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The gut and lungs are anatomically distinct, but potential anatomic communications and

complex pathways involving their respective microbiota have reinforced the existence of a

gut–lung axis (GLA). Compared to the better-studied gut microbiota, the lung microbiota,

only considered in recent years, represents a more discreet part of the whole microbiota

associated to human hosts. While the vast majority of studies focused on the bacterial

component of the microbiota in healthy and pathological conditions, recent works have

highlighted the contribution of fungal and viral kingdoms at both digestive and respiratory

levels. Moreover, growing evidence indicates the key role of inter-kingdom crosstalks in

maintaining host homeostasis and in disease evolution. In fact, the recently emerged GLA

concept involves host–microbe as well as microbe–microbe interactions, based both on

localized and long-reaching effects. GLA can shape immune responses and interfere with

the course of respiratory diseases. In this review, we aim to analyze how the lung and

gut microbiota influence each other and may impact on respiratory diseases. Due to the

limited knowledge on the human virobiota, we focused on gut and lung bacteriobiota

and mycobiota, with a specific attention on inter-kingdom microbial crosstalks which are

able to shape local or long-reached host responses within the GLA.

Keywords: Gut-Lung Axis, Mycobiota, Microbiome, Respiratory disease, Dysbiosis

INTRODUCTION

Recent advances inmicrobiota explorations have led to an improved knowledge of the communities
of commensal microorganisms within the human body. Human skin and mucosal surfaces are
associated with rich and complex ecosystems (microbiota) composed of bacteria (bacteriobiota),
fungi (mycobiota), viruses (virobiota), phages, archaea, protists, and helminths (Cho and Blaser,
2012). The role of the gut bacteriobiota in local health homeostasis and diseases is being
increasingly investigated, but its long-distance impacts still need to be clarified (Chiu et al., 2017).
Among the relevant inter-organ connections, the gut–lung axis (GLA) remains less studied than the
gut–brain axis. So far, microbiota studies mainly focused on the bacterial component, neglecting

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2020.00009
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2020.00009&domain=pdf&date_stamp=2020-02-19
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:raphael_enaud@yahoo.fr
https://doi.org/10.3389/fcimb.2020.00009
https://www.frontiersin.org/articles/10.3389/fcimb.2020.00009/full
http://loop.frontiersin.org/people/721945/overview
http://loop.frontiersin.org/people/574217/overview
http://loop.frontiersin.org/people/434461/overview
http://loop.frontiersin.org/people/835286/overview
http://loop.frontiersin.org/people/652547/overview


Enaud et al. Microbial and Immune Dialogues Within Gut-Lung Axis

other microbial kingdoms. However, the understanding of
mycobiota involvement in human health and inter-organ
connections should not be overlooked (Nguyen et al., 2015;
Enaud et al., 2018). Viruses are also known to be key players in
numerous respiratory diseases and to interact with the human
immune system, but technical issues still limit the amount of data
regarding virobiota (Mitchell and Glanville, 2018). Therefore, we
will focus on bacterial and fungal components of the microbiota
and their close interactions that are able to shape local or long-
reached host responses within the GLA. While GLA mycobiota
also influences chronic gut diseases such as IBD, we will not
address this key role in the present review: we aimed at analyzing
how lung and gut bacteriobiota and mycobiota influence each
other, how they interact with the human immune system, and
their role in respiratory diseases.

MICROBIAL INTERACTIONS WITHIN THE
GUT–LUNG AXIS

Inter-Kingdom Crosstalk Within the Gut
Microbiota
The gut microbiota has been the most extensively investigated.
The majority of genes (99%) amplified in human stools are from
bacteria, which are as numerous as human cells and comprise
150 distinct bacterial species, belonging mainly to Firmicutes
and Bacteroidetes phyla. Proteobacteria, Actinobacteria,
Cyanobacteria, and Fusobacteria are also represented in healthy
people (Sekirov et al., 2010; Human Microbiome Project
Consortium, 2012).

More recently, fungi have been recognized as an integral part
of our commensal flora, and their role in health and diseases is
increasingly considered (Huffnagle and Noverr, 2013; Huseyin
et al., 2017). Fungi are about 100 times larger than bacteria, so
even if fungal sequences are 100 to 1,000 times less frequent
than bacterial sequences, fungi must not be neglected in the
gastrointestinal ecosystem. In contrast with the bacteriobiota, the
diversity of the gut mycobiota in healthy subjects is limited to
few genera, with a high prevalence of Saccharomyces cerevisiae,
Malassezia restricta, and Candida albicans (Nash et al., 2017).

Although often dichotomized due to technical and
analysis sequencing issues, critical interactions exist between
bacteriobiota and mycobiota (Peleg et al., 2010). The most
appropriate approach to decipher the role of gut microbiota
is therefore considering the gut as an ecosystem in which
inter-kingdom interactions occur and have major implications
as suggested by the significant correlations between the gut
bacteriobiota and mycobiota profiles among healthy subjects
(Hoffmann et al., 2013). Yeasts, e.g., Saccharomyces boulardii
and C. albicans, or fungus wall components, e.g., β-glucans, are
able to inhibit the growth of some intestinal pathogens (Zhou
et al., 2013; Markey et al., 2018). S. boulardii also produces
proteases or phosphatases that inactivate the toxins produced by
intestinal bacteria such as Clostridium difficile and Escherichia
coli (Castagliuolo et al., 1999; Buts et al., 2006). In addition, at
physiological state and during gut microbiota disturbances (e.g.,
after a course of antibiotics), fungal species may take over the

bacterial functions of immune modulation, preventing mucosal
tissue damages (Jiang et al., 2017). Vice versa, bacteria can also
modulate fungi: fatty acids locally produced by bacteria impact
on the phenotype of C. albicans (Noverr and Huffnagle, 2004;
Tso et al., 2018).

Beside the widely studied gut microbiota, microbiotas of other
sites, including the lungs, are essential for host homeostasis and
disease. The lung microbiota is now recognized as a cornerstone
in the physiopathology of numerous respiratory diseases (Soret
et al., 2019; Vandenborght et al., 2019).

Inter-Kingdom Crosstalk Within the Lung
Microbiota
The lung microbiota represents a significantly lower biomass
than the gut microbiota: about 10 to 100 bacteria per 1,000
human cells (Sze et al., 2012). Its composition depends on
the microbial colonization from the oropharynx and upper
respiratory tract through salivary micro-inhalations, on the
host elimination abilities (especially coughing and mucociliary
clearance), on interactions with the host immune system, and
on local conditions for microbial proliferation, such as pH
or oxygen concentration (Gleeson et al., 1997; Wilson and
Hamilos, 2014). The predominant bacterial phyla in lungs
are the same as in gut, mainly Firmicutes and Bacteroidetes
followed by Proteobacteria and Actinobacteria (Charlson
et al., 2011). In healthy subjects, the main identified fungi are
usually environmental: Ascomycota (Aspergillus, Cladosporium,
Eremothecium, and Vanderwaltozyma) and Microsporidia
(Systenostrema) (Nguyen et al., 2015; Vandenborght et al.,
2019). In contrast to the intestinal or oral microbiota, data
highlighting the interactions between bacteria and fungi in the
human respiratory tract are more scattered (Delhaes et al., 2012;
Soret et al., 2019). However, data from both in vitro and in
vivo studies suggest relevant inter-kingdom crosstalk (Delhaes
et al., 2012; Xu and Dongari-Bagtzoglou, 2015; Lof et al., 2017;
Soret et al., 2019). This dialogue may involve several pathways
as physical interaction, quorum-sensing molecules, production
of antimicrobial agents, immune response modulation, and
nutrient exchange (Peleg et al., 2010). Synergistic interactions
have been documented between Candida and Streptococcus, such
as stimulation of Streptococcus growth by Candida, increasing
biofilm formation, or enhancement of the Candida pathogenicity
by Streptococcus (Diaz et al., 2012; Xu et al., 2014). In vitro
studies exhibited an increased growth of Aspergillus fumigatus in
presence of Pseudomonas aeruginosa, due to the mold’s ability
in to assimilate P. aeruginosa-derived volatile sulfur compounds
(Briard et al., 2019; Scott et al., 2019). However, the lung
microbiota modulation is not limited to local inter-kingdom
crosstalk and also depends on inter-compartment crosstalk
between the gut and lungs.

Microbial Inter-compartment Crosstalk
From birth throughout the entire life span, a close correlation
between the composition of the gut and lung microbiota exists,
suggesting a host-wide network (Grier et al., 2018). For instance,
modification of newborns’ diet influences the composition of
their lung microbiota, and fecal transplantation in rats induces
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changes in the lung microbiota (Madan et al., 2012; Liu et al.,
2017).

The host’s health condition can impact this gut–lung
interaction too. In cystic fibrosis (CF) newborns, gut
colonizations with Roseburia, Dorea, Coprococcus, Blautia,
or Escherichia presaged their respiratory appearance, and their
gut and lung abundances are highly correlated over time (Madan
et al., 2012). Similarly, the lung microbiota is enriched with gut
bacteria, such as Bacteroides spp., after sepsis (Dickson et al.,
2016).

Conversely, lung microbiota may affect the gut microbiota
composition. In a pre-clinical model, influenza infection triggers
an increased proportion of Enterobacteriaceae and decreased
abundances of Lactobacilli and Lactococci in the gut (Looft and
Allen, 2012). Consistently, lipopolysaccharide (LPS) instillation
in the lungs of mice is associated with gut microbiota
disturbances (Sze et al., 2014).

Although gastroesophageal content inhalations and sputum
swallowing partially explain this inter-organ connection,
GLA also involves indirect communications such as host
immune modulation.

GUT–LUNG AXIS INTERACTIONS WITH
THE HUMAN IMMUNE SYSTEM

Gut Microbiota and Local Immunity
Gut microbiota effects on the local immune system have been
extensively reviewed (Elson and Alexander, 2015). Briefly, the
gut microbiota closely interacts with themucosal immune system
using both pro-inflammatory and regulatory signals (Skelly et al.,
2019). It also influences neutrophil responses, modulating their
ability to extravasate from blood (Karmarkar and Rock, 2013).
Toll-like receptor (TLR) signaling is essential for microbiota-
driven myelopoiesis and exerts a neonatal selection shaping the
gut microbiota with long-term consequences (Balmer et al., 2014;
Fulde et al., 2018). Moreover, the gut microbiota communicates
with and influences immune cells expressing TLR or GPR41/43
by means of microbial associated molecular patterns (MAMPs)
or short-chain fatty acids (SCFAs) (Le Poul et al., 2003). Data
focused on the gut mycobiota’s impact on the immune system are
sparser. Commensal fungi seem to reinforce bacterial protective
benefits on both local and systemic immunity, with a specific
role for mannans, a highly conserved fungal wall component.
Moreover, fungi are able to produce SCFAs (Baltierra-Trejo et al.,
2015; Xiros et al., 2019). Therefore, gut mycobiota perturbations
could be as deleterious as bacteriobiota ones (Wheeler et al., 2016;
Jiang et al., 2017).

Lung Microbiota and Local Immunity
A crucial role of lung microbiota in the maturation and
homeostasis of lung immunity has emerged over the last few
years (Dickson et al., 2018). Colonization of the respiratory
tract provides essential signals for maturing local immune cells
with long-term consequences (Gollwitzer et al., 2014). Pre-
clinical studies confirm the causality between airway microbial
colonization and the regulation and maturation of the airways’

immune cells. Germ-free mice exhibit increased local Th2-
associated cytokine and IgE production, promoting allergic
airway inflammation (Herbst et al., 2011). Consistently, lung
exposure to commensal bacteria reduces Th2-associated cytokine
production after an allergen challenge and induces regulatory
cells early in life (Russell et al., 2012; Gollwitzer et al., 2014). The
establishment of resident memory B cells in lungs also requires
encountering lungmicrobiota local antigens, especially regarding
immunity against viruses such as influenza (Allie et al., 2019).

Interactions between lung microbiota and immunity are
also a two-way process; a major inflammation in the lungs
can morbidly transform the lung microbiota composition
(Molyneaux et al., 2013).

Long-Reaching Immune Modulation Within
the Gut–Lung Axis
Beyond the local immune regulation by the site-specific
microbiota, the long-reaching immune impact of gut microbiota
is now being recognized, especially on the pulmonary immune
system (Chiu et al., 2017). The mesenteric lymphatic system is an
essential pathway between the lungs and the intestine, through
which intact bacteria, their fragments, or metabolites (e.g.,
SCFAs) may translocate across the intestinal barrier, reach the
systemic circulation, and modulate the lung immune response
(Trompette et al., 2014; Bingula et al., 2017; McAleer and Kolls,
2018). SCFAs, mainly produced by the bacterial dietary fibers’
fermentation especially in case of a high-fiber diet (HFD), act in
the lungs as signaling molecules on resident antigen-presenting
cells to attenuate the inflammatory and allergic responses (Anand
and Mande, 2018; Cait et al., 2018). SCFA receptor–deficient
mice show increased inflammatory responses in experimental
models of asthma (Trompette et al., 2014). Fungi, including A.
fumigatus, can also produce SCFAs or create a biofilm enhancing
the bacterial production of SCFAs, but on the other hand,
bacterial SCFAs can dampen fungal growth (Hynes et al., 2008;
Baltierra-Trejo et al., 2015; Xiros et al., 2019). The impact of
fungal production of SCFAs on the host has not been assessed
so far.

Other important players of this long-reaching immune effect
are gut segmented filamentous bacteria (SFBs), a commensal
bacteria colonizing the ileum of most animals, including humans,
and involved in the modulation of the immune system’s
development (Yin et al., 2013). SFBs regulate CD4+ T-cell
polarization into the Th17 pathway, which is implicated in the
response to pulmonary fungal infections and lung autoimmune
manifestations (McAleer et al., 2016; Bradley et al., 2017).
Recently, innate lymphoid cells, involved in tissue repair, have
been shown to be recruited from the gut to the lungs in
response to inflammatory signals upon IL-25 (Huang et al.,
2018). Finally, intestinal TLR activation, required for the NF-κB–
dependent pathways of innate immunity and inflammation, is
associated with an increased influenza-related lung response in
mice (Ichinohe et al., 2011).

Other mechanisms may be involved in modulating the long-
reaching immune response related to gut microbiota, exemplified
by the increased number of mononuclear leukocytes and an
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increased phagocytic and lytic activity after treatment with
Bifidobacterium lactis HN019 probiotics (Gill et al., 2001). Diet,
especially fiber intake, which increases the systemic level of
SCFAs, or probiotics influence the pulmonary immune response
and thus impact the progression of respiratory disorders (King
et al., 2007; Varraso et al., 2015; Anand and Mande, 2018).

The GLA immune dialogue remains a two-way process. For
instance, Salmonella nasal inoculation promotes a Salmonella-
specific gut immunization which depends on lung dendritic
cells (Ruane et al., 2013). Respiratory influenza infection also
modulates the composition of the gut microbiota as stated above.
These intestinal microbial disruptions seem to be unrelated to an
intestinal tropism of influenza virus but mediated by Th17 cells
(Wang et al., 2014).

In summary, GLA results from complex interactions between
the different microbial components of both the gut and lung
microbiotas combined with local and long-reaching immune
effects. All these interactions strongly suggest a major role for the
GLA in respiratory diseases, as recently documented in a mice
model (Skalski et al., 2018).

GUT–LUNG AXIS IN RESPIRATORY
DISEASES

Acute Infectious Diseases
Regarding influenza infection and the impact of gut and lung
microbiota, our knowledge is still fragmentary; human data
are not yet available. However, antibiotic treatment causes
significantly reduced immune responses against influenza virus
in mice (Ichinohe et al., 2011). Conversely, influenza-infected
HFD-fed mice exhibit increased survival rates compared to
infected controls thanks to an enhanced generation of Ly6c-
patrolling monocytes. These monocytes increase the numbers
of macrophages that have a limited capacity to produce CXCL1
locally, reducing neutrophil recruitment to the airways and thus
tissue damage. In parallel, diet-derived SCFAs boost CD8+ T-cell
effector function in HFD-fed mice (Trompette et al., 2018).

Both lung and gut microbiota are essential against bacterial
pneumonia. The lung microbiota is able to protect against
respiratory infections with Streptococcus pneumoniae and
Klebsiella pneumoniae by priming the pulmonary production
of granulocyte-macrophage colony-stimulating factor (GM-CSF)
via IL-17 and Nod2 stimulation (Brown et al., 2017). The
gut microbiota also plays a crucial role in response to lung
bacterial infections. Studies on germ-free mice showed an
increased morbidity and mortality during K. pneumoniae, S.
pneumoniae, or P. aeruginosa acute lung infection (Fagundes
et al., 2012; Fox et al., 2012; Brown et al., 2017). The use
of broad-spectrum antibiotic treatments, to disrupt mouse gut
microbiota, results in worse outcome in lung infection mouse
models (Schuijt et al., 2016; Robak et al., 2018). Mechanistically,
alveolar macrophages from mice deprived of gut microbiota
through antibiotic treatment are less responsive to stimulation
and show reduced phagocytic capacity (Schuijt et al., 2016).
Interestingly, priming of antibiotic-treated animals with TLR
agonists restores resistance to pulmonary infections (Fagundes

et al., 2012). SFBs appear to be an important gut microbiota
component for lung defense against bacterial infection thanks to
their capacity to induce the production of the Th17 cytokine,
IL-22, and to increase neutrophil counts in the lungs during
Staphylococcus aureus pneumonia (Gauguet et al., 2015).

Modulating chronic infectious diseases will similarly depend
on gut and lung microbiotas. For instance, Mycobacterium
tuberculosis infection severity is correlated with gut microbiota
(Namasivayam et al., 2018).

Chronic Respiratory Diseases
Multiple studies have addressed the impact of gut and lung
microbiota on chronic respiratory diseases such as chronic
obstructive pulmonary disease (COPD), asthma, and CF
(Table 1).

Decreased lung microbiota diversity and Proteobacteria
expansion are associated with both COPD severity and
exacerbations (Garcia-Nuñez et al., 2014;Wang et al., 2016, 2018;
Mayhew et al., 2018). The fact that patients with genetic mannose
binding lectin deficiency exhibit a more diverse pulmonary
microbiota and a lower risk of exacerbation suggests not only
association but also causality (Dicker et al., 2018). Besides the
lung flora, the gut microbiota is involved in exacerbations,
as suggested by the increased gastrointestinal permeability in
patients admitted for COPD exacerbations (Sprooten et al.,
2018). Whatever the permeability’s origin (hypoxemia or pro-
inflammatory status), the level of circulating gut microbiota–
dependent trimethylamine-N-oxide has been associated with
mortality in COPD patients (Ottiger et al., 2018). This association
being explained by comorbidities and age, its impact per se is not
guaranteed. Further studies are warranted to investigate the role
of GLA in COPD and to assess causality.

Early-life perturbations in fungal and bacterial gut
colonization, such as low gut microbial diversity, e.g., after
neonatal antibiotic use, are critical to induce childhood asthma
development (Abrahamsson et al., 2014; Metsälä et al., 2015;
Arrieta et al., 2018). This microbial disruption is associated
with modifications of fecal SCFA levels (Arrieta et al., 2018).
Causality has been assessed in murine models. Inoculation of the
bacteria absent in the microbiota of asthmatic patients decreases
airways inflammation (Arrieta et al., 2015). Furthermore,
Bacteroides fragilis seems to play a major role in immune
homeostasis, balancing the host systemic Th1/Th2 ratio and
therefore conferring protection against allergen-induced airway
disorders (Mazmanian et al., 2005; Panzer and Lynch, 2015;
Arrieta et al., 2018). Nevertheless, it is still not fully deciphered,
as some studies conversely found that an early colonization with
Bacteroides, including B. fragilis, could be an early indicator of
asthma later in life (Vael et al., 2008). Regarding fungi, gut fungal
overgrowth (after antibiotic administration or a gut colonization
protocol with Candida or Wallemia mellicola) increases the
occurrence of asthma via IL-13 without any fungal expansion
in the lungs (Noverr et al., 2005; Wheeler et al., 2016; Skalski
et al., 2018). The prostaglandin E2 produced in the gut by
Candida can reach the lungs and promotes lung M2 macrophage
polarization and allergic airway inflammation (Kim et al., 2014).
In mice, a gut overrepresentation of W. mellicola associated
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TABLE 1 | Gut–lung axis in human chronic respiratory diseases.

Lung disease Microbiota disorders in Comments References

Lungs Gut

Chronic obstructive

pulmonary disease

(COPD)

Decreased lung microbiota diversity,

Proteobacteria expansion

Associated with both COPD

severity and exacerbations

Garcia-Nuñez et al., 2014;

Wang et al., 2016; Mayhew

et al., 2018

Increased gastro-intestinal permeability

and level of circulating gut

microbiota-dependent

trimethylamine-N-oxide

Associated with long-term

all-cause mortality in COPD

patients

Ottiger et al., 2018

Asthma Proteobacteria (Haemophilus,

Neisseria, Pseudomonas, Rickettsia

and Moraxella species) and Firmicutes

(Lactobacillus)

Overrepresented in

asthmatic patients and/or

associated with an

uncontrolled asthma

Hilty et al., 2010; Marri et al.,

2013; Huang et al., 2015;

Denner et al., 2016; Zhang

et al., 2016; Durack et al.,

2017; Sverrild et al., 2017

Bacteroidetes and Fusobacteria

Moraxella catarrhalis, Bacteroides,

Haemophilus and Streptococcus

Reduced in asthmatic

patients

Associated with worse FEV1
and higher sputum neutrophil

counts

Zhang et al., 2016

Green et al., 2014; Sverrild

et al., 2017

Malassezia Overrepresented in

asthmatic patients

van Woerden et al., 2013

Aspergillus fumigatus Associated with

corticosteroid treatment

Fraczek et al., 2018

Early-life perturbations

- Low gut microbial diversity

- Increased bacterial abundance of

Clostridium, Streptococcus and

Bacteroides fragilis

- Decreased bacterial abundances of

Lachnospira, Veillonella,

Faecalibacterium, Rothia Bacteroides

and Bifidobacterium

- Increased fungal abundances of

Saccharomyces and Pichia kudriavzevii

- Decreased fungal abundances of

Candida tropicalis and

Debaryomyces hansenii

Increased risk of childhood

asthma development

Björkstén et al., 2001;

Penders et al., 2007; Vael

et al., 2008; van Nimwegen

et al., 2011; Abrahamsson

et al., 2012; Arrieta et al.,

2015, 2018; Stiemsma

et al., 2016

Cystic fibrosis (CF) Decreased lung microbiota diversity Correlated with the disease

evolution and associated

with exacerbation

Zhao et al., 2012; Stokell

et al., 2015; Frayman et al.,

2017

Streptococcus, Prevotella, Rothia,

Veillonella, Acintomyces, Neisseria,

Haemophilus, Gemella

Major bacterial taxa in CF

pediatric patients

Worlitzsch et al., 2009;

Madan et al., 2012;

Renwick et al., 2014;

Coburn et al., 2015;

Frayman et al., 2017

Streptococcus,Prevotella, Rothia,

Veillonella,Acintomyces, Pseudomonas

Major bacterial taxa in CF

adult patients

Cox et al., 2010; Hampton

et al., 2014; Coburn et al.,

2015; Frayman et al., 2017

Candida albicans and Aspergillus

fumigatus

Major fungi isolated in CF

patient; C. albicans was

more likely co-associated

with P. aeruginosa

Delhaes et al., 2012; Willger

et al., 2014; Kim et al.,

2015; Nguyen et al., 2016

Decrease of Parabacteroides Predictive of an airway

colonization with

Pseudomonas aeruginosa

Association

Hoen et al., 2015

Hoffman et al., 2014; Enaud

et al., 2019

Enaud et al., 2019

Increased abundances of

Staphylococcus, Streptococcus,

Escherichia coli and Veillonella dispar

Association with CF intestinal

inflammation

Association with with CF

intestinal inflammation

Decreased abundances of Bacteroides,

Bifidobacterium adolescentis and

Faecalibacterium prausnitzii
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FIGURE 1 | Inter-kingdom and inter-compartment crosstalks within the gut–lung axis. Bacteriobiota, mycobiota, and virobiota are closely interacting within each

organ by either direct or indirect mechanisms shaping each other. Gut microbiota influences both the gut immune system and the lung immune system via local or

long-reaching interactions, which involve either CD8+ T cell, Th17, IL-25, IL-13, prostaglandin E2, and/or NF-κB–dependent pathways. The lung microbiota impacts

(Continued)
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FIGURE 1 | the mucosal immunity and contributes to immune tolerance, through neutrophil recruitment, production of pro-inflammatory cytokines mediated by

receptor 2 (TLR2), and the release of antimicrobial peptides, such as β-defensin 2 stimulated by T helper 17 (Th17) cells. On the other hand, the lung microbiota also

influences the gut immune system, but precise mechanisms remain to be deciphered, even if an intestinal microbial disruption has been associated with Th17 cell

mediation after influenza virus lung infection. Several factors are well-known to influence the composition of the intestinal and/or lung microbiota, such as diet, drugs,

and probiotics. *Of note, the virobiota is not covered in this review.

with several intestinal microbiome disturbances appears to have
long-reaching effects on the pulmonary immune response and
severity of asthma, by involving the Th2 pathways, especially
IL-13 and to a lesser degree IL-17, goblet cell differentiation,
fibroblasts activation, and IgE production by B cells (Skalski
et al., 2018). Taken together, these results indicate that the GLA,
mainly through the gut microbiota, is likely to play a major role
in asthma.

In CF patients, gut and lung microbiota are distinct from
those of healthy subjects, and disease progression is associated
with microbiota alterations (Madan et al., 2012; Stokell et al.,
2015; Nielsen et al., 2016). Moreover, the bacterial abundances at
both sites are highly correlated and have similar trends over time
(Madan et al., 2012), especially regarding Streptococcus, which is
found in higher proportion in CF stools, gastric contents, and
sputa (Al-Momani et al., 2016; Nielsen et al., 2016). Moreover,
CF patients with a documented intestinal inflammation exhibit a
higher Streptococcus abundance in the gut (Enaud et al., 2019),
suggesting the GLA’s involvement in intestinal inflammation.
Of note, gut but not lung microbiota alteration is associated
with early-life exacerbations: some gut microbiota perturbations,
such as a decrease of Parabacteroides, are predictive of airway
colonization with P. aeruginosa (Hoen et al., 2015). Furthermore,
oral administration of probiotics to CF patients leads to a
decreased number of exacerbations (Anderson et al., 2016).
While the mycobiota has been recently studied in CF (Nguyen
et al., 2015; Soret et al., 2019), no data on the role of the fungal
component of the GLA are currently available in CF, which
deserves to be more widely studied.

The role of inter-compartment and inter-kingdom
interactions within the GLA in those pulmonary diseases
now has to be further confirmed and causality to be assessed.
Diet, probiotics, or more specific modulations could be, in the
near future, novel essential tools in therapeutic management of
these respiratory diseases.

CONCLUSION

The gut–lung axis or GLA has emerged as a specific
axis with intensive dialogues between the gut and lungs,
involving each compartment in a two-way manner, with
both microbial and immune interactions (Figure 1).
Each kingdom and compartment plays a crucial role
in this dialogue, and consequently in host health and
diseases. The roles of fungal and viral kingdoms within
the GLA still remain to be further investigated. Their
manipulation, as for the bacterial component, could pave
the way for new approaches in the management of several
respiratory diseases such as acute infections, COPD, asthma,
and/or CF.
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