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High tumour contamination of leukaphereses in patients
with small cell carcinoma of the lung: a comparison of
immunocytochemistry and RT-PCR
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Summary In small-cell lung carcinoma (SCLC) tumour cell contamination of leukaphereses is unknown. The present study was performed to
define appropriate markers for reverse transcriptase polymerase chain reaction (RT-PCR), then to assess the contamination rate of
leukaphereses and corresponding bone marrow samples. Immunocytochemistry (ICC) and RT-PCR methods were also compared. Among
the 33 patients included, analyses were performed in 16 who had multiple leukaphereses and 17 who had only bone marrow. Leukapheresis
products and bone marrow were analysed by ICC using several specific monoclonal antibodies against neural-cell adhesion molecule
(N-CAM), epithelial glycoprotein (EGP-40) and cytokeratins (CK). Samples were also analyzed by RT-PCR for expression for N-CAM,
synaptophysin, neuron-specific enolase, chromogranin, cytokeratin-18/-19, CEA, EGP-40, apomucin type 1 (MUC-1) and human endothelial
cell-specific molecule (ESM-1). Using ICC staining, contaminating tumour cells were detected in 34% of leukaphereses (27% in patients with
limited disease and 43% in those with extensive disease). N-CAM was the most reliable marker for detection of contamination. For RT-PCR, CK-
19 and CEA were the only appropriate markers. Positive signal rate in leukaphereses increased to 78% (89% for patients with limited disease and
67% for extensive disease). In bone marrow, both techniques were in agreement whereas in leukaphereses, RT-PCR was better than ICC. A high
rate of tumour cell contamination was demonstrated not only in bone marrow but also in leukaphereses from SCLC patients. The most appropriate

technigue was RT-PCR mainly in patients with limited disease. © 2001 Cancer Research Campaign http://www.bjcancer.com
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Small-cell lung carcinoma (SCLC) accounts for 20-25% of all
bronchogenic carcinomas, has a short doubling time and a strong
metastatic potential (Weiss et a, 1970; Muggia et a, 1974).
Among the various possible approaches to improving the outcome
of SCLC patients, intensification of chemotherapy is a promising
option. Early clinical results suggested some impact of the dose of
the cytostatic agent on the outcome (Ettinger et al, 1978; Weiss,
1978). In recent years, randomized trials were performed to study
early intensification regimens with increases in dose intensity
varying between 7% and 33% (Arriagada et a, 1993; Woll et a,
1995; Steward et al, 1998; Thatcher et al, 2000). These studies did
reveal encouraging improvements in 2-year survival. High-dose
chemotherapy with autologous stem cell support administered
upfront resulted in impressive rates of complete remission
(56-67%) among patients with limited disease (Farha et al, 1983;
Souhami et al, 1985; Pettengell et al, 1995). However, the rea
impact of this approach remains to be confirmed in a randomized
trial. At our institution, patients with SCLC are currently treated in
the setting of such a trial, supported by the European Group for
Blood and Marrow Transplantation (EBMT). This study compares
a conventional regimen including Ifosfamide-Carboplatinum-
Etoposide (ICE) versus a sequential high-dose regimen with the
same drugs followed by reinfusion of peripheral blood progenitor
cells as described previously (Leyvraz et al, 1999).
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A potential limitation of this approach isthe possihility to reinfuse
tumour cells contaminating stem cell preparations. Tumour contami-
nation of leukapheresis products is a commonly observed phenom-
enon in patients with solid tumours such as neuroblastoma or breast
cancer that are characterized by extensive bone-marrow involvement
(Mosset a, 1990; Ross et d, 1993). The clinical relevance of tumour
cell reinfusion remains to be verified. Gribben et a have implicated
reinfused tumour cellsin post-transplant recurrence of bcl-2 positive
lymphomas (Gribben et a, 1991). Using gene marking techniques,
infused tumour cells were detected at sites of recurrence after autolo-
gous transplantation in patients with leukaemia (Brenner et al, 1993)
and neuroblastoma (Rill et a, 1994).

In leukapheresis products from breast cancer patients, the
preferred method of tracing contaminating tumour cells has been
immunocytochemistry (ICC) (Ross et a, 1993; Passos-Coelho et d,
1996; Franklin et al, 1999). This immunolabelling assay relies on
light microscopy of dides (cytospins). Other methods to replace or
complement ICC have aso been proposed, one of them being
reverse transcriptase-polymerase chain reaction (RT-PCR) or quan-
titative RT-PCR, which can detect minute amounts of RNA. The
target genes used to detect contamination of bone marrow or
leukapheresis products with breast cancer cells have included
epithelia markers such as cytokeratins (Passos-Coelho et a, 1996)
(notably CK-19), carcinoembryonic antigen (CEA) or maspin (a
serpin inhibitor) (Luppi et a, 1996). The data available on tumour
cell contamination in leukapheresis products from patients with
SCLC is sparse (Brugger et al, 1994). RT-PCR has never been used
for this purpose. Therefore we performed the present study (i) to
define appropriate markers for RT-PCR and (ii) to establish the
usefulness of ICC as compared to RT-PCR in detecting tumour cell
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contamination of bone-marrow samples and leukapheresis products
obtained from patients with small-cell lung cancer.

MATERIALS AND METHODS

Patients and controls

33 patients were included in the study. 16 patients participated in
the sequential high-dose ICE program (Leyvraz et al, 1999) and
had both baseline bone marrow and multiple leukapheresis assess-
ments performed after mobilization chemotherapy, whereas the 17
remaining patients had only bone marrow assessments. The high-
dose chemotherapy programme was approved by the Ethics
Committee from the Faculté de Médecine, Lausanne University,
Lausanne, Switzerland. In order to take part in this programme
patients had to give informed consent. Patients not participating in
the programme did not give informed consent before bone marrow
sampling since this is considered as a routine procedure to deter-
mine disease extension at our institution. The median age of the
patients was 60 years (range 40-67): They included 22 males
(67%) and 11 females (33%). Staging was performed according to
previously published recommendations (Stahel et al, 1989). 12
patients (36%) had limited disease and 21 (64%) had extensive
disease. By definition, patients with limited disease showed no
bone marrow contamination at cytology or histology. 8 patients
with extensive disease had tumour cells in the bone marrow as
demonstrated by routine light microscopy. In 6 patients, bone-
marrow material was not available for ICC analysis or RT-PCR for
technical reasons; however, histology and/or cytology confirmed
massive involvement with tumour cellsin all cases.

Haematopoietic progenitor cells were mobilized by 4-Epirubicin
(Farmorubicin®, Pharmacia, Milan) administered intravenoudy at a
dose of 75mg m? day* for 2 days, followed by subcutaneous
5ug kg?* G-CSF (Filgrastim, Roche, Basdl, Switzerland) adminis-
tered daily until the leukaphereses were completed. 30 samples
collected from sequentia leukaphereses (1-3 per patient) were
analysed: 15 samples in 8 patients with limited disease and 15
samplesin 8 patients with extensive disease. Bone marrow samples
were collected from the posterior iliac crest with bilatera aspirations
and unilateral biopsy. Conventional light microscopy was performed
on aspiration materia (cytology) and bone marrow biopsy
(histology). Material from bilateral aspirations was pooled for ICC
and RT-PCR analysis.

Negative controls

10 blood samples from healthy volunteers and leukapheresis aliquots
from 10 hesthly allogeneic transplant donors were anaysed.
Mobilization in the transplant donors was performed by subcuta
neous injections of G-CSF (filgrastim) 5ug kg™. Bone marrow
samples from patients with lymphomas, leukaemias and myelomain
remission were additionally used as controls for RT-PCR.

Immunocytochemistry staining (ICC)

Mononuclear cells from bone marrow or leukapheresis products
were isolated by density centrifugation through Ficoll/Hypaque
(Pharmacia/Biotech, Uppsala, Sweden) at 460 g for 30 min. The
cells in the interphase were washed twice in HBSS medium
(Hank’s balanced salts, Gibco BRL, Life Technologies, Basel,
Switzerland). Samples containing 5 x 10° cells from bone marrow
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or leukapheresis products in HBSS medium were transferred onto
glass dlides using Hettich cytofunnels (area 240 mm?) during
centrifugation in a Universal Hettich 16 A centrifige (Hettich,
Zurich, Switzerland). Cytospins were stained using a panel of anti-
bodies in a 2-stage alkaline anti-alkaline phosphatase (APAAP)
technique. The total number of cells examined per antibody was
1-2 x 10°. The following monoclonal antibodies (MAb) were
chosen for staining: MOC-1 (Bio-Science Products AG,
Emmenbriicke, Switzerland), a MAb against neural-cell adhesion
molecule (N-CAM); MOC31 (Bio-Science Products AG,
Emmenbriicke, Switzerland), aMAb against EGP-40 (also known
as EGP2 or EpCAM), a 38-kDa transmembrane glycoprotein
expressed on the surface of most epithelial cells and the majority
of carcinomas (Braun and Pantel, 1998); CAMS5.2 (Becton
Dickinson Biosciences, Allschwil, Switzerland), a MAb against
cytokeratins 8 and 18 and finaly MAD 11-7 (Dako Diagnostics
AG, Zug, Switzerland), which is specific for CEA. The following
dilutions were chosen for staining; MOC1: 1/25; MOC31:1/60;
CEA: 1/40, whereas CAM5.2 was used undiluted. All these anti-
bodies showed low cross-reactivity with haematopoietic cells in
bone marrow (< 1% stained cells). As negative controls, one
cytospin slide was stained with mouse 1gG1 (first antibody) and 2
cytospins with centrifuged KG-1A cells (a human acute myeloge-
nous leukaemiacell line), were stained with MOC-1 and MOC-31.
As positive controls we used SCLC cell line SW2 which expresses
high levels of N-CAM, EGP-40, cytokeratins and CEA and yields
bright staining with MAb MOC1, MOC31, CAM5.2 and MADb I1-
7. In cell seeding experiments with SW2 cells in mononuclear
cells from bone marrow or leukapheresis products, MOC-1
staining detected one tumour cell per 10° cells. The detection
thresholds for MOC-31 were 1:10° to 1:10° cells.

Markers for RT-PCR

SCL C exhibits many neuroendocrine properties on which we relied
in our selection of RT-PCR markers. The following RNA transcripts
were chosen based on protein expression by primary tumours and
cells lines, as based on their use in ICC assays: N-CAM, synapto-
physin, neuro-specific enolase and chromogranin (Blobel et dl,
1985; Shy et a, 1990; Pasini et a, 1995). In addition to these
markers, molecules selectively expressed by epithelium such as CK-
18 and -19, CEA, EGP-40, MUC-1 (apomucin type 1) and ESM-1
(human endothelia cell-specific molecule) were also used (Hirsch
et a, 1977; Broers et a, 1986, 1997; Beiske et a, 1992; Kim €t d,
1992; Fields et a, 1996; Lassdle et a, 1996). The primers used for
detecting these various transcripts are summarized in Table 1.

Preparation of RNA and RT-PCR analysis

For RT-PCR assays, 2 ml of bone marrow or leukapheresis prod-
ucts were added to 7.5 ml TRI Reagent-BD (Molecular Research
Center, Cincinnati, OH). The mixture was kept at -20°C until RNA
extraction. For some of the samples collected at the beginning of
the study, only mononuclear cells (obtained after centrifugation on
Ficoll/Hypaque gradient and kept at -80°C) were available.

When the analysis was performed, total RNA was extracted from
bone marrow or leukapheresis cells kept in the TRI Reagent-BD
solution following the manufacturer’s recommendations. Trizol (Life
Technology, Gaithersburg, MD, USA) was also used to extract total
RNA from mononuclear cells obtained after centrifugation on
Ficoll/Hypague gradient. After precipitation, the total RNA was
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Table 1 RT-PCR primers
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Gene Primer sequence 5'-3' AT(MgCL)? PCR-cDNA
GAPDH GGGAAGGTGAAGGTCGGAGTC

AGCAGAGGGGGCAGAGATGAT 62 (1.5 mM) 375 bp
p53 TCTGGGCTTCTTGCATTCTGGGAA

TCTCGGAACATCTCGAAGCGCTCAC 62 (1.5 mM) 699 bp
CEA AGC CCT GGT GTAGTT TCTTCATT

AGA TGG GGT TTC ACG ATG TTG 64 (1.8 mM) 169 bp
CGA TCCGCCGCTGTCCTGGCTCTTCT

TGGGGCTGGGCTTGGAAAGTGTGT 60 (1.5 mM) 142 bp
CK18 ATG CCC GTC TTG CTG CTG AT

CTT GGC GAG GTC CTG AGATTT G 62 (1.5 mM) 275 bp
CK19-outer GCG GGC AAC GAG AAG CTAACC

CTT CAG GCC TTC GAT CTG CAT 64 (1.5 mM) 495 bp
CK19-inner CCCGCGACTACAGCCACTACTACAC

GCAGAGCCTGTTCCGTCTCAAA 60 (1.5 mM) 156 bp
CK20 GCTCGGTGTGTCCTGCAAATTGATA

AGTGTTGCCCAGATGCTTGTGTAGG 62 (1.5 mM) 252 bp
Enolase GAG CGG GCA GTG GAA GAA AAG G

GTC CGG CAAAGC GAG CTTCAT C 64 (1.8 mM) 292 bp
Ep-cam GCG TTC GGG CTT CTG CTT GC

CCG CTC TCA TCG CAG TCA GGA 62 (1.5 mM) 287 bp
ESM1 GGT GGA CTG CCC TCAACACT

AAG GTG CCG TAG GGA CAG TCT 62 (1.8 mM) 246 bp
MUC1 ATC CCA GCA CCG ACT ACT ACC

AAG GAA ATG GCA CAT CACTCAC 60 (1.8 mM) 264 bp
NCAM GGA GGG GAA CCA GGT GAACA

TGG TCG ATG GAT GGT GAA GAG 58 (1.5 mM) 270 bp
SYPH TGC CAA CAA GAC CGA GAG TGA

CCA CAT GAA GGC GAA CAC AGC 62 (1.5 mM) 289 bp

3AT. annealing temperature. MgCl, concentration in the PCR reaction is indicated in parentheses.

GAPDH = glyceraldehyde-3-phosphate dehydrogenase; CEA = carcinoembryonic antigen; CGA = chromogranin;
CK = cytokeratin; EGP-40 = epidermal glycoprotein-40; ESM-1 = human endothelial cell-specific molecule;
MUC-1 = apomucin type 1; NCAM = neural-cell adhesion molecule; SYPH = synaptophysin.

dissolved in 100 or 300 pl RNase-free water for bone marrow and
leukapheresis products, respectively. The quantity of isolated RNA
was determined by absorbance at 260 and 280 nm. RNA quality was
assessed by analysis of about 0.6-1.0mg of tota RNA in a 1%
agarose gel electrophoresis. When 28S and/or 18S ribosoma RNA
(rRNA) bands appeared on the agarose gel, the rRNA was considered
intact or partialy degraded. When no 28S and 18S rRNA bandswere
present, the rRNA was considered totally degraded (Yan et a, 1998).

To eliminate contaminating DNA, 10 g of RNA were exposed to
RNAse-free DNase | (1 U ug™* RNA, Roche Diagnostics, Germany)
at 37°C for 30 minutesin 40 pl of asolution containing 40 mM Tris-
HCL (pH7.9), 6mM MgCl,, 10mM CaCl,, 10 mM NaCl, 10mM
DTT and 4 U RNasine (Promega, Madison, WI, USA). Digestion
was stopped by adding 5 pl of astop-solution (50 MM EDTA and 1.5
M Na-acetate). The DNA-free RNA solution was re-extracted with
phenol-chloroform and precipitated in ethanol in presence of 10 pg
glycogen. cDNA was obtained from 5 pg of RNA DNA-free using
Expand Reverse Transcriptase (RT) (Roche Diagnostics, Germany)
and d(N)6 random primers as recommended by the manufacturer. A
paralel RNA without Expand RT was run for each sample.

The resulting cDNA was subjected to PCR. Amplification resc-
tions (20 pl) were performed in presence of 1/10 (2 pl) of the cDNA
reaction, with an initial incubation step a 95°C for 5 minutes.
Cycling conditions consisted in denaturation at 94°C for 30 seconds,
annealing for 45 seconds, and extension a 72°C for 45 seconds
over atotal of 40 cycles. The reaction was completed by another
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incubation step at 72°C for 10 minutes. Annealing temperatures (AT)
are indicated in Table 1. The reaction products were subjected to
dectrophoresis in 2% agarose gel and visualized by ethidium
bromide staining. The RT-PCR procedure was performed at least
twice for each sample. To ensure that the RT-PCR procedure was
performed as required, an assay with primers specific for the glycer-
a dehyde-3-phosphate dehydrogenase (GAPDH) and p53 genes was
run using the same cDNA aliquots.

Statistical methods

Statistical comparisons of the different markers tested on the same
samples were performed with the McNemar test for paired observa-
tions (Zar, 1974). Otherwise, comparisons between patients with
limited versus extensive disease were performed with the Fisher test.
For analyses of the tumour load in contaminated bone marrow and
leukapheresis samples, the Kolmogorov—Smirnov non-parametric
test for comparison of distributions was used (Conover, 1971).

RESULTS

Contamination of bone marrow samples as
demonstrated by ICC staining

N-CAM-specific MAb MOC1, EGP-40-specific MAb MOC31
and cytokeratin-8/-18-specific MAb CAMb5.2 were used for
immunochemistry. Tumour cells were found in 13 of the 27 (48%)
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Table 2 ICC staining results

N-CAM EGP-40 CK 8 +18

BM:
LD (N =12) 3 (25%) 2 (17%) 1( 8%)
ED (n =15) 10 (67%) 10 (67%) 8 (53%)
Total (n = 27) 13 (48%) 12 (44%) 9 (33%)

LP:
LD (n =15) 4 (27%) 0 ( 0%) 0 ( 0%)
ED (n=14) 6 (43%) 0 ( 0%) 0 ( 0%)
Total (n = 29) 10 (34%) 0 ( 0%) 0 ( 0%)

ICC = Immunocytochemistry; BM = bone marrow; LP = leukaphereses;
N-CAM = neural-cell adhesion molecule; EGP-40 = epithelial glycoprotein-
40; CK 8+18 = cytokeratins 8+18; LD = Limited disease; ED = Extensive
disease; n = number of samples (several leukapheresis samples could have
been collected from one patient).

analysed bone marrow samples. The results are broken down in
Table 2. ICC staining revealed the presence of tumour cell in 3
of the 12 (25%) patients with limited disease. In the presence of
extensive disease, by contrast, 10 of 15 (67%) patients showed
bone marrow contamination. The difference of bone marrow cont-
amination between limited and extensive disease was statistically
significant (P = 0.03). Immunostaining with mAb MOC1 against
N-CAM was positive for al 13 positive bone marrow samples.
MOC31 identified 12, CAMS5.2 identified only 9 positive samples.
The difference between contamination rates using the various anti-
bodies was not statistically significant. An example of cells conta-
minating bone marrow is shown in Figure 2A and 2B.

CEA-specific mAb 11-7 was used on 10 bone-marrow samples.
In 4 cases the result was negative athough the presence of conta-
mination was clearly established by cytology and/or histology.
Staining patterns among positive cytospins were very heteroge-
neous. This low and variable expression by SCLC cells prompted
us to abandon staining for CEA.

Contamination of leukapheresis products as
demonstrated by ICC staining

29 of the 30 leukapheresis samples were available for immunol-
abelling of cytospins. 10 of them (34%) were demonstrated to
harbour contaminating tumour cells. Leukapheresis samples
apparently only contained cells expressing N-CAM (Table 2). 4 of
the 15 (27%) leukapheresis samples from patients with limited
disease as compared to 6 of the 14 (43%) samples from patients
with extensive disease were shown to be contaminated. This
difference was not statistically significant (P = 0.45). A contami-
nating cell in aleukapheresis product is shown in Figure 2C. Non-
specific staining of a normal eosinophil is presented for
comparison (Figure 2D). Morphological characteristics (cyto-
plasm and nucleus) are clearly different in the tumour and the
haematopoietic cell.

6 patients with tumour cellsin their leukapheresis products had
sequential collections (on days 1 and 2): in 4 of them, contamina-
tion was observed in both leukapheresis harvests, while the
remaining 2 patients showed tumour cells only in the first harvest.
The possibility to enumerate stained cells enabled us to quantify
tumour contamination on immunostained cytospins from bone
marrow and leukapheresis products. In patients with extensive
disease and contaminated bone marrow, a median of 15% of
mononuclear cells (range 0.05-88%) could be identified as tumour
cells. On the other hand, the number of tumour cells was much
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lower among the 3 patients with limited disease who had positive
bone marrow, representing a median of 0.01% (range 0.001-0.2%).
This difference approached satistical significance (P = 0.075;
Kolmogorov—Smirnov non-parametric test for comparison of
distributions). Leukapheresis contamination was significantly less
marked in patients with limited disease as compared to those with
extensive disease: in the 6 extensive disease samples, the median
contamination rate was 400 (range 10—700) tumour cells per 1 x
10° mononuclear cells (0.04%), whereas in the 4 limited disease
samples a median of 10 (range 2-15) tumour cells per 1 x 10°
mononuclear cellswereidentified (P = 0.042; Kolmogorov—Smirnov
non-parametric test).

We also compared bone marrow and leukapheresis contamina-
tion in the 16 patients who had leukaphereses. The presence of
SCLC tumour cells in bone marrow as assessed by cytological or
histological means or ICC staining was highly predictive of conta-
minating cells in leukapheresis products. Indeed, 5 out of the 6
patients (83%) with positive leukapheresis staining exhibited
bone-marrow contamination. Of the 10 patients with negative
leukaphereses, 6 (60%) showed no contamination of their bone
marrow by standard examination and ICC staining. No contami-
nating tumour cellswere observed in the leukapheresis products of
patients who showed no bone marrow involvement.

Appropriate markers for RT-PCR assessment of bone
marrow and leukapheresis products

An appropriate marker for SCLC tumour cell detection in
bone marrow and leukapheresis samples should return no
positive signal (i) in the blood from healthy volunteers; (ii) in
leukapheresis samples from normal subjects, i.e. hedthy allo-
geneic transplant donors; (iii) in bone marrow from patients with
haematopoietic malignancies such as lymphoma, myeloma or
leukaemia. As apparent from Figure 1 and in Table 3, the criteria
were met only by CK-19, CEA and chromogranin. Therefore we
performed reconstitution experiments to determine the sensitivity
of the RT-PCR for CK-19 and CEA, mixing 10-fold serial dilu-
tions of different tumour cell lines (SW2, a small cell carcinoma
cell line and SW480, a colorectal cancer cell line) with normal
haematopoietic cells. With some of the cell lines tested, this
yielded a sensitivity limit of approximately one tumour cell in 107
normal cells for both markers. Some other cell lines, however,
achieved only a sensitivity of 10—, which indicates awide range of
CK-19 and CEA expression by epithelial cells.

Patient 1  Patient 2 Patient 3 Patient 4

M C BM L1 L2 BM L1 BM L1 BM L1 N

CK-19 +156 bp

CEA ~169 bp

CGA <142 bp

p53

+699 bp
GAPDH

2375 bp

Figure 1 RT-PCR signals in BM and LP. M = size marker (100 bp ladder);
C = positive control cell line (SW2); BM = bone marrow; L1, L2 = sequential
leukaphereses; N = negative control (RT-PCR performed in absence of RNA)
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Figure 2 Immunostaining of bone marrow and leukapheresis samples. (A) Cluster of contaminating cells in bone marrow (x 1000; MOC1 MADb staining against
N-CAM, see Materials and Methods for dilution). (B) Cluster of contaminating cells in bone marrow (x 1000; MOC31 MADb staining against EGP-40). (C) Isolated
contaminating tumour cell in a leukapheresis product (x 1000; MOC1 MADb staining against N-CAM). Note the high nuclear size/cytoplasm ratio. (D) Non-specific
staining of a haematopoietic cell (eosinophil) in the bone marrow (x 500; MOC1 MADb staining against N-CAM). Note the morphology of the cell, the size of the

stained granules and the nuclear size/cytoplasm ratio

Table 3 RT-PCR markers

Blood? Lp® BMme
(n =10) (n =10) (n=12)
N-CAM, Enolase, CK-18,
ESM-1, MUC-1 Yes Yes Yes
EGP-40, Synaptophysin No Yes Yes
CEA, CK-19, Chromogranin No No No

aBlood from healthy volunteers. °Leukaphereses from healthy donors. °Bone
marrow from patients with haematological malignancies. BM = bone marrow;
LP = leukaphereses; N-CAM = neural-cell adhesion molecule;

EGP-40 = epithelial glycoprotein-40; CEA = carcinoembryonic antigen;

CK 18/19 = cytokeratins 18 or 19; ESM-1 = human endothelial

cell-specific molecule; MUC-1 = apomucin type 1.

Contamination of bone marrow and leukapheresis
products as demonstrated by RT-PCR

23 bone marrow samples were available for RT-PCR analysis. In
the 10 patients with limited disease, positive signals were seen in
6 (60%) bone marrow samples with CK-19 primers, in 2 (20%)
with CEA primers and in none with chromogranin (Table 4). Of
the 13 patients with extensive disease, 9 (69%) showed positive
bone marrow signals with CK-19, 8 (62%) with CEA and 6 out of
12 (50%) with chromogranin. Overal, positive signals were
observed in 6 (60%) and 9 (69%) bone marrow samples from
patients with limited and extensive disease respectively.

© 2001 Cancer Research Campaign

Table 4 RT-PCR results

CK-19 CEA CGA RT-PCR (any
positive signal)

BM:

LD (n = 10) 6 (60%) 2 (20%) 0 (0%) 6 (60%)

ED (n = 13) 9 (69%) 8 (62%) 6 (50%) 9 (69%)

Total (n = 23) 13 (48%) 12 (44%) 6 (26%) 15 (65%)
LP:

LD (n=9) 5 (56%) 6 (67%) 0 (0%) 8 (89%)

ED (n=9) 4 (44%) 6 (67%) 0 (0%) 6 (67%)

Total (n = 18) 9 (50%) 12 (67%) 0 ( 0%) 14 (78%)

BM = bone marrow; LP = leukaphereses; CEA = carcinoembryonic antigen;
CK 19 = cytokeratin 19; CGA = chromogranin; LD = Limited disease;

ED = Extensive disease; n = number of samples (several leukapheresis
samples could have been collected from one patient).

RT-PCR was also performed in 29 out of the 30 leukapheresis
samples. In 11 samples, amplification of the control p53 and
GAPDH mRNA transcripts did not result in clearly visible bands,
thus reflecting poor RNA quality. We therefore considered that the
results with CK19, CEA or chromogranin primers in those
samples, even when positive, were not reliable and decided not to
report them. All those samples had been collected at the beginning
of the study. Mononuclear cells for RT-PCR analysis were
obtained after centrifugation on Ficoll/Hypague gradient. The
duration of this procedure could have been deleterious to RNA

British Journal of Cancer (2001) 85(11), 1713-1721
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transcripts. Solid data were obtained for the 18 remaining leuka-
pheresis samples (Table 4). Of the 9 samples from patients with
limited disease, positive signals were obtained in 5 (56%) cases
after amplification with CD19 primers and in 6 (67%) cases after
amplification with CEA primers, whereas chromogranin primers
yielded no positive signals. Of the 9 samples from patients with
extensive disease, 4 (44%) showed positive signals for CK-19 and
6 (67%) for CEA. Again, there were no positive signals after chro-
mogranin amplification. Overall, positive signalswere observed in
8 (89%) or 6 (67%) leukapheresis products from patients with
limited or extensive disease, respectively.

The contamination patterns in bone marrow as compared to
leukapheresis products could be assessed based on 7 patients. 5 of
them had positive signals in leukapheresis products as determined
by RT-PCR, al of them exhibiting visible bands in their bone-
marrow samples. One patient was negative with regard to both
bone marrow and leukapheresis, and one patient was characterized
by negative stem-cell collections while the bone marrow sample
expressed a positive signal. There were no cases of positive leuka-
pheresis samples in the absence of bone-marrow contamination.

ICC versus RT-PCR: comparison of results

The results obtained using RT-PCR in the 23 bone marrow
samples were compared with those obtained by ICC in the same
samples (Table 5). In 16 of them (70%) both results were in agree-
ment, both for patients with limited (60%) and for patients with
extensive disease (77%). Where results were not in agreement, it
was in al cases but one the RT-PCR finding that was positive.
Only one bone marrow sample that tested positive by 1CC was not
identified by RT-PCR, probably due to lack of CK-19, CEA and
chromogranin expression by the tumour cells.

Likewise, we compared the results obtained by RT-PCR in the
18 leukapheresis samples to those observed with ICC assays
(Table5). Both resultswere in agreement in only 9 (50%) samples,
again with no significant differences between patients with limited
(44%) as compared to extensive (56%) disease. 7 out of these 9
(78%) stem cell collections with discordant results were positive
by RT-PCR but negative by ICC, while the reverse was true in the
remaining 2 patients (Table 5). Although the rate of agreement
between the 2 methods appears to be lower in leukapheresis prod-
ucts (50%) than in bone marrow (70%), the number of samples
was too small for this difference to reach statistical significance
(P=0.2).

Among the patients with limited disease, the rate of positive
signals indicating contamination in bone marrow or leukapheresis
products was much higher with RT-PCR (14/19, 74%) than with

Table 5 Comparison ICC staining and RT-PCR

BM LP
RT-PCR/ICC LD ED LD ED
(n =10) (n=13) (n=9) (n=9)

Positive/positive 2 7 3 4
Negative/negative 4 3 1 1
Positive/negative 4 2 5 2
Negative/positive 0 1 0 2
Concordance 6/10 (60%)  10/13 (77%)  4/9 (44%) 5/9 (56%)

Total: 16/23 (70%) Total: 9/18 (50%)

ICC = Immunocytochemistry staining; BM = bone marrow; LP =
leukaphereses; LD = Limited disease; ED = Extensive disease.
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ICC (5/19, 26%). This difference was statistically significant (P <
0.01).

DISCUSSION

This is the first study addressing the use of RT-PCR assays for
tumour cell detection in leukapheresis samples from patients with
SCLC. The contamination rate of leukapheresis products as
detected by RT-PCR based on CEA primers was 67% for patients
with extensive disease. In patients with limited disease, positive
signals were observed in 74% of cases. The rate of contamination
identified by RT-PCR in leukapheresis products from patients with
limited disease was significantly higher (P < 0.01) than the one
observed by ICC staining. We also used RT-PCR assays for the
first time to evaluate bone-marrow contamination. Positive signals
based on chromogranin, CK19 or CEA primers were obtained in
50, 62% or 69%, respectively, of bone marrow samples from
patients with extensive disease. In patients with limited disease,
positive signals were observed in 60% of bone marrow samples
based on CK-19 primers. This potential tumour contamination could
explain the high incidence of relapse at distant sites observed in
patients with limited disease. Our results also raise the question of
assessing disease extension with more sensitive methods than light
microscopy or ICC staining in patientswith SCLC.

Contaminating tumour cells were clearly demonstrable by
immunostaining in 34% of leukapheresis products and were more
frequent (43 vs 27%) among patients with extensive than among
those with limited disease. Also, the number of detected cells was
significantly higher in patients with extensive disease. These results
do not support previous findings in breast cancer patients where
tumour cells have been observed in 10-20% of the leukapheresis
products depending on the stage and extent of previous treatment
(Rosset al, 1993; Passos-Coelho et a, 1996; Franklinet al, 1999). In
asmall study on SCLC, Brugger et d failed to detect tumour cellsin
peripheral blood of patients with limited disease (Brugger et dl,
1994). By contrast, ICC staining with cytokeratins and an epithe-
lium-specific cell surface antigen revedled 5 of 10 samples from
extensive disease patients to be contaminated by tumour cells.

One of the advantages of immunostaining is that it allows quan-
tifying the contaminating tumour cells. Thus we were able to
demonstrate a significant difference of tumour load in the leuka-
pheresis products of patients with limited as compared to exten-
sive disease. Naturaly the clinical relevance of these reinfused
tumour cells remains to be verified in the same manner as it was
for lymphoma, leukaemia or neuroblastoma (Gribben et al, 1991,
Brenner et a, 1993; Rill et a, 1994). In the present study, among
the patients participating in the high-dose chemotherapy
programme, 10 had leukapheresis samples enabling a reliable RT-
PCR analysis. 8 of them died of distant metastases. Numbers are
too small to determine if leukapheresis contamination by 1CC or
RT-PCR was associated with a different time to progression or
disease-free survival. 2 patients are still alive more than 3 years
after diagnosis. one presented leukapheresis contamination by RT-
PCR and the other not. Cells could not be detected by ICC in any
leukapheresis of these 2 long survivors.

In the bone marrow, our results with antibodies specific for
NCAM (48% of all patients, with 25% of patients with limited
disease and 67% of patients with extensive disease) are consistent
with the datain the literature (Hirsch et al, 1977; Stahel et al, 1985;
Beiske et a, 1992; Pasini et a, 1995). Interestingly, contamination
rates obtained with antibodies specifically directed against N-CAM,
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EGP-40 or cytokeratins were similar. However, there was no need
in the use of a cocktail of antibodies since sensitivity of tumour
cell detection was not increased when pooling the results obtained
with the various antibodies (data not shown). CEA, on the other
hand, does not seem to be an appropriate marker for ICC staining
in SCLC, as4 out of 10 patients who clearly showed bone marrow
contamination at routine light microscopy, tested negative with
MADb [1-7. Moreover, the results of ICC staining in the 6 remaining
patients with CEA-positive tumour cells in their marrow varied
widely between cells. Tumour cells in leukapheresis products were
not detected by MAb MOC31 or CAM5.2 but were clearly identi-
fied by the N-CAM-specific MAb MOC1. Thus, it appears that anti-
bodies that are useful for bone marrow might be inappropriate for
the assessment of leukapheresis products.

RT-PCR has several potential advantages over | CC staining. Not
only is the technique relatively easy to handle, but there are
various tested primer sets available, cells can be analysed in great
numbers, and the sensitivity is potentially higher than that of ICC
assays (Schoenfeld et al, 1997; Ross, 1998; Zhong et al, 1999). On
the downside, there also exist shortcomings of this method that
prevent it from being universally accepted (Krismann et a, 1995;
Bostick et al, 1998; Lambrechts et al, 1998). All PCR assays are
extremely prone to contamination by all types of epithelial cells.
The reported results are purely qualitative and there is no way to
verify that the obtained signals are really due to tumour cell conta-
mination. There is aways a chance that pseudogenes or ‘illegiti-
mate transcripts of some epithelial markers in haematopoietic
cells (Datta et a, 1994; Krismann et al, 1995; Benhattar et a,
1998; Lambrechts et al, 1998) might interfere with the results.

It is not possible to choose a set of primers which would not
amplify any of the potential pseudogenes. Indeed, these pseudo-
genes can vary from one population to another and, obviously,
they are not al known. In order to overcome this limitation,
severa tools were used to avoid those pitfallsin the present study.
To eliminate genomic DNA from the samples after RNA extrac-
tion, an extensive DNase 1 digestion was performed on the total
extracted RNA. To exclude the possibility that signals were due to
amplification of pseudogenes, a second RT-PCR with no reverse
transcriptase added during the cDNA synthesis was always simul-
taneously run. Furthermore, we only used the most selective
markers identified by extensive testing of negative controls —i.e.
peripheral blood from healthy volunteers, as well as leukapheresis
samples from normal alogeneic transplant donors and patients
with haematological malignancies in remission. Our finding that
CK-18, MUC-1 and EGP-40 were not suitable markers because of
illegitimate transcription of targets in peripheral blood or bone
marrow is consistent with previous reports (Helfrich et al, 1997,
Lambrechts et al, 1998). Neuroendocrine markers such as N-
CAM, enolase and synaptophysin had to be further excluded due
to ‘illegimitate transcripts’ within haematopoietic cells.

Unlike previous investigators (Krismann et al, 1995; Zippelius
et al, 1997), we observed no false-positive results with CEA or
CK-19 primer amplification in our various negative controls. We
suspect that the results of those studies may have been distorted by
the presence of pseudogenes. To verify this notion, we performed a
nested PCR after DNase digestion, with the outer CK-19 primers
followed by an amplification with theinner CK-19 primers, which
confirmed the absence of signals even when PCR cycles were
significantly increased (data not shown). It therefore appears that
our results obtained in bone-marrow and leukapheresis samples
indeed reflect real contamination by tumour cells.
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The results obtained with either ICC staining or RT-PCR were
consistent in 50% of leukapheresis samples. Where they conflicted,
it was in 78% of cases the RT-PCR that was positive and the ICC
staining that was negative. This difference could be due to the
sensitivity of both assays, which some authors have claimed is
higher with RT-PCR (Schoenfeld et al, 1997; Zhong et al, 1999).
In our study, there was no way for us to compare the sensitivities
involved because the number of mononuclear cells used with both
methods was not standardized. Also, it was not possible to use the
same markers in all tests. Bone-marrow and leukapheresis prod-
ucts definitely differ in terms of cell environment and cell stimula-
tion. Indeed we observed that some markers (like EGP-40 and
cytokeratins with ICC staining and chromogranin with RT-PCR)
were no longer detectable in leukapheresis products after mobi-
lization chemotherapy and G-CSF. A similar phenomenon was
described by Kriiger et al, who found bone-marrow samples from
normal donors to be negative for CK19, whereas cultured bone-
marrow cells would express this marker (Kriiger et a, 1998). These
results suggest that it is possible under certain conditions to induce
transcription of ‘epithelium-specific markers in haematopoietic
tissue. Furthermore they indicate that agood tumour cell marker in
bone marrow is not automatically a good choice when it comes to
analysing leukapheresis products.

ICC assays are still considered the ‘gold standard’ in detecting
tumour cell contamination, as the morphology of stained cells can
be evaluated under the microscope and the degree of contamina-
tion quantified. By comparison, RT-PCR assays are potentially
more effectivein ng the real contamination of leukapheresis
samples in patients with SCLC. In bone-marrow samples, the
results obtained with ICC and RT-PCR are relatively consistent
(general agreement 70%) provided that appropriate precautions are
taken to avoid false-positive and false-negative results. In leuka
pheresis products, the rate of agreement between |CC and RT-PCR
is 50%, reflecting a greater number of positive findings obtained
with RT-PCR, which confirmsthat RT-PCR is preferable for leuka-
pheresis products. In our hands, CEA has proved to be the best
marker in this context. The clinical implications of this phenom-
enon will be studied further in a multicentre randomized phase |11
trial supported by the European Bone Marrow Transplant (EBMT)
group, which will compare a standard chemotherapeutic approach
with a sequential high-dose regimen supplemented with autolo-
gous haematopoietic progenitors.
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