Bidimensional regression: a novel algorithm for the computation of a viewing point in space based on the relation between the 2D projective transformation and space resection

Jason Borioli^{1, 2}, Catherine Brandner², and François Bavaud¹

¹Faculty of Geosciences and Environment, University of Lausanne, Switzerland, ²Laboratory for Experimental Research on Behavior (LERB), SSP Faculty, University of Lausanne, Switzerland Jason.Borioli@unil.ch

Keywords: Bidimensional Regression, Two-Dimensional Projective Transformation, Space Resection, Unknown Interior Orientation Parameters, Unknown Exterior Orientation Parameters Mental maps, implying the comparison between a real-world and a mental spatial configuration, have been widely studied both in geography and psychology. One method for analyzing them is bidimensional regression, which Tobler introduced as a means to compare the similarity between two sets of two-dimensional data in relation to four transformation models: euclidean (similarity), affine, projective, and curvilinear [5]. The euclidean, affine, and curvilinear transformations have been explored to some extent [1, 2], while the projective transformation (P) has been given little attention. P is related to space resection (R), i.e. the computation of a viewing point in space [4]. So far, however, no contribution has explicitly shown the link between P (8 parameters) and R (9 parameters). The 9 parameters of R are composed of 3 interior-orientation parameters (IOPs) and 6 unknown exterior orientation parameters (EOPs), and to date, solutions for R have all assumed prior knowledge of the IOPs [3]. Building on Seedhamed's work [3], this contribution presents a novel algorithm for the retrieval of the EOPs without prior knowledge of the IOPs, which is the case when dealing with mental maps. The solution requires giving a fixed value, say unity, to the principal distance, one of the IOPs, and exploiting 6 of the 8 parameters of P to form a system of two equations resulting in a quartic equation $(\alpha x^4 + \beta x^3 + \chi x^2 + \delta x + \varepsilon = 0)$. Solving this system leads to the direct computation of the IOPs and EOPs. The validity of the algorithm is shown through numerical examples based on urban mental maps.

References

- 1. Friedman, A. and Kohler, B., Bidimensional Regression: Assessing the Configural Similarity and Accuracy of Cognitive Maps and Other Two-Dimensional Data Sets. Psychological Methods, Vol. 8, No. 4, 2003, pp. 468-491.
- 2. Nakaya, T., Statistical Inferences in Bidimensional Regression Models. Geographical Analysis, Vol. 29, No. 2, 1997, pp. 169-186.
- 3. Seedahmed G. H., Direct Retrieval of Exterior Orientation Parameters Using a 2D Projective Transformation. The Photogrammetric Record, Vol. 21, No. 115, 2006, pp. 211-231.
- Tobler, W. R., The Geometry of Mental Maps, in Golledge, R. G. and Rushton G., (eds.) Spatial Choice and Spatial Behavior: Geographic Essays on the Analysis of Preferences and Perceptions, Columbus, Ohio State University Press, 1976, pp. 69-81.
- 5. Tobler, W. G., Bidimensional Regression. Geographical Analysis, Vol. 26, No. 3, 1994, pp. 187-212.