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a b s t r a c t

Osteoarthritis (OA) is a major disease whose prevalence increases with aging, sedentary lifestyles, and
obesity. The association between obesity and OA has been well documented, but the precise mechanisms
underlying this heightened risk remain unclear. While obesity imposes greater forces on joints, systemic
fat-derived factors such as lipids or adipokine may potentially act on the pathophysiology of OA, but the
exact role of these factors in weight-bearing and non-weight-bearing joints remains elusive. Intra-
articular adipose tissues (IAAT) have gained significant attention for actively participating in OA path-
ogenesis by interacting with various joint tissues. Lipid content has been proposed as a diagnostic target
for early OA detection and a potential source of biomarkers. Moreover, targeting a specific IAAT called
infrapatellar fat pad (IFP) and its lipids hold promise for attenuating OA-associated inflammation.
Conversely, bone marrow adipose tissue (BMAT), which was long thought to be an inert filling tissue, is
now increasingly considered a dynamic tissue whose volume and lipid content regulate bone remodeling
in pathological conditions. Given OA's ability to alter adipose tissues, particularly those within the joint
(IFP and BMAT), and the influence of adipose tissues on OA pathogenesis, this review examines the lipids
produced by OA-associated adipose tissues, shedding light on their potential role in OA pathophysiology
and highlighting them as potential therapeutic targets.
© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Osteoarthritis (OA) is the most common inflammatory and
degenerative disease of the joints, affecting nearly 528 million
people in 2019. Themajority of those affected are over the age of 55,
with about 60 % being female. With the increase of risk factors such
as an aging population, sedentarity and obesity, OA prevalence is
predicted to keep rising (113 % increase since 1990) [1]. OA can
impact different types of joints and location, like the knees, hips,
and hands. It is a disease with profound societal and psychological
repercussions as the physical symptoms (pain, swelling, stiffness)
result in decreased mobility and therefore overall well-being. This
also leads to an increase in cardiovascular disease and ability to
handle daily activities. OA affects all tissues of the joint. Its patho-
physiology includes: articular cartilage degradation, subchondral
bone sclerosis, osteophyte formation and synovitis [2]. It has long
been recognized that excess weight leading to greater forces across
the joint cannot be the only driving factor leading to OA in both
weight bearing and non-weight bearing joints. This implies the
additional involvement of multiple fat-derived systemic factors,
such as lipids and adipokines secreted by the different types of
adipose tissue (AT) [3].

The role of the intrapatellar AT (IFP) in OA has been largely
explored in the last two decades. The IFP actively participates in OA
development and progression via its interactions with cartilage,
synovium, bone, menisci, ligaments, and nervous tissue [4]. The IFP
lipid content has also been suggested as a target for early diagnosis
of OA, through both imaging techniques and as a source of bio-
markers. Lastly, the IFP and its secreted molecules have been pro-
posed as therapeutic targets, leading to attenuation of the OA
inflammatory phenotype [5].

Bone marrow adipose tissue (BMAT) has been almost entirely
disregarded in OA research due to large differences in bonemarrow
adiposity between humans (80e90 % of marrow volume) and mice
(2e5% of marrow volume). The BMAT is a dynamic tissue, whose
volume and lipid content varies upon the physiological and path-
ological state of the organism. Remodeling of the BMAT is corre-
lated with an increase in the number of medullary adipocytes in
aging [6], osteoporosis (OP), diabetes, anorexia nervosa, as well as
therapeutic interventions, including glucocorticoids, radiation and
chemotherapy [7,8]. Interestingly, some of them constitute OA risk
factors, suggesting that BMAT could regulate bone homeostasis
during OA.

Since the lipid profile of AT is modified in OA and an important
contribution of AT to OA pathophysiology is done in a paracrine
way, herein we review the lipids produced by OA-AT with a special
interest in the AT located within the joint, IFP and BMAT.
2. Methodology

A search for original articles published between January 2014
and March 2024 was performed on PubMed. The search terms used
for reviews were “adipose tissue AND osteoarthritis” and for orig-
inal articles were: “lipids AND osteoarthritis, “lipids AND joint
health”, “arachidonic acid AND osteoarthritis”, “fatty acids AND
osteoarthritis”, “infrapatellar fat pad”, “intra-articular fat pad AND”,
“osteoarthritis’, bone marrow adipose tissue AND lipids”, and
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“intra-articular fat pad AND lipids”. For each term, the number of
hits ranged from 12 to 3400. These results were further filtered to
match the exact words used, ultimately yielding a mean of 100 hits
per term. All articles identified were English-language articles. In
addition, relevant references from selected publications and other
relevant references were identified.

3. Systemic adipose tissues

3.1. Adipose tissue generalities

There are three main types of AT in the human body: brown
(BAT), beige, and white adipose tissue (WAT). BAT is not abundant
in the body and is mostly localized in the supraclavicular and in the
pericardial area. BAT plays a role in thermoregulation, glucose ho-
meostasis and is more active during cold exposure, exercise, and
under certain dietary conditions. BAT is characterized by the
presence of small lipid droplets, a large number of mitochondria
and the expression of uncoupling protein 1 (UCP-1) (Fig. 1) [9,10].
WAT is characterized by an unilocular lipid droplet. It is able to store
and release lipids and acts as a major endocrine organ by secreting
adipokines. These include leptin, which influences lipolysis and
hepatic glucose production, adiponectin, which contribute to
glucose regulation and fatty-acid metabolism, resistin and its
contribution to insulin resistance development, and also adipsin,
which enhances glucose uptake, boosts triglyceride synthesis, and
inhibits lipolysis in WAT (Fig. 1) [11]. In the visceral area, major
significant deposits of WAT are localized in the omental, mesen-
teric, mediastinal, and epicardial tissues. SubcutaneousWAT (SCAT)
is present under the skin, and mainly located in the abdominal and
gluteal-femoral areas. Beige adipocytes can develop inside WAT in
response to stimuli and cold exposure, as they share some prop-
erties of BAT (expression of UCP-1 and high mitochondrial density)
(Fig. 1) [9,10].

Adipogenesis involves the differentiation of mesenchymal stem
cells (MSCs) into mature adipocytes containing lipid droplets. In
WAT and BAT, this process is driven by two major transcription
factors: peroxisome proliferator-activated receptor-g (PPARg) and
CCAAT/enhancer-binding proteins (C/EBPs). In WAT, IGF-1 (insulin-
like growth factor 1) and insulin are critical regulators of survival,
proliferation, and differentiation of pre-adipocytes by activating
IGF-1 receptor (IGF1R) in an autocrine or paracrine fashion in
neighboring adipocytes. IGF-1 can induce C/EBP⍺ and the adipocyte
lipid binding protein (aP2) [12]. In mice, Gata6 (GATA binding
protein 6) was identified as a marker of BAT progenitor cells from
E13.5 when using single-cell RNA sequencing, and its deletion led
to a drastic reduction or complete loss of interscapular BAT [13].
Prdm16 (PRD1-BF1-RIZ1 homologous domain containing 16) and
cAMP-binding protein EPAC1 growth are central regulators of pro-
liferation and differentiation of brown and beige adipocytes in ju-
venile or adult stages [14].

3.2. Systemic adipose tissue dysregulation and OA

AT dysregulation is known to be involved in several diseases.
Some of these diseases can influence the development of OA,
suggesting a reciprocal role between AT and OA progression. It has



Fig. 1. Characteristics of adipocytes by tissue, in healthy conditions. Under healthy conditions, differences in the localization and function of AT are reflected in the characteristics of
adipocytes, which vary their structure, genetic and lipid profiles to perform specific functions.
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long been recognized that obesity and OA are associated [3], with
obese patients developing OA more severely than non-obese
counterparts. Weight excess leads for instance to more wear and
tear in the knee but not in the hip [15]. Nowadays, OA is not only a
disease drive by an excess of weight due to obesity, secreted factors
like leptin are increased in the serum of OA patients, as well as in
synovial fluid of obese patients, and has a known deleterious effect
on cartilage integrity [16]. Furthermore, obesity will induce a sys-
temic low-grade inflammation with the secretion of pro-
inflammatory cytokines. This systemic low-grade inflammation of
the synovium, cartilage and bone is involved in inflammatory
mechanisms, notably through the activation of the complement in
chondrocytes and synovial cells. Moreover, obese patients exhibit
elevated levels of free fatty acids (FFA) in the plasma, which lead to
increased intracellular lipid accumulation, potentially inducing
lipotoxicity. FFA exert a pro-inflammatory effect on bone cells, with
elevated levels of IL-6, IL-8, and MCP-1 [17e19].

Several metabolic diseases can amplify OA severity. A study
found that patients diagnosed with both Diabetes Mellitus (DM)
and OA reported significantly increased severity and frequency of
pain, as well as a higher likelihood of requiring knee or hip joint
replacement surgery compared to those with OA alone [20]. The
risk of DM is correlated with rapid weight gain and obesity, leading
to increased insulin resistance and low-grade inflammation with
elevated levels of IL-6 and TNF-alpha. Imbalance in adiponectin
secretion in DM is linked to increased fat mass, insulin resistance,
and inflammation. Furthermore, chronic hyperglycemia and insulin
resistance can promote the production of pro-inflammatory cyto-
kines and metalloproteinase leading to cartilage destruction and
the development of OA. Additionally, the metabolism of bone can
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be affected by a hyperglycemic condition [21].
Lipodystrophy, characterized by the selective or total absence of

AT, has been studied in relation to bone structure. In humans,
although a low BMI is known to be a risk factor for osteoporosis
(OP), congenital generalized lipodystrophy type 1 and type 2 (CGL1
and CGL2) show higher bone mineral density [22]. However, CGL1
and CGL2 patients may also exhibit osteosclerosis, and CGL1 pa-
tients may present alterations in bone marrow as detected by MRI
[23]. To understand the role of AT in OA, Collins et al. created lip-
odystrophic mice by inducing adipocyte ablation through the
expression of diphtheria toxin in adiponectin-expressing cells [24].
Lipodystrophic mice without AT were protected against cartilage
degradation. However, when fat was implanted into these mice,
cartilage degradation occurred, thereby supporting the implication
of AT-derived factors in OA [24].

The effect of systemic AT has been shown to affect OA, while OA
modifies AT profile. This relationship shows a pathological loop
contributing to disease progression, making AT an interesting
therapeutical target for OA.
4. Joint adipose tissues

4.1. Intra articular adipose tissues

i. Infrapatellar fat pad generalities

Intra-articular AT (IAAT) are present in many joints, where they
are localized between the synovium and the joint capsule. The
Infrapatellar fat pad (IFP) is the most studied IAAT because it is the
largest of the IAAT. IFP is localized underneath the patella, between
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the patellar tendon, femoral condyle and tibial plateau, filling
spaces between these structures. The role of IFP is not yet fully
elucidated, but it may facilitate the distribution of synovial fluid
and help absorb impulsive actions generated through the joint [25].
Like all AT, IFP is capable of secreting cytokines and adipokines into
surrounding tissues, suggesting a role on joint physiology and
disease [26]. In addition, IFP could be a source of mesenchymal
precursors, with promising regenerative medicine applications for
cartilage regeneration [27]. IFP consists of WAT, organized into
lobules delimited by thin connective septa, with adipocytes smaller
than those of SCAT [28]. Histomorphometric data of IFP revealed
predominantly presence of collagen I fibers, with elastic fibers
almost absent [29]. The IFP is innervated, meaning that it could play
a mechanoreceptor role in regulating knee joint activity, but also be
responsible for anterior knee pain in OA (Fig. 2) [28].

ii. IFP and OA

OA has been shown to modify the IFP at different levels. These
include adipocyte morphology, transcriptomic profile, cytokines
and adipokines secretion, lipid content of the IFP, extracellular
matrix composition, vascularization, infiltration by immune cells
and MRI signal intensity (Fig. 2) [4,30e34]. Recently, mass spec-
trometry has revealed 37 protein species exclusively secreted by IFP
from OA knee patients, identifying IFP as a significant source of the
specific protein composition of OA synovial fluid [35]. Furthermore,
a meta-analysis showed that greater IFP volume appears to be
associated with the presence and worsening of early OA features
[36].

The extracellular matrix of OA patients’ IFP shows an increase in
type I collagen fibers and decrease in elastic fibers, leading to a
Fig. 2. OA pathophysiology modifies local adipose tissues. OA alters IFP adipocytes morp
infiltration. BMAT responds to pathological conditions and therapeutic strategies. Prelimin
sclerotic areas compared to non-sclerotic areas. Innervation in yellow, infrapatellar fat pad (IF
fat pad (PSPFP). Innervation of the knee is extensive, with articular nerves originating as sing
of the innervation is shown on the left panel of the figure.
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more fibrous and thicker connective tissue, with a reduction in the
size of adipose lobules. There is also evidence of infiltration of OA
IFP by immune cells, specifically pro-inflammatory macrophages.
Interestingly, upon treatment with disease-modifying anti-rheu-
matic drugs, inflammatory cells were primarily located in the IFP,
supporting its active role in inflammation [34]. In particular, IFP and
synovium form a unique functional unit [34]. Interactions of OA-IFP
with the different joint tissues have been extensively reviewed
elsewhere [4].

An approach on the use of IFP as a therapeutic target was
assessed by Labarre et al. [37]. Patients with knee OA received an
infiltration of autologous stromal vascular fraction from abdominal
SCAT into their IFP. The number and viability of the cells were
measured, and clinical outcome was followed for a year. A corre-
lation between higher cell viability and better clinical outcome was
observed, with no major complications or side effects [37]. These
results therefore support the use of IFP as a therapeutic target for
the treatment of OA.

4.2. Bone marrow adipose tissue

i. Bone marrow adipose tissue generalities

Bone marrow adipose tissue (BMAT) constitutes over 10 % of
total adipose mass and 70 % of the bone marrow (BM) volume in
young lean healthy human adults. BM adipocytes (BMAds), like
WAT adipocytes, are composed of a unique lipid droplet with a
small nucleus at the border of the cell. BMAds arise from the bone
mesenchymal stromal cells, with the activation of specific path-
ways [38]. Two populations of pre-adipocytes have been found by
scRNAseq in the bone (BMSCs), the Lepr and Cxcl12 populations,
hology, genetic profile, secreted molecules, extracellular matrix, vascularization and
ary results indicate that BMAT can increase due to OA, with higher lipolysis level in
P), the suprapatellar fat pad (SPFP), posterior knee fat pad (PFP), posterior suprapatellar
le or multiple branches from the femoral, obturator, and sciatic nerves [98]. A schematic
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expressing two main adipocyte markers, Adipoq and Pparg [39].
There are two types of BMAT, constitutive (cBMAT) and regulated
(rBMAT). cBMAT appears early in postnatal development and fills
the medullary canal from the tibia-fibular junction into the mal-
leolus, while rBMAT increases upon aging in humans [40]. BMAT
accumulation correlates inversely with bone mineral density
(BMD) with age, and increased formation of BMAT has been
observed in osteoporosis, obesity, type 2 diabetes, chronic kidney
disease, and aplastic anemia. rBMAT is increased in animal models
of ovariectomy and caloric restriction and also increases in
response to glucocorticoids, radiotherapy, or chemotherapy (Fig. 2)
[38].

ii. Physiology and pathophysiology of BMAT in bone homeostasis

BMAT can be reconverted to hematopoietic marrow in condi-
tions of chronic anemia and of marrow replacement disorders [41].
In fibrous dysplasia or CGL type I and type II, there is a loss or
absence of BMAT, which is replaced by a fibrotic tissue. Interest-
ingly, skeletal abnormalities and bone lesions are observed in pa-
tients with fibrous dysplasia and CGL, respectively [23,42,43].
Molecular changes associated with pathological conditions also
occur in BMAT. BMAds, positive for performic acid-Schiff staining,
disappear in response to experimentally induced hemolysis. A
decreased expression of genes linked to BAT was observed in tibiae
of aged and diabetic mice despite an increase in the number of
BMAds [44]. The content of unsaturated fatty acids (FA) of BMAT
from the L3 vertebral body is decreased in OP women [45]. Recent
studies have shown that lipids influence bone formation in a sex-
and diet-dependent manner [46], with BMAds found to contribute
to bone formation in mice [47]. More specifically, the secretion by
BMAT of adipokines and cytokines, with a known role in OA, and
their crosstalk with osteoblasts has been shown [48].

The specific role of BMAT in OA remains to be explored but is
supported by the observed positive correlation between cartilage
degradation and the increased BMAd density in an OA mouse
model [49]. Due to the proximity between BMAT and joint tissues,
functional interactions between them are expected to occur. This
crosstalk could possibly affect BMAd and osteoblast precursors, OA
bone remodeling, or even participate in the inflammatory pheno-
type of the disease. Indeed, BMAT of the femoral head of OA pa-
tients is enriched in omega-6 PUFA, as compared to osteoporotic
patients [50], and OA BMAds from different bone localizations
display specific transcriptome [49]. In addition, OA BMAds seem to
have a higher lipolysis activity in OA hands [51].

5. Lipids

Adipocytes secrete different types of molecules, including lipids,
proteins, and peptides. These molecules exert endocrine, paracrine,
and/or autocrine effects, contributing to the regulation of multiple
physiological processes such as adipocyte differentiation, energy
metabolism, lipid uptake and transport, immune response,
inflammation, vasculature and neuron development, as well as
extracellular matrix remodeling. Notably, lipids are not solely
secreted by adipocytes, but also undergo metabolism, trans-
formation, and synthesis within a cellular context.

5.1. Systemic lipids and OA

The lipid composition of WAT and BAT differs, reflecting their
distinct metabolic roles. FFA are more abundant in BAT, whereas
diacylglycerols and triacylglycerides (TAG) are more prevalent in
WAT. WAT primarily stores energy as TAG [52], where BAT requires
FFA for fatty acid oxidation and UCP1 activation, crucial for its role
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in thermoregulation. Several changes also happen with aging. In
BAT, an increase in phosphatidylethanolamine and phosphatidyl-
choline containing poly unsaturated FA (PUFA) happens, and these
tend to undergo oxidative damage [53]. Furthermore, the lipid
composition of the plasma changes significantly, including an in-
crease in the levels of glycerophospholipids, sphingolipids, sterol
lipids, and FFA (Fig. 1) [54].

Secreted lipids are also dysregulated in OA, even without other
comorbidities such as obesity and DM. Patients with early knee OA
have been shown to have higher levels of total cholesterol and low-
density lipoprotein (LDL), correlating with higher pain intensity
and disability [55]. These results are nonetheless controversial,
with other publications unraveling a causal relationship between
LDL and OA, with a notably a protective effect of LDL [56]. In
addition, one study showed a tendency for positive correlation
between the risk of developing OA and the lipid accumulation
products (LAP) index. LAP index is used to estimate the excessive
lipid accumulation in the body considering waist circumference
and fasting plasma triglyceride levels [57]. Recently, it has been
suggested that imbalances of sphingolipid levels in human plasma
and synovial fluids could result in the onset of early OA [58,59].
Specifically, the local inhibition of lipid mediator sphingosine 1-
phosphate (S1P) in a mouse model prevented cartilage damage
and synovial inflammation, supporting the role of S1P as a possible
therapeutic target in OA [60].

AT lipids may affect cartilage integrity in OA exerting a dual
effect, either attenuating or initiating cartilage degeneration
[24,61]. Specifically, arachidonic acid (ARA) can promote the cata-
bolic process in chondrocytes and enhance the pro-inflammatory
response. On the other hand, omega-3 PUFA is known to block
cartilage degradation and inflammation by inhibiting the expres-
sion of specific genes [62]. To investigate the systemic impact of
omega-6 and omega-3 on post-traumatic OA, researchers utilized
the Fat-1 mouse model. In this model, mice express the enzyme
omega-3 FA desaturase, which can convert omega-6 FA to omega-3
FA. These mice contain elevated serum levels of omega-3 FA.
Following post-traumatic OA induction, they displayed a reduction
in OA symptoms, less synovitis, and decreased levels of pro-
inflammatory cytokines [63]. These promising results suggest that
the use of systemic lipids in the treatment of OA should be further
investigated [64,65].

5.2. Joint tissue lipids and OA

i. IFP lipids

The lipid profile of IFP from healthy donors showed a similar
pattern of FFA and phospholipids as other WAT (Fig. 1) [66]. How-
ever, this profile may vary due to pathologic conditions. In partic-
ular, an elevated IFP FFA concentration has been described in
pancreatic arthritis syndrome [67]. A comparison of FA signatures
of synovial fluid and IFP from patients with RA and OA, found that
the secretion of ARA from the IFP of OA patients was higher
compared to RA patients [68] (Fig. 2). An increased in omega-6/
omega-3 PUFA ratio in the IFP of OA was also observed in a rabbit
model [69],whereas in human plasma, a high omega-6/omega-3
ratio was associated with greater pain and functional limitations
in OA knees [70]. Additionally, in IFP, ARA increases prostaglandin
E2 production [71], alters levels of pro-inflammatory lipid metab-
olites like lysophosphatidylcholines [72], mobilizes docosahexae-
noic acid (DHA) [5] and the release of prostanoids, a family of lipid
mediators derived from ARA, whose chemical inhibition has been
shown to reduce the inflammatory phenotype of OA [73].
Furthermore, IFP-derived prostaglandins (PG) induce a fibrotic
response in synoviocytes [74,75]. Interestingly, IFP adipocytes can
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also secrete FA that enhance CD4þ T cell proliferation and pro-
duction of the pro-inflammatory cytokine IFN-g [76]. Paradoxically,
in the FA signature study, the authors also revealed that the IFP of
OA patients had higher levels of DHA compared to RA patients, as
well as higher product/precursor ratios of omega-3 PUFA, known to
have anti-inflammatory effects and to induce pro-catabolic en-
zymes in the cartilage [68]. This suggests that IFP induces both
protective and aggravating activities in OA. The monounsaturated
fatty acid (MUFA) oleic acid was also increased in OA synovial fluid,
which is a critical metabolite for distinguishing early from late-
stage OA, with levels increasing during disease progression [69].
Although the role of oleic acid in joint diseases is unclear, it has
shown anti-destructive effects on chondrocytes and cartilage
in vitro [77]. Overall, the FA profile of OA IFP reflects both inflam-
matory and protective biochemical roles. As mentioned, there is
growing evidence for a protective role of omega-3 PUFA such as
DHA in joint health, but the potential roles of an increased level of
omega-6 PUFA and MUFA need further investigation. Lastly, a
single-cell analysis of OA IFP adipocytes showed that their high
expression of apolipoprotein E is deleterious to articular cartilage
in vitro [31] (Fig. 2). These studies suggest that alterations in the IFP
lipid profile have significant implications for joint diseases,
particularly in OA pathophysiology. This highlights the potential of
targeting these lipid changes for therapeutic intervention.

ii. BMAT lipids

BMAT lipids, such as PUFA, play important roles in bone health
and hematopoiesis, making them essential players in the devel-
opment and treatment of joint diseases. Treatment of human MSCs
with ARA induced adipogenesis at the expense of osteoblasto-
genesis [78], and BMAT all-trans retinoic acid, a derivative of
vitamin A, inhibited stromal cell commitment to adipocytes [79],
demonstrating that BMAT lipids can regulate progenitor cells
(Fig. 1). RA is not a lipid but an important metabolite for adipocyte
commitment. It can activate PPARd to enhance lipid oxidation and
energy dissipation [79].

ARA is the precursor of eicosanoids that include PG and leuko-
trienes. These molecules have biological signaling functions,
notably in the immune response and bone health. For instance,
PGE2 enhances osteoclast differentiation [80]. It has also been
observed that lipid droplets of immune cells are particularly
enriched in ARA, as ARA is required for the formation of eicosanoids
used in the inflammatory response [81]. Glucocorticoid treatment
causes rapid senescence of BMAds by inducing a loop that involves
PPARg and oxylipins and spreads senescence to the bone marrow
[82]. Enzymes able to convert saturated to monounsaturated FFA
are also important in BMAds and AT, such as depletion of stearoyl-
CoA Desaturase-1, which leads to vacuole accumulation, cell death
and hence BMAT loss [83].

OA chondrocytes are also known to produce excessive PGE2 and
nitric oxide (NO) [84]. As mentioned, they act as mediators of
inflammation and hence of OA. In a study in which cultures of OA
chondrocyte were supplemented with different FA [85], it was
shown that the combination of the omega-6 conjugated linoleic
acid (CLA), an isomer of linoleic acid (LA), the precursor of ARA,
with eicosapentaenoic acid, an omega-3, resulted in the lowest
amount of PGE2 produced, as well as lower amounts of NO
comparedwith controls. This suggests that CLAmay have an impact
on the pathogenesis of OA.

Moreover, it has been shown in humans that OA bone samples
have higher levels of omega-6 PUFA compared to osteoporotic bone
samples [50]. This implies a potential role of omega-6 PUFA in OA.
Supplementation with omega-3 PUFA in a high fat diet (HFD þ F),
specifically DHA and EPA, derived from a-linoleic acid, improved
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bone parameters, mechanical properties as well as decreased BMAT
compared to the HFD group [86]. For instance, primary BMSCs
isolated from HFD þ F mice showed decreased adipocyte and
increased osteoblast differentiation with lower senescent pheno-
type. This suggests an improved BM microenvironment promoting
bone formation in mice. Moreover, omega-3 supplements are given
as a treatment option for OA for their anti-inflammatory properties
[87,88]. OA Patients who received omega-3 supplements demon-
strated reduced knee pain, increased knee stiffness, and improved
physical function [89].

Overall, FA and specifically their ratios to one another, seem to
be important for inflammation balance in the body, specific com-
partments, and their pathologies. An additional example is the
dihomo-g-linolenic acid (DGLA), another derivative of LA, which
can be metabolized into either pro-inflammatory (from ARA) or
anti-inflammatory FA. DGLA increases in various inflammatory
conditions such as RA, Crohn's disease, and celiac disease, sug-
gesting that it may be a marker of inflammation [90]. Studies
focusing on its effect on OA specifically have not yet been
performed.

Beyond its secreted FA with pro- and anti-inflammatory roles,
BMATmay also regulate the activity of other cell populations inside
and outside the bone, as an energy source and through the secre-
tion of adipokines [91,92]. BMAds have high levels of basal glucose
uptake and increased insulin resistance, probably required for de
novo lipogenesis, which acts as a local energy source to support
hematopoiesis and osteogenesis [40].

BMAd lipid metabolism is different from that of SCAT adipo-
cytes, particularly enriched in cholesterol metabolism pathways as
opposed to lipolytic pathways [93]. This suggests BMAds act more
like a triglyceride reservoir, even during caloric deficit state, and are
therefore a preserved source of lipids. Another study revealed the
role of cholesterol metabolism in OA cartilage. The LOX1 enzyme
(lectin-type oxidized low-density lipoprotein receptor 1), involved
in cholesterol uptake, was found to be upregulated in both humans
and mice with OA [94,95]. When another cholesterol metabolism
factor, cholesterol 25-hydroxylase (CH25H), is overexpressed, fea-
tures of OA, such as thickening of subchondral bone, are observed in
mice [95]. The implication of these cholesterol pathways in other
diseases like atherosclerosis suggests that BMAds could play a role
in maintaining overall health.

It remains to be shown if BMAT lipolysis is regulated by me-
chanical loading. However, Reticulocalbin-2 (RCN2), a mechano-
sensitive lipolytic factor, is involved in lipolysis of the BMAT [47].
This lipolysis provides energy for mechanisms such as lympho-
poiesis and osteogenesis, making this factor a promising target for
enhancing skeletal health and immune function.

In conclusion, BMAT lipids are implicated in bone health, im-
mune response, BM-related disorders and potentially cartilage
degradation making them active players in joint homeostasis and
possible targets for OA treatment.

6. Perspectives and conclusion

OA is a major cause of disability worldwide triggering morbidity
and constituting a challenge for health systems. To date, no treat-
ment has been approved to prevent, stop, or delay the progression
of OA. To meet this need, it is urgent to dissect all the actors
involved in the pathophysiology of OA.

There is an accumulation of compelling evidence supporting the
role of systemic and local AT-derived lipids in OA diagnosis, onset,
and progression. Recent findings on the role of BMAT on the he-
matopoietic and bone microenvironment, and emerging data on
BMAT in the context of OA, support BMAT as a new player involved
in the pathophysiology of OA. Lipid crosstalk between BMAT and
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other joint tissues like cartilage or synovium need to be addressed,
not forgetting a possible systemic impact on low grade inflamma-
tion that has been linked to the worsening of OA symptoms.
Currently, preclinical approaches are needed to help fill the gaps in
knowledge regarding the exact impact of OA on BMAT's extracel-
lular matrix, secreted molecules, immune infiltration and vascu-
larization (Fig. 2). The recent development of more specific animal
models [96,97] will make it possible to directly evaluate the func-
tional role of BMAds in the onset and progression of OA, opening up
interesting new avenues for basic and applied research.

Currently, high-throughput and non-invasive imaging-based
techniques are beginning to be applied at IFP and BMAT. They could
lead to the discovery of lipid-related biomarkers and diagnostic
strategies for the early detection of OA. This could pave the way for
new clinical trials targeting articular AT and its lipids for the pre-
diction of the pathological state of the human joint and the treat-
ment of OA [94]. The transition to the clinic could be as follows:
lipids could first be identified and classified as systemic or local
depending on their AT of origin. They would then be divided into
biomarkers and/or therapeutic targets according to their role in OA.
Systemic and marrow lipids could be controlled and/or targeted
intravenously or orally, while joint-related lipids would be better
managed intra-articularly. We anticipate that in the years to come,
articles elucidating the role of lipids in OA will multiply.

In conclusion, there is a complex interplay between joint AT-
derived lipids and OA. OA alters the characteristics of joint AT,
including their lipid profile, and these lipids may in turn contribute
to the disease progression. The treatment of OA requires innovative
therapeutic strategies, and targeting IFP and BMAT lipids repre-
sents a promising new approach.
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