(synapomorphic / synapomorphic + contradicting) and the clade occurrence frequency. The second
example, clade 63, is inferred more than 750 times from the proteomes of datasets a100 (858), b10
(987), b30 (874), r10 (762), and r30 (880). Nevertheless, the number of synapomorphic signal per
gene differs largely for the different datasets and decreases in the order b10 (11.4), r10 (5.1), r30
(1.3), b30 (1.1), a100 (0.4) (Fig. 4D). For dataset a100 the number of signal is below one per gene.
When signal is weak, a more fine-grained approach is needed, taking into account amino acid
similarity rather than identity.

Finally we investigate in a comparison of signal obtained from a complete clade and subclades. We do
this for the largest clade in in our example, which is the outgroup of the true sister clade at node 78.
Clade subsets with taxonomically diverse clade members provide less signal than a biased subset of
clade members (Fig. 4E). In addition we observe that the number of signal increases as the number
of clade members decreases. In both cases, the increase of signal is associated with a decrease in
the proportion of synapomorphic signal, indicating that biased and small datasets include more noise
and less true signal than more balanced and larger datasets.

Three facts are notable in this analysis: 1) the existence of contradicting signal, which has also been
found in real data and for which different reasons have been described [13]; 2) the correlation between
the fraction of synapomorphic signal and the clade occurrence frequency; 3) the impact of the clade
size and taxa diversity on the balance of synapomorphic and contradicting signal. In multiple further
examples not described here, we notice that data bias and clade size have a large impact not only on
the fraction of synapomorphic and contradicting signal, but likewise on the inferred tree topologies; a
large-scale real data example is shown further below. At the comparative genomics level, the
investigation of signal in MSAs could therefore constitute a simple and efficient way for compiling
genetically diverse, complementing datasets prior to tree reconstruction.
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‘out’ stands for outgroup. B. Synapomorphic positions are determined in three modes which are illustrated by trees; stringent:
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not present in the outgroups; relaxed: at least one member of each clade of the sister clade shares a common amino acid, that
is not present in the outgroups; letters denote amino acids, curly brackets indicate absence of a specific amino acid, square
brackets signal presence of a specific amino acid in at least one member of each sister clade; C, D. Column chart of
synapomorphic and contradicting MSA positions for clades 87 (C) and 63 (D), and scatter marking in dark blue the fraction of
synapomorphic signal (synapomorphic signal / synapomorphic signal + contradicting signal) and in cyan the clade occurrence
frequency (OccFreq; clade occurrence in 1000 gene trees). The marker of the fraction for synapomorphic signal is not filled as
to indicate a dubious result (less than one signal per gene). E. Column chart of synapomorphic and contradicting MSA positions
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clade. See Figure C for the legend; ‘all’ indicates the complete set of clade members (24), ‘diverse’ a taxonomic diverse set of
members, ‘biased’ a biased set of more closely related clade members; numbers (x-axis) indicate the number of clade members
in a set.
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How to integrate tree inconsistency?

Given a set of almost concordant gene trees, an automated construction of a reference gene tree is
feasible. Consensus gene trees, for instance, can be generated from trees of identical taxon
composition inferred from the three data types (DNA, codon, aa). By doing so for the simulated data,
we obtain only a negligible increase of correct clades, probably due to a lack of complementing signal
in the coding sequence (Fig. 3H, Supporting Information S2, Fig. S2-4). When summarizing results
from trees for six data subsets including the corresponding three (better) pruned trees of the full
dataset, we even observe a decrease of clade correctness over the best gene trees. Another
approach could be the construction of supertrees that combine phylogenetic trees of different size and
taxon composition and moreover visualizes alternative topologies in form of a network within a tree
structure. But in the end, would it really be the gene history that SwissTree strives to reflect? Tree
reconstruction methods perceive evolutionary traces of successful gene lineages (variants, alleles).
One reason for the often observed gene tree species tree discordance is incomplete lineage sorting
(ILS), in which case a gene variant emerges prior to a speciation event, so that the basal node of the
relevant clade in fact corresponds to the emergence of a new variant rather than to a speciation event
(Fig. 1). In the end, it is a matter of definition on which level gene histories are revealed, interpreted
and annotated. Because variants are irrelevant to the attribution of gene relationships, trees in
SwissTree present gene histories at the level of gene loci and hence illustrate speciation and changes
in gene copy numbers in genomes. Strictly speaking, SwissTree trees are gene locus trees. Notably,
this has no impact on the benchmarking of gene relationships with SwissTree, because the tree
discordance involves neither gene duplication nor horizontal gene transfer.

Gene locus trees are in principle simpler than gene lineage trees. Nevertheless, the construction of
gene locus trees implies distinguishing locus events from incidences of gene lineage events and error.
Because species relationships inferred from multiple genes - and a large number of characters - are
likely more accurate than when inferred from a single gene, we trust the reference species tree
topology more than the topology obtained from a single gene; with other words, we use the species
tree model as a null hypothesis that is challenged by discordant findings. As a guideline we presume
that tree topologies based on true signal are more robust than analysis artefacts, if the distinct
datasets are diverse and compiled for the analysis of a specific node and, moreover, the selected
genes evolve at similar rates. In the case of tree inconsistency, if one out of alternative topologies
supports the species tree, the tree topology concordant with the species tree gives the more
parsimonious explanation unless there is strong evidence for another event but speciation (Fig. 5A).
The same applies when datasets lack signal. In the case of consistently discordant topologies or solely
discordant topologies, further evidences are looked for, for instance in the MSA, in gene synteny
tables and in enlarged datasets (witness of non-orthology, [14]). Thereby, hybridization is difficult to
investigate, because it requires a phylogenomic approach and furthermore knowledge on the degree
of divergence of the involved species. Nevertheless, it can be considered (and annotated in the
reference species tree), if species relationships are affected by hybridization. In the absence of
incidences supporting events relevant to the gene locus and the lack of strong support for the dubious
topology, we assume incomplete lineage sorting and present the topology that is concordant with the
species tree (Fig. 5B). This way, we prevent overprediction of gene locus-relevant events that are due
to a lack of signal or erroneous topologies. The benefit of this concept can be tested for the simulation
data by mapping identical and compatible subclades from 21 gene trees (3 character types, 7
datasets) to the model of gene locus evolution for the full dataset (a100), which in our case is identical
to the species tree. In doing so, the fraction of correctly supported clades increases by 18.37%
(13.84% complete clades, 4.53% compatible clades) from 72.04% as achieved from the individual
analysis of the a100/aa dataset (a100/aa, 1000 genes, 97000 clades) to 90.41% in the model gene
trees - and this without adding additional taxa or clade-specific data optimization (Fig. 5C). We can
therefore assume that this approach has the potential for the accurate construction of large gene
trees.


https://paperpile.com/c/3eKLtw/RgqZ
https://doi.org/10.1101/181966
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/181966; this version posted September 5, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

12

A A1
X1

A A1 B1 A1
B 1 Y1 B1
C B1 C1 9
out out1 out1

out1

Species tree Genetree 1 Gene tree 2 SwissTree

B A A1 . — A1
B C1 e B1
C B1 C CA1
out out1 - out1

Species tree Gene tree Gene synteny  SwissTree

C Fraction of correct clades in gene trees, consensus gene trees,
consensus species tree and by model tree mapping (a100)

GTs (aa) |
GTs (codon) |
GTs (DNA) |
consensus GTs (DNA, codon, aa)
CONsSensus species tree |
MTM of 21 GTs (identical) |

MTM of 21 GTs (id. & compatible)

Figure 5. Integration of tree inconsistency. A. Tree inconsistency: if one of the alternative tree topologies supports the
species tree, the SwissTree model gene tree corresponds to the concordant tree topology (gene tree 2) for this clade.
Alternative topologies are retained in the set of result trees. B. Incomplete lineage sorting (ILS): Trees in SwissTree illustrate
gene locus relationships rather than gene genealogies; thus, ILS is not presented in the SwissTree topology. Gene synteny and
the lack of gene duplications in related species evidence ILS rather than pseudo-orthology. The red asterisk denotes the
polymorphic ancestor. C. Bar chart illustrating clade correctness of gene trees (GTs) for the different data types (amino acid,
codon, DNA), of consensus of the gene trees derived from the three different data types (amino acid, codon, DNA), of the
consensus species tree from 1000 gene trees, as well as the fraction of correctly reconstructed identical and compatible clades
in 21 gene trees identified by model tree mapping (MTM).
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Strategy for the construction and maintenance of representative gene trees

Based on the preceding simulation study we conclude that medium to large phylogenetic gene trees
constructed from datasets of different species density and taxonomic range are rarely topologically
consistent (Fig. 2B). Nevertheless, we can presume that the majority of clades are predicted correctly
(Fig. 2C), because the species diversity - OTU composition and OTU density in the tree space - has a
large impact on the level of clade correctness and clade support (Fig. 2B, 3A,D,H) and datasets of
complementing taxon composition provide a wide range of results (Fig. 3F,G), topological consistency
of compatible clades evidence tree correctness. This finding is supported by MSA analysis for
synapomorphic signal: datasets possess different levels of synapomorphic signal for different clades
(Fig. 4C,D) and representative datasets of different size possess similar signal for the same clade (Fig.
8; large-scale study below). A second strong indicator of tree correctness is the topological
concordance with the species tree and an average high clade support (mean2) (Fig. 3J). As for
consensus gene trees, there is a risk of biased tree topologies due to predominantly overlapping
signal and a lack of complementing signal in the coding region of the simulated data (Fig. 3B, 5A). As
a consequence, trees for SwissTree are generated from multiple datasets - optimized for the analysis
of the full dataset, data subsets as well as individual clades and subclades - in a process of repeated
analysis, interpretation, and annotation. Results are stored in form of a model gene tree and a tree
pool. Figure 6 summarizes the process.

Initiation of a tree pool. At first we explore the consistency of tree topologies. A first analysis with
(almost) all family members can result in gene trees that are in large part concordant with the species
tree, even when inferred from unrevised data. The relevant MSAs typically possess regions of unequal
confidence including long indels as well as gaps and missing data that are difficult to interpret by most
tree reconstruction algorithms. For the generation of trees for SwissTree, we reassess gene
phylogenies using smaller, revised datasets and data subsets for individual clades. Consistent tree
topologies inferred from (unbiased) MSAs of different species density and composition evidence
phylogenetic signal. In case of alternative topologies, the one concordant with the species tree is the
most parsimonious explanation for a gene’s evolution. Alternative topologies that occur with similar
frequency indicate a lack of phylogenetic signal. With regard to the statistical branch support, we
showed in the simulation study that values can be strongly influenced by the internode length (Fig.
2E). For SwissTree we currently use bootstrap, a rather conservative measure. When trees from
extended datasets are pruned, we think it is admissible to report the highest support for a clade of
interest; though, we have not yet introduced this in practice. If all phylogenies for a clade are
discordant from the species tree, we perform additional studies that focus on individual spots in the
tree and strive to explain topologies, taking into account also gene synteny, if species are not too
distant from each other. Finally, representative trees - including the ones with contradicting topologies
- are gathered in the family ‘tree pool’.

Model gene trees and confidence annotation. During manual recursive phylogenetic analyses of a
gene family, gradually a model of gene evolution becomes apparent, despite contradicting topologies
in the result trees (‘tree pool’). Some alternative topologies can be easily identified as artefacts, others
remain questionable and require further study ; each family has its own peculiarities in addition to the
typical clade-specific characteristics. By interpreting the continuously accumulating phylogenetic gene
trees, the at first complex model of gene evolution progressively turns into an easy to explain gene
history. This model tree is then evaluated by annotating the quality and quantity of clade predictions
from the gene trees. For each internode, we annotate the highest statistical support, the number of
clade occurrence, the average clade support, and in addition we distinguish whether a clade was
confirmed by a tree including all clade members or whether the clade is confirmed by a compatible
clade with less members. By doing so, users can treat as unresolved (“soft polytomies”) nodes that are
below the minimum required level of confidence. Confidence annotation is furthermore added in form
of branch colors, indicating the strength of support or missing support. Latter gives a convenient
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survey already during the construction of SwissTree trees and can be used as guide for subsequent
analyses. Vice versa, we annotate also the correctness of each pool tree given the model tree by
shades of colors according to the gene tree’s branch support.

This procedure has been introduced to the SwissTree entries ST001, ST003, ST005, and ST018. The
annotated model tree, pool trees, raw trees and MSAs are available at
http://swisstree.vital-it.ch/gold_standard, the reference species tree is available at
http://swisstree.vital-it.ch/species_tree.

SwissTree: maintenance and extendibility. Our framework makes the maintenance of a collection
of deep gene histories feasible: upon new findings, for instance a change in the reference species
tree, the updated gene tree models can be annotated with no further analysis based on the tree pool.
Likewise, the tree pool can be augmented with trees reconstructed with alternative phylogenetic
reconstruction methods or newly available data.

But what is more, the framework grants new options. Acquired - and generally conserved - molecular
characteristics of genes, gene products or gene environments can be encoded as (partially or fully
resolved) tree structures and added to the pool of gene trees, and their concordance or discordance
with the model gene tree can be assessed. Examples of such complements are gene synteny,
exon-intron structure, domain architecture, functional regions or sites.
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Fig. 6. Conceptual overview of SwissTree construction.
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Case study: The APP gene family

Amyloid Precursor Proteins (APP) are cell-surface receptors involved in diverse functions including
iron-export, cell adhesion, endocytosis, Notch signaling pathway inhibition, apoptosis. Well-studied is
the impact of A4 subfamily members on neurons, because its cleavage can generate plaque-forming
amyloid beta peptides in Alzheimer disease patients. Members of the gene family have been identified
in the metazoan lineage. Typically, invertebrate genomes possess a single gene copy (APP),
vertebrates three copies (A4, APLP1, APLP2), and ray-finned fishes an additional A4 gene copy (A4a,
A4b). Four conserved domains are predicted in all family members analyzed here, three in the
extracellular space (APP-N (PF02177), APP_Cu_bd (PF12924), APP_E2 (PF12925)) and one in the
intracellular space (APP_amyloid (PF10515)). The vertebrate A4 and APLP2 subfamilies possess in
addition a Kunitz domain (PF00014), and A4 subfamily members an extra beta-APP domain
(PF03494). The placozoa Trichoplax adhaerens (UniProtKB mnemonic code: TRIAD) lacks a typical
amyloid domain.

The phylogenetic analysis is performed on a set of 45 genes from Quest for Orthologs (QfO) reference
species. The challenge is versatile. Protein sequences are highly conserved within mammalian
subfamilies, resulting in a lack of phylogenetic signal particularly at the protein level for closely related
species and in a strong mutational bias within the coding region of genes. By contrast, a lack of
phylogenetic signal in invertebrate data is due to a low species density. Not to mention, subfamilies
and clades evolve at different rates and multiple gene models are incomplete or erroneous. Based on
the current dataset it therefore seems not feasible to generate an accurate gene family tree by means
of a single analysis and indeed, none of the major phylogenomic databases at present show a
conclusive gene phylogeny. However, by performing multiple problem-optimized analyses we can
develop a model of gene evolution that is - in the end - in agreement with the reference species tree.
Main clades, for instance, are analyzed with a dataset that is enriched with invertebrate genes and
reduced for vertebrate genes. Subfamily phylogenies are inferred from nucleotide and amino acid
sequence data by maximizing the alignment length and minimizing missing and ambiguous
characters; latter have a strong impact on results when analyzing highly redundant data. Unstable or
questionable nodes are re-evaluated in subsequent subclade-specific analyses. For instance in all the
three subfamilies, the divergence order of primates, glires and laurasatherians is questionable and
incongruence due to missing phylogenetic signal can be expected because of short time spans
between the two speciation events. Because the species tree-consistent topology is one of the two
alternative topologies and we observe no evidence for an evolutionary event other than speciation, the
model tree is concordant with the species tree at this node, annotated with the corresponding
bootstrap support. Figure 7 shows an example of a phylogenetic tree that was optimized for the study
of early vertebrate divergence patterns. During the analysis we start with enlarged datasets and strive
to stepwise reduce redundancies while the topology remains consistent. This way, we can also
remove taxa for which species phylogenies are inconsistent, thus making an interpretation of the tree
difficult. The model gene tree for the APP family is shown in Figure 7 along with one of the pool trees
and the corresponding raw tree. The annotated model tree, pool trees and raw trees can be explored
at http://swisstree.vital-it.ch/ST018.
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Figure 7. SwissTree model gene tree for the APP gene family (ST018). A. Comparison of the model tree (left) and one of the
pool trees (tree 6) for subfamily APLP2 (right), visualized using phylo.io with tree comparison setting; tree concordance is
color-coded dark blue, discordance light blue, missing clades are shown in white, missing subclades in grey. The analyzed
subfamily APLP2 stands out in blue. B. Same as A, ‘maximum support’ settings; the model tree is annotated and color-coded
according to the maximum level of clade support by the pool trees, the pool tree is color-coded for model tree concordance and
shows the level of bootstrap support. Green indicates topological concordance, the color shade relates to the level of support;
red indicates topological discordance. The outgroup branch of the model tree is always shown in red, because outgroups are
removed from the pool trees prior to tree reconciliation. In the pool tree the primate/laurasatherian clade is not confirmed. C.
Raw tree corresponding to the pool tree shown in Figure A and B, color-coded by topological concordance with the model tree.
Raw trees are phylogenetic gene trees used to generate pool trees by pruning supplementary taxa and subsequent annotation.
The raw tree shows additional taxa in for early vertebrates (white and grey branches), which was the focus of interest in this
analysis. D. Raw tree generated with a focus on the mammalian clade. The enrichment of the dataset with mammalian genes

(white and grey branches) results in a tree topology that is in concordance with the species tree.
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Large-scale study. Synapomorphic signal, tree inconsistency and taxa
sampling (Boreoeutheria)

Phylogenetic analyses of boreoeutherians lead to controversial phylogenies for primates, glires and
laurasatherians, supporting either a primate glires sister clade (e.g. [15], [16] [17] or a primate
laurasatherian sister clade (e.g. [18], [19], [20]). QfO datasets include seven boreoeutherian
proteomes, three primates (human, chimpanzee, macaque), two glires (mouse, rat) and two
laurasatherians (bovin, dog) (abbreviated by 7(3/2/2) in Fig. 8). In a similar way than in the simulation
study above, we analyze MSAs from 374 1:1 orthologous gene families for synapomorphic characters.
Results clearly favor a primate laurasatherian sister clade with glires as outgroup (Fig. 8A). Because
the dataset is small and furthermore redundant for glires, caution is advised for the interpretation of
these results. More importantly, this data is used for benchmarking purposes and we explore
topologies of corresponding phylogenetic trees from a phylogenomic database that does not take into
account species trees for tree reconstruction. In agreement with the phylogenetic signals observed in
the MSAs, we find indeed highest clade occurrence frequencies for the sister clade
primates/laurasatherians (Fig. 8B). In addition, we observe within gene families tree inconsistency that
corresponds to the fraction of observed synapomorphic and contradicting signal. This result suggests
that the QfO benchmarking dataset of seven relevant proteomes could be indeed too small for a
rational inference of the boreoeutherian phylogeny, in which case results should differ when analyzing
enlarged datasets. To test this, we perform the same MSA analysis on a dataset of 3526 mammalian
families including at least six members of each clade of interest and at least two out of six selected
outgroup members. From this dataset, three subsets are generated: 1) the seven relevant species of
the QfO datasets (same as above; 7(3/2/2)), 2) all six selected species for each of the three clades
(18(6/6/6)), and 3) two diverse species for each of the three clades (6(2/2/2)) (Fig. 8C-E). Results
suggest that MSAs from the large dataset and from the small dataset of diverse species contain more
synapomorphic signal for the established human mouse sister clade (Euarchontoglires) than for
alternative tree topologies. Now going back to findings from previous publications, it is striking that it is
especially the innovative large-scale studies that suggest the primate laurasatherian sister clade, but
because such analyses are CPU-time intensive and because of the small number of genomes with a
high quality gene prediction one to two decades ago, the number of genomes used was often low.
Rerunning the same approaches with data from more diverse species, might well result in consistent
topologies with similar support.
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Figure 8. Quantitative assessment of synapomorphic signal for boreoeutherian sister clades. A. Number of
synapomorphic positions from MSAs of 374 one-to-one ortholog gene families for tree topologies with three different
boreoeutherian sister clades primates/glires (H,M), primates/laurasatherian (H,D) and glires/laurasatherians (M,D); tree
topologies are exemplified for Human (H), Mouse (M), Dog (D); for more detail, see text and cmp. Fig. 4. B. Venn diagram
depicting the observed tree heterogeneity in the 374 gene families with 2-17 trees obtained from different datasets of the QfO
proteomes. The largest fraction of families supports a primate/laurasatherian sister clade, tree heterogeneity is observed in
45.2% of the gene families. C-E. Results from a dataset of 25,272 MSAs. C. Same taxon composition as in A; results confirm
findings in A. D. Enlarged dataset with six diverse species for each of the three clades; the largest fraction of signal supports the
primates/glires sister clade; E. Dataset with only two, but diverse, representative species from each clade.
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Assessment of orthology predictions with SwissTree

Benchmarking results with SwissTree are obtained from the Orthology Benchmarking Webservice
(http://orthology.benchmarkservice.org; [8] for 15 sets of orthology predictions from important methods
and databases: the pairwise methods InParanoid [21] and a higher confidence subset named
“InParanoid core”, OMA pairs [22], Reciprocal Best Hits (RBH) [23] and Reciprocal Smallest Distance
(RSD) [24], the group-wise (graph-based) methods EggNOG [25], Hieranoid [26], OMA groups [22],
OMA GETHOGs [27] and Ortholnspector [28], and the tree-based methods Ensembl Compara [29],
PANTHER [30], a subset of PANTHER named PANTHER LDO (Least Diverged Orthologs), and
PhylomeDB [31], as well as the meta-method MetaPhOrs [32] (for details, see [8]). A survey on the
correctness and completeness of predicted orthologs from the benchmarking dataset reveals a
precision-recall trade-off for all methods from all database concepts (pairs, groups, trees, meta),
particularly when higher confidence predictions are provided in a subset (InParanoid_core,
PANTHER_LDO) (Fig. 9A, Supporting Information S3, Table S3-1).

Three factors vitally affect the identification of orthologs: the sequence length, the evolutionary
distance between proteins and the complexity of gene families. The sequence length confines the
region within which phylogenetic signals can occur and logically, long sequences can capture more
signal than short ones. Indeed, the distribution of sequence lengths for correct, missing and incorrect
predictions show the trend for higher correctness at long sequence length (mean: 413.99 aa), and
more false predictions (FP, FN) at shorter sequence length (mean: 333,79 aa) (Fig. 9B, Supporting
Information S3, Fig. S3-1). Another challenge for orthology prediction is the difference in sequence
length of gene pairs, which can occur naturally or as an analysis artefact. On the one hand, sequence
search and alignment strategies can be more difficult than for equally long sequences, on the other
hand it is a fundamental decision whether to consider also partial sequence homologies or not.
Phylogenomic databases deal with this issue by setting cut-offs for minimal sequence length
differences or overlaps in the analysis procedure, which can furthermore be combined with a minimum
sequence identity or similarity score. Thereby, a stringent cut-off increases the number of missed
predictions (FN), a relaxed cut-off the number of incorrect predictions (FP). It is thus an important
feature of a database’s strategy and an essential criterion for users in search for a dataset suitable for
a specific research question. Figure 9C (Supporting Information S3, Fig. S3-2) illustrates the
correlation between the sequence length differences of gene pairs and the prediction accuracy: on
average the length of correctly predicted orthologs is more similar (mean: 39.16 aa) than the length of
incorrectly predicted orthologs (mean: 145.42 aa). For pairwise methods, particularly RBH and RSD,
largest sequence differences are observed for incorrect predictions (mean: 201.30 aa), graph-based
methods show strongest length differences either for missing orthologs or incorrect predictions, and
tree-based methods possess a mostly balanced distribution of sequence length differences for missing
and incorrect predictions. It is especially the orthologs from distant species that largely differ in size, so
that results might be influenced from enlarged evolutionary distances. By testing the impact of
evolutionary distances on the analysis results, we observe indeed similar trends for correct and
incorrect predictions (substitutions per site; mean for TP: 1.21; mean for FP/FN: 2.13) (Fig. 9D,
Supporting Information S3, Fig. S3-3).

Gene families are difficult to analyze when genes duplicate successively within a short time range and
when paralogs evolve at different rates. We grouped families into two categories of complexity, small
(S) and large (L), according to the number of paralogs. Taken all results from databases together, the
fraction of false positives is considerably higher in large families (1.05%) than in small families
(0.25%). By contrast, the fraction of missing orthologs in large families is only about half of that from
small families (24,26% versus 12.25% in large families) for the set of SwissTree families.
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Figure 9. Survey on SwissTree benchmarking results. A. Correct (TP) and incorrect (FP, FN) orthology predictions for 15
approaches, sorted by increasing number of true positives for each orthology prediction strategy in the order pairs, groups,
trees, meta. B.-D. Distribution of sequence lengths (B), sequence length differences between genes of gene pairs (C) and
evolutionary distances (D) for correct (green) and incorrect predictions (red) in the order pairs (bright-colored boxes), groups
(medium-colored), trees (darkish), meta (darkest). The first, yellow box shows the distribution of values for orthologs predicted
by SwissTree. Figures are available in Supporting Information S3.


https://doi.org/10.1101/181966
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/181966; this version posted September 5, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

21

Outlook - Automation perspective of the SwissTree procedure

In this study we demonstrate a new approach that could serve as a basis of sustainable representative
gene trees. Attentive taxon sampling optimized for the analysis of large extended datasets, individual
clades and subclades guaranties a comprehensive data exploration. The thereby generated gene tree
heterogeneity conduces to the identification of analysis artefacts and missing or contradicting
phylogenetic signal. In addition, potential cases of discordant evolution (e.g. introgression, ILS) stand
out. Annotation, maintenance and extensibility of model gene trees are part of the SwissTree concept.

During the development, analyses were performed manually. Without bearing automation in mind,
optimization steps are at the risk of introducing bias. It is therefore eligible to progressively automate
the analysis procedure, whereby an elaborated taxon sampling occupies a central position in view of a
massive amount of genomic data. The second suspenseful topic concerns the construction of
preliminary model gene trees. With some experience we might learn the rules to generate assumed
models automatically for a large part of genes and to subsequently evaluate concordance with the
phylogenetic gene trees. By doing so, human time will be freed to focus on unconfirmed branches in
preliminary model gene trees.
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Material and Methods

Simulation data. A simulation dataset of 1000 protein-coding, 1:1 orthologs for 100 taxa was
constructed with ALF, with speciation events occurring according to a ToL of 1038 species from the
OMA project (server version 3-Aug-2015 at http://alfsim.org; [33]) from a generated root genome
(parameter settings: realseed false, minGenelLength=240, gammalengthDist=2.4/133.8, blocksize=3,
treeType=TolSample, scaleTree=false, substModels=CPAM [34], indelModel=(0.0003, ZIPF,
1.821,50), rateVarModel=(gamma,5,0.01,1), targetFreqs=random, amongGeneDistr=(gamma, 1), time
scale PAM). The amount of possible phylogenetic information that a sequence can carry is limited by
the sequence length. The minimal gene length of the ancestral genome is set to 240 nucleotides; the
simulated genes evolve to a length between 177 and 4083 nucleotides, 1071 on average (Fig. 10).
The result includes the species tree and the MSA as well as the phylogenetic tree for each gene
family. The distribution of the gene lengths are given below.

Sequence length distribution (simulation data)
4500

4000 |

3500 |

3000 |

Sequence length

Gene families (sorted by mean iengih}

Fig. 10. Scatterplot depicting the range of nucleotide sequence lengths for each of the 1000
simulated gene families.

From the full simulated dataset, we generated six data subsets: 1) a balanced set of 30 taxa, obtained
by successively pruning taxa with long branches and small clades with short internodes from the 100
species tree (b30); 2) a balanced set of 10 taxa, obtained by successively pruning taxa with long
branches and small clades with short internodes from the species tree of dataset b30 (b10); 3) 30
randomly selected taxa from the 100 taxa (r30); 4) 10 randomly selected taxa from 100 taxa (r10); 5) a
subclade of 30 taxa of the 100 species tree (a30); 6) a subclade of 10 taxa of the 30 species tree
(a10). The full dataset is named a100, and we further distinguish a100/aa for protein sequence data,
and a100/codon and a100/dna for nucleotide sequence data. Taxon names and the known tree
topology for each dataset are given in the Supporting Information S1.

Phylogenetic analysis of the simulation data. Alignments for each dataset are extracted from the
true alignments and gap positions with less than 10% characters are removed from the dataset in
order to save computing time. Trees are reconstructed with codon-PhyML using the model
HKY85+F+G(4)+ for nucleotide substitution, GY+W+K+F F3x4 for codon substitution, and
WAG+F+G(4)+| for amino acid substitution. These models are likely over-parameterized in most
cases. In the ML and Bl frameworks and for nucleotide substitution models, overfitting was found to be
robust on tree topologies, but can affect branch length estimates, branch support and the overall
likelihood and posterior probability of a tree, respectively [35],[36]. The tree topology search was
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performed with NNI and SPR (‘Both’), except for the codon-based analysis for which we applied only
NNI to minimize a possible advantage for this approach over others because the simulation data
evolved under a codon-based model. Parameters are optimized for tree topology, branch length and
substitution rate. For each dataset 1000 maximum likelihood (ML) trees were inferred under the model
of nucleotide, codon and amino acid substitution, resulting in 21000 trees.

For the comparison of clade recurrence values and aLRT-SH support from complete proteomes
versus single datasets, we selected from the list of all genes sorted by alignment length every 50th
alignment, starting at position 50. The known alignments of the 20 genes were obtained for datasets
a30, b30 and r30 and a rapid bootstrap analysis was performed from 1000 replicates using RAXML
(model: GAMMAIWAGF).

Analysis of tree correctness. The concordance of reconstructed gene trees with the corresponding
species trees are measured using Perl scripts; the fraction of correct and incorrect trees as well as the
fraction of correct and incorrect clades are obtained directly from the annotated sequence trees.
Results are visualized and compared with R (3.0.3) and Microsoft Excel (Office14). To assess
characteristics of balanced trees, we plot for dataset a100/aa confidence values from correct clade
predictions (clade occurrence frequency, branch support (aLRT-SH), maximum branch support
(aLRT-SH) against the corresponding internode length from the species tree (PAM distance).
Confidence of corresponding correct clades from different datasets are obtained by mapping
compatible clades between the a100 species tree and the species trees of the six sub-datasets.

Analysis of synapomorphic sites in the known MSAs of the simulation data. Amino acids
assumed to be a shared derived character of a sister clade is denoted ‘synapomorphic’. The number
of synapomorphic sites in the MSA is determined in three modes. In the stringent mode, the two sister
clades share a conserved amino acid in an MSA position, and the two outgroups share another
conserved amino acid, whereas in the medium mode, the two outgroups to the sister clade can have
any amino acid except the one shared by the sister clade. In the relaxed mode, the two sister clades
share at least one amino acid in an MSA position, and the two outgroups to the sister clade can
possess any amino acid except the one shared by the sister clade. The number of synapomorphic
sites is determined for two clades (63, 87) for the true and 2 alternative divergence patterns of the
subclades (Fig. 4A) from the 1000 MSAs of the amino acid sequences from all simulated datasets. In
addition, we count the number of parsimonious non-informative sites according to our criteria
(considering only identity, not similarity) and sites that are not considered (gaps: missing positions in at
least one clades or in the outgroup).

Consensus tree construction and ranking strategies. Consensus trees are constructed with Perl
scripts, following a Nelson-like combinable-component approach for unrooted trees. From a set of
unrooted gene trees, tree split information is summarized in a matrix to ease the mapping of
corresponding splits and to collect clade confidence information such as clade occurrence frequency,
maximum branch support and the sum of branch support for each clade, which is used to generate
ordered clade lists for consensus tree construction. As ranking criteria, we use clade occurrence
frequencies as well as ‘mean2’ which is the arithmetic mean of the clade support considering the clade
occurrence frequency in that the clade support for not predicted true clades is set to zero. Consensus
trees are constructed for the three trees for each gene (DNA, codon, aa; dataset), for the three gene
trees pruned from the a100 gene trees (DNA, codon, aa; pruned), as well as for all six gene trees
(DNA, codon aa; dataset and pruned). Trees of the largest datasets (a100/dna, a100/codon, a100/aa)
were pruned to the size of the six data subsets using the Newick utilities [37].

Phylogenetic analysis of the APP gene family. The phylogenetic analysis is performed on gene
data from 19 out of 21 metazoan Quest for Orthologs (QfO) reference species (04_2016;
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http://www.ebi.ac.uk/reference_proteomes); the two metazoans not included are Ciona intestinalis
(vase tunicate) with no predicted APP gene family members, and Ornithorhynchus anatinus (platypus)
with largely incomplete data. Transcript and protein sequence data is obtained from UniProt [38],
ENSEMBL [39], and NCBI [40]. Transcripts are translated into amino acid sequences, aligned
(T-coffee: Expresso mode [41]; MAFFT: INSI-E or INSi-G mode [42], dependent on the domain
composition of the dataset) and subsequently explored and edited using Jalview [43] or MEGA (v6.06)
[44]. The nucleotide sequences are mapped to the alignment, and the data model is selected manually
in order to maximize homologous sequence regions and to remove ambiguous positions. Best fit
models are determined with Prottest (v3.4) [45] and Mega6 (v6.06) and ML trees reconstructed using
codonPhyml and Mega6. The resulting trees are inspected with Archaeopteryx
(https://sites.google.com/site/cmzmasek/home/software/archaeopteryx) or phylo.io [46]. If phylogenetic
gene trees are incongruent with the SwissTree reference species tree model or weakly supported, the
stability of tree topologies is revised by subclade analyses with a higher species density. If the new
gene tree is concordant with the species tree, the tree is pruned to the species set of interest (using
the NEWICK Utilities or manually with Archaeopteryx) and added to the gene tree pool. The analysis
of the family and subfamily results in x trees. Subsequent to the analysis of ambiguous clades, a
model of gene family phylogeny is generated manually. The gene tree support - occurrence frequency,
highest support and mean support - is mapped to all nodes to the family tree model (extended Newick
format) using Perl scripts; likewise, congruence with the gene tree model is annotated in all gene
trees.

Analysis of synapomorphic sites in MSAs and tree inconsistency within gene families. The
PhylomeDB/QfO benchmarking reference dataset 2013 comprises 186282 trees, from which we
remove exact tree duplicates (30753 trees), prune prokaryotic genes from all trees (991613 OTUs;
prokaryotic data is not suitable for this analysis because of extensive HGT and the lack of a confident
species tree) and discard trees with less than 4 OTUs (12192 trees). Subsequently, trees with two or
more genes from the same species (132584 trees with intra-species gene copies) are filtered. Gene
trees that share at least one gene are grouped into 2262 families and filtered for intra-species gene
copies across trees (349 families), resulting in 1913 1:1 ortholog gene families with at least two gene
trees. This dataset is used to study tree inconsistency within gene families. Model trees are generated
for each family by pruning the species tree to the relevant set of family members. Family tree pools
and model trees are reconciled, annotated and evaluated as described above. In order to calculate the
maximal possible support for each node, we perform the same analysis with trees obtained by pruning
the species tree to the corresponding set of family members for each pool tree. To determine support
for different models of mammalian evolution, we select from the set of 1913 families those with the
relevant species in the QFO benchmarking dataset, namely three primates Homo sapiens, Pan
troglodytes, Macaca mulatta), two glires (Mus musculus, Rattus norvegicus) and two laurasatherian
(Bos taurus, Canis lupus familiaris), resulting in 374 families. Because models are rooted, there is no
need to include outgroups. Two alternative model trees are generated with the sister clades
primates/laurasatherians and laurasatherians/glires. The analysis is performed as described above.
From the corresponding MSAs of the human phylome, we determine the number of synapomorphic
sites for the true tree and the 2 alternative trees around an internode in the three modes for the 374
families of the QfO benchmarking dataset.

From a dataset of 26252 mammalian MSAs provided by eggNOG (maNOG,; release 4.5.1), we select
3526 MSAs that contain a single (assumed 1:1 orthologs) of six primates (Homo sapiens, Pan
troglodytes, Pongo abelii, Macaca mulatta, Callithrix jacchus, Microcebus murinus), glires (Cavia
porcellus, Dipodomys ordii, Ictidomys tridecemlineatus, Mus musculus, Oryctolagus cuniculus, Rattus
norvegicus), and laurasatherians (Bos taurus, Canis lupus familiaris, Equus caballus, Myotis lucifugus,
Sus scrofa, Tursiops truncatus) as well as at least two outgroup members (Loxodonta africana,
Dasypus novemcinctus, Monodelphis domestica, Notamacropus eugenii, Ornithorhynchus anatinus,
Sarcophilus harrisii). The number of synapomorphic positions is determined for three datasets: 1) the
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seven species of the QfO benchmarking dataset 2013 (same as above), 2) for a dataset of 6 species
per clade and for a dataset of two diverse species per clade (Homo sapiens, Microcebus murinus, Mus
musculus, Oryctolagus cuniculus, Bos taurus, Myotis lucifugus).

Analysis of the SwissTree benchmarking results. Benchmarking results for SwissTree were
obtained from the orthology benchmarking service (http://orthology.benchmarkservice.org) in form of
lists including the unique identifiers for each gene of a gene pair as well as the prediction result (True
Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN)). From the QfO
benchmarking proteomes we determined the length of each sequence and calculated the sequence
length difference of gene pairs. The evolutionary distance of gene pairs was estimated from the
multiple sequence alignment of each family using MEGAG.6. Finally we classified gene families in
three categories of complexity according to the number of paralogs. Database concept-specific
prediction results were determined by calculating Venn diagrams at
http://bioinformatics.psb.ugent.be/webtools/Venn.

Visualization. Graphs were generated using R and MS-Excel. Phylogenetic trees are visualized with
phylo.io.
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