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Introduction

The vaccine approach to cancer immunotherapy
The race to develop new immunotherapies has 
been motivated on the one hand by a series of 
clinical breakthroughs over the last few years, and 
on the other by a greater understanding of the 
interplay between malignant cells, the tumor 
micro-environment (TME), and the immune sys-
tem. The main types of immunotherapy that have 
been deployed or are currently being explored in 
clinical trials include immune checkpoint inhibi-
tors (ICI), chimeric antigen receptor (CAR) T-cell 
therapy, cytokine and other immunomodulators, 
oncolytic viruses and therapeutic cancer vaccines.

Cancer vaccines aim to stimulate a patient’s adap-
tive immune system by exposing it to a high con-
centration of tumor antigens. Identifying the right 
molecular targets is therefore key to designing an 
effective and specific cancer vaccine. Once target 
antigens are selected, they are administered in 

conjunction with immune adjuvants in order to 
successfully activate the host’s antigen presenting 
cells (APCs), which must then be capable of induc-
ing sustained CD4+ and CD8+ T-lymphocyte 
responses.1 These cells must then be able to reach 
the tumor and infiltrate it, overcoming any inhibi-
tory signals from the cancer itself or the neighbor-
ing TME cells to exert their anti-tumor effect. 
Finally, this response must be sustained over time 
despite the immune tolerance and escape mecha-
nisms deployed by tumors. To this day, three ther-
apeutic cancer vaccines have received regulatory 
approval in the United States and Europe, 
Sipuleucel-T, for hormone-refractory prostate 
cancer,2 and Talimogene Laherparepvec (T-VEC), 
for metastatic melanoma,3 and Bacillus Calmette-
Guérin, for non-muscle invasive bladder cancer.4 
These three successes, however, have been pre-
ceded by a number of negative clinical trials which 
failed to meet their primary endpoints but have 
taught us valuable lessons about vaccine design 
and tumor immunology.
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Different strategies exist for antigen selection 
(Figure 1). Tumor associated antigens (TAAs) 
are proteins that are present on healthy host cells 
but are typically overexpressed on cancer cells. 
Most of the first-generation vaccines that have 
been tested to date have targeted TAAs.5 The 
advantage of TAAs is that they are generally 
expressed across a large number of patients, and 
thus represent a convenient ‘off-the-shelf’ treat-
ment solution. Due to their presence on non-
tumor cells however, high-affinity T-cells which 
target them are typically eliminated as part of cen-
tral tolerance, leading to decreased immuno-
genicity.6 To overcome this, strong adjuvants, 
co-stimulators, and multiple immunizations may 
be necessary.7 Tumor specific antigens (TSAs), 
or neoantigens, on the other hand are found 
exclusively on malignant cells and arise typically 
from oncogenic mutations.8 These are recognized 
as foreign by the immune system and therefore 
present a higher immunogenic potential given the 
lack of central tolerance (second-generation vac-
cines). Some TSAs are present in multiple 
patients, most however are patient specific.5 This 
leads to the next important question in vaccine 
design: should the vaccine be pre-manufactured 
against a shared antigen, or should it be tailored 
to each patient’s tumor’s unique mutational pro-
file? The latter approach might possibly be more 
effective, but is limited by the tumor’s mutational 
burden, and typically requires considerable time 
and development cost. Finally, multiple antigens 
may be targeted simultaneously as part of pre-
defined or personalized panels, or even using 
undefined tumor-derived peptides or whole-
tumor lysates.9 Another important consideration 
when developing a vaccine platform is choosing 
which vector to use. Tumor antigens of interest 
can be administered directly as peptides; den-
dritic cells (DCs) can be pulsed with tumor anti-
gens and then injected either subcutaneously or 
intra-muscularly to the patient (second- and 
third-generation vaccines) (Figure 1). Tumor 
antigens can be encoded in nucleic acid vaccines 
(either DNA or RNA) and can even be transmit-
ted to the host by oncolytic viruses. Most of these 
methods have been explored in the context of dif-
fusely infiltrating gliomas and each has its advan-
tages and disadvantages,10 the discussion of which 
is beyond the scope of this review.

Resection or biopsy of the tumor provides valua-
ble tissue with which to identify immunogenic 

targets in gliomas. (1) Tumors are dissociated 
and are subjected to bulk and single-cell RNA-
sequencing, whole exome sequencing (WES), 
and other analyses in order to identify expressed 
mutations which may be targeted with a vaccine. 
(2) These antigens, whether specific to the malig-
nant cells (TSAs) or overexpressed on them 
(TAAs) are then loaded onto the vaccine as pep-
tides, encoded as nucleic acids, pulsed to APCs 
such as dendritic cells (DCs), or packaged within 
oncolytic viruses to be delivered to the patient. 
(3) This delivery can be performed by various 
methods such as intravenous, intramuscular, 
intradermal, subcutaneous, or intraventricular 
injection. (4) Imaging by MRI can then be lever-
aged to assess the local inflammation around the 
tumor as well as the progression of the disease. 
Peripheral blood mononuclear cell (PBMCs) can 
be collected to evaluate peripheral immune 
responses. Post-treatment biopsy offers invalua-
ble insight into the local dynamics between the 
immune system and the malignant cells within 
the TME.

Glioma background
Gliomas are the most common type of primary 
malignant brain tumors. In 2021, the fifth edition 
of the WHO Classification of Tumors of the 
Central Nervous System provided the most up-
to-date organization of these tumors according to 
histopathologic features and molecular parame-
ters.11 The mutational status of isocitrate dehy-
drogenase type 1 (IDH1) and type 2 (IDH2) is 
central to the classification of these tumors.12 In 
adults, diffuse gliomas represent three entities: 
IDH-wildtype glioblastoma (GBM, Grade 4), 
IDH-mutant astrocytoma (Grade 2–4), and 
IDH-mutant oligodendroglioma (Grade 2–3). 
GBM harbor histological signs of anaplasia such 
as microvascular proliferation and necrosis, and 
contain molecular alterations including epider-
mal growth factor receptor (EGFR) amplifica-
tion, telomerase reverse transcriptase promoter 
mutation, or concurrent chromosome 7 gain/
chromosome 10 loss. IDH-mutant astrocytomas 
are typically associated with mutations in TP53 
and loss of ATRX, whereas IDH-mutant oligo-
dendrogliomas are characterized by the co-dele-
tion of 1p/19q.11 Both carry a slightly better 
prognosis than the IDH-wildtype tumors, where 
survival commonly remains under 2 years.13 
Pediatric high-grade gliomas on the other hand 
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can be characterized into four distinct categories 
using their histone mutation status to delineate 
categories.14 The four types are diffuse midline 
glioma (DMG) H3 K27-altered, diffuse hemi-
spheric glioma H3 G34-mutant, diffuse pediatric-
type high-grade glioma H3-wildtype 
IDH-wildtype, and finally infant-type hemi-
spheric glioma.11 For all entities mentioned 
above, treatment revolves around three main pil-
lars: when the tumor is deemed operable, the 
patient will undergo surgery, followed by chemo-
therapy with temozolomide (TMZ), and radio-
therapy.15,16 Despite these efforts, diffuse gliomas 
invariably recur, infiltrating additional brain areas 
leading to increasing disability and death. Novel 
therapeutic agents are desperately needed, and 

recent clinical studies offer a glimmer of hope for 
these terrible diseases.

Unique immunotherapy challenges of diffuse 
infiltrating gliomas
Although initially considered a relatively homog-
enous histological group of tumors, recent 
advances in next-generation sequencing and 
other molecular profiling methods have vastly 
improved our understanding of diffuse infiltrat-
ing gliomas, resulting in revised classifications 
reflecting the unique biology and clinical behav-
ior of these tumors.12,17 The heterogeneity of 
these tumors, both on a population level (inter-
tumoral heterogeneity), and within individual 

Figure 1.  Therapeutic cancer vaccines in gliomas.
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tumors themselves (intra-tumoral heterogene-
ity), has now been well documented.18 In GBM, 
the genomic landscape is relatively homogenous 
compared to other tumors,19–21 whereas tran-
scriptomic studies have highlighted the presence 
of three bulk gene expression subtypes.22,23 At 
the same time, single-cell profiling methods have 
enabled the characterization of the intra-tumoral 
heterogeneity of gliomas and the composition of 
their TME.24,25 Unfortunately, these advances 
have yet to be translated into improved 
approaches to therapy. Gliomas harbor a unique 
set of challenges to immunotherapy, including a 
low mutational burden (TMB), intrinsic immu-
nosuppressive mechanisms, a notoriously immu-
nosuppressive tumor microenvironment, and a 
high level of inter- and intra-tumoral heteroge-
neity and cellular plasticity. Despite these obsta-
cles, select small studies have offered 
encouragement for a role for immunotherapy in 
the treatment of diffuse gliomas.26,27

It is widely accepted that the central nervous sys-
tem (CNS) benefits from active immune surveil-
lance.28 Microglia make up the bulk of resident 
CNS immune cells in the healthy brain, while 
border associated macrophages, blood-derived 
monocytes, dendritic cells (DCs), and neutro-
phils are also present in a smaller proportion.29 
These leukocytes can travel through the cerebral 
spinal fluid (CSF) to the deep cervical lymph 
nodes via dural lymphatic vessels,30–32 which pro-
vide an interface between the CSF and the lym-
phatic system for T cell activation and migration. 
Furthermore, ICI studies in brain-metastatic 
melanoma have shown that peripherally activated 
tumor-specific T cells are able to traffic to the 
CNS and induce a sustained clinical response in 
these patients.33 These immune surveillance and 
activation mechanisms establish a mechanistic 
foundation for the development of vaccine ther-
apy in gliomas. We provide here an update on 
recent cancer vaccine developments and a selec-
tion of key lessons that have been learned from 
previous trials in gliomas. A selection of notable 
glioma vaccine trials are outlined in Table 1.

Vaccines for glioblastoma
Glioblastoma is the most common and malignant 
primary brain tumor.53 Despite considerable 
research to find novel targets for therapy, the 
global standard of care continues to comprise 

surgery followed by concomitant radiotherapy 
and chemotherapy with the alkylating agent 
temozolomide (TMZ).54

In principle, GBM’s notoriously low tumor muta-
tional burden55 would be an obstacle to the devel-
opment of a vaccine, but recent studies challenge 
the notion that TMB is the main determinant of 
response to immunotherapy by providing evi-
dence that GBMs with higher TMBs do not nec-
essarily respond better to ICI immunotherapy.56 
Another factor to consider, is the high degree of 
subclonal neoantigens that arise due to the exten-
sive heterogeneity of these tumors.57 Epidermal 
growth factor receptor variant III (EGFRvIII) 
seemed like an ideal target for a vaccine: it is a 
tumor-specific mutated protein that is not 
expressed in healthy tissue, and it is present in 
around 20–25% of GBM cases when evaluating 
bulk samples.58,59 Preclinical studies showed the 
protein to be immunogenic60,61 and single arm, 
early clinical trials (ACTIVATE, ACT II, ACT 
III) demonstrated encouraging results for the 
peptide vaccine Rindopepimut with a median 
overall survival (OS) of 20–22 months.62,63 The 
double-blinded, phase III trial ACT IV was how-
ever discontinued after it disappointingly failed to 
meet its primary endpoint, with no significant dif-
ference in OS in patients with minimal residual 
disease (MRD). The study enrolled 745 patients 
who were randomly assigned to receive 
Rindopepimut with GM-CSF or controlkeyhole 
limpet hemocyanin via monthly intradermal 
injection until progression or intolerance, concur-
rent with standard oral temozolomide.36 The 
median OS in the treatment group was 20.1 ver-
sus 20.0 months in the control group.

In parallel to the ACT IV trial, a smaller phase II 
trial named ReACT sought to evaluate the effi-
cacy of Rindopepimut in recurrent GBM in com-
bination with bevacizumab, a vascular endothelial 
growth factor A inhibitor, versus bevacizumab 
alone.37 Amongst the 73 recruited patients, 
6-month progression-free survival (PFS) was 
28% in the combination therapy group compared 
to 16% in the control group. Two points relative 
to EGFRvIII are important to note with both 
these trials: (i) EGFRvIII is a subclonal anti-
gen,64,65 and (ii) loss of EGFRvIII occurs sponta-
neously in 50% of cases at recurrence66 
independently of treatment. This reinforces the 
notion that correct persistent antigen selection is 
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crucial, and that clonality of a given antigen might 
be more important than overall mutational bur-
den in heterogeneous tumors such as gliomas.67

Survivin is an anti-apoptotic protein which is 
strongly expressed in GBM and is associated with 
an unfavorable prognosis.68–71 SurVaxM is an 
altered multi-epitope peptide vaccine conjugate 
currently under investigation in a phase IIa trial 
(NCT02455557)38 with encouraging preliminary 
results. SurVaxM in combination with TMZ was 
well tolerated with no serious adverse events 
(AEs) reported, the median PFS was 11.4 months 
from the time of the first dose, and median OS in 
the cohort of 63 patients was 25.9 months. 
Importantly, the study was able to show that 
SurVaxM is capable of mounting both CD8+ and 
CD4+ T-cell responses. This is important, as 
there is emerging evidence that an effective T 
helper cell response is necessary for an effective 
anti-tumor response.72–77

Regarding the dendritic cell vaccine approach, 
the final results of the DCVax-L phase III trial 
were recently published.78 The DCVax-L trial 
recruited 331 patients with newly diagnosed 
GBM between 2007 and 2015, with 232 patients 
receiving the vaccine plus TMZ, and 99 patients 
receiving placebo plus TMZ, with a crossover 
option to the active treatment arm for those 
receiving placebo at the time of progression. A 
first report came out in 2018 showing an accept-
able safety profile with AEs similar between the 
two treatment groups.46 By the end of the trial, 
90% of patients had been treated with the 
DCVax-L, and the median OS of both treatment 
groups combined was 23.1 months from the time 
of surgery.46 The PFS (the primary endpoint of 
the study) was not reported. Furthermore, the 
IDH mutational status of patients was not inves-
tigated, possibly accounting for the extended sur-
vival observed in this trial. For the second report, 
the primary outcome was changed to OS and an 
external control population was introduced to 
measure the new primary outcome.78 Concerns 
have been raised in relation to the matching of 
this new external population compared to the ini-
tial cohort, in particular over prognostic factors 
such as age, steroid use, performance status, and 
extent of resection.79 Thus, conclusive evidence 
for the clinical use of DCVax-L in GBM is still 
awaited, highlighting the importance of stringent 
design of prospective clinical trials.

Another innovative approach to vaccine design 
consists in taking multiple epitopes of neoantigens 
and combining them in personalized vaccines to 
maximize the immunogenicity of the treatment. 
Keskin et al. showed that such an approach is tech-
nically feasible and can generate a response with 
specific T cells, which are capable of migrating 
from the periphery into the GBM microenviron-
ment.34 In this small (eight patients), proof-of-
principle study, 59 coding mutations were 
discovered on average in each patient using WES, 
a subset of which was shown to be expressed in 
each tumor using RNA-seq. Patients received a 
personalized vaccine 19.9 weeks on average after 
surgery, three of which received two follow up 
boosters, the other five having to withdraw due to 
disease progression. Median PFS and OS were 
7.6 months and 16.8 months respectively. 
Reactivity of PBMCs to specific peptides was lev-
eraged to analyze levels of immunization. The two 
patients in the cohort who did not receive dexa-
methasone generated immune responses against 
multiple neoantigens as opposed to their steroid-
treated counterparts. This response comprised 
both CD8+ and CD4+ T cells despite using major 
histocompatibility complex (MHC) class I binding 
prediction algorithms and included antigen-spe-
cific memory T cells. Five patients including both 
steroid-naïve individuals underwent surgery post-
vaccination, and tissue analyses showed an increase 
in infiltrating CD8+ T cells in the two patients who 
did not receive dexamethasone. Single-cell TT-cell 
receptor (TCR) sequencing was able to show that 
a subset of these infiltrating cytotoxic T lympho-
cytes (CTLs) were specific to vaccine neoantigens, 
however these cells exhibited a profound exhaus-
tion phenotype with expression of multiple co-
inhibitory receptors. This study showed that 
despite the generation of systemic and local spe-
cific immune responses, important barriers remain 
in terms of tumor-intrinsic immune evasion mech-
anisms and TME immunosuppression.80–82 In 
addition, this study illustrates the negative effect of 
steroids on any immunotherapy efforts in GBM 
and provides another evidence in support of the 
combination of vaccines with ICIs.

This multiple-antigen vaccine approach was also 
used by Hilf et  al. for the GAPVAC101 trial,35 
where 15 patients received two successive vac-
cines, APVAC1 which targeted unmutated TAAs 
and APVAC2 which targeted specific neoanti-
gens, both in combination with GM-CSF and 
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poly-ICLC as well as standard of care (SOC). 
Personalization of each vaccine was based on 
mutations and analysis of the immunopeptidome 
and transcriptome of each patient by mass spec-
trometry and microarray analyses, respectively. 
APVAC1 was individually composed of the 10 
highest ranking peptides drawn from a library of 
MHC class I and II binding peptides overrepre-
sented in GBM. APVAC2 was comprised of 1–2 
neoepitopes that are specific to each patient. A 
total of 15 patients received APVAC1 and 11 
received APVAC2. The former was shown to 
induce sustained responses of central memory 
CD8+ T cells, whereas the latter generated Th1 
CD4+ T cell responses. Two patients experienced 
anaphylaxis post-vaccination and one patient 
required high-dose steroid treatment for poten-
tially immune-mediated grade 3 cerebral edema. 
In contrast with the NeoVax trial above,34 the 
increase in PD-1 expression was shown to be low 
to moderate. Importantly, the authors note that 
pre-vaccination tumor-infiltrating lymphocytes 
(TILs) showed no reactivity to any of the identi-
fied APVAC antigens, suggesting that spontane-
ous T cell immunity is rare in GBM. Median OS 
and PFS was 29.0 months and 14.2 months, 
respectively. These studies highlight the advan-
tage of concurrently using multiple mutations, 
especially considering (i) the current difficulty at 
predicting which peptides will be particularly suc-
cessful at mounting an immune response, and (ii) 
the relatively low number of mutations in GBM. 
Two trials are currently testing the combination 
of NeoVax with pembrolizumab (NCT02287428), 
and NeoVax with nivolumab and ipilimumab 
(NCT03422094).

Vaccines for IDH-mutant glioma
Mutations in the IDH gene are a defining onco-
genic event in the development of a group of 
diffuse gliomas that range from low- to high-
grade, affect predominantly a younger popula-
tion, and are molecularly distinct from GBM.83,84 
The most frequent mutation involves the hete-
rozygous replacement of an arginine to a histi-
dine at the amino acid position 132 (R132H) in 
IDH1.85 This neomorphic mutation results in 
the enzymatic overproduction of 2-hydroxyglu-
tarate,86 an oncometabolite that plays a central 
role in the malignant transformation of these 
tumors via epigenetic mechanisms and exerts an 
immunosuppressive effect on the TME.87,88 

Importantly, this mutation is expressed ubiqui-
tously across all cells of the tumor and is typi-
cally conserved over time.89–91 For these reasons, 
the IDH1 R132H mutation is an attractive tar-
get for immunotherapy.

IDH1 R132H was shown to contain an immuno-
genic epitope which can be presented on MHC 
class II and induce CD4+ T-helper one responses 
that are specific to the mutated peptide and able 
to discriminate between the wildtype protein.92 
These encouraging results formed the basis of the 
NOA16 trial (NCT02454634) which sought to 
evaluate the safety of an IDH1 R132H vaccine 
(IDH1-vac) in 33 patients with grade 3 and 4 
IDH1 R132H+ astrocytomas in combination 
with radiotherapy and TMZ.49 The trial provided 
evidence of safety, with adverse vaccine-related 
reactions being common (90.6% of patients 
affected) but restricted to grade 1. Furthermore, 
93.3% of patients presented vaccine-induced 
immune responses. Interestingly, these responses 
were observed across multiple human leukocyte 
antigen (HLA) alleles and did not correspond to 
previous in vitro predictions of HLA binding 
affinities to the IDH1 R132H peptide.49 Beyond 
meeting its safety endpoint, follow up analyses 
showed the 3-year progression-free rate and 
death-free rate to be 0.63 and 0.84 respectively. 
Patients with demonstrable immune responses 
had a 2-year progression-free rate of 0.82, whereas 
the two patients who were not able to mount an 
immune response both showed progression 
within the first 2 years. Finally, the authors noted 
a high frequency of radiographic pseudoprogres-
sion in patients taking part in the trial compared 
to a molecularly matched control group, possibly 
due to vaccine-related intratumoral inflamma-
tion.93 Single-cell analyses of the TILs within the 
areas of pseudoprogression showed the presence 
of regulatory T cells, activated CD40LG + CD4 
T cells, and CXCL13 + CD4+ T cells, the last 
two dominated by a single IDH1 R132H-reactive 
T-cell receptor.

IDH1-vac is currently being investigated in a 
multicenter phase I trial (AMPLIFY-NEOVAC, 
NCT03893903) in combination with the anti-
PD-L1 antibody avelumab in 48 patients with 
recurrent astrocytoma or oligodendroglioma.94 
This provides an important opportunity to test 
the combination between a vaccine, to promote 
antitumor responses, and an ICI, to counteract 
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tumoral and microenvironmental immunosup-
pression. A critical part of this study involves the 
regular monitoring of T- and B-cell responses in 
the blood, single-cell analyses of both tumor tis-
sue and TILs, and proteomic and transcriptional 
analyses of liquid and fecal biopsies.94 This will 
hopefully provide a comprehensive insight into 
the determinants of response and resistance to 
vaccine treatment in IDH-mutant gliomas, ques-
tions of major clinical relevance for which clear 
answers are lacking.

Vaccines for DMG, H3 K27M-altered
The dismal prognosis associated with DMGs, H3 
K27M-altered, combined with their relative 
insensitivity to current treatment modalities make 
them a high priority target for the development of 
immunotherapies. These aggressive pediatric 
tumors are refractory to conventional chemother-
apy, and typically present in the thalamus, brain-
stem, or spinal cord which prevents or severely 
limits surgical resection. Focal radiation remains 
the standard of care, with concurrent and adju-
vant chemotherapy being of equivocal benefit. 
According to the 2021 WHO classification of 
CNS tumors, 80–85% of DMGs harbor a lysine 
to methionine mutation on the 27th position of 
histone H3.1 or H3.3 (H3.1 K27M and H3.3 
K27M respectively).17 The presence of this muta-
tion establishes a WHO grade 4 grading. Beyond 
playing a role in the pathogenesis of the disease, 
these mutations represent a possible target for 
immunotherapy95 with high disease specificity96 
and low probability for antigen loss-mediated 
escape.97 These tumors however possess unique 
challenges to the development of immune thera-
pies, the first of which is inherent to their location 
– involving vital structures along the midline of 
the neuroaxis – where immunological activation 
and its accompanying inflammation and edema 
may cause serious side effects. Furthermore, 
DMGs are extremely heterogeneous tumors with 
complex karyotypes exhibiting gains of chromo-
some 1q along with losses of 11p, 13q, and 14q, 
and numerous genetic alterations within cancer-
relevant pathways such as PDGFRA, TP53, 
MYC, PVT-1/MYC, RB1, and PTEN.98 Lastly, 
DMGs have been shown to be particularly immu-
nosuppressive with low levels of microglia, infil-
trating CD3+ T-lymphocytes, and inflammatory 
markers with simultaneously upregulated TGFβ1 
signaling.99–101

The H3.3 K27M mutation was shown to be con-
tained in a neoantigen epitope capable of stimu-
lating a specific T-cell response.95 A peptide 
vaccine was developed targeting this sequence 
and 19 H3.3 K27M+ patients between the ages 
of 3 and 21 were enrolled in a trial (NCT02960230) 
which showed the vaccine to be safe with no grade 
4 treatment-related AEs.51 Cytometry by time-of-
flight was leveraged to conduct immune analyses 
on PBMCs. The authors were thus able to show 
that despite the treatment not improving the 
overall outcome for H3.3 K27M+ patients, there 
was a trend toward survival benefit in the sub-
group of patients who showed an expansion of 
H3.3 K27M-reactive CD8+ T cells, with a 
median OS of 16.3 months and a prolonged 
median PFS compared to their immune non-
responder counterparts. Additionally, the study 
highlighted two distinct myeloid-derived suppres-
sor cell populations, labeled MDSC-high and 
MDSC-low, the latter of which had statistically 
significant correlation increased OS and PFS 
compared to the MDSC-high group. One patient 
showed a partial radiographic response at weeks 
12 and 24 after 9 vaccinations. The administra-
tion of steroids was also shown to be correlated 
with lower rates of vaccine-specific CD8+ T cells 
and higher proportion of MDSCs. The authors of 
this study argue in favor of obtaining post-treat-
ment biopsies as such tissue was not available and 
therefore no conclusions were reached concern-
ing T cell infiltration of the tumor, antigen loss or 
HLA downregulation.102

Another multicenter phase I trial is currently 
exploring a long peptide vaccine containing a 
K27M-mutated histone-3 sequence in combina-
tion with the human anti-PD-L1 antibody atezoli-
zumab (INTERCEPT-H3, NCT04808245103). 
Combinations with ICIs are also being explored in 
the rHSC-DIPGVax trial (NCT04943848) which 
seeks to evaluate the safety and tolerability of an 
off-the-shelf, neo-antigen heat shock protein con-
taining 16 common peptide neo-epitopes with the 
anti-PD-L1 antibody balstilimab and the anti-
CTLA-4 antibody zalifrelimab. An autologous 
dendritic cell vaccine pulsed with an allogenic 
tumoral cell line lysate was also shown to be safe 
and feasible (NCT02840123), with immune 
responses detected in PBMCs and the CSF.52 
Further results are eagerly anticipated, in particu-
lar in light of initial promising results with GD2-
Car T cells against this type of tumor.27
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Discussion
There is considerable interest and therapeutic 
development regarding cancer vaccines for the 
treatment of infiltrating gliomas. Completed pre-
clinical studies and clinical trials are outlining the 
landscape of challenges that need to be overcome 
to see these treatments enter the clinic. On a 
molecular level, identifying the correct antigens 
remains the single most important step in the 
design of a vaccine, and new algorithms are being 
developed in order to better predict which pep-
tides will be most suited to being presented on 
MHC I & II and eliciting immune responses.104–107 
Future vaccine efforts should aim to include both 
MHC I- and MHC II-presenting peptides, as 
CD4+ activation has been consistently shown to 
improve cytotoxic responses76,108 and extensive 
APC stimulation might be necessary to induce 
robust cancer immunity.109,110 A better under-
standing cellular interactions between malignant 
cells and the microenvironment in brain tumors 
will no doubt continue to be developed by spatial 
and single-cell profiling studies.111 Future preclin-
ical studies will need to be able to rely on robust 
experimental models which recapitulate the com-
plexity of the brain microenvironment and the 
interplay between malignant and immune cells.

The design of clinical trials themselves will need to 
be rethought; OS and PFS, hitherto the founda-
tions of trial metrics, fail to acknowledge the sub-
tleties of immune activation, and further granularity 
will be needed to dissect whether a vaccine is effec-
tive or not. For example, when OS was deemed 
equivalent between treatment arms of ACT IV, 
the trial was terminated and Rindopepimut was 
considered a failure.36 This ignores the fact that the 
vaccine was shown to induce a notable humoral 
response, and further analyses about the activation 
of T cell populations and tumor infiltration are 
sorely missed, leaving us with more questions than 
answers. The importance of histological charac-
terization of the tumor after treatment is becoming 
increasingly apparent, and an ever-greater number 
of clinicians are calling for the reevaluation of the 
necessity of biopsies for recurrent gliomas.112 The 
identification of specific biomarkers will also per-
mit in the future to select patient populations who 
are most likely to benefit from vaccines and other 
immunotherapy interventions.113 Finally, new 
standardized criteria for evaluating response and 
side effects in neuro-oncology immunotherapy tri-
als are being developed such as the Immunotherapy 

Reponse Assessment in Neuro-Oncology criteria, 
which provide a framework for treatment evalua-
tion and caution against premature assumptions of 
inefficacy in early phase trials.114

The groundwork has been laid showing that vac-
cines are an effective treatment modality in dif-
fuse gliomas, but they are unlikely to be sufficient 
as a monotherapy. Increasingly, clinical trials are 
exploring combinations with other small mole-
cule inhibitors and immunotherapies such as 
ICIs, CAR T and bi-specific T-cell engager thera-
pies. Current staples of treatment will also need 
to be reevaluated. Dexamethasone is currently 
given to most patients with CNS malignancies to 
control edema and relieve symptoms. This has 
well known immunosuppressive effects on T cell 
populations, has been shown to upregulate 
immune checkpoint inhibition,115 and limit the 
clinical benefit of immune checkpoint blockade in 
GBM.116 Alternatives to steroids such bevaci-
zumab are currently being explored.117–119 The 
timing of inoculation in relation to both residual 
disease and concomitant treatments is also worth 
careful planning. Currently, both FDA approved 
vaccines are used in metastatic, treatment-resist-
ant disease, implying that the cancer and immune 
system have been exposed to each other for a long 
time and have grown accustomed to each other’s 
presence. Treatment initiation as early as possible 
during immunological priming might be more 
efficient than during the chronic immune homeo-
stasis phase. Results from ACT IV showed that 
patients with residual disease performed better 
than those without, contradicting the commonly 
held belief that MRD is instrumental for the suc-
cess of immunotherapy.36 Further investigation is 
required into determining the optimal window of 
treatment for different tumors.
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