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abstract: Biological adaptation is the outcome of allele-frequency
change by natural selection. At the same time, populations are usually
class structured as individuals occupy different states, such as age, sex,
or stage. This is known to result in the differential transmission of
alleles through nonheritable fitness differences called class transmis-
sion, which also affects allele-frequency change even in the absence of
selection. How does one then isolate allele-frequency change due to
selection from that due to class transmission? We decompose one-
generational allele-frequency change in terms of effects of selection
and class transmission and showhow reproductive values can be used
to reach a decomposition between any two distant generations of the
evolutionary process. This provides a missing relationship between
multigenerational allele-frequency change and the operation of selec-
tion. It also allows a measure of fitness to be defined summarizing the
effect of selection in a multigenerational evolutionary process, which
connects asymptotically to invasion fitness.

Keywords: natural selection, class structure, reproductive values,
allele-frequency change.

Introduction

Consider the following situation you may encounter as an
evolutionary biologist. Suppose you observe a population
between two distant points in time and empirically mea-
sure at each census point the total number of individuals
in the population and the alleles they carry at some locus
of interest. Suppose further that you can also measure
the survival and number of descendants of these individu-
als and that these measurements can be subdivided into
different reproductive classes the individuals carrying the
alleles can be in, such as sex, age, stage, or habitat. The
overall time of observation is, moreover, assumed short
enough to neglect the appearance of new mutations, and
the population is closed and large enough to neglect the
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effect of migration and genetic drift. Any change in allele
frequency must then have occurred as a result of natural
selection and/or the process of class transmission, where
the latter is the differential reproductive success of an indi-
vidual due to differential classes in which individuals re-
produce and survive. This is also known to alter allele fre-
quencies in class-structured populations even in the
absence of selection (e.g., Crow 1979; Stubblefield and
Seger 1990; Taylor 1990; Charlesworth 1994; Leturque
and Rousset 2002; Grafen 2006). However, only natural se-
lection can cause allelic fixations under the above scenario
and is the only evolutionary force that shapes biological
adaptations (Fisher 1930; Barton et al. 2007; Futuyama
2017; Lynch and Walsh 2018). It is therefore natural to
ask how much of the measured change in allele frequency
is caused by natural selection and howmuch by class trans-
mission, as well as how much of the overall change can be
attributed to each demographic time step of the evolution-
ary process. Answering this question requires a careful ac-
count of the operation of natural selection and class trans-
mission in class-structured populations.
Most previous theoretical work on evolution in class-

structured populations, in contrast, has focused on biological
scenarios where class transmission has a negligible effect
on the evolutionary dynamics (e.g., Taylor 1990; Caswell
2001; Leturque and Rousset 2002; Rousset 2004; Grafen
2006, 2015; Barfield et al. 2011; Engen et al. 2014; Gardner
2015; Lion 2018a; Priklopil and Lehmann 2020; Lion and
Gandon 2022). This is the case, for instance, in a large time
limit when either survival and reproduction is frequency
and density independent (Grafen 2006, 2015; Engen et al.
2014) or when selection is assumed weak (Taylor and
Frank 1996; Leturque and Rousset 2002; Rousset 2004;
Rousset and Ronce 2004; Barfield et al. 2011; Lion 2018a;
Priklopil and Lehmann 2020; Lion and Gandon 2022). In
f Chicago. All rights reserved. Published by The University of Chicago Press for
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this work, the asymptotic evolutionary success of an allele
is characterized in terms of a weighted allele frequency (or
weighted trait average) with weights as reproductive values,
which can loosely be interpreted as genetic contributions
of individuals to the future of the population (e.g., Barton
and Etheridge 2011). The main justification that has been
given for using reproductive values as weights is that the
long-term reproductive output of offspring produced into
different classes is converted to a common measure that
can be compared and added up (Taylor and Frank 1996),
and as a consequence the dynamics of weighted averages
behave “nicely” in that they cancel any allele-frequency
change caused by nonheritable fitness differences (Crow
1979; Grafen 2006). The resulting dynamics governed
purely by reproductive value–weighted fitness differentials
is then taken as a measure of selection (Taylor and Frank
1996; Leturque and Rousset 2002; Rousset 2004; Rousset
andRonce 2004;Grafen 2006, 2015; Engen et al. 2014; Lion
2018a; Priklopil and Lehmann 2020; Lion and Gandon
2022). However, in this previous work it is not clear how
the reproductive value–weighted frequency connects to
the standard arithmetic average allele frequency describ-
ing the unfolding of the evolutionary process. As a conse-
quence, no explicit formal or verbal biological reason has
been given for why reproductive value–weighted allele fre-
quency is an appropriate measure of selection and how
to interpret it in terms of the arithmetic allele frequency.
Furthermore, for nonasymptotic finite-time evolutionary
processes, class transmission does contribute to allele-
frequency change and hence cannot be ironed away by us-
ing reproductive values as weights.
The aim of this article is to provide an operational de-

composition of the contribution of natural selection and
that of class transmission to the arithmetic average allele-
frequency change in a class-structured population, where in-
dividuals may experience frequency- and density-dependent
interactions as well as environmental fluctuations. In this
decomposition, we consider a change over an arbitrary
number of demographic time steps and allocate fractions
of the average allele-frequency change to each step of this
evolutionary process. Our analysis shows, in particular, that
the previously used reproductive value–weighted allele-
frequency change is exactly the arithmetic allele-frequency
change caused by selection when “assessed” at the end of
the observed evolutionary process. We also provide the ex-
pression for the previously unaccounted allele-frequency
change due to class transmission, such that the sum of these
two contributions gives the total arithmetic allele-frequency
change attributed to any given generation but assessed at
the end of the observed process. These calculations highlight
that the allele-frequency change caused by natural selection
and class transmission during any demographic time step
is tied to the entire evolutionary process of interest and
hence cannot be studied in isolation. Finally, we provide
a detailed and biologically explicit definition of reproduc-
tive value, and we provide a representation of fitness sum-
marizing the effect of selection and class transmission in the
multiple-time-step evolutionary process.
Our analysis proceeds in two main steps. To motivate the

formalization of allele-frequency change over an evolution-
ary process spanning multiple demographic time steps, we
first consider the traditional approach in calculating the
allele-frequency change over a single time step. Second, we
turn to the multiple-time-step evolutionary process, which
forces us to reconsider some of the intuition gained from
the single-time-step change. Here, we derive our main re-
sults, discuss the related literature, and then connect our re-
sults to earlier work on asymptotic evolutionary dynamics.
Single Generational Process in Class-
Structured Populations

The Model

For simplicity but without loss of generality, we consider a
population of haploid individuals that reproduce asexually,
each of which is characterized by one of a finite number of
alleles that segregate in the population. The population is as-
sumed class-structured so that each individual belongs to one
of a finite number nC of classes (age, stage, etc.) and can pos-
sibly transition between the classes (e.g., via survival, matura-
tion, or physiological development).We furthermore assume
that reproduction and class transition occur at discrete de-
mographic time steps, that there are no mutations, and that
the population is closed and large enough to ignore the effect
of migration and genetic drift. Then the state of the popula-
tion can be fully characterized by the vector nt collecting
elements of the form nt(a, i), which stands for the number
of individuals in class a with allele i at time t. This number
satisfies the recursion

nt11(a, i) p
X

b

wt(ajb, i)nt(b, i), ð1Þ

which defines a multitype population process where we use
the shorthand notation wt(ajb, i) p wt(ajb, i,nt) to repre-
sent the class-specific individual fitness of a carrier of allele
i. The class-specific individual fitness wt(ajb, i) is defined
as the expected number of settled “offspring” in class a with
allele i at t 1 1 produced by a single “parent” with allele i in
class b at t, including the surviving self (hence the quotation
marks). This thus gives the number of gene copies a at time
t 1 1 descending from a parent b carrying allele i and alive
at t. Because the class-specific individual fitness may depend
in an arbitrary way on the population state nt, the model
allows for arbitrarily complicated frequency- and density-
dependent interactions between individuals. Because this in-
dividual fitness is also indexed by t, it further allows for
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arbitrary extrinsic environmental fluctuations affecting re-
production and class transition. We sum over all classes in
equation (1) because parents in any class may possibly pro-
duce offspring of any other class, and we note that all
equations throughout hold for all segregating alleles.
Allele-Frequency Change

To analyze allele-frequency change induced by the popula-
tion process in equation (1), we need to introduce the follow-
ing notations (for a summary of all notations, see table 1).
First, we denote by nt(i) p

P
ant(a, i) the total number of

individuals carrying allele i, by nt(a) p
P

int(a, i) the total
number of individuals in class a, and by nt p

P
a,int(a, i)

the total number of individuals in the population. From these
quantities, pt(i) p nt(i)=nt is the frequency of allele i,
pt(a) p nt(a)=nt is the frequency of class a individuals,
pt(aji) p nt(a, i)=nt(i) is the frequency of class a individuals
among those with allele i, and pt(ija) p nt(a, i)=nt(a) is the
frequency of allele i within class a. From this and summing
Table 1: Definitions of the variables and main quantities
Symbol
 Definition
nt(a, i)
 Number of individuals in class a carrying allele i at time t

nt(i) p

P
ant(a, i)P
 Total number of individuals carrying allele i at time t
nt(a) p int(a, i)
 Total number of individuals in class a at time t

pt(i) p nt(i)=nt
 Frequency of individuals in the population carrying allele i at time t

pt(aji) p nt(a, i)=nt(i)
 Frequency of individuals in class a among all of the individuals that carry allele i in the

population at time t

pt(ija) p nt(a, i)=nt(i)
 Frequency of individuals carrying allele i among all of the individuals in class a at time t

wt(ajb, i)
 Expected number of offspring of class a produced over the time step [t, t 1 1] by a single

parent in class b carrying allele i

�wt(ajb) p

P
iwt(ajb, i)pt(i, b)
 Expected number of offspring of class a produced over the time step [t, t 1 1] by a single

average parent in class b

�wt(i) p

P
a,bwt(ajb, i)pt(bji)
 Expected number of offspring produced over the time step [t, t 1 1] by a single average

parent i in the population

�wt p

P
a,b�wt(ajb)pt(b)
 Expected number of offspring produced over the time step [t, t 1 1] by a single average

parent in the population

vt (a)
 Reproductive value of an individual a at time t in a multigenerational process over T, defined

as the expected number of individuals at time tf that descend under the neutralized
process from that individual
�vt(i) p
P

avt(a)pt(aji)P
 Reproductive value of an average i at time t in a multigenerational process over T

�vt p i�vt(i)pt(i)
 Reproductive value of an average individual in the population at time t in a multigenerational

process over T

��w(i) p

P
a,b�wt(ajb)pt(bji)
 Expected number of offspring produced over the time step [t, t 1 1] by a single i at time t if it

were to survive and reproduce as an average individual in the class

n○
t (a, i)
 Total number of individuals i in class a at time t in the neutralized process where all individuals

between [t0, t] survive and reproduce as average individuals of their class

n○
t (i)
 Total number of individuals i at time t in the neutralized process where all individuals between

[t0, t] survive and reproduce as average individuals in the class

p○t (a, i)
 Frequency of a at t among all of the individuals that carry allele i in the neutralized process

that started at time t0

�w○

t (i) p
P

a,b �wt(ajb)p○t (bji)
 Expected number of offspring produced over the time step [t, t 1 1] by a single i if it were to
reproduce as an average individual in the class and that comes from a lineage of individuals
that descend under the neutralized process between [t0, t]
�wv
t (i) p

P
a,bvt(a)wt(ajb, i)pt11(bji)
 Expected number of individuals at time tf that descend under the neutralized process from

all offspring produced during [t, t 1 1] by a single i carrier

r○(i) p n○

t (i)=nt(i)
 Fraction of i at t that come from a lineage of individuals that underwent only the neutralized
process during [t0, t]
nC
 Total number of classes in the class-structured population

qt(a) P
 Arbitrary weight of individuals in class a at time t

qt(i) p aqt(a)pt(aji)P
 Arbitrary weight of an average individual i in the population at time t

�wq(i) p a,bqt11(a)wt(ajb, i)pt11(bji)
 Expected number of offspring produced during [t, t 1 1] by a single i when each offspring in

each class is weighted by an arbitrary weight qt11(a)
Note: See the main text for further explanations.
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equation (1) over all classes and alleles, we have that nt11 p
�wtnt , where �wt p

P
a,b�wt(ajb)pt(b) is the average fitness in

the population, which is here expressed in terms of the class-
specific average fitness �wt(ajb) p

P
iwt(ajb, i)pt(ijb) over

alleles, while the average fitness of allele i itself is �wt(i) pP
a,bwt(ajb, i)pt(bji).
The change in frequency Dpt(i) p pt11(i)2 pt(i) of al-

lele i over a single time step [t, t 1 1], which we refer to
as “generation” t, is then

Dpt(i) p
1

nt11

�wt(i)2 �wtð Þnt(i)

p
�wt(i)2 �wt

�wt

� �
pt(i)

ð2Þ

(supplemental PDF, sec. S1.1). The first equality makes
the cause of allele-frequency change in generation t ex-
plicit: �wt(i)2 �wt gives the additional number of offspring
produced by a single allele i carrier compared with an av-
erage individual from the total population. Multiplying
this with the total number of parents i at t and dividing
by the total number of offspring at t 1 1, we obtain the
change in allele frequency i in generation t. The second
equality in equation (2) is the standard representation
of allele-frequency change in the absence of mutation
and genetic drift (for models without class structure;
e.g., Gillespie 1991, eq. [4.1]; Nagylaki 1992, eq. [2.8]).
Indeed, an allele can increase in frequency only if it
propagates through the population faster than alleles
do on average: allele i increases in frequency in genera-
tion t whenever �wt(i)=�wt 1 1.
While it would be tempting to conclude that natural

selection is responsible for all of the allele-frequency
change in equation (2), as is the case in populations with-
out class structure (fig. 1; Gillespie 1991; Nagylaki 1992),
this is not true in class-structured populations. Indeed,
one can see this by considering a situation where every
allele in each class has the same class-specific fitness
wt(ajb, i) p wt(ajb) for all i segregating in the population
at all times. This thus defines a neutral (population) pro-
cess whereby equation (2) reduces to

Dpctt (i) p
1

nt11

X
a

X
b

wt(ajb)[pt(b∣i)2 pt(b)]nt(i), ð3Þ

where we use the superscript “ct” to indicate that all change
in allele frequencyDpt(i) p Dpctt (i) is caused by class trans-
mission only (supplemental PDF, sec. S1.1). Equation (3)
shows that nonselective allele-frequency change occurs
due to a nonuniform distribution of alleles across classes
and proceeds until all alleles are fully transmitted through
all of the classes resulting in pt(bji) p pt(b), a point at
which there is zero allele-frequency change.
Disentangling Selection from Class Transmission

How then should one disentangle the effect of natural
selection from the effect of class transmission when
there are heritable differences in survival and reproduc-
tion in class-structured populations, that is, when
wt(ajb, i) ( wt(ajb, j) for different alleles i and j? We
base the answer on two premises. First, because alleles
can be found in different classes, natural selection on
an allele should reflect heritable differential reproductive
success by taking into account that each class can poten-
tially make a distinct relative contribution to overall re-
productive success (for how this premise is operation-
alized, see the supplemental PDF, sec. S1.1). Second,
by definition of being an evolutionary force, natural se-
lection should conserve allele frequencies so that a
change in frequency due to selection of any one allele
must be balanced by the change in other alleles segregat-
ing in the population. This is the conceptualization of
natural selection in the literature for populations with-
out class structure, but in the presence of other forces
acting on allele-frequency change (e.g., Nagylaki 1992,
eq. [2.7], pp. 10–11; Frank 1997, eq. [3]; Grafen 2000;
Bürger 2000, eq. [2.7], p. 125). We are then led to the
following partitioning of allele-frequency change:

Dpt(i) p Dpselt (i)1 Dpctt (i), ð4aÞ

where the effect of selection on allele-frequency change is

Dpselt (i) p
1

nt11

X
a

X
b

[wt(ajb, i)2 �wt(ajb)]pt(bji)nt(i)

p
�wt(i)2 ��wt(i)

�wt

� �
pt(i)

ð4bÞ
and the effect of class transmission is

Dpctt (i) p
1

nt11

X
a

X
b

�wt(ajb)2
1
nC

�wt

� �
pt(bji)nt(i)

p
��wt(i)2 �wt

�wt

� �
pt(i)

ð4cÞ

where ��wt(i) p
P

a,b�wt(ajb)pt(bji) is the fitness of an allele
i carrier if it were to reproduce as an average individual in
each class, and recall that nC is the number of classes in the
population (for the derivation, see the supplemental PDF,
sec. S1.1). We emphasize that this partitioning follows
from the two premises stated above; hence, different as-
sumptions could lead to a different partitioning.
The first equality in equation (4b) says that the effect

of selection in each class is proportional to the difference
between the class-specific fitness wt(ajb, i) of an individ-
ual carrying i compared with the class-specific average
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fitness �wt(ajb) in that class, where the average in �wt(ajb)
is calculated over all segregating alleles in the population.
The class-specific average fitness �wt(ajb) ensures that allele
frequency is conserved under selection (

P
iDpselt (i) p 0)

and can be considered as a reference fitness below and above
which selection occurs in a class. Summing over all classes
then produces the second equality in equation (4b), which
says that allele i is favored by selection whenever it has a
greater fitness than if it were to reproduce as an average in-
dividual within each class (i.e., �wt(i)=��wt(i) 1 1). By contrast,
the first equality in equation (4c) says that the effect of class
transmission in each class is proportional to the difference
between the class-specific average fitness �wt(ajb) and the
class-specific fitness in the absence of class-specific differ-
ences in reproduction �wt=nC (where reproduction within
and between classes is identical). Summing over all classes,
B)

A)

No class structure

class a

class b

Class structure 

Figure 1: A, Evolutionary dynamics in a class-structured population, where at each point in time t the population is separated into two classes, a
(big squares) and b (big circles), between which the alleles can transition (small circles). Because alleles can reside in either of the two classes, allele i
(doubled small circle at time t) is favored by selection during [t, t 1 1] if its class-specific fitness exceeds that of an average individual within its class.
The change in frequency during this demographic time period due to selection is thusDpselt (i) p (1=nt11)

P
x,y∈fa,bg(wt(xjy, i)2 �wt(xjy))pt(yji)nt(i),

as given in equation (4b). To obtain the frequencyDpseltjT (i), wemust weight each offspring i produced due to selection during [t, t 1 1] by their class-
specific reproductive values, giving the number of their descendants at tf under the neutralized process during [t 1 1, tf ], and then compare this to
the total number of individuals at tf. This yieldsDpseltjT (i) p (1=ntf )

P
x,y∈fa,bgvt11(x)(wt(xjy, i)2 �wt(xjy))pt(yji)nt(i), as given in equation (8). B, Evo-

lutionary dynamics in a population without class structure where wt(ajb, i) p wt(i) for all a, b (supplemental PDF, sec. S1.2.3). Allele i (doubled
small circle at time t) is favored by selection during [t, t 1 1] if its fitness exceeds that of the average individual. The change in frequency during
this demographic time period is Dpt(i) p Dpselt (i) p DpseltjT (i) p nt(i)(wt(i)2 �wt)=nt11. This can be interpreted either as the frequency of selected
offspring produced during [t, t 1 1] and measured at t 1 1 or as the fraction of the total frequency of i individuals at the final time tf that descend
under the average population process from all offspring produced due to selection during [t, t 1 1] (see eq. [S30] in the supplemental PDF). These
are equal because the average population process does not alter allele frequencies. A color version of this figure is available online.
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allele i is thus favored by class transmission whenever its fit-
ness is greater if it were to reproduce as an average individ-
ual within a class compared with an average individual in
the total population (i.e., ��wt(i)=�wt 1 1), and this occurs
whenever alleles are nonuniformly distributed across
classes (see eq. [S10] in the supplemental PDF, sec. S1.1).
We emphasize that ��wt(i) depends on the frequency pt(bji)
that is calculated under the full evolutionary process where
wt(ajb, i) ( wt(ajb, j). Whenever the process is neutral
(i.e., wt(ajb, i) p wt(ajb) for all i), then Dpselt (i) p 0 and
Dpctt (i) given by equation (4c) reduces to equation (3). A
partitioning analogous to equation (4) has been reached for
a continuous-time process in terms of phenotypic change
(Lion 2018a, eq. [2]) as well as allele-frequency change
(Priklopil and Lehmann 2021). Neither work, however, jus-
tified the partitioning based on the above-stated premises.
Multigenerational Process in Class-
Structured Populations

Framing Allele-Frequency Change Decomposition

Suppose now the process (eq. [1]) runs over multiple
generations between some initial time t0 and final time
tf, where T p [t0, tf ] will denote this interval and con-
tains the generation t discussed in equations (2)–(4).
Our next aim is to ascertain how much of the total
allele-frequency change DpT (i) p Dptf (i)2 pt0 (i) that has
occurred during T is due to natural selection and class
transmission and what fractions of this should be attrib-
uted to each generation of the multigenerational process.
That is, we seek to find a decomposition

DpT (i) p DpselT (i)1 DpctT (i), ð5aÞ
where

DpselT (i) p
Xtf21

tpt0

DpseltjT (i) and DpctT (i) p
Xtf21

tpt0

DpcttjT (i)

ð5bÞ
are, respectively, the cumulative fractions of allele-
frequency change over T that are attributed to selection
and class transmission and where DpseltjT (i) and DpcttjT (i)
represent, respectively, the fractions of these changes that
can be attributed to selection and class transmission occur-
ring in generation t. The fraction of the total cumulative
allele-frequency change attributed to generation t is thus
DpseltjT (i)1 DpcttjT (i).
BecauseDpseltjT (i) andDp

ct
tjT (i) are assessed at thefinal time

tf of observation of the process and conditioned on the pro-
cess starting at the initial time t0, they are not likely tomatch
the partitioning in equation (4) of the single-generational
process that is conditioned on t and assessed at t 1 1. In-
deed, the intuition gained from equation (4) already sug-
gests that Dpctt (i) should not in general be equal to
DpcttjT (i) because Dp

ct
t (i) in equation (4c) is conditioned on

the state of the population at t and hence also counts off-
spring that are produced by parents that themselves were
produced by selection in the previous generation(s) [t0, t].
Likewise, Dpselt (i) should not in general be equal to
DpseltjT (i) because the offspring produced in generation t
due to selection Dpselt (i) are produced into different classes,
each of which may affect differentially their nonheritable
reproductive success during [t 1 1, tf ] and hence may con-
tribute differentially toDpseltjT (i). As a consequence, the frac-
tionDpseltjT (i)1 DpcttjT (i) of the cumulative change attributed
to generation t is also not in general equal to Dpselt (i)1
Dpctt (i). In the forthcoming section “Disentangling Selec-
tion from Class Transmission,” we will make these argu-
ments more precise. And so, our question is, how does
one calculate the contributions in equation (5)? To that
end, we must first introduce the concept of an individual
reproductive value.
Individual Reproductive Value

We now define n○
t (a, i) as the number of a, i individuals

at time t that satisfy the recursion

n○
t11(a, i) p

X
b

�wt(ajb)n○
t (b, i) ð6Þ

from t0 onward, with initial condition n○
t0 (a, i) p nt0 (a, i)

for all a and i. This recursion describes the change in the
number of alleles in each class as if each allele in a given
class were to reproduce and transition between classes as
does an average individual from the same class and
whose fitness is �wt(ajb). Because this class-specific aver-
age fitness �wt(ajb) is calculated under the full observed
evolutionary process with selection (i.e., the process de-
fined by eq. [1]), we refrain from calling the process de-
fined by equation (6) the “neutral process” because this
usually refers to a process where all individuals are ex-
changeable within a class (Ewens 2004). Instead, we call
the process defined by equation (6) the neutralized pro-
cess because all i follow equation (6) and hence it is as if
individuals were exchangeable under this process. The
introduction of equation (6) is motivated by the parti-
tioning given in equation (4), where �wt(ajb) was shown
to be the reference fitness that disentangles selection
from class transmission. All variables with a superscript ○
will then stand for variables that are determined by this neu-
tralized process from time t0 onward (supplemental PDF,
sec. S1.2). Formally, equation (6) is the adjoint equation
to the backward-in-time process

vt(a) p
X

b

vt11(b)�wt(bja), ð7Þ
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and we set the final condition to vtf (a) p 1 for all a (box 1).
We can then interpret vt(a) as the number of individuals alive
at the final time tf that under the neutralized process between
[t, tf ], where individuals survive and reproduce as average in-
dividuals within each class, descend from a single individual
of class alive at time t. We call vt(a) the reproductive value of
an (average) individual of class a (i.e., of a randomly sampled
allele in class a). This is a representation of the classic notion
of individual reproductive value in a finite-time process
(Fisher 1930; Leslie 1948; Tuljapurkar 1989; Taylor 1990;
Grafen 2006; such a nonasymptotic reproductive value has
also been called a “relative contribution”; Barton and Ether-
idge 2011), which in a multitype population process has in-
deed been evaluated from the average fitness within a class
(Lessard and Soares 2016; Lion 2018a). We denote by
�vt(i) p

P
avt(a)pt(aji) the average reproductive value of a

carrier of allele i. We also define a population-wide average
reproductive value �vt from �vt p �vt11�wt , which is an adjoint
equation to the population process nt11 p �wtnt that we
henceforth call the population-wide average (population)
process. The interpretation of �vt is the number of individuals
at tf that descend under the population-wide average popula-
tion process from an average individual in the population at
time t (i.e., �vt p

Qtf21
tpt0 �wt).

Disentangling Selection from Class Transmission

We can now represent the contribution of selection at-
tributed to generation t as

DpseltjT (i)p
1
ntf

X
a

X
b

vt11(a)[wt(ajb, i)2 �wt(ajb)]pt(bji)nt(i)

p
�wv

t (i)2 �vt(i)
�vt

� �
pt(i),

ð8Þ

where �wv
t (i) p

P
a,bvt11(a)wt(ajb, i)pt(bji) is the repro-

ductive value–weighted average individual fitness giving
the number of individuals at tf that descend under the
neutralized processes (eqq. [6], [7]) from all of the off-
spring produced by a single individual i at t (supplemental
PDF, sec. S1.2). Because wt(ajb, i)2 �wt(ajb) gives the ad-
ditional number of offspring produced by i compared with
the average individual in the class during [t, t 1 1], each of
which leave vt11(a) descendants under the neutralized

ð8Þ
Box 1: Adjoint system and the dynamics of reproductive value

Consider an arbitrary population process during T,

xt11(a) p
X

b

f t(ajb)xt(b), ðA1Þ

where f t(ajb) gives the number of type a individuals produced by a single type b individual at time t and xt(b)
specifies the number of individuals of type b at time t under this process. This process may or may not include
selection. The so-called adjoint system (e.g., Athans and Falb 2007, p. 147) of equation (A1) can then be ex-
pressed as

yt(a) p
X

b

yt11(b)f t(bja), ðA2Þ

where yt p (yt(a)) is called an adjoint variable (associated with the vector xt p (xt(a))). A useful property of ad-
joint systems is that

P
axt(a)yt(a) is constant and equal for all t, and the exact value depends on the initial and final

conditions xt0 and ytf . In fact, the specification of the final condition also suggests a biological interpretation for the
adjoint variable yt. For instance, suppose that the final condition satisfies ytf (a) p 1 for all a. Then we haveP

axt(a)yt(a) p xtf for all t, where xtf p
P

axtf (a) is the total population size at the final time tf under this arbitrary
population process. The adjoint variable yt(a) can be interpreted, under this arbitrary process, as the number of
individuals alive at time tf that are the descendants of a single type a individual alive at time t. Indeed, this definition
follows from the recursion: the number of individuals at tf that descend from a single individual a at t—the left
hand-side of equation (A2)—is equal to the number f t(bja) of offspring-individuals b that this parent individual
a produces and where each offspring-individual at t 1 1 is multiplied by the number xt11(b) of its descendants alive
at tf, and then we sum over all classes of offspring. Note that the final condition ytf (a) p 1 is consistent with this
interpretation because the “descendant” alive at tf and its “ancestor” alive at tf must be one and the same individual,
and hence the number of individuals at tf that “descend” from an individual alive at tf must be 1. In the main text,
f t(ajb) is defined as the class-specific fitness �wt(ajb), in which case equation (A2) defines the dynamics of repro-
ductive values under the neutralized process. Representing reproductive value dynamics as an adjoint system is also
discussed in, for example, Lion (2018a, eq. [14]).



Operation of Natural Selection 299
process (eqq. [6], [7]), the summation over classes in equa-
tion (8) isolates the one-generational effect of selection in an
otherwise neutralized process. Note that in contrast to the
change Dpt(i) (eq. [4b]) that assesses the offspring at time
t 1 1, the change DpseltjT (i) (eq. [8]) assesses offspring at the
final time tf (see also fig. 2A).
In summary, equation (8) is thus equal to the frequency

of individuals measured at tf that descend under the neu-
tralized process from all offspring at t 1 1 that were pro-
duced due to heritable differential reproduction and sur-
vival during [t, t 1 1] by all parents i at t. This is the
interpretation of the effect of selection attributed to gener-
ation t under a multigenerational evolutionary process. Be-
cause �vt(i) is always positive, selection favors allele i at t in
a multigenerational process of span T whenever

Wsel
tjT (i) p

�wv
t (i)

�vt(i)
1 1: ð9Þ

Here, Wsel
tjT (i) can be interpreted as the number of indi-

viduals at tf that descend under the neutralized process
from all offspring produced by a single i carrier at t rel-
ative to the number of individuals at time tf that would
A) B)

C) D) No class structure
selection

Class structure
selection

Class structure
class transmission

Class structure
selection and class transmission

Figure 2: Partitioning of the allele-frequency change DpT (i) p ptf (i)2 pt0 (i) into fractions caused by selection DpselT (i) p
Ptf21

tpt0Dp
sel
tjT (i) and

class transmission DpctT (i) p
Ptf21

tpt0Dp
ct
tjT (i). A, Allele-frequency change due to selection DpselT (i) in a class-structured population. The circles

along the thick curve indicate the observed allele frequencies in different generations. The fraction DpseltjT (i) measured at time tf gives the
difference between two frequencies (indicated by the short vertical line at time tf): the frequency of all i that underwent the full evolutionary
process with selection until t 1 1 and thereafter reproduced and survived under the neutralized process (top dashed line), and the frequency
of all i that underwent the full evolutionary process only until time t and thereafter reproduced and survived under the neutralized process
(bottom dashed line). Because the neutralized process can alter allele frequencies (the dashed lines are not horizontal), we have in general
DpselT (i) ( DpseltjT (i) (compare eqq. [4b] and [8]). B, Allele-frequency change DpctT (i) due to class transmission in a class-structured population.
The fraction DpcttjT (i) gives the difference between two frequencies (indicated by the short vertical line at time tf): the frequency of all i that
underwent class transmission until t 1 1 and where the excess offspring thereafter reproduced and survived according to the population-
wide average population process (top dashed line), and the frequency of all i that underwent class transmission only until t and where the
excess offspring thereafter reproduced and survived according to the population-wide average process (bottom dashed line). Because the
population-wide average process does not alter allele frequencies, these dashed lines are horizontal, and because we are conditioning on
a (hypothetical) lineage of alleles that have underwent class transmission only, the circles along the thick curve are not observed frequencies
in the population and must be calculated. This also implies that in general Dpctt (i) ( DpcttjT (i) (compare eqq. [4c] and [10]) and explains why
Dpctt (i) is not depicted. C, Total multigenerational allele-frequency change DpT (i) (top thick line) caused by selection DpselT (i) and class trans-
mission DpctT (i) in a class-structured population. The sums DpselT (i) p

P
tDpseltjT (i) and DpctT (i) p

P
tDpcttjT (i) are obtained from B and C. D,

Allele-frequency change in a population without class structure where wt(ajb, i) p wt(i) for all a, b (supplemental PDF, sec. S1.2.3). The
dashed lines are horizontal because in populations without class structure we have Dpt(i) p Dpselt (i) p DpseltjT (i), which is so because in
the absence of selection during [t 1 1, tf ] the descendants reproduce according to the population-wide average population process and hence
do not alter allele frequencies (fig. 1B; eq. [S30]). A color version of this figure is available online.
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descend from this individual under the neutralized pro-
cess only. The fitnessWsel

tjT (i) is thus the relative fitness that
determines selection at t in a multigenerational context.
Next, the contribution of class transmission that is at-

tributed to generation t is

DpcttjT (i) p
1

nt11

X
a

X
b

�wt(ajb)2
1
nC

�wt

� �
p○t (bji)n○

t (i)

p
�w○

t (i)2 �wt

�wt

� �
r○t (i)pt(i);

ð10Þ
where �w○

t (i) p
P

a,b�wt(ajb)p○t (bji) is the average fitness of
an individual carrying i if it were to reproduce as an average
individual of the class in which it resides at time t under the
neutralized process (i.e., under eqq. [6], [7]). Such an indi-
vidual itself descends from a lineage undergoing the neutral-
ized process during [t0, t], since r○t (i) p n○

t (i)=nt(i) is the
fraction of individuals i at t among those carrying i that de-
scend from a lineage that has undergone only the neutralized
process between [t0, t] (supplemental PDF, sec. S1.2). In-
deed, �w○

t (i)2 �wt gives the average number of offspring at
t 1 1 produced by an individual i at t if it were to reproduce
as an average individual in its class compared with a
population-wide average individual (compare with eq. [4c]),
which when multiplied with the number n○

t (b, i) p p○t
(bji)n○

t (i) and divided by the total population size produces
DpcttjT (i), as required by the partitioning of total allele-
frequency change (eq. [5]). Note that in equation (4c) we
do notweight the offspring at t 1 1with reproductive values
because we would then also count events of class transmis-
sion at later generations (and not only at the generation t of
interest), and that the parents contributing to class transmis-
sion at time t descend from individuals at the initial time t0
through class transmission only (see also fig. 2B).
In summary, equation (10) is thus equal to the fre-

quency of individuals measured at t 1 1 that were pro-
duced owing to class transmission during [t, t 1 1] by
all parents i that reach t through the neutralized process.
This is the interpretation of the effect of class transmis-
sion attributed to generation t in a multigenerational
evolutionary process. Because �wt is always positive, class
transmission favors allele i at t in a multigenerational
process of span T whenever

Wct
tjT (i) p

�w○
t (i)
�wt

1 1: ð11Þ

Here, Wct
tjT (i) can be interpreted as the average number of

offspring produced at t by a single i carrier if it were to re-
produce as an average individual in each class and its an-
cestral lineage underwent the neutralized process, relative
to the average number of offspring produced if this indi-
vidual were to reproduce as an average individual in the

ð10Þ
population. The fitness Wct
tjT (i) is thus the relative fitness

that determines class transmission at t in a multigenera-
tional context.
Connection to Previous Work

We have produced a decomposition for allele-frequency
change in a multigenerational process (eq. [5]), where
such change can be partitioned into generation-specific
contributions caused by natural selection DpseltjT (i) (eq. [8])
and class transmission DpcttjT (i) (eq. [10]). These calcu-
lations are consistent with the partitioning of the single-
generation effects of selection and class transmission, since
equation (4) is recovered by setting t p t0 and t 1 1 p tf
in equation (5) and equations (8) and (10), and they con-
nect to a number of previous studies. To discuss these, let
us denote by pat (i) p

P
aat(a)pt(ija) the class reproductive

value–weighted allele i frequency at t, where
P

aat(a) p
1 (see eq. [S19] for the representation of at(a)). Then the
fraction of the total cumulative allele-frequency change at-
tributed to selection in generation t is exactly the class re-
productive value–weighted change at t :

DpseltjT (i) p Dpat (i) ð12Þ

(eq. [S19]). The right-hand side of equation (8) is there-
fore conceptually equivalent to equation (10) of Grafen
(2015) for allele-frequency change in a panmictic popu-
lation, to equation (7) of Lion (2018a) for the phenotypic
change in a panmictic population, to equation (5) of Lion
and Gandon (2022) for the allele-frequency change in
periodically fluctuating environments, and to equation (69)
of Priklopil and Lehmann (2021) for allele-frequency change
in a spatially structured population. In this article, we now
provide the biological interpretation of the change Dpat (i)
in terms of contributions to final frequencies in a (finite
or infinite time) multigenerational process—that is, we in-
terpret equation (12) as the change in the arithmetic aver-
age allele frequency due to selection in generation t but
assessed at the end of the observed evolutionary process.
Also, we provide the corresponding expression for the
allele-frequency change DpcttjT (i) caused by class trans-
mission. The cumulative contribution of selection for
phenotypic change (here corresponding to DpselT (i)) was
in turn discussed in Gardner (2015). However, this previ-
ous work focused on the large time behavior of popula-
tions (tf → ∞), and moreover it did not define operation-
ally the reproductive value weights and instead appealed
to Taylor (1990), who considers a reference fitness that is
subject to a neutral process only (i.e., it is the fitness in
a monomorphic population for the wild-type or resident
allele). The recursion for reproductive value equation (7)
should, however, be expressed in terms of the average
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class-specific fitness (the fitness of a randomly sampled
allele in each class) in the observed focal population sub-
ject to selection, as explicitly emphasized in Lessard and
Soares (2016) and Lion (2018a), and so it is unclear what
type of evolutionary process the formalization of Gard-
ner (2015) applies to. Likewise, the cumulative change
DpselT (i) was considered in Lehmann and Rousset (2014,
n. 3), but here too the reproductive value weights were
not operationalized. We here ascertained that the neutral-
ized process must be evaluated under the (within-class) av-
erage population process (eq. [6]) for DpselT (i) to represent
the cumulative contribution of selection in the observed
population.
In a series of two-allele models under weak selection

induced by weak phenotypic deviations, the cumulative
contribution of selection was considered in populations
of small (finite) size under the form of the probability of
fixation (Leturque and Rousset 2002; Rousset and Ronce
2004). Under weak selection, it is sufficient to evaluate
reproductive values under the neutral process deter-
mined by the wild-type or resident population only
(for applications to general demographic situations, see
Rousset 2004). Furthermore and finally, in large popula-
tions and under weak phenotypic deviation, the effect
of class transmission vanishes asymptotically (as tf →
∞). In this case, for sufficiently large t the reproductive
value–weighted allele-frequency change is approximately
equal to the change in the arithmetic allele frequency
(Priklopil and Lehmann 2021), namely,

Dpt(i) ≈ DpseltjT (i) p Dpat (i), ð13Þ

which thus fully characterizes allele-frequency change in a
class-structured population (see also the supplemental
PDF, sec. S3.2). Here too it is sufficient to evaluate the re-
productive values under the neutral process determined
by the resident population only (e.g., supplemental PDF,
sec. S3.2). The term Dpat (i) has long been in use in pheno-
typic models to describe reproductive value–weighted
allele-frequency change under weak selection (e.g., Stub-
blefield and Seger 1990; Taylor 1990, 1996; Rousset
2004; Roze and Rousset 2004; Lion 2018a; Priklopil and
Lehmann 2021). Equation (13) thus connects this allele-
frequency change under weak selection back to the final
frequencies and the full frequency change at generation
t of a multigenerational process. An expression analogous
to Dpt(i) ≈ Dpat (i) was also reached in terms of phenotyp-
ic change in panmictic populations (Barfield et al. 2011;
Lion 2018a, 2018b). Finally, the expression Dpt(i) ≈
Dpat (i) holds also for evolution in spatially subdivided
class-structured populations (Priklopil and Lehmann
2021).
Geometric Mean Fitness

Having identified the contributions of selection and class
transmission in a multigenerational process, it seems nat-
ural to ask whether one can summarize the evolutionary
process by a single number—a representation of mean fit-
ness—that would predict whether the allele frequency in-
creases or decreases as a result of natural selection and/or
class transmission. In section S2 of the supplemental PDF,
we show that evolution favors an increase of allele i over
the entire time interval T whenever �WT (i) 1 1, with

�W T ið Þ p �W sel
T ið Þ �W ct

T (i) ð14Þ

being the geometric mean fitness of allele i, where

�W sel
T ið Þ p

Ytf21

tpt0

Wsel
tjT ið Þ

 !1=(tf2t0)

ð15Þ

and

�W ct
T ið Þ p

Ytf21

tpt0

Wct
tjT ið Þ

 !1=(tf2t0)

, ð16Þ

whereWsel
tjT (i) andW

ct
tjT (i) are as in equations (9) and (11),

respectively. As discussed above (“Disentangling Selection
from Class Transmission”), selection favors allele i in gen-
eration t whenever Wsel

tjT (i) 1 1, and class transmission
favors allele i in generation twheneverWct

tjT (i) 1 1 (see also
the supplemental PDF, sec. S2). Over the entire time inter-
val T, selection thus favors allele i whenever �Wsel

T (i) 1 1,
while class transmission favors allele i whenever �Wct

T (i) 1
1. We have thus obtained a partitioning of the geometric
mean fitness into the means �Wsel

T (i) and �Wct
T (i) summariz-

ing the multigenerational contribution of selection and
class transmission for allele-frequency change, respectively,
both of which are grand means since the averages therein
involve averaging (arithmetically) expected number of off-
spring over all classes within a generation and (geometri-
cally) over all generations within the time frame of interest.
Importantly, it is not a conclusion that if allele i is favored

by evolution, �WT (i) 1 1, it is also favored by selection,
�Wsel

T (i) 1 1, or vice versa. This suggests that one should
worry about the effect of class transmission on the evolu-
tionary process if one is interested in understanding the ex-
act effect of selection in class-structured populations. Yet
the theoretical literature routinely uses representations of
mean geometric fitness to characterize evolutionary stable
population states, thus attributing such effects entirely to
selection (e.g., Ferrière and Gatto 1995; Caswell 2001;
Svardal et al. 2015). These representations are justified be-
cause they consider the asymptotic spread of a rare allele
in the population (box 2; supplemental PDF, sec. S3.1). In
this case, selection is the determining evolutionary force
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because class structure converges in a large time limit to its
steady state andwill no longer contribute to allele-frequency
change. The same is true for the characterization of the
dynamics of alleles that express closely similar phenotypes
leading toweak selection (recall eq. [13]; see also the supple-
mental PDF, sec. S3.2). Finally, we note that one can also ex-
pressWsel

T (i) in terms of the �wt(i)’s, but then the generation-
specific partitioning is incorrect and one must nevertheless
define it relative to the same reference fitness as in equa-
tions (14)–(16) to account for the effect of class transmission
(supplemental PDF, sec. S2.2).
Discussion

We analyzed allele-frequency change in a class-structured
population with the aim of decomposing the changes
caused by natural selection and the process of class trans-
mission allowing for frequency dependence, density de-
pendence, and time-dependent environmental changes.
Three main messages arise from our analysis.
First, we presented the standard representation for the
single-generation change in allele frequency (eq. [2]).
We then calculated the contributions of selection and
class transmission to this change (eq. [4]) and showed
that selection acting on an allele must be defined relative
to the average fitness in each class (eq. [4b]). However,
these single-generation contributions of selection and class
transmission, as our analysis reveals, should not be used
as net contributions to allele-frequency change in a mul-
tigenerational context where the measurements are taken
over multiple time steps (figs. 1, 2). This is so because, on
the one hand, the contribution of class transmission
contains the contributions of selection in the past, and
hence in a multigenerational context it conflates the effect
of class transmission with past effects of selection. On the
other hand, the contribution of selection fails to take into
account that the descendants of the selected offspring un-
dergo class transmission in the future, thus altering the
magnitude of this allele-frequency change, and hence
does not take into account that nonheritable survival
Box 2: Invasion fitness

We connect here the partitioning of the recursion for a multigenerational process (eq. [5]) as well as the par-
titioning of the geometric mean (eqq. [14]–[16]) to the asymptotic evolutionary trajectory of a rare allele. Recall
that the invasion exponent of allele i is defined (under some technical conditions) as r p limtf→∞1=(tf 2 t0)
ln(ntf (i)=nt0 (i)), giving the asymptotic per capita rate of growth of allele i, which has been widely used as a sum-
mary measure of selection since at least Fisher (1930) and is often called the Malthusian growth rate. Suppose that
all alleles but i coexist at some asymptotically stable equilibrium, which we call the resident equilibrium (the
assumption of an equilibrium is not necessary, as the calculations carry over to more complex attractors of the
resident population; e.g., Tuljapurkar 1989; Metz et al. 1992; Ferrière and Gatto 1995). Then the invasion fitness
for allele i, defined as �̂W(i) p e r and giving the expected number of offspring produced asymptotically per generation
per parent i, can be expressed as

�̂W (i) p

P
a,bq̂(a)ŵ(ajb, i)p̂(bji)P

aq̂(a)p̂(aji)
p

�̂w
q
(i)

�̂q(i)
ðB1Þ

(supplemental PDF, sec. S3.1). Here, q̂(a) is an arbitrary weight of an individual in class a evaluated at the resident
equilibrium (all hats hereafter indicate evaluation at an equilibrium), �̂wq(i) p

P
a,bq̂(a) �̂w(ajb)p̂(bji) is an arbitrarily

weighted fitness of i, and �̂q(i) p
P

aq̂(a)p̂(aji). That equation (B1) is equal for arbitrary weights implies that only
selection is in play in calculations of invasion fitness. Indeed, on the one hand, by setting q̂(a) p v̂(a) for all a, the
invasion fitness can be represented as the asymptotic geometric mean for selection �̂W(i) p limtf→∞

�Wsel
T (i) p

�̂wv(i)=�̂v(i) (supplemental PDF, sec. S3.1). On the other hand, by setting q̂(a) p 1 for all a, the invasion fitness
can be represented as the asymptotic geometric mean fitness �̂W(i) p limtf→∞

�WT (i) p �̂w(i) (supplemental PDF,
sec. S3.1). This confirms that the asymptotic evolutionary trajectory of a rare allele i is fully determined by a mea-
sure of fitness where only selection is in play. Or even more precisely, upon the introduction of the allele i, the
evolutionary trajectory is subject to both class transmission and selection but then converges to the leading eigen-
vector with elements p̂(aji), along which class transmission vanishes and the rate of growth is given by the invasion
fitness determined by selection only (supplemental PDF, sec. S3.1). We note that the two representations of inva-
sion fitness, �̂w(i) and �̂wv(i)=�̂v(i), extend to spatially structured populations, and �̂wv(i)=�̂v(i) forms the basis of the
inclusive fitness representation of invasion fitness (Lehmann et al. 2016; Lehmann and Rousset 2020).
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and reproduction differences affect the evolutionary pro-
cess in class-structured populations. Hence, the single-
generational allele-frequency change that is still widely
used to describe the essence of natural selection (e.g.,
the review of Queller 2017, p. 347) does not generally
capture the net contribution of selection in a multigener-
ational context in class-structured populations. Yet all
allele-frequency change leading to adaptation is certainly
multigenerational, and populations are generally class
structured.
Second, we provided the expressions for the contribution

of selection and class transmission attributed to generation
[t, t 1 1] in a multigenerational process spanning between
some initial time t0 and final time tf (eqq. [8], [10]). We
showed that these contributions must be defined in the
context of the entire span of the evolutionary process under
focus and requires a careful account of the notion of repro-
ductive value, for which we provided a biological definition
in the context of a finite-time process (see eq. [7]). Based on
our analysis, we suggest the following definition for the ef-
fect of selection acting on allele i and attributed to a specific
demographic time step [t, t 1 1] of interest: it is the differ-
ence between two frequencies measured at the end of the
evolutionary process at time tf, (1) a frequency of allele i
if it were to descend from a lineage in a population that until
t 1 1 first underwent the full evolutionary process with se-
lection and class transmission, but thereafter selection was
“turned off” and the population underwent only class trans-
mission (induced by the neutralized process), and (2) a fre-
quency of allele i if it were to descend from a lineage in a
population that underwent the full process only until t, after
which the population underwent class transmission (fig. 2).
This definition thus isolates the one generational effect of
selection during [t, t 1 1] from an otherwise neutralized
(or nonselective) process of class transmission. Because these
effects attributed to generation [t, t 1 1] are assessed at tf,
they are in general different from evolutionary changes in
the single-generation context assessed at t 1 1 (eq. [4b]). It
may therefore be the case that while the single-generation
effect of selection contributes negatively to allele-frequency
change, the multigenerational effect may be positive and
vice versa. For weak selection resulting from individuals
expressing closely similar phenotypes, a simpler picture
emerges as class transmission becomes negligible in distant
future. Then all allele-frequency change in the present is cap-
tured by the reproductive value–weighted allele-frequency
change, and this also gives the present effect of selection in
terms of a frequency assessed in the distant future. In this
case, the reproductive value–weighted allele frequency can
be interpreted as a measure that aligns the current effect
of selection with both current and future allele-frequency
change, thereby straddling single-generational and multi-
generational perspectives of selection (eq. [13]).
Third, we summarized the contributions of selection and
class transmission over the entire evolutionary process in
terms of geometric mean fitnesses (eqq. [15], [16]). The
representation of the (geometric) mean fitness of a particu-
lar allele summarizing the multigenerational effect of selec-
tion is the relative reproductive value–weighted average in-
dividual fitness of a carrier of that allele (eq. [15]). This gives
the grand mean—a mean taken over all classes within a
generation and over all generations of the evolutionary pro-
cess under interest—of the expected number of individuals
that descend under the neutralized process from the
expected offspring number produced by a single carrier of
the allele under focus relative to the grand mean of the
expected number of individuals that descend from that car-
rier under the neutralized process only.While this fitness is
generally not sufficient to predict the direction of evolution,
it should do so over long timescales (tf → ∞), where the
class transmission often vanishes. In particular, this is the
case asymptotically and underlies the widespread use of in-
vasion fitness as a representation offitness summarizing the
multigenerational effect of selection (see box 2). This is also
the case in populations where class transmission is a much
faster process than selection, as, for instance, under weak
selection. In both cases, the class-specific genetic structure
converges fast under class transmission to its steady state,
and the long-term dynamics are governed purely by selec-
tion (for details, see the supplemental PDF, sec. S3.1). In bi-
ological scenarios where these two assumptions are not met
exactly, we also expect that the geometricmean for selection
calculated over sufficiently many generations gives a good
approximation for the effect of selection and can be used
to predict the evolutionary trajectory of an allele beyond
the time frame of observation.
We formulated all these results for haploid asexual pop-

ulations, but our analysis can in a straightforward manner
be generalized to more complex life cycles and sexually
reproducing populations. Likewise, we considered only
panmictic populations, but the main results are bound
to carry over to spatially structured populations. Our in-
terpretations of allele-frequency changes due to natural se-
lection in class-structured populations should thus apply
regardless of the details of the underlying population pro-
cesses. Overall, we hope to have given a satisfactory an-
swer to the question posed in the introduction and clari-
fied the operation of natural selection in class-structured
populations.
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S1 Allele-Frequency Change in Class-Structured Populations

S1.1 Single Generational Process

We here derive eqs. (2)–(4). First, note that

∆pt(i) = pt+1(i)− pt(i)

=
nt+1(i)

nt+1
− nt(i)

nt

=
nt+1(i)

nt+1
− w̄tnt(i)

w̄tnt
,

(S1)

where the second equality follows from the definition of allele frequency. By substituting

nt+1 = w̄tnt (obtained by summing eq. 1 over all classes and alleles) we obtain

∆pt(i) =
1

nt+1
(nt+1(i)− w̄tnt(i)) , (S2)

and by substituting nt+1(i) = w̄t(i)nt(i) (obtained by summing eq. 1 over all classes) yields

∆pt(i) =
1

nt+1
(w̄t(i)− w̄t) nt(i). (S3)

This is the first equality in eq. (2) and the second therein is obtained by substituting for

nt+1 = w̄tnt in the denominator. Using w̄t(i) = ∑a,b wt(a | b, i)pt(b | i) then allows to write

eq. (S3) as

∆pt(i) =
1

nt+1
∑
a,b

(
wt(a | b, i)pt(b | i)−∑

j
wt(a | b, j)pt(b, j)

)
nt(i). (S4)

Now suppose that all alleles have exactly the same fitness, i.e. wt(a | b, i) = wt(a | b) for

all i, then this allele-frequency change reduces to

∆pt(i) =
1

nt+1
∑
a,b

wt(a | b)
(

pt(b | i)− pt(b)
)

nt(i), (S5)

where we used pt(b) = ∑j pt(b, j) and which shows eq. (3).

Next, we consider the case where wt(a | b, i) 6= wt(a | b, j) and show that selection acting

on an individual carrying allele i in a given class must be defined relative to the average

individual fitness within that class. To do this, we here expand on the two premises given

in the main text to conceptualise natural selection. First, natural selection is an evolutionary

force changing the relative numbers of alleles, i.e. their frequencies, and this is as a result of

differential reproductive success caused by heritable genetic differences. In class-structured

populations, however, alleles may reproduce and/or survive differentially also due to non-

heritable class-specific differences, but because non-heritable differences do not contribute to

2
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the selective process these should be disregarded. This is motivated and consistent with pre-

vious literature about evolution in class-structured populations ([e.g., Grafen, 2006, Leturque

and Rousset, 2002, Lion, 2018, Stubblefield and Seger, 1990, Taylor, 1990]) and overall entails

that selection should reflect that each class can potentially make a distinct relative contribution

to overall reproductive success due to heritable differences. This leads us to operationalize

our first premise by letting the average excess of i individuals in class a produced by i car-

riers in class b due to selection be proportional to wt(a | b, i) − ft(a | b), where ft(a | b) is

a reference measure of reproductive success to be derived from the analysis. This reference

measure is introduced precisely to tease out from the selective process any differences in re-

production that are due to non-heritable class-specific differences, and as this measure must

be the same for all alleles we do not index it by i. Second, natural selection is a conservative

evolutionary force, i.e. it maintains total allele frequency so that if allele i increases in fre-

quency, ∆psel
t (i) > 0, another must decrease as a result of natural selection and the total allele

allele frequency must be zero sum: ∑i ∆psel
t (i) = 0, which is the standard conceptualisation

of natural selection in the theoretical literature (e.g., Nagylaki, 1992, eq. 2.7, p. 10-11, Frank,

1997, eq. 3, Grafen, 2000, Bürger, 2000, eq. 2.7, p. 125).

With these premises in mind, let us partition the number nt+1(i) = nt(i) + [w̄t(i)− 1]nt(i)

of alleles i produced trough survival and reproduction in the population as

nt+1(i) = nt(i) + ∑
a

∑
b

[
wt(a | b, i)− ft(a | b)

]
pt(b | i)nt(i)

+ ∑
a

∑
b

[
ft(a | b)− 1

nC
w̄t

]
pt(b | i)nt(i) +

(
w̄t − 1

)
nt(i), (S6)

where the first summand gives the change in i number caused by differential reproductive

success due to allele differences, the second gives the change in i number caused by individ-

uals residing in different classes, and the last term gives a change due to the population-wide

average process (population growth). This last term should not contribute to allele frequency

change and indeed by inserting eq. (S8) into eq. (S2) produces

∆pt(i) = ∆psel
t (i) + ∆pct

t (i), (S7)

with
∆psel

t (i) =
1

nt+1
∑

a
∑

b

[
wt(a | b, i)− ft(a | b)

]
pt(b | i)nt(i)

∆pct
t (i) =

1
nt+1

∑
a

∑
b

[
ft(a | b)− 1

nC
w̄t

]
pt(b | i)nt(i),

(S8)

which give the changes in frequency of i caused by selection (‘sel’), with yet to be established

ft(a | b), and class transmission (‘ct’). Next, summing over i in the first line of eq. (S8)

produces

∑
i

∆psel
t (i) =

1
nt+1

∑
a,b
[w̄t(a | b)− ft(a | b)]nt(b). (S9)
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Because natural selection is conservative (∑i ∆psel
t (i) = 0), we must have ft(a | b) = w̄t(a | b)

for all a, b due to the fact that class-specific differences may be independent, which implies

∑i ∆pct
t (i) = 0 and therefore proves eq. (4). We finally note that by substituting ft(a | b) =

w̄t(a | b) into the second equation in eq. (S8) and re-arranging we get

∆pct
t (i) =

1
nt+1

∑
a,b

w̄t(a | b)
(

pt(b | i)− pt(b)
)

nt(i), (S10)

thus confirming eq. (S5), saying that class transmission is induced by the non-uniform distri-

bution of alleles across classes.

When there is no class structure, i.e. wt(a | b, i) = wt(i) for all a and b, we have w̄t(a |
b) = w̄t = ∑j wt(j)pt(j). Then, ∆pct

t (i) = 0 and eq. (S7) reduces to

∆pt(i) =
(

wt(i)− w̄t

w̄t

)
pt(i), (S11)

which is the standard representation of allele-frequency change in populations without class

structure (Gillespie, 1991, eq. 4.1, Nagylaki, 1992, eq. 2.8).

S1.2 Multigenerational Process

We here derive eq. (8) and eq. (10). To that end, we define nt|h(·) and pt|h(·) as the state

variables at t that underwent the full evolutionary process between [t0, h] and that from time

h onward have undergone the neutralized process where individuals reproduce as average

individuals in each class. In the main text, we use the short-hand notation n◦t (·) = nt|t0
(·)

and p◦t (·) = pt|t0
(·) for variables that have undergone the neutralized process right from the

onset (i.e. the initial time t0), but we must define the more general state variables in this

Supplement to derive the results. In particular, nt|h(a, i) gives the number of individuals a, i

at time t that descend from a lineage of individuals that underwent the full evolutionary

process between [t0, h] and the neutralized process between [h, t]. For h ≤ t < tf, this state

variable thus satisfies the recursion

nt+1|h(a, i) = ∑
b

w̄t(a | b)nt|h(b, i) (S12)

(compare with eq. 6 in the main text) with initial condition nh|h(a, i) = nh(a, i), which is the

final state of the state variable nt(a, i) that has undergone the full evolutionary process (eq. 1)

for t0 ≤ t ≤ h. Next, we introduce the state variable

pt|h(a, i) =
nt|h(a, i)

nt
, (S13)
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which gives the proportion of individuals in the population at time t that descend from a

lineage of a, i individuals that underwent the full evolutionary process between [t0, h] and

that from time h onward have undergone a neutralized process (and recall that nt = nt|t and

hence this proportion is relative to the total number of individuals under the full evolutionary

process). We can equivalently interpret pt|h(a, i) as the frequency of individuals of type a, i

at the final time tf that descend from a lineage of individuals that underwent selection and

class transmission between [t0, h] and then only class transmission between [h, t] (relative to

the number of individuals that underwent the full evolutionary process from t0 onward).

S1.2.1 Disentangling Selection from the Evolutionary Process

We are now ready to derive eq. (8). First, by using eq. (S13) we observe that in a multigenera-

tional process over T , the effect of selection in generation t on allele frequency can be defined

for all t as

∆psel
t|T (i) = ptf|t+1(i)− ptf|t(i). (S14)

Indeed, the variable ptf|t+1(i) gives the frequency of individuals i at tf that descend from

individuals that underwent selection and class transmission until t + 1 and then class trans-

mission until tf. Hence, subtracting from ptf|t+1(i), the allele frequency ptf|t(i) where selection

acts only until time t, we isolate in eq. (S14) one iteration of selection [t, t + 1] from an other-

wise class-transmission process during [t, tf]. Applying eq. (S14) recursively, we get

ptf|tf
(i) =

tf−1

∑
t=t0

∆psel
t|T (i) + ptf|t0

(i). (S15)

Then, by using the consistency relation ptf|tf
(i) = ptf(i) and by reorganizing the terms gives

ptf(i)− ptf|t0
(i) =

tf−1

∑
t=t0

∆psel
t|T (i). (S16)

Because ptf|t0
(i) is the frequency of i at time tf if only class transmission was in play over the

entire T (and ptf(i) = ptf|tf
(i) if both selection and class transmission was in play), we have

obtained that ∆psel
T (i) = ptf(i)− ptf|t0

(i) gives the fraction of the total allele-frequency change

that is due to selection with ∆psel
t|T (i) as the contribution of selection in generation t.

Next, we evaluate ∆psel
t|T (i) as defined by eq. (S14). For this, we note the identity

ptf|t(i) =
1

ntf

v̄t(i)nt(i), (S17)

where we used the definition for reproductive values (eq. 7) and the average reproductive

value

v̄t(i) = ∑
a

vt(a)pt(a | i) (S18)
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of an individual carrying allele i at time t as defined in the main text. Notice that eq. (S17)

can also be written as
ptf|t(i) =

1
ntf

∑
a

vt(a)pt(a | i)pt(i)nt

=
1

ntf
∑

a
vt(a)pt(a)pt(i | a)nt

= ∑
a

αt(a)pt(i | a),

(S19)

where αt(a) = (nt/ntf)vt(a)pt(a) is the class reproductive value satisfying ∑a αt(a) = 1 since

ntf = v̄tnt. Hence, ptf|t(i) is the (class) reproductive-value weighted allele frequency used

in the evolutionary analysis of class-structured populations (e.g., Lion, 2018, Priklopil and

Lehmann, 2021, Rousset, 2004, Rousset and Ronce, 2004, Taylor, 1990, 1996).

Now, the weighted allele frequency (eq. S17) satisfies

ptf|t+1(i) =
1

ntf

vt+1(i)nt+1(i) =
1

ntf
∑

a
vt+1(a)nt+1(a, i)

=
1

ntf
∑

a
∑

b
vt+1(a)

[
wt(a | b, i)− w̄t(a | b)

]
pt(b | i)nt(i)+

+
1

ntf
∑

a
∑

b
vt+1(a)w̄t(a | b)pt(b | i)nt(i)

= ptf|t(i) +
1

ntf
∑

a
∑

b
vt+1(a)

[
wt(a | b, i)− w̄t(a | b)

]
pt(b | i)nt(i),

(S20)

where we applied eq. (S18) in the second equality, eq. (1) in the third equality, and eq. (7)

and eq. (S17) in the fourth equality. From the definition in eq. (S14) this thus proves the first

equality in eq. (8).

The second equality in eq. (8) can be obtained by noting that ntf = v̄tnt where v̄t =

∏tf−1
h=t w̄h, in which case we can write eq. (S17) equivalently as

ptf|t(i) =
v̄t(i)

v̄t
pt(i), (S21)

and hence

∆psel
t|T (i) =

1
v̄t

∑
a

∑
b

vt+1(a)
[
wt(a | b, i)− w̄t(a | b)

]
pt(b | i)pt(i)

=
1
v̄t

[
∑

a
∑

b
vt+1(a)wt(a | b, i)pt(b | i)−∑

a
∑

b
vt+1(a)w̄t(a | b)pt(b | i)

]
pt(i)

=
1
v̄t

[
∑

a
∑

b
vt+1(a)wt(a | b, i)pt(b | i)−∑

b
vt(b)pt(b | i)

]
pt(i)

=

(
w̄v

t (i)− v̄t(i)
v̄t

)
pt(i),

(S22)

where in the third equality we applied eq. (7) and in the fourth equality the definition of v̄t(i)
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and

w̄v
t (i) = ∑

a
∑

b
vt+1(a)wt(a | b, i)pt(b | i). (S23)

S1.2.2 Disentangling Class Transmission from the Evolutionary Process

We here derive eq. (10). We observe that in a multigenerational process over T the effect of

class transmission in generation t on allele frequency can be defined for all t as

∆pct
t|T (i) = pt+1|t0

(i)− pt|t0
(i). (S24)

Indeed, pt+1|t0
(i) gives the frequency of i individuals that underwent class transmission until

t+ 1, and hence by subtracting from this the frequency pt|t0
(i) of i individuals that underwent

class transmission until t, we isolate one iteration of class transmission during [t, t + 1]. Now,

by setting t = tf − 1 into eq. (S24), we have

ptf|t0
(i) = ∆pct

tf−1|T (i) + ptf−1|t0
(i) (S25)

and a recursive substitution produces

ptf|tf
(i) =

tf−1

∑
t=t0

∆pct
t|T (i) + pt0|t0

(i). (S26)

Then, by noting that pt0|t0
(i) = pt0(i) and by reorganizing the terms gives

ptf|t0
(i)− pt0(i) =

tf−1

∑
t=t0

∆pct
t|T (i). (S27)

Because ptf|t0
(i) is the frequency of i at time tf if only class transmission was in play over the

entire time-interval T , we have obtained that the total change in allele frequency due to class

transmission is ∆pct
T (i) = ptf|t0

(i)− pt0(i) and ∆pct
t|T (i) is the contribution of class transmission

in generation t.

Next, we evaluate ∆pct
T (i) as defined by eq. (S24). Using eq. (S13), we can write the

recursion

pt+1|t0
(i) =

nt+1|t0
(i)

nt+1
=

1
nt+1

∑
a

nt+1|t0
(a, i)

=
1

nt+1
∑

a
∑

b

[
w̄t(a | b)− 1

nC
w̄t

]
nt|t0

(b, i) +
1

nt+1
w̄tnt|t0

(i)

=
1

nt+1
∑

a
∑

b

[
w̄t(a | b)− 1

nC
w̄t

]
nt|t0

(b, i) + pt|t0
(i),

(S28)

where in the third equality we used eq. (S12) (eq. 6 in the main text) and in the fourth equality

nt+1 = w̄tnt and eq. (S13). Reorganization and using r◦t (i) as defined in the main text, as well
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as recalling the shortcut notation nt|t0
(·) = n◦t (·) and pt|t0

(·) = p◦t (·) yields eq. (10).

S1.2.3 Reduction to Population Models Without Class Structure

We now show that our derivation is consistent with the standard population genetic model

without class structure where wt(i) = wt(a | b, i) for all a, b. Substituting this into eq. (10)

gives ∆pct
t|T (i) = 0 and when substituting it into eq. (8) yields

∆psel
t|T (i) =

1
ntf

∑
a

∑
b

vt+1(a)
[
wt(a | b, i)− w̄t(a | b)

]
pt(b | i)nt(i)

=
1

ntf
∑

a
∑

b
vt+1(a)

[
wt(i)− w̄t

]
pt(b | i)nt(i)

=
1

ntf

v̄t+1

[
wt(i)− w̄t

]
nt(i),

(S29)

where we used v̄t = ∑a vt(a) and 1 = ∑b pt(b | i). Using v̄t = ∏tf−1
h=t w̄h we can write ntf =

v̄tnt = v̄t+1w̄tnt, and substituting into eq. (S29) shows that the fraction of allele-frequency

change attributed to selection in generation t is equal to the right-hand side of eq. (S11)

and thus we have in force of eq. (S7) (but where class transmission has no effect) that for

populations without class structure

∆pt(i) = ∆psel
t (i) = ∆psel

t|T (i). (S30)

However, in a multigenerational context, we can interpret ∆psel
t|T (i) as the fraction of the total

frequency of i measured at the final time tf that is attributed to selection in generation t,

where all descendants of the average excess number of individuals produced over [t, t + 1]

undergo the population-wide average process in [t + 1, tf]. This is a novel interpretation of

allele frequency change in the standard model and justifies the use of reproductive values in

Figure 1B.

S2 Geometric Mean Fitness

S2.1 Geometric Mean in terms of multigenerational relative fitness

We here derive eqs. (9), (11) and eqs. (14)-(16). First, we calculate eqs. (9) and (15). Using

eq. (S13) we obtain the recursion

ptf|t+1(i) =
1

ntf

vt+1(i)nt+1(i) =
1

ntf
∑

a
vt+1(a)nt+1(a, i)

=
1

ntf
∑

a
∑

b
vt+1(a)wt(a | b, i)pt(b | i)nt(i)

=
1

v̄t(i)
∑

a
∑

b
vt+1(a)wt(a | b, i)pt(b | i)ptf|t(i),

(S31)
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where in the third equality we used eq. (1) and in the final equality we used the relation

nt(i) = ptf|t(i)ntf /v̄t(i), which was obtained from ptf|t(i) = ntf|t(i)/ntf (using eq. S13) and the

identity ntf|t(i) = v̄t(i)nt(i). Then, using the definition of w̄v
t (i) produces

ptf|t+1(i) =
w̄v

t (i)
v̄t(i)

ptf|t(i). (S32)

Because ptf|t+1(i) is the frequency of i at tf that descend from the lineage of i in a population

that underwent selection and class transmission until t + 1 and thereafter only class trans-

mission, and ptf|t(i) is the frequency of i at tf if selection acted only until t, then Wsel
t|T (i) =

w̄v
t (i)/v̄t(i) is the relative fitness attributed to only selection in generation t. Setting t + 1 = tf

on the left hand side in eq. (S32) and iterating backward in time yields

ptf|tf
(i) =

tf−1

∏
t=t0

Wsel
t|T (i)ptf|t0

(i). (S33)

Because ptf|t0
(i) is the allele frequency at time tf in a process without selection and ptf|tf

(i) =

ptf(i) is the frequency at tf with selection, the product in eq. (S33) summarizes the fitness

excess over T caused by selection only. Taking the geometric mean of the product in eq. (S33)

then together with eq. (S32) proves eqs. (9) and (15).

Second, we calculate eqs. (11) and (16). Consider the recursion

pt+1|t0
(i) =

nt+1|t0
(i)

nt+1
=

1
nt+1

∑
a

nt+1|t0
(a, i)

=
1

nt+1
∑

a
∑

b
w̄t(a | b)nt|t0

(b, i)

= ∑
a

∑
b

w̄t(a | b)pt|t0
(b | i)

w̄t
pt|t0

(i)

=
w̄t|t0

(i)

w̄t
pt|t0

(i),

(S34)

where we used eq. (S12) (eq. 6 in the main text) and

w̄t|t0
(i) = ∑

a,b
w̄t(a | b)pt|t0

(b | i). (S35)

This is the fitness of a single individual i at t coming from a lineage of individuals that

descend under the neutralized process and will be different for different alleles if alleles are

initially distributed differently between classes: pt0(b | i) 6= pt0(b). Note that in the main text

we used the shorthand notation w̄◦t (i) = w̄t|t0
(i). Because pt+1|t0

(i) is the frequency of i at

t + 1 that descend from a lineage of i that underwent class transmission between [t0, t + 1]

and pt|t0
(i) is the frequency of i at t whose lineage underwent class transmission between

[t0, t], then Wct
t|T (i) = w̄t|t0

(i)/w̄t is the relative fitness attributed to only class transmission in

generation t. Setting t + 1 = tf on the left hand side in eq. (S34) and iterating backwards in

9

Supplemental Material (not copyedited or formatted) for: Tadeas Priklopil, Laurent Lehmann. 2024. 
"On the Interpretation of the Operation of Natural Selection in Class-Structured Populations." 

The American Naturalist 203(2). DOI: https://doi.org/10.1086/727970.



Supplement to Priklopil and Lehmann., “On the operation of natural selection,” Am. Nat.

time yields

ptf|t0
(i) =

tf−1

∏
t=t0

Wct
t|T (i)pt0|t0

(i). (S36)

Because pt0|t0
(i) = pt0(i) is the initial allele frequency at t0 and ptf|t0

(i) is the final frequency

under class transmission only, the product in eq. (S36) summarizes the fitness excess over T
caused by class transmission (see below further discussion on the relative fitness attributed

to class transmission in generation t). Taking the geometric mean of the product in eq. (S36)

then together with eq. (S34) proves eqs. (11) and (16).

Finally, we calculate eq. (14). Substituting eq. (S36) into eq. (S33), and by using ptf|tf
(i) =

ptf(i) and pt0|t0
(i) = pt0(i), we get

ptf(i) =

(
tf−1

∏
t=t0

Wsel
t|T (i)

)(
tf−1

∏
t=t0

Wct
t|T (i)

)
pt0(i), (S37)

where Wsel
t|T (i) = w̄v

t (i)/v̄t(i) and Wct
t|T (i) = w̄t|t0

(i)/w̄t. Taking the geometric means proves

eq. (14).

As noted above, Wct
t|T (i) = w̄t|t0

(i)/w̄t in eq. (S37) is the relative fitness for class transmis-

sion of a single i individual at t in a multigenerational process over T , given we have sampled

an individual at t who is itself a product of class transmission. If we want to condition on the

realized population state at some later generation h, we can use the fact that

ph|t0
(i) =

h−1

∏
t=t0

Wct
t|T (i)pt0(i) (S38)

and substituting this into (S37) we have

ptf(i) =

(
tf−1

∏
t=t0

Wsel
t|T (i)

)(
tf−1

∏
t=h

Wct
t|T (i)

)
h−1

∏
t=t0

Wct
t|T (i)pt0(i)

=

(
tf−1

∏
t=t0

Wsel
t|T (i)

)(
tf−1

∏
t=h

Wct
t|T (i)

)
ph|t0

(i)

(S39)

and using the identity ph|t0
(i) = r◦h(i)ph(i) we get

ptf(i) =

(
tf−1

∏
t=t0

Wsel
t|T (i)

)(
tf−1

∏
t=h

Wct
t|T (i)

)
r◦h(i)ph(i)

=

(
tf−1

∏
t=t0

Wsel
t|T (i)

)(
tf−1

∏
t=h+1

Wct
t|T (i)

)
Wct

h|T (i)r
◦
h(i)ph(i).

(S40)

This shows that Wct
h|T (i)r

◦
h(i) is the relative fitness for class transmission of a single randomly sampled

i individual in generation h.
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S2.2 Alternative Representation of Geometric Mean for Selection

Here we show that one can write the geometric mean for selection (eq. 15) also in terms of

individual fitness functions as

Wsel
T (i) =

(
tf−1

∏
t=t0

w̄t(i)
w̄t|t0

(i)

)1/(tf−t0)

, (S41)

and recall that in the main text we use the shorthand notation w̄◦t (i) = w̄t|t0
(i). To show

this, we first observe that the cumulative fitness of i over T caused by selection only is

ptf(i)/ptf|t0
(i) (compare with eq. S16). To obtain ptf(i), we can use the recursion pt+1(i) =

pt(i)w̄t(i)/w̄t recursively over T and we get

ptf(i) =
tf−1

∏
t=t0

w̄t(i)
w̄t

pt0(i). (S42)

Now, substituting this and the frequency ptf|t0
(i) from eq. (S36) into ptf(i)/ptf|t0

(i), and taking

the geometric mean, gets us eq. (S41).

Next, we show that eq. (S41) and eq. (15) are equivalent. To do this, we first derive a

recursion for ph|t(a | i) over [t, tf] as

ph+1|t(a | i) =
nh+1|t(a, i)
nh+1|t(i)

=
1

w̄h|t(i)
∑

b
w̄t(a | b)ph|t(b | i), (S43)

where we applied eq. (S12) (eq. 6 in the main text) and nh+1|t(i) = w̄h|t(i)nh|t(i) with w̄h|t(i) =

∑a,b w̄t(a | b)ph|t(b | i), and where the initial condition satisfies pt|t(a | i) = pt(a | i). Then, we

produce
v̄t(i) = ∑

a
vt(a)pt|t(a | i)

= ∑
a

∑
b

vt+1(b)w̄t(b | a)pt|t(a | i)

= ∑
b

vt+1(b)pt+1|t(a | i)w̄t|t(i),

(S44)

where the first equality follows from the definition of v̄t(i), and in the second equality we used

eq. (7) and in the third equality we used the relation ph+1|t(a | i)w̄h|t(i) = ∑b w̄t(a | b)ph|t(b | i)

obtained from eq. (S43). Applying the logic in eq. (S44) recursively we get

v̄t(i) =
tf−1

∏
h=t

w̄h|t(i)∑
a

vtf(a)ptf|t(a | i), (S45)

and by noting that vtf(a) = 1 for all a and 1 = ∑a ptf|t(a | i) produces

v̄t(i) =
tf−1

∏
h=t

w̄h|t(i). (S46)
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We can then write
w̄v

t (i)nt(i) = ∑
a

∑
b

vt+1(a)wt(a | b, i)nt(b, i)

= ∑
a

vt+1(a)nt+1(a, i)

= ∑
a

vt+1(a)pt+1(a | i)nt+1(i)

= v̄t+1(i)w̄t(i)nt(i),

(S47)

where the first equality follows from the definition of w̄v
t (i), and in the second equality we

used eq. (1) and in the final equality we applied the definition of v̄t(i) and nt+1(i) = w̄t(i)nt(i).

We have thus produced the identity

w̄v
t (i) = v̄t+1(i)w̄t(i). (S48)

We can substitute this into

tf−1

∏
t=t0

w̄v
t (i)

v̄t(i)
=

tf−1

∏
t=t0

v̄t+1(i)w̄t(i)
v̄t(i)

=
tf−1

∏
t=t0

w̄t(i)
v̄t0(i)

=
tf−1

∏
t=t0

w̄t(i)
w̄t|t0

(i)
,

(S49)

where in the second equality we used v̄tf(i) = 1 (= ∑a vtf(a)ptf(a | i) = ∑a ptf(a | i) by

assumption), and in the final equality we applied eq. (S46). This shows that the eqs. (15) and

(S41) are indeed equivalent.

If one is only interested in the net geometric mean, then one can use eq. (S41) instead

of eq. (15). In fact, eq. (S41) may in some situations be easier to apply because each factor

w̄t(i)/w̄t|t0
(i) only depends on the past events whereas in eq. (15) each factor w̄v

t (i)/v̄t(i)

requires calculating also the future states of the population via reproductive values. However,

the per generation contributions w̄t(i)/w̄t|t0
(i) in eq. (S41) and w̄v

t (i)/v̄t(i) in eq. (15) are not

equal, and only the latter is the correct fitness describing the effect of selection in generation t

in a multigenerational context. Nevertheless, both approaches give the same geometric means

and in both approaches one must use the same neutralized process (eq. 6) to tease out the

effect of selection from class transmission (i.e. both use the same average reference fitness).

Finally, and similarly to the above calculations of geometric means for selection, we can write

ptf(i) =
tf−1

∏
t=t0

Wsel
t|T (i)W

ct
t|T (i)pt0(i) =

tf−1

∏
t=t0

w̄v
t (i)

v̄t(i)

w̄t|t0
(i)

w̄t
pt0(i)

=
tf−1

∏
t=t0

w̄t(i)
v̄t0(i)

w̄t|t0
(i)

w̄t
pt0(i) =

tf−1

∏
t=t0

w̄t(i)
w̄t

pt0(i),

(S50)

where in the third equality we used eq. (S49) and in the fourth equality eq. (S46). This calcula-

tion shows, in particular, that the contribution w̄t(i)/w̄t is not equal to (w̄v
t (i)/v̄t(i))(w̄t|t0

(i)/w̄t) =
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Wsel
t|T (i)W

ct
t|T (i) and only the latter gives the fitness describing the effect of selection and class

transmission in generation t on the final frequency in a multigenerational context.

S3 Asymptotic Evolutionary Process

S3.1 Invasion Fitness

Here we derive the equations for Box 2. Recall the definition of the invasion exponent of allele

i when the initial number of such alleles is nt0(i):

ρ = lim
tf→∞

1
tf − t0

ln
ntf(i)
nt0(i)

(S51)

(e.g., Ferrière and Gatto, 1995, Metz et al., 1992, Tuljapurkar, 1989). Since we are interested

in the growth of i when rare, we suppose that the model contains a steady state where i is

absent (and while one can calculate invasion fitness for any type of population attractor, we

here focus on equilibria). We thus suppose an equilibrium n̂ = (n̂(a, j))a,j characterizing the

population when i is absent (i.e. the ‘resident’ population) where n̂(a, i) = 0 for all a and

n̂(a, j) > 0 for all j 6= i and all a, and that n̂ is asymptotically stable along the invariant

(multidimensional) axis where allele i is absent (i.e. where n̂(a, i) = 0 for all a). More

specifically, we have 0 = n̂(a, i) = p̂(a | i)n̂(i) for all a implying that n̂(i) = 0. In this section

and henceforth, the hat notation indicates that the quantity (state variable or a function) is

evaluated at the equilibrium n̂.

We now calculate eq. (S51). First, from eq. (S37) we get

ptf(i) =

(
tf−1

∏
t=t0

w̄v
t (i)

v̄t(i)

w̄t|t0
(i)

w̄t

)
pt0(i). (S52)

By multiplying both sides by ntf = ∏tf−1
t=t0

w̄tnt0 we obtain

ntf(i) =

(
tf−1

∏
t=t0

w̄v
t (i)

v̄t(i)

w̄t|t0
(i)

w̄t

w̄t

1

)
nt0(i). (S53)

We then divide both sides by nt0(i) and Taylor expand the function ntf(i)/nt0(i) about the

steady state n̂ (we need to expand the whole trajectory of vectors nt0 , . . . , ntf−1), which results

in the linearized equation

ntf(i)
nt0(i)

=
tf−1

∏
t=t0

ˆ̄wv(i)
ˆ̄v(i)

+ h.o.t. =
( ˆ̄wv(i)

ˆ̄v(i)

)tf−t0

+ h.o.t. (S54)

where the h.o.t. refers to terms of order |nt − n̂| for all t ∈ T . The first equality in eq. (S54)

follows from evaluating w̄t and w̄t|t0
(i) = w̄◦t (i) in eq. (S53) at n̂: ˆ̄w = 1 follows from the

definition of an equilibrium (i.e. n̂ = ˆ̄wn̂ implies ˆ̄w = 1), and ˆ̄w◦(i) = 1 follows from the
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equality 1 = ˆ̄w = ∑a,b ˆ̄w(a | b) p̂(b) = ∑a,b ˆ̄w(a | b) p̂◦(b | i) = ˆ̄w◦(i), where we used the fact

that at the equilibrium n̂ the identity p̂◦(a | i) = p̂(a) holds for all a. One can see this by

comparing the recursion in eq. (S43) and pt+1(a) = ∑b w̄t(a | b)pt(b)/w̄t, but we ought to

emphasise that the identity p̂◦(a | i) = p̂(a) holds only for allele i and only at the equilibrium

n̂ where allele i is absent. Furthermore, in the expressions ˆ̄wv(i) = ∑a,b v̂(a) ˆ̄w(a | b, i) p̂(b | i)

and ˆ̄v(i) = ∑a v̂(a) p̂(a | i) the vector v̂ is calculated from eq. (7) and evaluated at n̂ and the

vector p̂(i) with elements p̂(a | i) is calculated from the recursion

pt+1(a | i) =
nt+1(a, i)
nt+1(i)

=
1

w̄t(i)
∑

b
wt(a | b, i)pt(b | i), (S55)

evaluated at n̂ (obtained by using the definition of pt(a | i), eq. (1) and the recursion nt+1(i) =

w̄t(i)nt(i)). Notice that whereas p̂◦(i) with elements p̂◦(a | i) is calculated under a neutralized

process from eq. (S43), the vector p̂(i) is calculated under the full evolutionary process with

selection (eq. S55), and hence in general p̂◦(i) 6= p̂(i).

Now, we can substitute eq. (S54) into eq. (S51) which leads to

ρ = ln
ˆ̄wv(i)
ˆ̄v(i)

. (S56)

In this final step we used the fact that as tf → ∞ the h.o.t. present in eq. (S54) converge

to 0. Moreover, exp ρ can be shown to be the leading eigenvalue of the fitness matrix with

elements ŵ(a | b, i) and that its corresponding eigenvector is p̂(i). These are standard results

about ρ and have been proved elsewhere (e.g., Caswell, 2001, Tuljapurkar, 1989) with the

representation of ρ given in eq. (S56) appearing previously too [Lehmann and Rousset, 2020,

Lehmann et al., 2016].

Finally, we show that any arbitrarily weighted fitness function could be used in eq. (S56).

To this end, define an arbitrarily weighted fitness function

w̄q
t (i) = ∑

a
∑

a
qt+1(a)wt(a | b, i)pt(b | i) (S57)

with arbitrary weights qt(a) that follow some arbitrary system of recursions. Then, we pro-

duce an analogues identity to eq. (S48), which reads as

w̄q
t (i) = q̄t+1(i)w̄t(i), (S58)

where qt+1(i) = ∑a qt+1(a)pt+1(a | i). At the resident equilibrium we hence necessarily have

that

ˆ̄wq(i)
ˆ̄q(i)

=
ˆ̄q(i) ˆ̄w(i)

ˆ̄q(i)
= ˆ̄w(i), (S59)

thus proving eq. (B.1) of Box 2.
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S3.2 Evolutionary Dynamics under Weak Selection

Here we derive eq. (13) and show that over sufficiently large T only the multigenerational par-

titioning (eqs. 8-10) is consistent with weak-selection approximations, namely, that reproductive-

value weighted selection-term governs the slow phase of allele-frequency change after the

initial allele-frequency change caused by class transmission has become negligible. For this,

we consider models where alleles encode for closely similar phenotypes and our derivation

is an adaptation to discrete time from Priklopil and Lehmann [2020, 2021] who analysed

continuous-time population models.

For simplicity but without a loss of generality, let us further suppose that only two alleles

segregate in the population, and that one of the two alleles, say allele i, is derived by muta-

tion from the other allele, say j. We further suppose that the effect of the mutation on the

phenotypic expression of some trait is class-specific so that the phenotypic profile of i can

be written as z(i) = z(j) + δη, where z(k), with elements z(a, k), is the phenotypic profile

of allele k = i, j such that when the allele is in class a it expresses phenotype z(a, k) and

where η gives the direction of the effect of the mutation, with the effect in class a being η(a).

Assuming the fitness functions to be continuous, a small parameter δ implies i and j having

closely similar phenotypes, and hence having closely similar fitness functions. In particular,

for δ = 0, the mutant i and the resident (wild-type) j fitness’s are equal, i.e. we have the

consistency relation

wt(a | b, i) = wt(a | b, j) = wt(a | b), (S60)

where wt(a | b) is a function that is independent of allele frequency (see also eqs. S5 for the

notation). Finally, as in the previous section, we assume no temporal fluctuations and that

there is a resident demographic equilibrium.

Now, consider the multigenerational partitioning (eqs. 8-10) as prescribed in the main text

∆pt|T (i) = ∆psel
t|T (i) + ∆pct

t|T (i) with

∆psel
t|T (i) =

1
ntf

∑
a

∑
b

vt+1(a)
[
wt(a | b, i)− w̄t(a | b)

]
nt(b, i)

∆pct
t|T (i) =

1
nt+1

∑
a

∑
b

w̄t(a | b)
[
pt|t0

(b | i)− pt(b)
]

nt|t0
(i),

(S61)

where these expressions follows from rearrangement using the definition of individual fitness

functions. As we are interested in the dynamics for small values of δ, we Taylor expand

eq. (S61) about δ = 0 to get

∆pt|T (i) = ∆psel
t|T (i)|δ=0︸ ︷︷ ︸

0

+∆pct
t|T (i)

∣∣∣
δ=0

+ δ
d
dδ

∆psel
t|T (i)

∣∣∣
s.s.

+
d
dδ

∆pct
t|T (i)|s.s.︸ ︷︷ ︸
0

+h.o.t.,
(S62)

where h.o.t. refers to ‘higher order terms’ (in the above equation these terms are of order δ2)

and where the first-order term is evaluated at the steady state (‘s.s.’, which is thus taken at the
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resident equilibrium, i.e., steady-state) of the resident or wild-type population where δ = 0

(see below for explanation). First, we note that in eq. (S62) the zero-order term is governed

purely by class transmission because the selection-term ∆psel
t|T (i)|δ=0 is 0 due to the fact that

for δ = 0 we have wt(a | b, i) = w̄t(a | b) (eq. S60). The zero-order term in eq. (S62) reads

∆pct
t|T (i)

∣∣∣
δ=0

=
1

nt+1
∑

a
∑

b
wt(a | b)

[
pt|t0

(b | i)− pt(b)
]

nt|t0
(i)
∣∣∣
δ=0

, (S63)

where we again used eq. (S60) and where all terms on the right-hand-side are calculated for

δ = 0. In contrast, and second, we note that the first-order term in eq. (S62) is governed purely

by selection. This is because both variables pt|t0
(b | i) and pt(b) in eq. (S61) follow the exact

same recursion yt+1(b) = (∑b w̄t(a | b)yt(b))/(∑a,b w̄t(a | b)yt(b)), where yt(b) = pt|t0
(b | i) or

yt(b) = pt(b), implying that (i) their derivatives are equal, and that (ii) their steady states are

also equal and hence these variables will be δ-distance away from each other after some initial

phase of evolutionary dynamics, i.e. after some finite time t∗. Because timescale-separation

methods [Priklopil and Lehmann, 2020] allow us to substitute this steady state into first-order

terms, we obtain that the entire derivative of class transmission d
dδ ∆pct

t|T (i)|s.s. is 0. This is the

reason why the first-order term in eq. (S62) is given only by the term d
dδ ∆psel

t|T (i)
∣∣∣
s.s.

and this

can further be expressed as

d
dδ

∆psel
t|T (i)

∣∣∣
s.s.

= (1− pt(i))pt(i)δ ∑
a

∑
b

v̂(a)∂z(b,i)ŵ(a | b)η(b) p̂(b). (S64)

The hat notation here indicates these terms have been evaluated at the resident or wild-type

steady state and ∂z(b,i) refers to a partial derivative with respect to the phenotypic expression

of the focal individual whose fitness function it is (calculations not shown here, see Priklopil

and Lehmann 2020 for details).

Equations (S61)-(S64) thus show that the initial change in allele frequency is dominated

purely by class transmission, that is, ∆pt|T (i) = ∆pct
t|T (i)|δ=0 + h.o.t.. If the time of observa-

tion T is sufficiently large so that it contains the time point t∗ after which class transmission

becomes negligible, then the first-order term takes over the dynamics and at later times the

allele-frequency is dominated purely by selection. That is, after t∗ the change in allele fre-

quency follows ∆pt|T (i) = ∆psel
t|T (i) + h.o.t. = δ∆ d

dδ ∆psel
t|T (i)|s.s. + h.o.t.. Furthermore, because

any allele frequency with arbitrary weights is approximately equal to the reproductive-value

weighted allele frequency and hence also psel
t|T (i) [Priklopil and Lehmann, 2021], we also have

the approximation ∆pt|T (i) = ∆pt(i) + h.o.t., which justifies eq. (13). Note also that the sum

in eq. (S64) is a constant and defines the selection gradient for this model, and because the

term in-front of the sum is sign-equivalent, the sign of the selection gradient determines

whether the allele frequency increases or decreases monotonically until the allele either goes

to fixation or goes extinct (Priklopil and Lehmann, 2021 for details).

Finally, we contrast the above calculation obtained from the multigenerational partitioning
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to that obtained from the single-generation partitioning by Taylor expanding eq. (4) about

δ = 0 to get

∆pt(i) = ∆pct
t (i)

∣∣∣
δ=0

+ δ
d
dδ

(
∆pct

t (i) + ∆psel
t (i)

)
s.s.

+ h.o.t. (S65)

where
∆pct

t (i)
∣∣∣
δ=0

=
1

nt+1
∑

a
∑

b
wt(a | b) [pt(b | i)− pt(b)] nt(i) (S66)

and (
∆pct

t (i) + ∆psel
t (i)

)
s.s.

= ∑
a

∑
b

ŵ(a | b)
d
dδ

[pt(b | i)− pt(b)]s.s. pt(i)+

+ (1− pt(i))pt(i)∑
a

∑
b

∂z(b,i) ˆ̄w(a | b, i)η(b) p̂(b).
(S67)

In eq. (S66) all terms on the right-hand-side are calculated for δ = 0. In eq. (S67), the first

term on the right-hand-side does not vanish because pt(b | i) and pt(b) do not follow the

same dynamical equation for non-zero δ and hence the derivative inside the brackets is non-

zero, which is in contrast to pt|t0
(b | i) and pt(b) in eq. S63 (and note that all other derivatives

are zero because they are multiplied by the term inside the brackets evaluated at δ = 0 which

does vanish). This shows that the slow dynamics depends on the perturbation of the genetic

structure (first term in eq. S67) and confirms that ∆pct
t (i) is not governed by class transmission

only in the context of a multigenerational process over T : in the single-generation partitioning

one conditions on the state at time t and hence counts also the ancestors of individuals at t

that underwent selection in the past [t0, t]. Moreover, using eqs. (S61)-(S64), we have that
d
dδ ∆psel

t|T (i)
∣∣∣
s.s.

=
(
∆pct

t (i) + ∆psel
t (i)

)
s.s. + h.o.t. which implies that the reproductive values

in the multigenerational partitioning contain the deviation term caused by genetic structure

in the single-generation partitioning. While one can in principle use both eqs. (S67) and

(S64) to approximate allele-frequency change under small phenotypic deviations, eq. (S64)

is considerably easier to calculate. To conclude, we have confirmed that the expressions

∆pct
t (i) and ∆psel

t (i) in eq. (4) do not provide a biologically satisfactory interpretation of the

contributions of class transmission and selection in a multigenerational evolutionary process.
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