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Abstract: In this paper we derive the weak and strong limits of maxima of contracted stationary Gaussian

random sequences. Due to the random contraction we introduce a modified Berman condition which is

sufficient for the weak convergence of the maxima of the scaled sample. Under a stronger assumption the

weak convergence is strengthened to almost convergence.
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1 Introduction & Main Result

If X,Xn, n ≥ 1 are independent N(0, 1) random variables, then it is well-known (see e.g., Berman (1992),

Piterbarg (1996) or Falk et al. (2010)) that the distribution of sample maxima Mn = max1≤i≤nXi converges

(after normalisation) to the Gumbel distribution Λ(x) = exp(− exp(−x)), x ∈IR, i.e.,

lim
n→∞

sup
x∈IR

∣∣∣∣P (Mn ≤ anx+ bn)− Λ(x)

∣∣∣∣ = 0, (1.1)

where

an = (2 lnn)−
1
2 and bn = (2 lnn)

1
2 − 1

2
(2 lnn)−

1
2 (ln lnn+ ln 4π).

Due to some underlying random scaling phenomena, often in applications Yi = SiXi, i ≤ n are available and

not the original observations Xi, i ≤ n, where Si is some random factor. Consider in the following S, Sn, n ≥ 1

independent non-negative random variables with common distribution function F being independent of

X,Xn, n ≥ 1. We are interested in this paper in contraction-type random scaling, i.e., F has a finite upper

endpoint, which for simplicity is assumed to be equal to 1.

If S is regularly varying at 1 with index γ ≥ 0, i.e.,

lim
u→∞

P (S > 1− t/u)

P (S > 1− 1/u)
= tγ , ∀t > 0, (1.2)
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then in view of Theorem 3.1 in Hashorva et al. (2010) (see also Theorem 4.1 in Hashorva (2013)), the limit

relation (1.1) still holds for M∗n = max1≤i≤n SiXi with constants

bn = G−1(1− 1/n), an = 1/bn ∼ (2 lnn)−1/2, (1.3)

where G−1 is the inverse of the distribution function G of SX and ∼ means asymptotical equivalence when

n→∞. Our first motivating result states that for any S not equal to 0 the approximation (1.1) holds.

Theorem 1.1. If SX has distribution function G with generalised inverse G−1, then (1.1) holds for M∗n

with constants an, bn as in (1.3).

The seminal result of Berman (1964) shows that if Xn, n ≥ 1 is a stationary Gaussian sequence with

ρ(n) = E (X1Xn), and X1 is a N(0, 1) random variable, then the sample maxima Mn still satisfies (1.1),

provided that the Berman condition

lim
n→∞

ρ(n) lnn = 0 (1.4)

is satisfied. In the sequel we refer to Xn, n ≥ 1 as a standard stationary Gaussian sequence (ssGs).

The main result of this contribution stated below shows that Theorem 1.1 can be stated for any ssGs,

provided that the Berman condition is accordingly modified, and further some additional restrictions on the

random scaling sequence are imposed via the following constrain:

Assumption A. Let S be a non-negative random variable with distribution function F which has upper

endpoint 1. For any u ∈ (ν, 1) with ν ∈ (0, 1)

P (Sτ > u) ≥ P (S > u) ≥ P (Sγ > u) (1.5)

holds with Sγ , Sτ two non-negative random variables which have a regularly varying survival function at 1

with non-negative index γ and τ , respectively.

We state next the main result of this paper.

Theorem 1.2. If S is such that Assumption A is satisfied, then Theorem 1.1 holds for any ssGs Xn, n ≥ 1

such that for some ∆ > 2(γ − τ)

lim
n→∞

ρ(n)(lnn)1+∆ = 0. (1.6)

This paper is organized as follows: we continue below with a new Section discussing our main findings and

then presenting an extension which strengthens the distributional convergence of maxima (M∗n − bn)/an to

almost sure convergence. Proofs and auxiliary results are displayed in Section 3.
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2 Discussion & Extensions

In the light of extreme value theory (see e.g., Resnick (1987), Embrechts et al. (1997), Falk et al. (2010))

the result (1.1) means that the distribution function Φ is in the Gumbel max-domain of attraction (MDA).

A general univariate distribution function H with upper endpoint ∞ is in the Gumbel MDA (abbreviated

H ∈ GMDA(w)) if (set H = 1−H)

H(u+ x/w(u))

H(u)
∼ exp(−x), ∀x ≥ 0, (2.1)

with w(·) some positive scaling function. Again we write ∼ to mean asymptotic equivalence of two functions

when the argument (typically u) approaches infinity. For the standard Gaussian distribution function Φ on

IR we have Φ ∈ GMDA(w) where w(x) = x. Consequently, Theorem 1.1 means that SX has distribution

function G ∈ GMDA(w) with scaling function w(x) = x whenever the random variable S ≥ 0 is bounded

and independent of X which has distribution function Φ.

Regarding Assumption A we mention that it is satisfied by a large class of random contraction S, for instance

if S is a Beta random variable, or P (S = 1) = c ∈ (0, 1) and for some s < 1 we have P (S < s) = 1 − c.

Another example is when

P
(
S > 1− 1

u

)
= (1 + o(1))cu−γ , u→∞ (2.2)

for some c > 0. In this particular case, the constants an, bn in (1.3) can be calculated explicitly as

an = (2 lnn)−
1
2 , bn = bn,γ = (2 lnn)

1
2 + (2 lnn)−

1
2

(
ln$ − 2γ + 1

2
(ln lnn+ ln 2)

)
, (2.3)

with $ = c(2π)−
1
2 Γ(1 + γ).

In numerous contributions (see e.g., Cheng et al. (1998), Fahrner and Stadtmüller (1998), Csáki and Gonchig-

danzan (2002), Peng et al. (2010), Tan and Wang (2012), Weng et al. (2012), Hashorva and Weng (2013))

the convergence in distribution for the maxima is strengthen to almost sure convergence. We present such

an extension of our main result in the next theorem:

Theorem 2.1. Under the assumptions and notation of Theorem 1.2, if further

ρ(n)(lnn)1+∆(ln lnn)1+ε = O(1), n→∞, (2.4)

for some ∆ > 2(γ − τ) and ε positive, then for x ∈IR

1

lnn

n∑
k=1

1

k
I (M∗k ≤ akx+ bk)→ Λ(x), n→∞ (2.5)
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holds almost surely, with I(·) the indicator function.

Remarks 2.2. i) If S satisfies (2.2), then Theorem 1.2 holds under the Berman condition, i.e., we just need

to assume therein that (1.6) is true when ∆ = 0. Crucial for the proof is that (3.7) holds with ε = 0 if (2.2)

holds.

ii) If (2.2) is satisfied and (2.4) holds with ∆ = 0, then we have (2.5) also holds with an and bn satisfying

(2.3).

iii) Extension of our results to the case that Xn, n ≥ 1 is a non-stationary Gaussian sequence is possible.

Various results for extremes of non-stationary Gaussian processes are derived by Hüsler and his co-authors,

see for more details Falk et al. (2010).

3 Proofs of the Main Results

Proof of Theorem 1.1 The independence of S and X implies for any ν ∈ (1,∞) and u > 0

Φ(uν)P (S > 1/ν) = P (X > uν)P (S > 1/ν) ≤ P (SX > u, S > 1/ν) ≤ P (SX > u) ≤ P (X > u) , (3.1)

where Φ is the standard Gaussian distribution on IR and Φ = 1 − Φ. Since for any 1 < ν∗ < ν we have

limu→∞
Φ(uν)

Φ(uν∗)
= 0, then

lim
u→∞

Φ(uν)

P (SX > u)
= lim
u→∞

Φ(uν)

Φ(uν∗)

Φ(uν∗)

P (SX > u)
≤ 1

P (S > 1/ν∗)
lim
u→∞

Φ(uν)

Φ(uν∗)
= 0

implying thus for any s ∈ (0, 1)

P (SX > u) =

∫ s

0

Φ(u/x) dF (x) +

∫ 1

s

Φ(u/x) dF (x)

= O
(

Φ(u/s)
)

+

∫ 1

s

Φ(u/x) dF (x) ∼
∫ 1

s

Φ(u/x) dF (x), u→∞. (3.2)

Now, uniformly for x ∈ [1/2, 1] and some fixed t ∈IR

Φ(u/x+ (t/x2)(x/u))

Φ(u/x)
→ exp(−t/x2), u→∞.

Consequently, for u large and any ε∗ ∈ (0, 1) and x ∈ (s, 1)

(1− ε∗)Φ(u/x) exp(−t/s2) ≤ Φ(u/x+ t/(xu)) ≤ (1 + ε∗)Φ(u/x) exp(−t)

implying thus for all u large and any s ∈ (1/2, 1)

(1− ε∗) exp(−t/s2) ≤
∫ 1

s
Φ((u+ t/u)/x) dF (x)∫ 1

s
Φ(u/x) dF (x)

≤ (1 + ε∗) exp(−t).
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Hence for any ε ∈ (0, 1), since s can be close enough to 1 and by (3.2), we obtain

(1− ε) exp(−t) ≤ P (SX > u+ t/u)

P (SX > u)
≤ (1 + ε) exp(−t)

and thus SX has distribution function in the Gumbel MDA with scaling function w(u) = u.

Let b(t) = G−1(1−1/t) with G−1 the generalised inverse of the distribution function of SX. In view of (3.1)

for all t large (write Φ−1 for the inverse of Φ)

Φ−1(1− 1/t) ≥ b(t) ≥ 1

ν
Φ−1

(
1− 1

tP (S > 1/ν)

)
and since ν > 1 can be close enough to 1

b(n) ∼ Φ−1(1− 1/n) ∼ (2 lnn)
1
2 , an ∼ (2 lnn)−

1
2 , n→∞,

hence the claim follows. 2

Lemma 3.1. Suppose that Assumption A holds for S, Sγ , Sτ which are independent of the random variable

X with distribution function H. If H has an infinite upper endpoint and further H ∈ GMDA(w), then

P (SτX > u) ≥ P (SX > u) ≥ P (SγX > u) (3.3)

holds for all u large.

Proof of Lemma 3.1 By the independence of S and X and the fact that S has distribution function with

upper endpoint equal 1 for any ν > 1, u > 0 we have

P (SX > u) =

∫ uν

u

P (S > u/x) dH(x) +O(H(uν)).

Hence by (1.5), for all u large∫ uν

u

P (Sτ > u/x) dH(x) +O(H(uν)) ≥ P (SX > u) ≥
∫ uν

u

P (Sγ > u/x) dH(x) +O(H(uν)).

A key property of H ∈ GMDA(w) is the so-called Davis-Resnick tail property, see e.g., Hashorva (2012).

Specifically, by Proposition 1.1 of Davis and Resnick (1988)

lim
u→∞

(uw(u))µ
H(xu)

H(u)
= 0 (3.4)

holds for any µ ≥ 0 and x > 1, hence the claim follows now by Theorem 3.1 in Hashorva et al. (2010). 2
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Lemma 3.2. Let the positive random variables Zn, n ≥ 1 have df Hn such that for all large z

1−Hn(z) = exp (−ϑnzq) (3.5)

holds with q > 0, ϑn positive constants satisfying ϑn ∈ [a, b],∀n ≥ 1 with a < b two finite positive constants.

If further Zn is independent of S which has a regularly varying survival function at 1 with index γ ≥ 0 and

un, n ≥ 1 are positive constants such that limn→∞ un =∞, then we have

P (SZn > un) ∼ Γ(γ + 1) exp (−ϑnuqn)P
(
S > 1− 1

qϑnu
q
n

)
. (3.6)

Proof of Lemma 3.2 LetH(x) = 1−exp(−xq), x > 0 and let Z with distribution functionH be independent

of S. By Davis-Resnick tail property of H given in (3.4) for all large un, all ε > 0

P (SZn > un) =

∫ ∞
un

P
(
S >

un
z

)
dHn(z)

∼
∫ un(1+ε)

un

P
(
S >

un
z

)
dHn(z)

∼
∫ ϑ1/q

n un(1+ε)

ϑ
1/q
n un

P

(
S >

ϑ
1/q
n un
z

)
dH(z)

∼ P
(
SZ > ϑ1/q

n un

)
∼ Γ(γ + 1) exp (−ϑnuqn)P

(
S > 1− 1

qϑnu
q
n

)
,

where the last step follows from Theorem 3.1 in Hashorva at al. (2010). 2

Remarks 3.1. If S has a regularly varying survival function at 1 with index γ ≥ 0, by the Karamata

representation (see e.g., Resnick (1987), p.17), we have

P
(
S > 1− 1

qϑnu
q
n

)
≤ c

(
1

qϑnu
q
n

)γ−ε
with c > 1, ε ∈ (0, γ). Consequently, by (3.6)

P (SZn > un) ≤ cΓ(γ + 1) exp (−ϑnuqn)

(
1

qϑnu
q
n

)γ−ε
= O

(
(un)

−q(γ−ε)
exp (−ϑnuqn)

)
(3.7)

holds for any positive sequence un, n ≥ 1 such that limn→∞ un =∞.

Lemma 3.3. Under the conditions of Theorem 1.2, we have

n

n−1∑
k=1

|ρ(k)|
∫ 1

0

∫ 1

0

exp

(
− (un(x)/s)

2
+ (un(x)/t)

2

2(1 + |ρ(k)|)

)
dF (s) dF (t)→ 0, n→∞, (3.8)

where un(x) = anx+ bn with an and bn are defined in (1.3) and x ∈IR.
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Proof of Lemma 3.3 Denote un,c(z) = anz + bn,c with an and bn,c defined in (2.3). By Lemma 3.1, we

have for all large n bn,γ ≤ bn ≤ bn,τ , hence

un,γ(z) ≤ un(z) ≤ un,τ (z) and τ ≤ γ.

Consequently, using the assumption of Zn with q = 2 and ϑn = 1/(2 + 2|ρ(n)|), n ≥ 1 in (3.5) and (1.5),

along the lines of the proof of Lemma 3.2 we obtain for all large n

P (SZn > un(z)) ≤ P (SZn > un,γ(z)) ≤ P (SτZn > un,γ(z)) . (3.9)

Define next

σ = max
k≥1
|ρ(k)|, κn = [nr],

where r is any positive constant such that r < (1− σ)/(1 + σ). This choice of r is possible since by Berman

condition and stationarity of the sequence σ < 1 follows easily.

Hereafter C1, C2, C3 are positive constants and ε ∈ (0, τ) is taken to be sufficiently small. By the inequality

(3.9) and (3.7) (denote Fτ the distribution function of Sτ ) for all large n

n

n−1∑
k=1

|ρ(k)|
∫ 1

0

∫ 1

0

exp

(
− (un(x)/s)

2
+ (un(x)/t)

2

2(1 + |ρ(k)|)

)
dF (s) dF (t)

≤ n

n−1∑
k=1

|ρ(k)|
∫ 1

0

∫ 1

0

exp

(
− (un,γ(x)/s)

2
+ (un,γ(x)/t)

2

2(1 + |ρ(k)|)

)
dFτ (s) dFτ (t)

≤ C1n

n−1∑
k=1

|ρ(k)|(un,γ(x))−4(τ−ε) exp

(
−

u2
n,γ(x)

1 + |ρ(k)|

)

= C1n

(
κn∑
k=1

+

n−1∑
k=κn+1

)
|ρ(k)|(un,γ(x))−4(τ−ε) exp

(
−

u2
n,γ(x)

1 + |ρ(k)|

)
=: Sn1 + Sn2.

According to (2.3) we have

exp

(
−
u2
n,γ(x)

2

)
∼ C2n

−1(un,γ(x))1+2γ , un,γ(x) ∼
√

2 lnn, n→∞.

As in Lemma 4.3.2 in Leadbetter et al. (1983)

Sn1 ≤ C3n
1+r(un,γ(x))−4(τ−ε) exp

(
−
u2
n,γ(x)

1 + σ

)

= O

(
n1+r(un,γ(x))−4(τ−ε)

(
(un,γ(x))1+2γ

n

) 2
1+σ
)

= O

(
n1+r− 2

1+σ (lnn)
1+2γ
1+σ −2(τ−ε)

)
→ 0, n→∞

by our choice 1 + r − 2
1+σ < 0. Next, with σ(l) = maxk≥l |ρ(k)| < 1, we have

Sn2 ≤ C1nσ(κn)(un,γ(x))−4(τ−ε) exp
(
−u2

n,γ(x)
) n−1∑
k=κn+1

exp

(
u2
n,γ(x)|ρ(k)|
1 + |ρ(k)|

)
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≤ C1n
2σ(κn)(un,γ(x))−4(τ−ε) exp

(
−u2

n,γ(x)
)

exp
(
σ(κn)u2

n,γ(x)
)

= O

(
σ(κn)(un,γ(x))2+4γ−4(τ−ε) exp

(
σ(κn)u2

n,γ(x)
))
.

By (1.6) and the fact that limn→∞ κn =∞ we have for some ∆ > 2(γ − τ)

σ(κn)(un,γ(x))2+2∆ ∼ σ(κn)(2 lnn)1+∆ ≤
(

2

r

)1+∆

max
k≥κn

|ρ(k)|(ln k)1+∆ → 0

and

σ(κn)(un,γ(x))2 ∼ 2σ(κn) lnn ≤ σ(κn)(2 lnn)1+∆ → 0

as n → ∞. Since the exponential term above tends to one and the remaining product tends to zero, the

claim follows. 2

Proof of Theorem 1.2 Let X̂n, n ≥ 1 be independent random variables with the same distribution as

X1 and define M̂∗n = max1≤i≤n SiX̂i. If (1.5) holds, by the independence of the scaling factors with the

Gaussian random variables and Berman’s Normal Comparison Lemma (see e.g., Piterbarg (1996)), and using

Lemma 3.3 we obtain

∣∣∣P (M∗n ≤ un(x))− P
(
M̂∗n ≤ un(x)

)∣∣∣
≤

∫
[0,1]n

∣∣∣∣∣P
(

n⋂
k=1

{
Xk ≤

un(z)

sk

})
− P

(
n⋂
k=1

{
X̂k ≤

un(z)

sk

})∣∣∣∣∣ dF (s1) · · · dF (sn)

≤ 1

4
n

n−1∑
k=1

|ρ(k)|
∫ 1

0

∫ 1

0

exp

(
− (un(x)/s)2 + (un(s)/t)2

2(1 + |ρ(k)|)

)
dF (s)dF (t)

→ 0

as n→∞, and thus by Theorem 1.1 the claim follows. 2

Proof of Theorem 2.1 In order to show the claim, by Theorem 1.2 it suffices to prove that

1

lnn

n∑
k=1

1

k

(
I (M∗k ≤ uk(x))− P (M∗k ≤ uk(x))

)
→ 0, n→∞ (3.10)

holds almost surely, which according to Lemma 3.1 in Csáki and Gonchigdanzan (2002) follows if for some

ε > 0

n∑
1≤k<l≤n

1

kl
Cov (I (M∗k ≤ uk(x)) , I (M∗l ≤ ul(x))) = O

(
(lnn)2(ln lnn)−1−ε

)
.

Next, for any k < l (write below M∗l,k = maxk<i≤l SiXi and M̂∗l,k = maxk<i≤l SiX̂i)

Cov (I (M∗k ≤ uk(x)) , I (M∗l ≤ ul(x)))
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≤ 2E
∣∣I (M∗l ≤ ul(x))− I

(
M∗l,k ≤ ul(x)

)∣∣+
∣∣Cov

(
I(M∗k ≤ uk(x)), I(M∗l,k ≤ ul(x))

)∣∣
≤ 2

∣∣∣P (M∗l,k ≤ ul(x)
)
− P

(
M̂∗l,k ≤ ul(x)

)∣∣∣+ 2
∣∣∣P (M∗l ≤ ul(x))− P

(
M̂∗l ≤ ul(x)

)∣∣∣
+2
∣∣∣P(M̂∗l,k ≤ ul(x)

)
− P

(
M̂∗l ≤ ul(x)

)∣∣∣
+
∣∣P (M∗k ≤ uk(x),M∗l,k ≤ ul(x)

)
− P (M∗k ≤ uk(x))P

(
M∗l,k ≤ ul(x)

)∣∣
= P1 + P2 + P3 + P4.

In view of Berman’s Normal Comparison Lemma and (2.4), along the same lines of the proof of Lemma 3.3,

we have

Pi = O

(
(ln lnn)−1−ε

)
, i = 1, 2, 4.

Further, since

P3 = Gl−k(ul(x))−Gl(ul(x)) ≤ k

l
,

where G is the df of S1X̂1, we establish the claim. 2
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[8] Falk, M., Hüsler, J. and Reiss, R.-D. (2010). Laws of Small Numbers: Extremes and Rare Events. DMV Seminar

Vol. 23, 2nd edn., Birkhäuser, Basel.
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