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Darwinian evolution consists of the gradual transformation of heritable traits due to natural selection and the input of random

variation by mutation. Here, we use a quantitative genetics approach to investigate the coevolution of multiple quantitative traits

under selection, mutation, and limited dispersal. We track the dynamics of trait means and of variance–covariances between traits

that experience frequency-dependent selection. Assuming a multivariate-normal trait distribution, we recover classical dynamics

of quantitative genetics, as well as stability and evolutionary branching conditions of invasion analyses, except that due to limited

dispersal, selection depends on indirect fitness effects and relatedness. In particular, correlational selection that associates different

traits within-individuals depends on the fitness effects of such associations between-individuals. We find that these kin selection

effects can be as relevant as pleiotropy for the evolution of correlation between traits. We illustrate this with an example of the

coevolution of two social traits whose association within-individuals is costly but synergistically beneficial between-individuals.

As dispersal becomes limited and relatedness increases, associations between-traits between-individuals become increasingly

targeted by correlational selection. Consequently, the trait distribution goes from being bimodal with a negative correlation under

panmixia to unimodal with a positive correlation under limited dispersal.

KEY WORDS: Division of labor, evolutionary branching, G-matrix evolution, island model, social evolution.

Understanding how heritable quantitative traits are molded by

natural selection and mutation has been a longstanding goal of

evolutionary biology. This research endeavor has led to an abun-

dant theoretical literature that seeks to understand the roles of

ecology and genetics in the gradual transformation of quantitative

phenotypes. Notwithstanding this abundance, models of gradual

evolution usually follow one of two approaches, depending on

whether the focus is put on ecological or genetic processes.

One approach consists in investigating the invasion success of

a rare phenotypic mutant (i.e., an evolutionary invasion analysis,

e.g., Michod 1979; Eshel and Feldman 1984; Parker and Maynard

Smith 1990; Eshel et al. 1997; also referred to as “Adaptive Dy-

namics,” e.g., Dercole and Rinaldi 2008, for a textbook treatment)

and places emphasis on ecology (or on how organisms interact

with one another via effects on resources and the environment). In

most practical applications, this emphasis comes at the expense

of genetics realism. In particular, trait dynamics inferred from

invasion analyses most often assume that mutations have weak

quantitative effects and are so rare (relative to the strength of se-

lection) that at most two alleles can segregate in the population.

In this case, a sensitivity analysis of the invasion fitness of a rare

mutant in a resident monomorphic population that is at its eco-

logical equilibrium (e.g., Michod 1979; Eshel and Motro 1981;

Eshel and Feldman 1984; Taylor 1989; Parker and Maynard Smith

1990; Charlesworth 1994) can be used to understand gradual trait

evolution and the ecological transformations due to this evolu-

tion (Metz et al. 1996; Geritz et al. 1998; Rousset 2004; Dercole

and Rinaldi 2008; Metz 2011). Evolutionary invasion analysis is
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therefore particularly well suited to investigate the evolution of

traits under ecological feedbacks and the frequency-dependent

selection that emerges due to such feedbacks (e.g., Kisdi and

Geritz 2009; Lion 2018, and references therein). This approach

has revealed that in the presence of trade-offs, gradual evolution

under ecological feedbacks often leads to the emergence of poly-

morphism. Here, the population first evolves under directional

selection towards a trait value such that any rare mutant has an

advantage over the common resident (Eshel and Motro 1981; Es-

hel 1983; Taylor 1989; Christiansen 1991; Abrams et al. 1993b).

As a result, the population subsequently splits into two lineages

of distinct phenotypes, or morphs, in a process referred to as evo-

lutionary branching (Geritz et al. 1998; see Rueffler et al. 2006;

Kisdi and Geritz 2009, for reviews).

By contrast to invasion analysis, evolutionary quantitative

genetics models of gradual evolution tend to be more preoc-

cupied with the genetic basis of traits (Roff 1997; Lynch and

Walsh 1998). Importantly, quantitative genetics models envisage

that substantial heritable phenotypic variation segregates in the

population. The continuum-of-alleles model, in particular, posits

that quantitative traits are determined by a continuum of pos-

sible alleles produced by mutation (e.g., Kimura 1965b; Latter

1970; Fleming 1979; Bürger 1986). A quantitative genetics ap-

proach aims to investigate the roles of selection and mutation

in the gradual evolution of a phenotypic distribution of arbitrary

complexity. Due to the complication of dealing with multiple phe-

notypic variants, however, analytical explorations of quantitative

genetics models usually come at the expense of generality. No-

tably, the vast majority of quantitative genetics models of traits

under frequency-dependent selection, which either is implicit or

emerges from ecological interactions, focuses on the evolution of

mean phenotypic values in the population, assuming that heritable

phenotypic variation is constant (i.e., additive genetic variances

and covariances are fixed, e.g., Lande 1976, 1981; Iwasa et al.

1991; Gomulkiewicz and Kirkpatrick 1992; Abrams et al. 1993a;

Iwasa and Pomiankowski 1995; Day and Taylor 1996; Tazzyman

and Iwasa 2009; Nuismer et al. 2010; Connallon 2015).

But phenotypic variance should be especially sensitive to

frequency-dependent selection. This is because such selection ei-

ther favors or disfavors rare variants that differ from the most

common, and thus either increases or decreases trait variance

(Slatkin 1980; Taper and Chase 1985; Taylor and Day 1997; Day

and Proulx 2004; Sasaki and Dieckmann 2011; Wakano and Iwasa

2013; Débarre et al. 2014; Wakano and Lehmann 2014; Débarre

and Otto 2016). In fact, recent quantitative genetics models in-

vestigating populations of individuals experiencing frequency-

dependent interactions have revealed links between the dynamics

of phenotypic variance and evolutionary branching (Sasaki and

Dieckmann 2011; Wakano and Iwasa 2013; Débarre et al. 2014;

Wakano and Lehmann 2014; Débarre and Otto 2016), thereby ex-

tending the links between the dynamics of the phenotypic mean in

quantitative genetics models and directional selection in invasion

analysis models (Charlesworth 1990; Iwasa et al. 1991; Taper and

Case 1992; Abrams et al. 1993a; for reviews: Abrams 2001; Lion

2018). Specifically, evolutionary branching occurs in a quantita-

tive genetics model when the phenotypic variance is predicted to

grow without bound while the phenotypic mean is held constant,

under the assumption that the phenotypic distribution is normal

(this assumption allows to only have to consider the dynamics

of the mean and variance of the phenotypic distribution, Wakano

and Iwasa 2013; Wakano and Lehmann 2014; Débarre et al. 2014;

Débarre and Otto 2016). As evolutionary branching occurs, the

variance may in fact converge to a bounded value (see Fig. 2E

and F of Débarre and Otto 2016), but these dynamics cannot

be captured by models that assume that the phenotypic distribu-

tion is normal and thus unimodal (instead of a bi- or multi-modal

distribution; see Sasaki and Dieckmann 2011 and Appendix D of

Débarre and Otto 2016 for a relaxation of the unimodal assump-

tion). In spite of this limitation, quantitative genetics approaches

have been useful to investigate relevant factors for frequency-

dependent selection and evolutionary branching, such as genetic

drift (with fixed, Wakano and Iwasa 2013, or fluctuating, Débarre

and Otto 2016, population size) or the interaction between multi-

ple traits (Débarre et al. 2014).

One factor that is particularly relevant for frequency-

dependent interactions is limited dispersal. This is because limited

dispersal creates genetic structure, whereby individuals that inter-

act and compete with one another are more likely to share identical

alleles at loci determining social or competitive traits than indi-

viduals randomly sampled from the population, resulting in kin

selection on traits (Hamilton 1964; Michod 1982; Frank 1998;

Rousset 2004). Using an invasion analysis, a number of models

have investigated the conditions that lead to disruptive selection

(usually followed by evolutionary branching) due to frequency-

dependent interactions among individuals under limited dispersal

(Day 2001; Ajar 2003; Rousset 2004; Mullon et al. 2016; Parvinen

et al. 2018; see also Svardal et al. 2015 for evolutionary branch-

ing due to spatial and temporal heterogeneities in selection but

without kin selection). Using a quantitative genetics approach,

Wakano and Lehmann (2014) found branching conditions equiv-

alent to those obtained from invasion analysis by studying the

dynamics of the variance of a trait under limited dispersal. The

analysis of frequency-dependent and disruptive selection under

limited dispersal has helped reveal further connections between

invasion analysis and fundamental branches of evolutionary the-

ory. In particular, Ajar (2003), Wakano and Lehmann (2014), and

Mullon et al. (2016) expressed disruptive selection coefficients

in terms of relatedness coefficients, which are quantities central

to population genetics, kin selection, and social evolution the-

ory (i.e., the evolution of traits that influence the fitness of their
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actor and recipient, such as helping or harming, e.g., Hamilton

1964; Frank 1998; Rousset 2004; Wenseleers 2010; see also Kisdi

2016 for a kin selection perspective on evolutionary branching of

dispersal).

In this paper, we incorporate two additional factors that have

previously been omitted in the gradual evolution of quantita-

tive traits when selection is frequency dependent and dispersal

is limited. First, we consider the joint evolution of multiple traits

(whereas Wakano and Lehmann 2014 focus on a single trait). This

enables us to investigate how phenotypic covariances among traits

within individuals are molded by frequency-dependent selection

and pleiotropic mutations (i.e., when traits share a common ge-

netic basis so that mutations have correlated effects across traits).

Second, we model the coupled dynamics of the phenotypic means

and (co)variances (whereas Wakano and Lehmann 2014 look at

the dynamics of the variance only once selection on means is neg-

ligible). This allows for a more complete picture of the dynamics

of the phenotypic distribution. By expressing these dynamics in

terms of relatedness coefficients, we further connect kin selec-

tion theory with the evolutionary quantitative genetics of multiple

traits (Lande 1979; Lande and Arnold 1983; Phillips and Arnold

1989; Brodie et al. 1995; in particular with the evolution of the

G-matrix of additive genetic variance–covariance, Steppan et al.

2002; Arnold et al. 2008)

The rest of this article is organized as follows. We describe the

life-cycle and population structure under consideration in section

“Model”. Our first result, presented in section “Dynamics of the

phenotypic distribution,” is an equation for the one-generational

change of a multi-variate phenotypic distribution under limited

dispersal, mutation, and selection. Next, in section “Tracking the

dynamics of the phenotypic distribution,” we present a closed

dynamical system for the mean vector and variance–covariance

matrix of the phenotypic distribution, under the assumption that

the distribution in the whole population is normal. Further, we

express this dynamical system in terms of effects on individual

fitness and relatedness in section “Selection in terms of indi-

vidual fitness effects and relatedness coefficients,” and highlight

some equilibrium properties of our dynamical system in section

“Equilibrium properties of the phenotypic distribution.” In section

“Application to the coevolution of two synergistic social traits,”

we apply our framework to study the coevolution of two traits

that have socially synergistic effects between individuals. Finally,

we discuss the implications of our results for understanding pat-

terns of intraspecific variation, with special reference to social

and competitive traits.

Model
We consider a population of haploid individuals, divided among

an infinite number of groups, each of fixed size N (the total pop-

ulation size is therefore constant). Each individual bears a multi-

dimensional phenotype that consists of n genetically determined

quantitative traits. The discrete-time life cycle of this population

is as follows. (1) Groups may go extinct (in which case all N

adult individuals in a group die before reproduction) and do so

independently of one another. (2) Adults reproduce clonally (pro-

ducing offspring in sufficient number for the size of each group

in the population to be N by the end of the life cycle) then either

survive or die, which frees up breeding spots. (3) The phenotype

of each individual, adults and offspring alike, independently mu-

tates with probability ν, causing a random quantitative deviation

in trait values. (4) Each offspring either remains in its natal group,

or disperses to another randomly chosen group (i.e., we consider

the island model of dispersal, Wright 1931; Rousset 2004). (5)

Offspring compete locally in each group to fill open breeding

spots, if any.

This life-cycle allows for one, several, or all adults to die

per life-cycle iteration (including through whole group extinction

before reproduction). Generations can thus overlap but the ex-

pression of traits is assumed to be independent of age (e.g., the

fertility or mortality of an individual is independent from its age

and that of any other individual it interacts with). Dispersal can

occur before or after density-dependent competition (as long as

the number of adults in each groups remains constant), and in

groups, so that more than one offspring from the same natal patch

can establish in a non-natal patch. This life cycle is equivalent to

that considered in Mullon et al. (2016), except that here, we allow

for the constant input of mutations in the population (step 3 of the

life cycle).

Results
DYNAMICS OF THE PHENOTYPIC DISTRIBUTION

In order to track phenotypic evolution in the whole population, we

denote by pt (z) the phenotypic density distribution in the popula-

tion at a demographic time point t, where z = (z1, z2, . . . , zn) ∈
R

n is a vector collecting the variable za for each trait a = 1, . . . , n.

To capture the fact that in different groups, different individuals

will have different phenotypes, we introduce the probability dis-

tribution φt of phenotypic group states in the population at time

t (the phenotypic state of a group is defined as a count of the

number of individuals in that group with a given phenotype and

this for each possible phenotype in R
n , see Appendix eq. A1-A3

for more details).

In Appendix A, we show that the recurrence equation for the

phenotypic distribution in the population from demographic time

step t to t + 1 (one iteration of the life cycle) can be expressed

as

pt+1(z) = (1 − ν)W(z,φt )pt (z) + ν

∫
Rn

v(z′, z)W(z′,φt )pt (z′)dz′.

(1)
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The first summand represents changes in the distribution due to

reproduction and survival of individuals that have not mutated

(with probability 1 − ν), and the second summand, changes due

to those that have (with probability ν; and where v(z′, z) denotes

the probability density function for the event that an individual

mutates from z′ to z given that a mutation has occurred). The quan-

tity W(z,φt ) in equation (1) is a measure of fitness of phenotype

z, which depends on the way phenotypes are distributed across

groups (i.e., on φt ). When W(z,φt ) > 1, the frequency of z in the

population increases due to selection, and conversely decreases

when W(z,φt ) < 1.

To gain insights into the fitness measure W(z,φt ), note that

recurrence equation (1) has the same form as the classical recur-

rence of the phenotypic distribution in well-mixed populations

under the continuum-of-alleles model (e.g., Kimura 1965b, eqs. 1

and 2; Fleming 1979, eq. 2.4; Bürger 1986, eq. 1; Taylor and Day

1997, eq. 1; Champagnat et al. 2006, eq. 4.1). In a well-mixed

population of constant size, the fitness of phenotype z is equal

to the “individual” fitness of a focal individual with phenotype

z; namely, its expected number of successful offspring produced

over one iteration of the life-cycle (including self through sur-

vival). Because individuals interact at random in a well-mixed

population, such individual fitness function only depends on the

population wide phenotypic distribution, pt (z) (i.e., the pheno-

type of any group neighbor to a focal individual, captured by φt ,

is in fact independently and identically distributed according to

pt (z)). The fitness of an individual with phenotype z in a popula-

tion with trait distribution pt (z) can thus be written as w(z, pt (z)),

and W(z,φt ) = w(z, pt (z)) in equation (1) (to distinguish between

fitness at the phenotype and individual level, we generically de-

note the former by an upper case W and the latter by a lower

case w).

Defining individual fitness in terms of expected number of

successful offspring is standard in social evolution theory (e.g.,

Hamilton 1964; Rousset 2004), and takes its roots in popula-

tion dynamics: when w(z, pt (z)) > 1, the number of individu-

als with phenotype z increases and conversely decreases when

w(z, pt (z)) < 1 (e.g., eq. 2.2 of Nagylaki 1992). As such, it is

sometimes referred to as “absolute” fitness. Many quantitative

genetics models, by contrast, employ the notion of “relative” fit-

ness to track changes in phenotypic frequencies. This can stem

from two non-mutually exclusive modeling choices: (1) one in fact

considers the effect of the phenotype on a vital rate, f (z, pt (z))

(such as fecundity or offspring survival), that influences the

number of offspring that enter competition before regulation,

which requires normalization by mean vital rate, W(z,φt ) =
w(z, pt (z)) = f (z, pt (z))/[

∫
f (z, pt (z))pt (z)dz]; (2) the popula-

tion size fluctuates, in which case it is necessary to normalize

by mean fitness, W(z,φt ) = w(z, pt (z))/[
∫

w(z, pt (z))pt (z)dz].

In our model, because group size and therefore population size is

constant, W(z,φt ) in equation (1) can be viewed as an absolute

measure of fitness.

In contrast to a well-mixed population, the fitness of an in-

dividual w in a dispersal-limited group-structured population de-

pends on the way phenotypes are distributed across groups (so

on φt ), and specifically on the collection of phenotypes carried

by the individuals that belong to its own group. The fitness of

an individual with phenotype z in a population with group distri-

bution given by φt can thus be written as wμ(z,φt ), where μ is

the phenotypic state of the group that the focal individual resides

in (formally, μ is a counting measure in our analysis—see Ap-

pendix A—but for the purpose of the main text, it can simply be

thought of as the phenotypic state of the focal group). In terms

of this individual fitness function, we find that the fitness at the

level of the phenotype that is relevant for phenotypic dynamics,

W(z,φt ) in equation (1), is

W(z,φt ) =
∫

wμ(z,φt )q(μ|z,φt )dμ, (2)

where the integral runs through every possible group states, μ,

and q(μ|z,φt ) is the probability density function for the event

that an individual randomly picked from the collection of all car-

riers of the z phenotype in the population at time t resides in a

group in state μ (see eq. A17 in Appendix A for derivation). Ac-

cording to equation (2), W(z,φt ) is the average expected number

of successful offspring of an individual with phenotype z, where

the average is taken over all group states μ in which an individual

with phenotype z can reside at time t.

An alternative interpretation for W(z,φt ) can be reached by

noting that because there is an infinite number of possible alle-

les, all individuals with the same phenotype z belong to the same

genetic lineage (as the same allele cannot appear twice via mu-

tation). The function q(μ|z,φt ) in equation (2) then corresponds

to the probability that an individual sampled from this lineage

at time t resides in a group in state μ. As such, W(z,φt ) can be

interpreted as the average direct fitness of an individual randomly

sampled from the lineage of individuals carrying phenotype z at

time t. If on average individuals from the z-lineage produce more

than one successful offspring at time t, this lineage will be larger

at time t + 1 and in a population of constant size, the frequency of

individuals with phenotype z will increase. The fitness measure

W(z,φt ) can thus be seen as the multi-allelic version of the con-

cept of a mutant’s “lineage fitness” used previously in invasion

analyses (which turns out to be equal to the mutant’s growth rate

when the mutant is rare in an otherwise monomorphic population,

Mullon et al. 2016; Lehmann et al. 2016; see also Wild 2011 for

similar branching processes approach to social evolution in group-

structured populations). We will therefore refer to W(z,φt ) as the

lineage fitness (or average direct fitness) of phenotype z, keeping

in mind that unlike in invasion analyses, W(z,φt ) here applies
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for any frequency of z (rare or common) and for any population

composition (monomorphic or polymorphic).

TRACKING THE DYNAMICS OF THE PHENOTYPIC

DISTRIBUTION

The dynamical equation for the phenotypic distribution

equation (1) has no straightforward solution, even when the popu-

lation is well-mixed (Kimura 1965b; Fleming 1979; Lande 1979;

Bürger 1986). Under limited dispersal, this problem is further

complicated by the necessity of simultaneously tracking the dy-

namics of the group distribution φt . To proceed in our analysis and

track the dynamics of the phenotypic distribution, we therefore

make additional assumptions.

Weak selection, weak mutation, normal closure, and
quasi-equilibrium of local genetic associations
We first assume that selection is weak, in the sense that the phe-

notypic variance in the population is small (allowing for second-

order approximation of lineage fitness, see Appendix B for details,

and Iwasa et al. 1991 for a similar approach to the quantitative ge-

netics of traits under frequency-dependent selection in well-mixed

populations). This enables us to express lineage fitness in terms

of time-dependent local genetic associations among individuals

of the same group (i.e., relatedness coefficients), which capture

relevant moments of the distribution of group composition φt , and

therefore avoids us having to keep track of the full distribution

(see eq. B1–B4). Next, we assume that mutations are rare, so that

we can ignore the joint effects of selection and mutation on the

phenotypic distribution over one time period (see Appendix B).

Following previous authors (e.g., see Taylor and Day 1997;

Wakano and Iwasa 2013; Débarre et al. 2014; Wakano and

Lehmann 2014; Débarre and Otto 2016, for social traits), we

further assume that the processes of selection and mutation

are such that pt (z) is approximately multivariate normal (al-

lowing for moment closure, see Appendix B). The assumption

of normality is a strong one but it is noteworthy that it does

not require that the realized distribution of phenotypes within

a focal group at any given demographic time period is nor-

mal. In addition, the assumption of normality has been shown

to give accurate predictions for the change of mean and vari-

ance, which is our main goal, even when selection generates

significant deviations from normality (in well-mixed popula-

tions, Turelli and Barton 1994). Under the assumption of nor-

mality, the distribution pt (z) is characterized by its mean vector

z̄t = (z̄1,t , z̄2,t , . . . , z̄n,t ), whose a-entry is the average value of

trait a in the population at time period t, z̄a,t = ∫
Rn za pt (z)dz;

and its variance–covariance matrix Gt whose (a, b)-entry is the

(co)variance among traits a and b in the population at time period

t, σab,t = ∫
Rn (za − z̄a,t )(zb − z̄b,t )pt (z)dz. The dynamics of pt (z)

can therefore be tracked through the dynamics of its mean vector

z̄t and variance–covariance matrix Gt .

But due to limited dispersal, the dynamics of z̄t and Gt still

depend on time-dependent local genetic associations among in-

dividuals of the same group. To close evolutionary dynamics on

z̄t and Gt and avoid tracking the dynamics of these genetic as-

sociations, we assume that selection is weak relative to dispersal

so that genetic associations reach their steady state before signif-

icant changes have occurred in the phenotypic distribution, pt (z)

(see Appendix B for details). This “quasi-equilibrium” assump-

tion, which is frequently used in population genetic theory (e.g.,

Kimura 1965a; Nagylaki 1993; Kirkpatrick et al. 2002; Roze and

Rousset 2005, 2008), finally allows us to characterize the dynam-

ics of pt (z) entirely by the coupled dynamics of its mean vector

z̄t and variance–covariance matrix Gt .

Dynamics of phenotypic mean vector and
variance–covariance matrix
Under the above assumptions, we show in Appendix B that the

coupled changes of the mean trait vector and variance–covariance

matrix over one demographic time period are respectively given

by

�z̄t = Gt s(z̄t ) (3)

�Gt = M + Gt
(
H(z̄t ) − s(z̄t )s(z̄t )

T
)
Gt , (3b)

where s(z̄t ) = (s1(z̄t ), . . . , sn(z̄t ))T (.T denotes the transpose of

a vector or matrix) is a n × 1 is vector of directional selection

coefficients (or selection gradients), that is, sa(z̄t ) is the first-

order, marginal, effect of an (infinitesimal) change in trait a

away from the population mean z̄t on lineage fitness (sa(z̄t ) =
∂W(z,φt )/∂za). The n × n matrix M collects the effects of mu-

tation; its (a, b)-entry,

(M)ab = ν

∫
Rn

∫
Rn

(za − z′
a)(zb − z′

b)pt (z′)v(z′, z)dz′dz

︸ ︷︷ ︸
σm

ab

, (4)

is the product of the mutation probability, ν, with the (co)variance,

σm
ab, in mutational effects on traits a and b conditional on the

appearance of a mutation (which captures the pleiotropic effects

of mutations on a and b: when σm
ab > 0, mutations tend to change

a and b in a similar way; and when σm
ab < 0, in opposite ways;

note that σm
ab is constant because we assume that mutation step size

is independent from parental phenotype, i.e., that mutations are

isoptropic). The n × n Hessian matrix H(z̄t ) collects the second-

order effects of traits on lineage fitness; its (a, b)-entry H(z̄t )ab =
hab(z̄t ) is the marginal effect of joint changes in traits a and b

away from the population mean z̄t on lineage fitness (hab(z̄t ) =
∂2W(z,φt )/(∂za∂zb)). Finally, the notation s(z̄t )s(z̄t )T denotes the

outer product between two column vectors, so that s(z̄t )s(z̄t )T is

n × n matrix with (a, b)-entry sa(z̄t )sb(z̄t ).

EVOLUTION JULY 2019 5



C. MULLON AND L. LEHMANN

Directional, disruptive, and correlational selection
coefficients
Dynamical equations (3) have the same form as in well-mixed

populations (e.g., eqs. 1 and 2 of Phillips and Arnold 1989, see

also eq. 7 of Lande 1979 and eqs. 6 and 15 of Lande and Arnold

1983). In such models, the effects of selection depend on the

marginal effects of traits on “individual” rather than “lineage” fit-

ness. Nevertheless, the parallels between equation (3) and previ-

ous works allow us to use the same vocabulary and interpretations

on the evolution of phenotypic means and (co)variances (Brodie

et al. 1995). First, the evolution of the mean of each trait (eq. 3)

depends on the vector of directional selection (or the selection

gradient), s(z̄t ), which points in the direction favored by selec-

tion in multivariate phenotypic space (Lande 1979). The effect of

directional selection on the mean of each trait, however, is con-

strained by the genetic variation available and these constraints

are captured by Gt in equation (3) (Lande 1979).

Second, the evolution of the variance–covariance matrix Gt

(eq. 3b) depends on the effects of mutations (M), of directional

selection (s(z̄t )s(z̄t )T), and of quadratic selection given by the

matrix H(z̄t ) (Lande 1979; Lande and Arnold 1983; Phillips and

Arnold 1989). This matrix H(z̄t ) captures two relevant features

of selection. First, the sign of its diagonal entry (a, a) indicates

whether selection favors a decrease (when haa(z̄t ) < 0) or an

increase (when haa(z̄t ) > 0) in the variance of trait a when this

trait evolves in isolation of other traits (Phillips and Arnold 1989),

hence haa(z̄t ) is referred to as the coefficient of disruptive selection

on trait a. Second, the off-diagonal entry (a, b) tells us whether

selection favors a positive (when hab(z̄t ) > 0) or negative (when

hab(z̄t ) < 0) covariance or correlation among traits a and b. The

off-diagonal entry hab(z̄t ) is therefore referred to as the coefficient

of correlational selection among traits a and b (Lande and Arnold

1983; Phillips and Arnold 1989).

SELECTION IN TERMS OF INDIVIDUAL FITNESS

EFFECTS AND RELATEDNESS COEFFICIENTS

So far, the effects of limited dispersal on evolutionary dynamics

(eqs. 1 and 3) have been hidden behind the notion of lineage fit-

ness, W(z,φt ). To highlight more tangibly how selection depends

on limited dispersal, we express the selection coefficients (s(z̄t )

and H(z̄t )) in terms of the effects of traits on individual fitness

and relatedness. For this, let us first rewrite the individual fitness

of a focal individual, that we label as individual ”i,” as a function

w(zi , z−i , z̄t ) of three arguments: (1) the phenotype of the fo-

cal individual, zi = (zi,1, zi,2, . . . , zi,n); (2) the collection of phe-

notypes of its N − 1 neighbors z−i = (z1, . . . zi−1, zi+1, . . . , zN )

(where z j = (z j,1, z j,2, . . . , z j,n) is the phenotype of a neighbor

indexed j); and (3) the average phenotype in the population z̄t (see

eq. 15 for an example of such a fitness function). This individ-

ual fitness function is equal to the fitness function wμ(z,φt ) that

appears in equation (2),

w(zi , z−i , z̄t ) = wμ(z,φt ), (5)

when focal phenotype is zi = z, the state of the focal group is μ =
{zi } ∪ z−i = (z1, . . . , zN ), and groups other than the focal one are

considered to be monomorphic for the population average z̄t (i.e.,

we consider that all individuals in other groups express z̄t so that

the distribution φt is delta peaked on z̄t ; we can do this because

the phenotypic distribution is assumed to be centered around z̄t

with small variance and individuals from different groups interact

at random in the island model; see Iwasa et al. 1991 for a similar

approach in panmictic populations).

We further introduce two neutral relatedness coefficients that

will be relevant for selection: let r◦
2 (z̄t ) and r◦

3 (z̄t ), respectively,

be the probabilities that in the absence of selection and when the

population phenotypic average is z̄t , one and two neighbors of a

focal individual carry a phenotype that is identical-by-descent to

that of the focal (i.e., the set of individuals under consideration

have a common ancestor). Alternatively, r◦
2 (z̄t ) and r◦

3 (z̄t ) can be

interpreted as the probabilities that in the absence of selection

and when the population phenotypic average is z̄t , two and three

individuals sampled in the same group carry identical-by-descent

phenotypes. This interpretation is in line with the definition of

relatedness in the infinite island model (see e.g., Rousset 2004;

Taylor et al. 2007, for further considerations on relatedness in the

finite island model).

Directional selection
We find that the selection gradient on a trait a can be expressed

as

sa(z̄t ) = ∂w(zi , z−i , z̄t )

∂zi,a

∣∣∣∣ zi =z̄t
z−i =z̄t

+ (N − 1)r◦
2 (z̄t )

∂w(zi , z−i , z̄t )

∂z j,a

∣∣∣∣ zi =z̄t
z−i =z̄t

, (6)

where z−i = z̄t means that the derivative is evaluated when all

neighbors express the mean phenotype z̄t (z j = z̄t for all j �= i).

The first derivative in eq. (6) captures the direct effect of trait a:

the effect of a change in trait a in a focal individual on its own

fitness. In a well-mixed population, this is all that matters for

directional selection (i.e., sa(z̄t ) = ∂w(zi , z−i , z̄t )/∂zi,a when the

population size is constant, Phillips and Arnold 1989 1). The sec-

ond derivative, which is weighted by pairwise relatedness r◦
2 (z̄t ),

1When the size of the population fluctuates, sa(z̄t ) =
∂ log w(zi , z−i , z̄t )/∂zi,a , due to normalization of focal fitness with re-

spect to mean fitness (see eq. A6 of Iwasa et al. 1991 for how this holds when

selection is frequency-dependent). If the size of the population fluctuates

but selection is frequency-independent, then the selection gradient can be
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is the indirect effect of trait a: the effect on focal fitness of a

change in trait a in a neighbor of the focal (we arbitrarily chose

this neighbor to be individual j �= i). The selection gradient on

trait a, eq. (6), is therefore the inclusive fitness effect of trait a

(Hamilton 1964; Rousset 2004). Hence, in the absence of co-

variance among traits, the change in the mean value of a trait

is proportional to this trait’s inclusive fitness effect (substituting

eq. 6 into 3 with the off-diagonal elements of Gt all zeros). This

finding is in line with much previous modeling work on the quan-

titative genetics of spatially- or family-structured populations (for

e.g., Cheverud 1985; Queller 1992a, b; Frank 1998; McGlothlin

et al. 2014; Wakano and Lehmann 2014).

Correlational and disruptive selection
We find that the correlational selection coefficient on two traits a

and b (or the disruptive selection coefficient when a = b) can be

expressed as the sum of two terms,

hab(z̄t ) = hw,ab(z̄t ) + hr,ab(z̄t ), (7a)

where the first term,

hw,ab(z̄t ) = ∂2w(zi , z−i , z̄t )

∂zi,a∂zi,b

∣∣∣∣ zi =z̄t
z−i =z̄t

+ (N − 1)r◦
2 (z̄t )

∂2w(zi , z−i , z̄t )

∂z j,a∂z j,b

∣∣∣∣ zi =z̄t
z−i =z̄t

+ (N − 1)r◦
2 (z̄t )

⎛
⎝ ∂2w(zi , z−i , z̄t )

∂zi,a∂z j,b

∣∣∣∣ zi =z̄t
z−i =z̄t

+ ∂2w(zi , z−i , z̄t )

∂zi,b∂z j,a

∣∣∣∣ zi =z̄t
z−i =z̄t

⎞
⎠

+ (N − 1)(N − 2)r◦
3 (z̄t )

∂2w(zi , z−i , z̄t )

∂z j,a∂zk,b

∣∣∣∣ zi =z̄t
z−i =z̄t

,

(7b)

depends on the effects of joint changes in traits a and b within-

(first line of eq. 7b) and between-individuals (second and third

line of eq. 7b) on focal fitness. The first derivative on the first line

of equation (7b) is the effect of a joint change in traits a and b in a

focal individual on its own fitness, which can be viewed as the “di-

rect” synergistic effects of traits a and b (Fig. 1A). In a well-mixed

population, there are no other effects participating to correlational

selection (i.e., hab(z̄t ) = ∂2w(zi , z−i , z̄t )/(∂zi,a∂zi,b); Phillips and

Arnold 1989).

But when dispersal is limited (so that r◦
2 (z̄t ) > 0 and r◦

3 (z̄t ) >

0), three “indirect” synergistic effects become relevant for corre-

lational selection. These are the effect of a change in: (1) both

traits in one neighbor of the focal (second derivative on the first

line weighted by the neutral probability that the focal and this

neighbor are identical-by-descent, r◦
2 (z̄t ); Fig. 1B); (2) in one trait

in the focal and in the other in a neighbor (the two derivatives

of the second line weighted by r◦
2 (z̄t ); Fig. 1C); and (3) in one

trait in a neighbor and in the other in another neighbor indexed

expressed as the derivative of the log of mean fitness in the population with

respect to the trait under scrutiny (e.g., eq. 7b of Lande 1979).

A

B

C

D

E

Figure 1. Within- and between-individual fitness effects relevant

for correlational selection and examples of traits likely to be in-

fluenced by such effects. As revealed by equation (7), there are

five types of fitness effects due to perturbations in two traits a

and b that are relevant for correlational selection when dispersal

is limited: (A) effect of a joint changes in a and b within the focal

individual (first term of eq. 7b); (B) effect of joint changes in a and

b within neighbors of the focal (second term of eq. 7b, weighted

by neutral pairwise relatedness, r◦
2(z̄t)); (C) effect of joint changes

in a and b between the focal (here b) and its neighbors (here,

a; second line of eq. 7b, weighted by r◦
2(z̄t)); (D) effect of joint

changes in a and b between neighbors of the focal (third line of

eq. 7b, weighted by neutral three-way relatedness, r◦
3(z̄t)); (E) the

effect of the indirect effect of one trait (here b) multiplied to the

effect of the other (here a) on pairwise relatedness, which reflects

the tendency of relatives to receive the effects of b (eq. 7c).

as k (last derivative weighted by the neutral probability that the

focal and these two neighbors are identical-by-descent, r◦
3 (z̄t );

Fig. 1D). Collectively, these terms capture the effects of nonran-

dom (due to limited dispersal) frequency-dependent interactions

among individuals on correlational selection, revealing that under

limited dispersal, selection favors the association of traits when

these have positive effects between individuals.
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The second term of equation (7a), hr,ab(z̄t ), captures another

type of synergistic effect relevant for correlational selection in

group-structured populations. This term can be expressed as

hr,ab(z̄t ) = (N − 1)
∂w(zi , z−i , z̄t )

∂z j,a

∣∣∣∣ zi =z̄t
z−i =z̄t

× ∂r2(z)

∂zb

∣∣∣∣
z=z̄t

+ (N − 1)
∂w(zi , z−i , z̄t )

∂z j,b

∣∣∣∣ zi =z̄t
z−i =z̄t

× ∂r2(z)

∂za

∣∣∣∣
z=z̄t

, (7c)

where ∂r2(z)/∂za is the effect of trait a on the probability that

a neighbor of a focal individual with phenotype z carries a

phenotype that is identical-by-descent to that of the focal (and

∂r2(z)/∂zb the effect of trait b). We refer to this as the effect of

traits on relatedness. So equation (7c) reveals that correlational

selection depends on the product between the indirect effect of

one trait (∂w(zi , z−i , z̄t )/∂z j,a and ∂w(zi , z−i , z̄t )/∂z j,b), with the

effect of the other trait on relatedness. Such synergy via related-

ness (Fig. 1E) reflects that in group structured populations, se-

lection will favor an association among two traits when such an

association results in indirect fitness benefits (e.g., trait a is co-

operative, ∂w(zi , z−i , z̄t )/∂z j,a > 0) being preferentially directed

toward relatives (e.g., trait b is the tendency to stay in natal group,

∂r2(z)/∂zb > 0).

Group structure and limited dispersal may thus lead to sig-

nificant changes to the way selection molds phenotypic corre-

lations, especially when traits have synergistic effects that are

either indirect (Fig. 1B–D) or via relatedness (Fig. 1E). This will

be illustrated later when we study the coevolution of two social

traits in section “Application to the coevolution of two synergistic

social traits.” Before doing so, let us remark that when a single

trait evolves (n = 1) and the selection gradient on this trait is zero

(sa(z̄t ) = 0), the change in phenotypic variance that we obtain

(eq. 7 substituted into eq. 3b) reduces to previously derived ex-

pressions from quantitative genetics in the island model (eqs. 26

and 31 of Wakano and Lehmann 2014). Further, equations (6)

and (7) are consistent with evolutionary invasion analyses, that

is, with the first- and second-order effects of selection on the

growth rate (or invasion fitness) of a rare mutant that arises in a

monomorphic group-structured population and that differs from

the resident in a single (eqs. 8 and 9 of Ajar 2003) or multiple

(eqs. 12 and 13 of Mullon et al. 2016) traits. We discuss further the

correspondence between quantitative genetics, invasion analyses,

and adaptive dynamics models in the next section, in which we

study the equilibrium properties of the phenotypic distribution.

EQUILIBRIUM PROPERTIES OF THE PHENOTYPIC

DISTRIBUTION

Equation (3) with equations (6) and (7) is a closed dynamic system

that allows to track the evolution of the mean trait value and of the

(co)variance between traits. In this section, we first investigate

key features of the equilibrium of these phenotypic dynamics,

and then discuss their connections with notions of evolutionary

stability that come from invasion analyses and adaptive dynamics.

Equilibrium mean trait values
We denote the mean trait vector and variance–covariance ma-

trix of the equilibrium phenotypic distribution by z̄∗ and G∗,

respectively. Such equilibrium simultaneously satisfies �z̄t = 0
and �Gt = 0 (where 0 is used to denote an n vector and n × n

matrix whose entries are all zero, respectively). Rather than solv-

ing both systems of equations simultaneously, we can use the fact

that in equation (3), the matrix G is a positive-definite matrix

with real-entries (since it is a variance–covariance matrix). From

standard linear algebra theory (Hines 1980; Leimar 2005, 2009),

it then follows that the equilibrium for the phenotypic means must

satisfy

s(z̄∗) = 0, (8)

that is, all selection gradients (eq. 6) vanish at z̄∗, independently

of the G matrix. An alternative argument to ignore the G matrix

when determining the equilibrium trait vector z̄∗ can be made

from our assumption that (co)variances are small (weak selec-

tion). As a consequence, the dynamics of the G matrix are slower

than those of the mean vector z̄t (see eq. B20 in Appendix B).

Trait means should therefore reach their equilibrium before the

variance–covariance G matrix stabilizes.

We can further ask whether a population with a mean vector

that is close to an equilibrium z̄∗ will eventually converge to it

as a result of selection and mutation. From the fact that G is

positive definite, it can be shown (see Leimar 2009, for example)

that a necessary condition for a population to converge to z̄∗ for

all possible G matrices is that the Jacobian matrix J(z̄∗) of the

selection gradients with (a, b) entry

J(z̄∗)ab = ∂sa(z̄)

∂zb

∣∣∣∣
z̄=z̄∗

(9)

is negative definite at z̄∗, which means that the symmetric real

part of J(z̄∗), ( J(z̄∗) + J(z̄∗)T)/2 has only negative eigenvalues.

This type of equilibrium is referred to as (strongly) convergence

stable (Leimar 2005, 2009).

Equilibrium variance–covariance matrix
The dynamics of the variance–covariance matrix can then

be studied at a convergence stable equilibrium z̄∗ for mean

trait values (eq. 8). In this case, the equilibrium G∗ for the

variance–covariance matrix solves

M + G∗ H(z̄∗)G∗ = 0. (10)
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Equation (10) has an admissible solution (i.e., such that G∗ is pos-

itive definite) if, and only if, the Hessian matrix, H(z̄∗), is negative

definite (Bhatia 2015). This corresponds to the case under which

selection is stabilizing at z̄∗. In fact, if H(z̄∗) is negative definite,

then the population will remain unimodally distributed around

the mean vector z̄∗ and exhibit a variance–covariance matrix,

G∗ = M
[

M−1
(−H(z̄∗)

)−1
]1/2

, (11)

where the operation X1/2 denotes the square root of X such that

all the eigenvalues of X1/2 are positive (Bhatia 2015; see also

eq. 21c of Lande 1980).

Connections with notions of stability from invasion
analyses
Using a quantitative genetics approach, we have derived the con-

ditions under which the multivariate phenotypic distribution of a

dispersal limited population converges and remains at an equi-

librium (eqs. 8–11). Here, we highlight the connections between

these conditions and notions of evolutionary stability that have

emerged from invasion analyses and adaptive dynamics under

limited dispersal.

Singular strategy. First, the selection gradient equation (6) sub-

stituted into condition (8) is equivalent to the definition of evo-

lutionarily singular strategies/phenotypes under limited dispersal

(i.e., phenotypes that when expressed by the whole population,

the gradient of invasion fitness is zero, e.g., Rousset 2004; see

also Geritz et al. 1998, for general definition).

Convergence stability. Second, the condition for a mean trait

vector to be an attractor of directional selection (condition 9 with

eq. 6) is equivalent to the condition for a multi-trait phenotype to

be convergence stable in invasion analysis (Mullon et al. 2016;

see also Brown and Taylor 2010, for a graphical approach to the

coevolution of two traits in a genetically structured population;

and Leimar 2009; Geritz et al. 2016, for general considerations on

multi-trait in invasion analysis). It is noteworthy that in spite of

this equivalence, the phenotypic dynamics envisaged by a quan-

titative genetics model (given by eq. 3, see also eq. 7 of Lande

1979, or eq. 1 of Phillips and Arnold 1989) differ from the dy-

namics inferred from invasion analysis (which are captured by

the so-called “canonical equation,” eq. 1 of Dieckmann and Law

1996, or eq. 3 of Leimar 2009). In a quantitative genetics model,

the mean trait vector changes as a result of selection acting on a

standing genetic variation, which is large enough to be captured by

a statistical distribution (Gt in eq. 3). Under the “canonical equa-

tion,” traits evolve under a trait substitution sequence, whereby

a selected mutant fixes before another mutant arises, so that the

population ”jumps” from one monomorphic state to another and

in principle cannot sustain polymorphism (see Fig. 1C, upper right

panel of Champagnat et al. 2006, for a useful depiction of a trait

substitution sequence; see Van Cleve 2015, for a review of trait

substitution sequences with kin selection effects).

Uninvadability. Third, the condition that H(z̄∗) with equa-

tion (7) is negative definite for the population to remain uni-

modally distributed around z̄∗ is consistent with the condition

derived from invasion analyses for z̄∗ to be locally uninvadable

(i.e., that any rare mutant that arises in a population for monomor-

phic for z̄∗ and that causes a slight deviation from z̄∗ eventually

vanishes, Mullon et al. 2016; see also Ajar 2003 for a single evolv-

ing trait in dispersal limited population; and Leimar 2009; Geritz

et al. 2016, for general considerations on multi-trait analyses).

Evolutionary branching. Invasion analyses have revealed that

a phenotype that is convergence stable is not necessarily unin-

vadable (Eshel and Motro 1981; Eshel 1983; Taylor 1989; Chris-

tiansen 1991; Abrams et al. 1993b). In fact, when a singular phe-

notype is convergence stable but invadable, disruptive selection

can lead to evolutionary branching, whereby two lineages stably

coexist in polymorphism (Metz et al. 1996; Geritz et al. 1998).

When multiple traits are evolving, a sufficient condition for the

initiation of evolutionary branching is that the Jacobian is negative

definite and the Hessian matrix is positive definite at the singular

phenotype z̄∗ (note that this does not ensure that the resulting

polymorphism is stable, Geritz et al. 2016, for further considera-

tions). In the context of quantitative genetics, this means that the

mean trait vector is held at z̄∗ (as J(z̄∗) is negative definite) while

the dynamics of the variance covariance matrix (eq. 3b) diverges

to infinity (as H(z̄∗) is positive definite). In other words, at the

onset of evolutionary branching, directional selection maintains

the population mean vector at z̄∗ all the while disruptive selec-

tion favors extreme phenotypes, leading to the explosion of the

variance–covariance matrix (in line with previous quantitative ge-

netics approaches to study evolutionary branching, Wakano and

Iwasa 2013; Débarre et al. 2014; Wakano and Lehmann 2014;

Débarre and Otto 2016).

The molding of phenotypic correlations by selection
and mutation
Invasion analyses can be used to infer on the phenotypic cor-

relations or associations generated by disruptive selection (by

studying the eigenvector associated with the greatest eigen-

value of H(z̄∗), which gives the axis in phenotypic space along

which selection is disruptive and along which the population

becomes dimorphic, Mullon et al. 2016; Geritz et al. 2016).

This approach, however, only incorporates the effect of selec-

tion and is limited to studying phenotypic correlations at the

onset of evolutionary branching (inferring on the long-term out-

come of evolutionary branching requires studying invasion in

dimorphic populations, which is typically much more involved
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mathematically, e.g., Geritz et al. 1998; Sasaki and Dieckmann

2011). A quantitative genetics approach such as ours here allows

two further considerations on phenotypic correlations (e.g., Lande

1980; Jones et al. 2007). First, it allows to incorporate the influ-

ence of pleiotropy (through the distribution of mutational input,

captured by the variance–covariance matrix M in eq. 3b). Second,

equation (11) allows to study equilibrium phenotypic correlations

as a balance between mutation and stabilizing selection (and not

only disruptive selection). We investigate this balance in more

detail in the next section.

APPLICATION TO THE COEVOLUTION OF TWO

SYNERGISTIC SOCIAL TRAITS

We now apply the quantitative genetics approach elaborated above

to study the coevolution of two social traits under limited disper-

sal. Our main goal is to illustrate the potential significance of

indirect synergistic effects for the molding of phenotypic correla-

tions when dispersal is limited (Fig. 1B–D).

Two public goods model
We model the coevolution of two nonnegative quantitative traits,

labeled 1 and 2, that each capture participation to a different

public good. For example, in group living mammals, one trait

could be the time/energy invested into foraging for the group’s

offspring, and the other, investment into defending the group by

standing sentry against predators (e.g., Carter et al. 2014); in

microorganisms, each trait could be the production of a specific

amino acid that is released into the external environment from

which it can then be absorbed and used by group members (e.g.,

Özkaya et al. 2017).

Benefits and costs. We assume that both public goods are shared

equally among group members, and that individuals receive ex-

tra benefits from obtaining both goods together. The benefits,

B(zi , z−i ), received by a focal individual (with traits zi in a group

composed of z−i ) can then be written in terms of the group trait

averages (z̃1 = ∑N
j=1 z j,1/N and z̃2 = ∑N

j=1 z j,2/N ) as

B(zi , z−i ) = b(z̃1 + z̃2) + bM z̃1 z̃2, (12)

where the parameter b > 0 tunes the independent benefit of each

public good produced (assumed to be the same for both goods for

simplicity); and parameter bM > 0, the multiplicative benefits of

receiving both goods together. Conversely, participation to both

public goods simultaneously is assumed to be extra costly, for

instance because the different goods call upon different biological

functions that are costly to co-maintain, so that the cost C(zi ) paid

by a focal individual (with traits zi ) can be written as

C(zi ) = c

2

(
z2

i,1 + z2
i,2

) + cMzi,1zi,2, (13)

where the parameter c > 0 tunes the independent cost of each trait,

and parameter cM > 0, the multiplicative costs of the traits. The

fecundity of a focal individual, f (zi , z−i ), is then the difference

between the benefits received and the costs paid,

f (zi , z−i ) = 1 + B(zi , z−i ) − C(zi ), (14)

where 1 is the baseline fecundity when no one in the group par-

ticipates to either public good (zi,1 = zi,2 = 0 for all i).

These benefits (eq. 12) and costs (eq. 13) entail that it is best

for a focal individual to express a negative within-individual as-

sociation between traits (if expressed at all), and simultaneously

be in a group in which traits are positively associated between-

individuals. Such a configuration is possible when the population

is well-mixed (so that there are no genetic correlations—or no

relatedness—among individuals of the same group), but diffi-

cult when individuals of the same group are related due to lim-

ited dispersal. As relatedness increases, associations within- and

between-individuals become aligned due to the co-inheritance

of linked traits (in fact, the covariance between-traits between-

individuals is equal to the product of pairwise relatedness with

total covariance in the absence of selection; i.e., the between-

individuals covariance of traits a and b is equal to r◦
2 (z̄t )σab,t , see

eq. C25 in Appendix C). We therefore expect limited dispersal to

be relevant to the coevolution of the two traits of our model and

to the way selection associates these traits within individuals.

Fitness. Before proceeding to the analysis, let us give the in-

dividual fitness function of a focal individual w(zi , z−i , z̄t ). For

this model, we assume that there is no group extinction, that

offspring disperse independently from one another before local

density regulation, and that all adults die after reproduction (so

that the population follows a Wright–Fisher life cycle). In this

case, individual fitness is,

w(zi , z−i , z̄t ) = (1 − m) f (zi , z−i )

(1 − m)
∑N

i=1 f (zi , z−i )/N + m f (z̄t , z̄t )︸ ︷︷ ︸
wP(zi ,z−i ,z̄t )

+ m f (zi , z−i )

f (z̄t , z̄t )︸ ︷︷ ︸
wD(zi ,z−i ,z̄t )

, (15)

where 0 < m ≤ 1 is the dispersal probability. Individual fitness

is the addition of two terms: (1) the expected number of off-

spring of the focal that successfully establish in their natal group,

wP(zi , z−i , z̄t ), which is the ratio of the number of philopatric

offspring of the focal to the total number of offspring that enter

the competition in the focal group; and (2) the expected number

of offspring of the focal that successfully settle in other groups,

wD(zi , z−i , z̄t ), which is the ratio of offspring the focal sends in

a nonfocal group to the expected number of offspring in such a
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group (fitness function of the form eq. 15 is standard under limited

dispersal, e.g., Rousset 2004; Ohtsuki 2010).

Relatedness. The final pieces of information that are necessary

to apply our framework are the neutral relatedness coefficients,

r◦
2 (z̄t ) and r◦

3 (z̄t ), and the effect of each trait on pairwise related-

ness (∂r2(z)/∂za). These expressions, which have been derived

elsewhere for the Wright–Fisher life cycle considered here (e.g.,

Rousset 2004; Ajar 2003; Ohtsuki 2010; Wakano and Lehmann

2014), are given in Appendix B (eqs. B21 and B22).

Analysis
We now proceed to analyze the evolution of both social traits

using the approach established in section “Tracking the dynamics

of the phenotypic distribution.” We first focus on the equilibrium

properties of the phenotypic distribution.

Convergence of mean trait values. Substituting equation (15)

and pairwise relatedness coefficient (eq. B21) into equation (6),

we obtain that the selection gradient vector is

s(z̄t ) = [1 − r ◦
2 (z̄t )]

(
b/N − cz̄1,t + z̄2,t (−cM + bM/N )

b/N − cz̄2,t + z̄1,t (−cM + bM/N )

)
+ O(ε2),

(16)

where ε is a small parameter capturing the magnitude of the

effect of the public good on fecundity (i.e., ε is the largest of the

parameters b, bM, c, and cM). Solving equation (16) for zero then

yields the unique singular strategy

z̄∗ = (
z̄∗

1, z̄∗
2

) =
(

b/N

c + cM − bM/N
,

b/N

c + cM − bM/N

)
, (17)

which unsurprisingly decreases with costs c and cM, and increases

with “direct” benefits b/N and bM/N (as an individual recoups a

share 1/N of its participation to each public good). Note that this

singular strategy does not depend on dispersal (or relatedness).

This is due to our assumptions that group size is fixed and that

generations are non-overlapping (in which case indirect fitness

benefits of interacting with relatives are “cancelled” by the fitness

costs of kin competition, e.g., Taylor 1992; Rousset 2004).

To establish whether the phenotypic distribution will con-

verge to have mean z̄∗, we substitute equation (16) into the sym-

metric part of the Jacobian matrix equation (9), which we evaluate

at the equilibrium equation (17). It is straightforward to show that

the two eigenvalues of the resulting matrix are given by

[1 − r◦
2 (z̄t )]

{−c − cM + bM/N ,−c + cM − bM/N
} + O(ε2).

(18)

Both are negative provided

−1 <
−cM + bM/N

c
< 1, (19)

i.e., when the difference between the multiplicative costs, cM,

and direct multiplicative benefits, bM/N , is small compared to

the independent cost, c. In that case, the population will evolve to

have mean given by equation (17) and produce an equal amount of

each public good (Fig. 2A). Otherwise, the population will evolve

to express a single trait and thus produce a single public good

(depending on initial conditions, Fig. 2B). Equations (17) and

(19) reveal that limited dispersal does not influence the evolution

of the mean of the phenotypic distribution. But what about the

shape of the distribution around this mean?

Stabilization of the distribution around the mean. Assuming

equation (19) holds true, whether or not the population distribution

stabilizes around the equilibrium trait values (eq. 17) depends on

the Hessian matrix, H(z̄∗). Let us start with analyzing the diagonal

elements of H(z̄∗), which reveal whether selection on each trait is

independently stabilizing or disruptive. Substituting equation (15)

and relatedness coefficients (Appendix B) into equation (7) for

traits 1 and 2 (i.e., a = b = 1 and a = b = 2), and evaluating it

at equilibrium equation (17), we obtain that the diagonal entries

of H(z̄∗) are

h11(z̄∗) = h22(z̄∗) = −[1 − r◦
2 (z̄t )]c + O(ε2). (20)

Because 0 ≤ r◦
2 (z̄t ) < 1, the diagonal entries of H(z̄∗) are always

negative, which means that selection on each trait is stabilizing

when they evolve independently from one another.

Whether selection is stabilizing when both traits co-evolve

also depends on the correlational coefficient of selection, h12(z̄∗).

In particular, stabilizing selection requires that: (1) h11(z̄∗) < 0

and h22(z̄∗) < 0; and (2) h12(z̄∗)2 < h11(z̄∗)h22(z̄∗), That is, that

the correlational selection coefficient is weak relative to the

strength of stabilizing selection on both independent traits; this

is because a 2 × 2 symmetric matrix Hessian matrix is negative-

definite if and only if its diagonal entries are both negative and

the off-diagonal satisfies condition (2) (e.g., Horn and Johnson

2012). Condition (2) can equivalently be written as

−1 < ρ∗
s = h12(z̄∗)√

h11(z̄∗)h22(z̄∗)
< 1, (21)

where ρ∗
s is the strength of correlational selection, relative to the

strength of stabilizing selection on each independent trait at z̄∗.

If equation (21) does not hold, then selection is disruptive due to

correlational selection.

The correlational coefficient of selection is derived by first

substituting equation (15) into equation (7) with a = 1 and b = 2,

and second, evaluating the result at equilibrium equation (17).

This yields

h12(z̄∗) = [1 − r◦
2 (z̄t )][−cM + (

1/N + α(N − 1)/N
)
bM/N ]

+ O(ε2), (22)
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A B

Figure 2. Directional selection on synergistic social traits. Qualitative dynamics of population means due to selection when equilibrium

equation (17) is: (A) an attractor (with b/N = 3, bM/N = 1.5); (B) a repeller (with b/N = 5.8, bM/N = 0.1). Solid lines show when the

selection gradient equation (16) on each trait vanishes (black for trait 1, s1(z̄1, z̄2) = 0; grey for trait 2, s2(z̄1, z̄2) = 0; other parameters:

c = 1, cM = 2).

where

α = (1 − m)2(3N − 2 − (N − 2)m)

3N − 2 + (N − 1)(N − 2)(1 − (1 − m)3)
(23)

decreases as dispersal and group size increases (i.e., α decreases

as relatedness coefficients decrease, see Fig. 3A). Equation (22)

reveals that as α (and relatedness) increases, the within-individual

association favored by selection goes from negative to positive

(Fig. 3B and C). This is because as relatedness increases, indirect

synergistic effects become increasingly targeted by correlational

selection (Fig. 1B–D).

Substituting equations (20) and (22) into equation (21), we

find that selection is stabilizing around z̄∗ when

−1 < ρ∗
s = −cM + (

1/N + α(N − 1)/N
)
bM/N

c
< 1, (24)

which reveals that high relatedness, or large α, favors stabilizing

selection (Fig. 3B and C, dark grey and black regions), and con-

versely, low relatedness, or small α, favors disruptive selection and

thus polymorphism (when eq. 19 holds but eq. 24 does not, Fig. 3B

and C, light grey region). This finding is in line with a recent com-

putational eco-evolutionary model, which found that when species

can evolve cross-feeding interactions, mutualistic coexistence is

compromised by spatial structure and limited dispersal (Oliveira

et al. 2014). This is also in line with previous results on the evolu-

tion of single traits that have found that evolutionary branching is

inhibited by limited dispersal (e.g., Day 2001; Ajar 2003; Parvi-

nen et al. 2017; Wakano and Lehmann 2014). In such models and

ours, limited dispersal inhibits evolutionary branching because it

creates genetic correlations among competing individuals, so that

a mutant cannot be as different to common types as in well-mixed

population. As a result, frequency-dependent disruptive selection

is weaker under limited dispersal.

Effect of selection on phenotypic correlation. Putting our stabil-

ity analyses together (especially eqs. 17, 19, 22, and 24) and vali-

dating them using individual-based simulations (see Appendix D

for details), we find that there are three possible outcomes for

the phenotypic distribution once it has converged to be unimodal

around the equilibrium equation (17) due to selection: (1) when

relatedness is low, correlational selection is negative and strong

enough to make selection disruptive, leading to the stable coex-

istence of individuals specialized in producing a single public

good (Fig. 4A). In this instance, evolutionary dynamics follow

so-called “Black queen” dynamics (Morris et al. 2012; Morris

2015, with special reference to microorganisms): individuals first

evolve to produce the same amount of leaky product that is shared

among individuals, but the costly maintenance of both traits leads

to specialization in a single product and the evolution of cross-

feeding among types (see Rueffler et al. 2012; Vásárhelyi et al.

2015, for similar models on the evolution of specialization in

well-mixed populations). (2) Over a critical level of relatedness,

selection becomes stabilizing but correlational selection remains

negative, which prevents evolutionary branching and thus spe-

cialization, but still results in a negative association among traits

within individuals (Fig. 4B). (3) Over another threshold of relat-

edness, correlational selection becomes positive, so that the traits

become positively associated within individuals (Fig. 4C). Hence,

although limited dispersal and relatedness have no bearing on the

mean of the phenotypic distribution in our model (eqs. 17 and 19),

indirect synergistic effects entail that relatedness has a significant

influence on the shape of this distribution (which goes from being

bimodal with a negative correlation under panmixia to unimodal

with a positive correlation under limited dispersal, Fig. 4).

Effect of pleiotropy on phenotypic correlation. So far, our anal-

ysis has focused on the effects of selection on the stability of
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A B

C

Figure 3. Correlational selection on synergistic social traits. (A) Weight α, equation (23), to multiplicative benefits in the coefficient of

correlational selection (see eq. 22). (b) Relative correlational selection, ρ∗
s (eq. 24), as a function of dispersal m, with critical levels of

dispersal for which: ρ∗
s < −1 (light grey); −1 < ρ∗

s < 0 (dark grey); and 0 < ρ∗
s < 1 (black, with N = 10, b/N = 0.03, bM/N = 1.8, c = 0.8,

cM = 1). (C) Parameter combinations (with N = 10, c = 1) for which correlational selection at the equilibrium equation (17) is: (1) strongly

negative (and causes selection to be disruptive, ρ∗
s < −1 and eq. 24 does not hold, light grey regions); (2) negative (and selection is

stabilizing, −1 < ρ∗
s < 0 and eq. 24 holds, dark grey regions); and (3) positive (and selection is stabilizing, 0 < ρ∗

s < 1 and eq. 24 holds,

black regions). White regions correspond to parameter combinations under which the equilibrium is not evolutionary convergent (i.e.,

eq. 19 does not hold).

A B C

Figure 4. The effect of relatedness and indirect synergy on the phenotypic distribution. Equilibrium phenotypic density distribution,

pt(z), of a simulated population, initially monomorphic for both traits at equilibrium (2,2) (population composed of 1000 groups of

size N = 10; sampled every 500 generations for 20,000 generations after 30,000 generations of evolution; other parameters: bM/N = 1.,

ν = 0.01, σm
11 = σm

22 = 0.02, σm
12 = 0; see Appendix D for details on simulations). (A) Strong negative association with social polymorphism

(with b/N = 0.2, c = 0.1, cM = 1). (B) Negative association (correlation = –0.67, p < 10−10; with b/N = 2.2, c = 1, cM = 1.1). (C) Positive

association (correlation = 0.45, p < 10−10; with b/N = 0.1, c = 1, cM = .05)
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jointly evolving traits (an analysis that could have equally been

performed using invasion analysis; see Mullon et al. 2016, for such

an approach to the joint evolution of multiple traits under limited

dispersal). But selection is not the only relevant process for the

way phenotypic distributions are shaped. As highlighted by the

present quantitative genetic approach, the equilibrium variance–

covariance matrix of the phenotypic distributions also depends

on the patterns of mutation (captured by matrix M in eq. 11).

In particular, pleiotropy is expected to influence the correlations

among traits within individuals at an evolutionary equilibrium.

In order to investigate the joint effects of pleiotropy and cor-

relational selection, let us assume that the variance of mutational

effect on both traits is the same (σm
11 = σm

22 = σm), in which case

the variance–covariance matrix of mutation effects can be written

as

M = νσm

(
1 ρm

ρm 1

)
, (25)

where ρm = σm
12/σm is the correlation of the effect of mutations

on traits 1 and 2. The parameter −1 < ρm < 1 thus captures the

degree of pleiotropy between both traits (when it is zero, both

traits change independently due to mutation, when it is positive,

they tend to change in similar ways, and when it is negative, in

opposite ways).

Substituting equations (20), (22), and (25) into equation (11),

we find that the correlation ρ∗
12 between traits 1 and 2 at equilib-

rium is

−1 < ρ∗
12 = σ∗

12√
σ∗

11σ
∗
22

= ρm + ρ∗
s

1 + ρmρ∗
s +

√
(1 − ρ2

m)(1 − ρ∗
s

2)
< 1,

(26)

where ρ∗
s is given in equation (21). This shows that at equilibrium,

the sign of the correlation among between two traits reflects the

balance, ρm + ρ∗
s , between the degree of pleiotropy, ρm, and the

relative strength of correlational selection ρ∗
s (see Fig. 5A; note

that eq. 26 can be directly deduced from eq. 11 whenever the

variance of mutational effect on both traits is the same, σm
11 = σm

22,

and the coefficients of disruptive selection on independent traits

are equal, h11(z̄∗) = h22(z̄∗), see eq. 8 of Jones et al. 2007). Since

limited dispersal and relatedness have a significant influence on

relative correlational selection ρ∗
s (eq. 21), they can affect the cor-

relation ρ∗
12 among traits in the population as much as pleiotropy,

ρm.

We additionally checked that our model captured pleiotropy

correctly by comparing the phenotypic correlation among the

two traits at equilibrium predicted by our model (eq. 26) and

that observed in simulations for different levels of pleiotropy. We

found that model predictions and observations from simulations

also matched well in the presence of pleiotropy (Fig. 5B).

Dynamics of the distribution. We further tested the accuracy

of our dynamical model by comparing individual-based simula-

tions with numerical recursions of equations (3). We found that

simulated populations tend to have lower phenotypic variance

than equation (3) would predict (Fig. 6). This is probably due to

global genetic drift, which our model ignores and which depletes

phenotypic variance (as in well-mixed populations, e.g., Wakano

and Iwasa 2013; Débarre and Otto 2016), and/or the presence of

phenotypic skew, which is ignored under our assumption that the

phenotypic distribution in the population is normal, but which

can influence the dynamics of phenotypic variance (Appendix B,

eq. B18). Nonetheless, we observed overall a good qualitative fit

between the predicted and observed dynamics of the phenotypic

distribution (Fig. 6). This suggests that the assumption of normal-

ity yields accurate predictions for the change of mean and variance

when dispersal is limited (like in well-mixed populations, Turelli

and Barton 1994).

Discussion
In this paper, we have modeled the evolution of the distribution

of genetically determined quantitative traits under limited disper-

sal, frequency-dependent selection, and pleiotropic mutation. By

doing so, we have generalized two classical quantitative genetics

results to include limited dispersal: first, the general recurrence

equation (1) of the phenotypic distribution under the continuum of

alleles model (Kimura 1965b; Fleming 1979; Lande 1979; Bürger

1986); and second, the closed dynamical system equation (3) of

the vector of means and matrix of variance–covariance when

the distribution is normal (Lande 1979; Lande and Arnold 1983;

Phillips and Arnold 1989). In both cases, genetic structure due to

limited dispersal leads to the replacement of individual fitness in

classical quantitative genetics equations by lineage fitness. This

is the fitness of a typical carrier of a given phenotype (randomly

sampled from the lineage of all members carrying that pheno-

type), that is, the average direct fitness of a phenotype, which

depends on the phenotypes expressed in the whole population

and how they are distributed among groups (eq. 2).

From lineage fitness, we were able to reinforce existing links

between concepts of evolutionary stability and evolutionary quan-

titative genetics: (1) the vector of means evolves to convergence

stable phenotypic values (eqs. 8 and 9; see Charlesworth 1990;

Iwasa et al. 1991; Taper and Case 1992; Abrams et al. 1993a;

Abrams 2001; Lion 2018, for well-mixed populations; Cheverud

1985; Queller 1992a, b; Frank 1998; McGlothlin et al. 2014 for

family-structured populations; Lehmann and Rousset 2014, for

dispersal-limited populations); and (2) the distribution remains

unimodal around such values when they are locally uninvadable

or may become bimodal when they are invadable (eq. 10; see

Sasaki and Dieckmann 2011; Wakano and Iwasa 2013; Débarre
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BA

Figure 5. The effect of pleiotropy on phenotypic correlation. (A) Contours of predicted phenotypic correlation among traits 1 and 2 at

mutation–selection balance, ρ∗
12, according to pleiotropy, ρm, and the relative strength of correlational selection, ρ∗

s (from eq. 26). (B)

Predicted phenotypic correlation between traits 1 and 2 (dashed grey curve, from eq. 26), and corresponding observations from individual

based simulations of a population initially monomorphic for (2,2) divided among 1000 groups of size N = 10 (black dots, averaged

correlation over 20,000 generations after 30,000 generations of evolution, error bars indicate standard deviation; other parameters:

m = 0.05, b/N = 0.2, bM/N = 1, c = 1, cM = 0.1, ν = 0.01, σm
11 = σm

22 = 0.02; see Appendix D for details).

Figure 6. Observed and predicted evolution of the phenotypic distribution, pt(z). The observed (full lines, from individual based

simulations) and predicted (dashed lines, from eq. 1) evolution of the traits’ means (A, trait 1 in orange and 2 in blue), variances (B, trait

1 in orange and 2 in blue) and covariance (B, green) for 64 replicates (10 randomly chosen replicates in lighter shade, average over all

64 replicates in darker shade, initial population monomorphic with z1 = 3 and z2 = 1, distributed over 1000 groups of size N = 10, other

parameters: m = 0.4, b/N = 14.8, bM/N = 0.1, c = 5, cM = 2.5, ν = 0.1, σm
11 = σm

22 = 0.02, σm
12 = 0; see Appendix D for details). C, Snapshot

of the population (2500 individuals randomly sampled across 64 replicates shown by gray points) and variance–covariance ellipses given

by the (right) eigenvectors of the G matrix (observed across all 64 replicates in full lines and predicted in dashed), at generations: 1000

(top panel); 2000 (middle panel); and 10,000 (bottom panel).
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et al. 2014; Débarre and Otto 2016, for well-mixed populations,

and Lehmann and Rousset 2014; Wakano and Lehmann 2014,

for the dynamics of the variance of a single trait around a singu-

lar strategy under limited dispersal). Specifically, we have shown

that in a dispersal-limited population with infinitely many types,

the selection gradient, which determines the change in mean trait

values (eq. 3), and the Hessian matrix, which shapes the variance–

covariance matrix (eq. 3b), are respectively equal to the selection

gradient vector and Hessian matrix computed from the invasion

fitness of a rare mutant in an otherwise monomorphic population

(i.e., eqs. 6 and 7 are equal to eqs. 12 and 13 of Mullon et al.

2016). Since the correspondence between the selection gradients

of the two approaches is well established for dispersal-limited

populations (Lehmann and Rousset 2014, for review), it may be

felt that the correspondence between the Hessian matrix obtained

from the evolutionary invasion analysis and that determining the

change in the variance–covariance matrix is intuitive and must

hold. Demonstrating this, however, required surprisingly lengthy

calculations (see Appendix) showing that it is actually not obvi-

ous that when many alleles segregate in a dispersal-limited pop-

ulation and traits are far away from a convergence stable point,

selection on phenotypic (co)variances only depends on simple

pairwise and three-way probabilities of identity-by-descent. Hav-

ing established this correspondence, we expect it to hold under

more general demographic settings (e.g., with local demographic

fluctuations) and hope that simpler arguments than our present

ones can be found to prove it.

The extension of evolutionary invasion analyses to a quanti-

tative genetics model allows to specify the phenotypic distribution

at mutation–selection balance (eq. 11). In particular, it allows to

study the effects of selection and mutation on the phenotypic as-

sociations that emerge among traits at equilibrium (eq. 26). Our

analyses of such associations suggest that kin selection due to

limited dispersal can mold phenotypic associations as much as

pleiotropic mutations (eq. 26 and Fig. 5). By expressing corre-

lational selection on traits in terms of their direct and indirect

fitness effects, we gained insights into the influence of kin selec-

tion on phenotypic associations (eq. 7). Motivated by our explicit

formula for the variance–covariance matrix (eq. 11) and our ex-

ample (section “Application to the coevolution of two synergistic

social traits”), we complement here the discussion found in Mul-

lon et al. (2016) (based on an invasion analysis) on the implications

of kin selection for the evolution of within-individual phenotypic

associations. As indicated by the decomposition of correlational

selection equation (7a), there are two ways kin selection influ-

ences such associations.

The first is through the fitness effects that traits have when co-

expressed among relatives, so when traits have indirect synergistic

effects (equation 7b, Fig. 1B–D). Under limited dispersal, selec-

tion favors an association among two traits within individuals,

when such an association between individuals has indirect fitness

benefits. Due to such kin selection effects, different levels of dis-

persal can lead to significantly different evolutionary outcomes

for phenotypic associations, as highlighted by our example on the

coevolution of two traits whose association within-individual is

costly but beneficial between-individuals due to social synergy.

In this example, populations with little genetic structure evolved

a division of social labor, with individuals specialized in only

one trait coexisting with one another (Fig. 4A), but populations

with strong genetic structure evolved no such specialization, with

traits in fact becoming positively associated within individuals

(Fig. 4C). In line with our results, populations of E. coli that ex-

perience frequent mixing (so show little genetic structure) readily

evolve cross feeding interactions in poor environments, so that

different strains specialize in the production of a specific amino

acid (D’Souza and Kost 2016). By contrast, in meerkat social

groups (which typically show high levels of relatedness), individ-

uals tend to participate to all social activities, with participation

to different tasks such as babysitting and pup feeding positively

associated within individuals (Clutton-Brock et al. 2003). Such

patterns can be explained by our results if participation to different

tasks in these systems is genetically determined, at least partially.

It is also worthy of note that in our example, relatedness has

a substantial influence on the shape of the phenotypic distribution

but none on the mean of this distribution (Fig. 4; eqs. 17 and 18).

Hence, the effects of genetic structure on phenotypic evolution

that we report would have gone unnoticed from the study of the

dynamics of the mean only (which is the focus of the vast majority

of study of quantitative genetics in family-structured populations,

e.g., Cheverud 1985; Queller 1992a, b; Frank 1998; McGlothlin

et al. 2014), or from the analysis of the selection gradient vector

only (as done in the majority of evolutionary analyses to syner-

gistic social traits, e.g., Gandon 1999; Perrin and Mazalov 2000;

Reuter and Keller 2001; Lehmann and Perrin 2002; Rousset and

Gandon 2002; Gardner and West 2004; Leturque and Rousset

2004; Hochberg et al. 2008; Brown and Taylor 2010; Kuijper and

Johnstone 2017). Overall, our example highlights that when traits

have indirect synergistic effects between individuals (Fig. 1B–D),

relatedness is important for the way natural selection molds

phenotypic associations within individuals. This consideration

should be especially relevant to the evolution of specialization

and the emergence of division of labor.

A relevant pair of traits likely to be influenced by such kin

selection effects is costly helping and punishment, which have

synergistic indirect benefits when expressed by different individ-

uals (e.g., Raihani et al. 2012, and references therein). According

to our results, kin selection should favor a positive association

among helping and punishment, which interestingly, has been

observed in humans (Fehr and Gächter 2000). Another pair of

traits whose evolution is likely to be influenced by their joint
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expression in different individuals is the production and exploita-

tion of a public good, such as the secretion and use of siderophores

by microorganisms (West et al. 2006). Under limited diffusion of

siderophores and limited bacterial dispersal (Nadell et al. 2009;

Kümmerli et al. 2014; Ross-Gillespie et al. 2015), we expect kin

selection effects to be ecologically relevant for how secretion and

use of siderophores are associated, and more generally for pat-

terns of multi-trait social variation within microbial communities

(Cordero and Polz 2014; van Gestel et al. 2015; Özkaya et al.

2017; Schiessl et al. 2019; Rodrı́guez Amor and Dal Bello 2019).

The second way kin selection influences phenotypic asso-

ciations is via the combination of the indirect effect of one trait

with the effect of the other on the tendency to interact with rel-

atives (“synergy via relatedness,” eq. 7c, Fig. 1E). Specifically,

selection favors an association between two traits when it results

in fitness benefits being preferentially directed toward relatives

or fitness costs toward non-relatives. For example, if trait a has

positive indirect fitness effects (e.g., altruistic helping) and trait b

decreases the tendency to interact with relatives (e.g., dispersal),

then selection favors a negative correlation between traits a and

b (e.g., Koella 2000; Purcell et al. 2012; Mullon et al. 2018). We

refer readers interested in this effect to Mullon et al. (2016), in

which it is discussed at greater length, in particular in the context

of dispersal syndromes (Edelaar and Bolnick 2012; Ronce and

Clobert 2012).

More generally, our evolutionary perspective on phenotypic

associations may be useful to empiricists who investigate

correlational selection among traits in experimental or natural

populations (e.g., Blows and Brooks 2003; Blows 2007, for

reviews, and chapter 30 of Walsh and Lynch 2018). Based on

Lande and Arnold (1983), the typical starting point of such

studies is to perform a quadratic regression of individual fitness

on the multiple traits expressed by this individual (e.g., eq. 30.11

of Walsh and Lynch 2018). The linear regression coefficients are

collected in a vector usually denoted β with entry βa interpreted

as directional selection on trait a, and the quadratic coefficients

in a matrix γ with entry γab interpreted as correlational selection

on traits a and b (in our notation, βa = ∂w(zi , z−i , z̄t )/∂zi,a and

γab = ∂2w(zi , z−i , z̄t )/(∂zi,a∂zi,b)). This correspondence be-

tween selection on traits and regression coefficients on individual

fitness, however, is only valid in well-mixed populations. Indeed,

as our analysis has shown, β and γ are respectively equal to the

selection gradient s(z̄t ) and Hessian matrix H(z̄t ), only when all

relatedness coefficients are zero (eqs. 6 and 7).

For populations that are genetically structured, empirical es-

timates of selection on multiple traits require to: first regress indi-

vidual fitness on the traits of the focal individual and on those of its

social partners; and second, weigh these indirect fitness effects by

relatedness coefficients (according to eqs. 6 and 7). Estimates of

pairwise relatedness can be obtained from FST statistics at neutral

sites such as microsatellite loci (i.e., the genetic covariance among

pairs of interacting individuals relative to the average genetic co-

variance in the population, Charlesworth and Charlesworth 2010,

chapter 7.1). Similarly, three-way relatedness coefficients can be

estimated from comparisons between the genetic skew at neutral

sites among triplets of interacting individuals and the average ge-

netic skew in the population. While the importance of indirect

fitness effects and relatedness has long been emphasized for the

directional selection gradient (so considering only linear regres-

sion coefficients, β, e.g., Cheverud 1985; Queller 1992a, b; Frank

1998; McGlothlin et al. 2014, see also chapter 5 of Walsh and

Lynch 2018), our analysis has further quantified the relationship

between correlational selection and quadratic regression coeffi-

cients (γ, eq. 7, Fig. 1B–D), which is necessary to understand

patterns of phenotypic variation within populations.

In practice, it is likely to be challenging to obtain reliable

estimates of all the quadratic regression coefficients necessary

to quantify the strength and direction of correlational selection

(eq. 7). But our results can nevertheless be of use when designing

experimental assays or interpreting collected data. For instance,

our results show that for traits that underlie social or competitive

behaviors, such as mating, aggression, or cooperation, there is lit-

tle reason to believe that a quadratic regression of an individual’s

fitness on its own traits provides a full picture of correlational se-

lection. A corollary to this is that when there is mismatch between

phenotypic correlations among two traits observed in a population

on one hand, and the quadratic regression coefficient on individual

fitness from experimental assays on the other (e.g., Bell and Sih

2007; Adriaenssens and Johnsson 2012; Han and Brooks 2013;

Akçay et al. 2015), this may indicate the presence of indirect syn-

ergistic fitness effects among traits and genetic structure in the

population (rather than genetic constraints as typically inferred).

One first accessible step toward testing this hypothesis would

be to estimate genetic relatedness among interacting individuals.

A high relatedness would suggest that phenotypic correlations

are influenced by indirect synergistic fitness effects, which could

then be estimated though quadratic fitness regressions of fitness

on partners’ traits.

Our results further provide insight into the effects of limited

dispersal on how selection influences the G matrix of additive

genetic variances–covariances (Steppan et al. 2002; Arnold et al.

2008). Previous theoretical works have studied how linkage dise-

quilibrium, pleiotropy, and epistasis influence G under selection

(Lande 1980, 1984; Turelli 1985; Turelli and Barton 1990; Revell

2007; Jones et al. 2014), but the effects of limited dispersal on

G have either been assessed in the absence of selection (Lande

1992), or when selection is frequency independent (Jones et al.

2004; Guillaume and Whitlock 2007; Guillaume 2011; Björklund

and Gustafsson 2015). Here, we have shown that kin selection ef-

fects due to limited dispersal are relevant for the way selection
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favors phenotypic associations (i.e., for correlational selection,

eq. 7), which in the long run can lead to genetic correlations

through genetic integration (Sinervo and Svensson 2002; Roff

and Fairbairn 2012). Of course, our model ignores many relevant

features for quantitative genetics: environmental effects, genetic

dominance, genetic linkage, or sexual reproduction for example.

In particular, by assuming that individuals are haploid and repro-

duce clonally, our model does not allow to distinguish between

different possible genetic architectures such as one pleiotropic

locus that determines all evolving traits versus one independent

locus for each trait. In the latter case, correlations among traits

in dispersal-limited sexuals would depend on epistatic effects be-

tween loci within individuals and genetic linkage between loci

(like in well mixed populations, Lande 1984), as well as epistatic

effects between loci located in different individuals, weighted by

the genetic associations between these loci within groups (which

would depend on dispersal, inbreeding, and linkage; see Roze and

Rousset 2008 for how to compute such associations). Incorporat-

ing these features into our framework is likely to make the analysis

of selection more complicated, but it would allow to study the ge-

netic basis of variation, such as how genetic architecture and its

evolution influence trait associations (e.g., Saltz et al. 2017).

One other significant limitation to our present approach is

that it assumes that the phenotypic distribution is normal. This

assumption can be violated under frequency-dependent selection,

which can lead to skewed and complicated distributions. In partic-

ular, the normal assumption precludes investigating what happens

to the phenotypic distribution once evolutionary branching has oc-

curred. To relax this assumption would entail tracking the dynam-

ics of higher moments of the phenotypic distribution. One possible

way to retain some mathematical tractability would be to use the

oligomorphic approximation proposed by Sasaki and Dieckmann

(2011). This approximation decomposes a multimodal trait distri-

bution into a sum of unimodal distributions, each corresponding

to a morph. Applying Sasaki and Dieckmann (2011)’s approach,

which was developed for a large and well-mixed population, to

a dispersal limited one, would be an interesting avenue of fu-

ture research, as well as including class-structure (e.g., age- or

sex-structure).

To conclude, we have derived a quantitative genetics model

to study the gradual evolution of multiple traits that experience

frequency-dependent selection and pleiotropic mutations when

dispersal is limited. This model has revealed that limited dispersal

opens previously unattended pathways for correlational selection,

through the synergistic effects of traits: (1) between interacting

individuals (Fig. 1B–D), due to non-random frequency-dependent

interactions; and (2) via relatedness (Fig. 1E), owing to preferen-

tial interactions with relatives. This suggests that limited dispersal

can profoundly influence how associations between social traits

emerge in response to mutation and selection. Given the ubiquity

of genetic structure in natural populations (e.g., Bohonak 1999,

Charlesworth and Charlesworth 2010, p. 310), our results can help

understand a wide range of patterns of intraspecific variation in

competitive or social traits (such as behavioral syndromes, Dall

et al. 2004; Dingemanse et al. 2012; social niche specialization,

Bergmüller and Taborsky 2007; Montiglio et al. 2013; or social

division of labor, Boehm 2002; Wright et al. 2014), which are

increasingly thought to be ecologically significant (Bolnick et al.

2011; Wolf and Weissing 2012; Sih et al. 2012; Canestrelli et al.

2016; Chaturvedi et al. 2017; Estrela et al. 2019). More broadly,

by connecting different branches of theoretical evolutionary biol-

ogy, from invasion analysis to adaptive dynamics to quantitative

genetics, the present framework further bolsters the notion that

whatever modeling approach is taken, natural selection cannot be

divorced from kin selection when dispersal is limited (Hamilton

1964; Frank 1998; Rousset 2004; van Baalen M 2013; Lehmann

et al. 2016).
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Appendix A: Phenotypic distribution
dynamics

In this appendix, we derive equation (1) of the main text.

PROCESS CONSTRUCTION
We first lay the foundations of our analysis by describing how phe-

notypic evolution in our model population (see “Model” section

in the main text) is represented mathematically.

Markov chain. At any given point in time of the evolutionary

process (where a unit of time is a life cycle iteration), each in-

dividual i ∈ {1, . . . , N } in a focal group is characterized by its

phenotype zi ∈ X , which belongs to a set X of phenotypes (as-

sumed here to be X = R
n). The phenotypic state, or state for

short, of that group is then given by the set of phenotypic values

of all individuals residing in the group: {z1, . . . , zN } ∈ X N . The

state of each group in the population changes stochastically from

one time period to the next (i.e., after one iteration of the life

cycle) due to selection, mutation and dispersal. We assume that

these changes can be modeled as a discrete time Markov chain

on a continuous state space (as traits are continuous; see Meyn

and Tweedie 2009, for details of Markov chains on general state
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spaces). Because groups affect one another through dispersal, the

transition kernel of a group depends on the state of all the other

groups. But since there is an infinite number of groups and there

is no isolation-by-distance (i.e., all groups are equally connected

to one another through dispersal), the infinite set of interacting

Markov chains (one for each group) can be described as a single

Markov chain (for a focal group), whose kernel is a function of

the distribution of group states in the population, see Chesson

1981, 1984, for ecological models). In other words, we can focus

on the stochastic dynamics of a single focal group and ignore the

stochasticity stemming from groups other than the focal one.

Markov chain in terms of counting measures. In order to de-

scribe the state of the focal group, the order of elements in

{z1, . . . , zN } ∈ X N does not matter (because there is no class

structure in our population, we do not care which specific indi-

vidual carries a given phenotype within a group). The (unordered)

state of the group at a given point in time can therefore be repre-

sented by a function, a counting measure μ on X :

μ(E) =
N∑

i=1

δzi (E), (A1)

which counts the number of individuals in that given state that

have their phenotype belonging to a given subset E ⊆ X , where

δ is the dirac measure,

δzi (E) =
⎧⎨
⎩1 if zi ∈ E ;

0 otherwise,
(A2)

(e.g., eqs. 3.1-3.2 of Moyal, 1962, p. 51 of Harris, 1963, p. 3 of

Daley and Vere-Jones, 2003, definition 2.2.1 in Champagnat and

Lambert, 2007). Applied to a single phenotypic value z ∈ X , μ(z)

returns the number of individuals with phenotype z, and applied

to the whole set of possible phenotypic values, it returns group

size, μ(X ) = N .

Under definition eq. (A1), each possible state that a group

can be in is uniquely determined by a specific counting measure,

i.e., for each unordered set of elements in X , there exists a unique

counting measure (theorem 3.1 of Moyal, 1962, p. 52 of Harris,

1963, and p. 7 of Daley and Vere-Jones, 2003). We can therefore

study the stochastic dynamics of the state of the focal group by

studying the stochastic dynamics of its equivalent counting mea-

sure (section 5 of Moyal, 1962). Specifically, if M denotes the

(random) counting measure of a focal group at a given point in

time (i.e., its unordered phenotypic state), we can describe the

state dyanmics of that group by a Markov chain on the state space

S(X ) = {μ : μ ≥ 0,μ(X ) = N } of finite counting measures in-

duced by X , which we will denote by S for short (see definition

2.2.1 in Champagnat and Lambert, 2007, for further formal con-

siderations on this space). This type of construction has so far

primarily been used to study phenotypic evolution in populations

that are well-mixed and when time is continuous (e.g., Oechssler

and Riedel, 2001, Champagnat et al., 2006, Champagnat and

Lambert, 2007; but see Morale et al., 2005, Simon, 2008, for pop-

ulations in explicit space), and we use it here because it makes

some calculations more direct.

State dynamics. To describe the stochastic dynamics of the state

of a focal group, we can thus let

φt (T ) = Pr [Mt ∈ T ], (A3)

denote the probability that a focal group is in (counting measure)

state Mt at time period t that belongs to subset T ⊆ S. Since there

is an infinite number of groups, φt (T ) also gives the distribution

of group states in the whole population. The dynamics φt (T ) are

governed by the Markov kernel transition function,

P(T |μ,φt ) = Pr [Mt+1 ∈ T |Mt = μ,φt ], (A4)

which is the probability that a group will be in a (counting mea-

sure) state that belongs to a subset T ⊆ S at time period t + 1,

given that it was in state μ at time period t and that the population

distribution of states is φt (i.e., this is a non-homogeneous Markov

chain).

State dynamics, or the probability that the focal group is in

a state that belongs to T ⊆ S at time period t + 1, can then be

written as

φt+1(T ) =
∫
S

∫
T

P(μ′|μ,φt )φt (μ)dμ′dμ, (A5)

i.e., the sum of weighted probabilities of going from all states μ ∈
S to states μ′ ∈ T . Because one iteration of the life cycle (from

t to t + 1) encompasses many events, like selection, mutation,

and dispersal, the transition kernel for our model is difficult to

characterize (studies like Champagnat et al., 2006, are capable of

constructing explicit transition kernels by considering time steps

small enough so that only one event can occur per step). To model

the evolutionary process in a more practical way, we will focus on

the dynamics of the distribution of phenotypes across the entire

population rather than on the dynamics of the distribution of group

states φt (T ).

RECURRENCE FOR THE PHENOTYPIC DISTRIBUTION
The distribution of phenotypes across the entire population at time

t is given by the density function

pt (z) =
∫
S

μ(z)

N
φt (μ)dμ, (A6)

where μ(z)/N is the frequency of individuals with phenotype z
within a group in state μ (recall that all groups have the same

size N). Using equation (A5), the phenotypic distribution at time
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period t + 1 can be written as

pt+1(z) =
∫
S

μ(z)

N
φt+1(μ)dμ = 1

N

∫
S

∫
S

μ′(z)P(μ′|μ,φt )φt (μ)

dμ′dμ = 1

N

∫
S

λμ(z,φt )φt (μ)dμ, (A7)

where

λμ(z,φt ) =
∫
S

μ′(z)P(μ′|μ,φt )dμ′ (A8)

is the expected number of individuals with phenotype z residing

in a focal group at time t + 1, given that this focal group was in

state μ at time t (and the population state distribution was φt ). We

can decompose this expected number as

λμ(z,φt ) = λP
μ(z,φt ) + λI

μ(z,φt ), (A9)

where λP
μ(z,φt ) is the expected number of philopatric individuals

(i.e., surviving adults or offspring that have remained in their

natal group) and λI
μ(z,φt ) is the expected number of immigrant

offspring (i.e., coming from other groups) with phenotype z. We

aim to express these expected numbers in terms of the fitness of

individuals at time t.

Individual fitness. The number, λP
μ(z,φt ), of philopatric indi-

viduals with phenotype z can be expressed in terms of fitness

components of individuals at time t as

λP
μ(z,φt ) =

∫
Rn

μ(z′)wP
μ(z′,φt )u(z′, z)dz′, (A10)

where wP
μ(z′,φt ) is philopatric fitness: it is the expected number

of offspring produced by a single individual (including itself if

it survives) bearing z′ a time t (given that it resides in a state μ

group); and u(z′, z) is the p.d.f. for the event that the offspring pro-

duced by an individual with phenotype z′ has phenotype z. Note

that we assume that surviving adults and offspring mutate alike.

While this is relevant to unicellular organisms, an application spe-

cific to multicellular organisms would require distinguishing be-

tween two components of philopatric fitness: adult survival and

offspring production. This would only complicate equation (1)

but would not affect our other results presented in the main text

(eq. 1 onward) as we later assume that mutations are rare, so that

the chances of mutating during an individual’s lifetime would be

small (Appendix B).

Likewise, we can write the expected number of immigrant

offspring as

λI
μ(z,φt ) =

∫
Rn

∫
S

μ′(z′)wD
μ,μ′ (z′,φt )u(z′, z)φt (μ

′)dμ′dz′,

(A11)

where wD
μ,μ′ (z′,φt ) is the expected number of successful emigrant

offspring of a single individual with phenotype z′, given that it

resides in a group in state μ′ ∈ S, and that the colonized group

(i.e., the group the offspring lands in) was in state μ at time t.

Substituting equations (A10) and (A11) into equation (A9),

which is in turn substituted into equation (A7), the phenotypic

distribution at t + 1 reads as

pt+1(z) = 1

N

∫
S

∫
Rn⎛

⎝μ(z′)wP
μ(z′,φt ) +

∫
S

μ′(z′)wD
μ,μ′ (z′,φt )φt (μ

′)dμ′

⎞
⎠

u(z′, z)dz′φt (μ)dμ. (A12)

By exchanging integral variables μ and μ′ in the second summand

within brackets, we obtain

pt+1(z) = 1

N

∫
S

∫
Rn

μ(z′)
(
wP

μ(z′,φt ) + wD
μ (z′,φt )

)
u(z′, z)dz′φt (μ)dμ,

(A13)

where

wD
μ (z′,φt ) =

∫
S

wD
μ′,μ(z′,φt )φt (μ

′)dμ′ (A14)

is the expected number of successful dispersing offspring pro-

duced by an individual with phenotype z′, given that this individ-

ual resides in a group in state μ at time t.

Individual fitness is then defined as

wμ(z′,φt ) = wP
μ(z′,φt ) + wD

μ (z′,φt ), (A15)

which gives the expected number of successful offspring produced

by an individual with phenotype z′, given that this individual

resides in a group in state μ at time t (and the population state

distribution was φt ). In terms of this individual fitness function,

the phenotypic distribution at time t + 1 (eq. A13) reads as

pt+1(z) = 1

N

∫
S

∫
Rn

μ(z′)wμ(z′,φt )u(z′, z)dz′φt (μ)dμ. (A16)

Lineage fitness. To go from equation (A16) to equation (1) of

the main text, let us define

W(z′,φt ) =
∫
S

wμ(z′,φt )q(μ|z′,φt )dμ, (A17)

where

q(μ|z′,φt ) = μ(z′)
N

φt (μ)

pt (z′)
(A18)

is the p.d.f. for the event that an individual resides in a group in

state μ at time t given that this individual bears phenotype z′. In

other words, q(μ|z′,φt ) gives the probability that an individual,
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randomly sampled at time t from the collection of individuals

with phenotype z′ in the population (the “z′-lineage”), resides in

a group in a state μ. As such, W(z′,φt ) (eq. A17) is the expected

fitness of a member of the z′-lineage at time t (where expectation

is taken over all possible groups this member can belong to)

and a multi-allelic version of lineage fitness (Mullon et al. 2016;

Lehmann et al. 2016).

Substituting equation (A17) into equation (A16), we obtain

that the individual phenotypic density distribution is

pt+1(z) =
∫
Rn

W(z′,φt )u(z′, z)pt (z′)dz′, (A19)

which combines the forces of mutation and selection on pheno-

typic change. To start disentangling these, note that when the

probability of a mutation is independent from parental pheno-

type, the p.d.f. for the event that the offspring of an individual

with phenotype z′ has phenotype z can be expressed as

u(z′, z) = (1 − ν)δ(z′ − z) + νv(z′, z), (A20)

where ν is the probability that an offspring has a mutant pheno-

type (i.e., 1 − u(z, z) = ν for all z), δ(z′ − z) is the Dirac delta

function, and v(z′, z) is the conditional probability of mutating

from z′ to z given that a mutation has occurred. So the first term

of equation (A20) captures the event of no mutation, in which

case the offspring has the same phenotype than its parent, and the

second term captures the event of a mutation. Substituting equa-

tion (A20) into equation (A19), we finally obtain equation (1) in

the main text, as required.

Appendix B: The dynamics of trait
means and variance–covariance

Here, we derive equations (3)–(7) of the main text, which

govern the closed dynamics of trait means and variance–

covariance. As mentioned in the main text, this derivation hinges

upon several assumptions that we detail below.

WEAK SELECTION AND MUTATION
Weak selection. We first assume that the phenotypic distribution,

pt (z), is peaked around the population mean z̄t = ∫
Rn zpt (z)dz

(i.e., the phenotypic variance is small). We can thus approxi-

mate lineage fitness, W(z,φt ), as a second-order Taylor expansion

around z̄t . We do so in Appendix C, in which we show that lineage

fitness can be written as

W(z,φt ) = W(z̄t ,φt ) +
n∑

a=1

ξt (za)sa,t (z̄t )

+ 1

2

n∑
a=1

n∑
b=1

×ξt (za)ξt (zb)hab,t (z̄t ) + O (
ξ3

t

)
, (B1)

where

W(z̄t ,φt ) = 1 − 1

2

n∑
a=1

n∑
b=1

σab,t hab,t (z̄t ) + O (
ξ3

t

)
(B2)

is the lineage fitness of the average phenotype z̄t ; ξt (za) = za −
z̄a,t denotes the difference between a value za and the average

trait value a; σab,t = ∫
Rn ξt (za)ξt (zb)pt (z)dz is the (co)variance

among traits a and b in the population; sa,t (z̄t ) is the first-order

effect of a change in trait a away from z̄t on lineage fitness (i.e.,

sa,t (z̄t ) = ∂W(z,φt )/∂za |z=z̄t ); hab,t (z̄t ) is the second-order effect

of a joint change in traits a and b away from z̄t on lineage fitness

(i.e., hab,t (z̄t ) = ∂2W(z,φt )/∂za∂zb|z=z̄t ); and ξt is the maximum

deviation between individual trait value in the population and the

population mean trait value at time t. We detail the first- and

second-order effects below.

The first-order effect is given by

sa,t (z̄t ) = ∂w(zi , z−i , z̄t )

∂zi,a

∣∣∣∣ zi =z̄t
z−i =z̄t

+ (N − 1)r◦
2,t (z̄t )

∂w(zi , z−i , z̄t )

∂z j,a

∣∣∣∣ zi =z̄t
z−i =z̄t

, (B3)

where individual fitness, w(zi , z−i , z̄t ), is written as in the

main text equation (5) and r◦
2,t (z̄t ) is a neutral time-dependent

coefficient of pairwise relatedness (i.e., the probability that two

individuals sampled at random within a group at time t are

identical-by-descent in the absence of selection, see section

“Pairwise relatedness” in Appendix C for more details).

The second-order effect is given by

hab,t (z̄t ) = hw,ab,t (z̄t ) + hr,ab,t (z̄t ), (B4a)

with

hw,ab,t (z̄t ) = ∂2w(zi , z−i , z̄t )

∂zi,a∂zi,b

∣∣∣∣ zi =z̄t
z−i =z̄t

+ r◦
2,t (z̄t )(N − 1)

∂2w(zi , z−i , z̄t )

∂z j,a∂z j,b

∣∣∣∣ zi =z̄t
z−i =z̄t

+ r◦
2,t (z̄t )(N − 1)

⎛
⎝ ∂2w(zi , z−i , z̄t )

∂zi,a∂z j,b

∣∣∣∣ zi =z̄t
z−i =z̄t

+ ∂2w(zi , z−i , z̄t )

∂zi,b∂z j,a

∣∣∣∣ zi =z̄t
z−i =z̄t

⎞
⎠

+ r◦
3,t (z̄t )(N − 1)(N − 2)

∂2w(zi , z−i , z̄t )

∂z j,a∂zk,b

∣∣∣∣ zi =z̄t
z−i =z̄t

,

(B4b)
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and

hr,ab,t (z̄t ) = (N − 1)
∂w(zi , z−i , z̄t )

∂z j,b

∣∣∣∣ zi =z̄t
z−i =z̄t

× ∂r2,t (z)

∂za

∣∣∣∣
z=z̄t

+ (N − 1)
∂w(zi , z−i , z̄t )

∂z j,a

∣∣∣∣ zi =z̄t
z−i =z̄t

× ∂r2,t (z)

∂zb

∣∣∣∣
z=z̄t

,

(B4c)

where r◦
3,t (z̄t ) is the neutral time-dependent three-way relatedness

(i.e., the probability that three individuals sampled at random

within a group at time t are identical-by-descent in the absence of

selection, see eq. C44 for details); and ∂r2,t (z)/∂za is the marginal

effect of a change in trait a on time-dependent pairwise relatedness

(i.e., the effect of trait a on the probability that a neighbor of a focal

individual with phenotype z carries a phenotype that is identical-

by-descent to that of the focal at time t, see section “Pairwise

relatedness” in Appendix C for more details).

The first (eq. B3) and second (eq. B4) order effects are the

same as the selection gradient (eq. 6) and correlational selec-

tion (eq. 7) of the main text, respectively, with the exception that

relatedness coefficients (r◦
2,t (z̄t ), r◦

3,t (z̄t ), ∂r2,t (z)/∂za) are time-

dependent in equations (B3) and (B4) and independent in equa-

tions (6) and (7). We will specify in section “Closure assumptions”

below how we can get rid of this time dependence, but first, we

need to make a further assumption.

Weak mutation. Our next assumption is that mutations are rare,

with the probability of mutating, ν, of the order O(ξ2
t ). Under this

assumption, note that νW(z,φt ) = ν + O(ξ3
t ) (from eqs. B1 and

B2). We can therefore rewrite equation (1) of the main text as

pt+1(z) = W(z,φt )pt (z) + ν

⎛
⎝∫

Rn

pt (z′)v(z′, z)dz′ − pt (z)

⎞
⎠

+ O (
ξ3

t

)
, (B5)

where the first term captures the effects of selection only, and

the next term, the effects of mutation only. Equation (B5) takes

the same functional form as classical recurrence for the pheno-

typic distribution in well-mixed populations when selection and

mutation are weak (under the continuum-of-alleles model, e.g.,

eq. 1 of Bürger 1986; for fluctuating population size, see eq. 4.9

of Champagnat et al. 2006), but with lineage, W(z,φt ), instead of

individual fitness. Next, we use equation (B5) to derive recurrence

equations for the changes in mean trait values and the phenotypic

variance–covariance matrix over one time period.

Dynamics of the mean trait values. By definition, the change in

the mean of trait a over one time period is

�z̄a,t = z̄a,t+1 − z̄a,t =
∫
Rn

ξt (za)pt+1(z)dz. (B6)

Substituting equation (B5) into equation (B6), we obtain

�z̄a,t =
∫
Rn

ξt (za)W(z,φt )pt (z)dz + ν

⎛
⎝∫

Rn

∫
Rn

ξt (za)pt (z′)v(z′, z)dz′dz

⎞
⎠ + O (

ξ4
t

)
, (B7)

But since the effects of mutation are assumed to be unbiased, we

have

∫
Rn

∫
Rn

ξt (za)pt (z′)v(z′, z)dz′dz = 0. (B8)

Equation (B7) then reduces to

�z̄a,t =
∫
Rn

ξt (za)W(z,φt )pt (z)dz + O (
ξ4

t

)
, (B9)

which corresponds to the first term of the Price equation: the

change in average trait value in a population is equal to the co-

variance between trait and fitness (Price 1970; see eq. 3 of Frank

1997).

Substituting equation (B1) into equation (B9), we obtain that

the change in the mean of trait a is,

�z̄a,t =
n∑

b=1

σab,t sb,t (z̄t ) + 1

2

n∑
b=1

n∑
c=1

κabc,t hbc,t (z̄t ) + O (
ξ4

t

)
,

(B10)

which depends on the skew,

κabc,t =
∫
Rn

ξt (za)ξt (zb)ξt (zc)pt (z)dz, (B11)

in the population at time period t (in line with, e.g., eq. 8a of

Wakano and Iwasa 2013 and eq. A20 b of Débarre and Otto 2016

in well-mixed populations; eq. 17 of Wakano and Lehmann 2014

for the island model).

Dynamics of the phenotypic variance–covariance. By defini-

tion, the change in the (co)variance (within individuals) between

two traits a and b over one time period is

�σab,t = σab,t+1 − σab,t

=
∫
Rn

(za − z̄a,t+1)(zb − z̄b,t+1)pt+1(z)dz − σab,t

=
∫
Rn

(
ξt (za)ξt (zb) − σab,t

)
pt+1(z)dz − �z̄a,t�z̄b,t . (B12)
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Substituting equation (B5) into the above, we obtain

�σab,t =
∫
Rn

(
ξt (za)ξt (zb) − σab,t

)
W(z,φt )pt (z)dz

+ν

⎛
⎝∫

Rn

∫
Rn

ξt (za)ξt (zb)pt (z′)v(z′, z)dz′dz − σab,t

⎞
⎠

−�z̄a,t�z̄b,t + O(ξ5
t ). (B13)

The bracketed term in the second line of equation (B13), which

captures the effects of mutations, can be simplified by first writing

out the product of deviations in terms of parental phenotype as

ξt (za)ξt (zb) = ξt (z
′
a)ξt (z

′
b) + (za − z′

a)(zb − z′
b)

+ ξt (za)(zb − z′
b) + ξt (zb)(za − z′

a), (B14)

and second, by noting that since mutations are assumed to be un-

biased, the covariance between parental phenotype and mutation

effect is zero:∫
Rn

(
ξt (za)(zb − z′

b) + ξt (zb)(za − z′
a)
)
v(z′, z)dz = 0. (B15)

Using equations (B14) and (B15), the effect of mutations in equa-

tion (B13) can then be written as∫
Rn

∫
Rn

ξt (za)ξt (zb)pt (z′)v(z′, z)dz′dz =
∫
Rn

∫
Rn

(
ξt (z

′
a)ξt (z

′
b)

+ (za − z′
a)(zb − z′

b)
)

pt (z′)v(z′, z)dz′dz = σab,t + σm
ab, (B16)

where we have defined, σm
ab = ∫

Rn

∫
Rn (za − z′

a)(zb −
z′

b)pt (z′)v(z′, z)dz′dz ∼ O(ξ2
t ), as the (co)variance in muta-

tional effects on traits a and b, which is independent of time

because we assume that mutations are isotropic (i.e., that the

mutation step size is independent from parental phenotype).

Substituting equation (B16) into equation (B13), we obtain that

the change in the (co)variance between two traits a and b over

one time period is

�σab,t = νσm
ab + ∫

Rn

(
ξt (za)ξt (zb) − σab,t

)
W(z,φt )pt (z)dz

−�z̄a,t�z̄b,t + O(ξ5
t ) = νσm

ab + ∫
Rn

ξt (za)ξt (zb)

(W(z, φt ) − 1)pt (z)dz − �z̄a,t�z̄b,t + O(ξ5
t ), (B17)

where to go from the first to the second line, we have used the fact

that mean lineage fitness is one:
∫

Rn W(z,φt )pt (z)dz = 1 (since

the population size is constant).

Substituting equation (B1), and the change in mean, equa-

tion (B10), into equation (B17), we obtain after some re-

arrangements that the one-generational change in phenotypic

(co)variance between traits a and b is

�σab,t = νσm
ab + (W(z̄,φt ) − 1)σab,t +

n∑
c=1

κabc,t sc,t (z̄t )

+ 1

2

n∑
c=1

n∑
d=1

σabcd,t hcd,t (z̄t )

−
n∑

c=1

n∑
d=1

σac,tσbd,t sc,t (z̄t )sd,t (z̄t ) + O(ξ5
t ),

(B18)

which depends on the fourth central moment of the phenotypic

distribution,

σabcd,t =
∫
Rn

ξt (za)ξt (zb)ξt (zc)ξt (zd )pt (z)dz (B19)

(in line with, e.g., eq. 8b of Wakano and Iwasa 2013 and eq. A24 b

of Débarre and Otto 2016 in well-mixed populations; eqs. B1–B8

of Wakano and Lehmann 2014 for the island model with a single

trait).

CLOSURE ASSUMPTIONS
Finally, we close the dynamical system for the means and

(co)variances (given by eqs. B10 and B18). We achieve this clo-

sure in two steps.

Normal closure. First, we assume that the phenotypic distribu-

tion, pt (z), is normal. Under this assumption, the skew in the

phenotypic distribution is zero, κabc,t = 0, and the fourth cen-

tral moments can be expressed in terms of the (co)variances,

σabcd,t = σab,tσcd,t + σac,tσbd,t + σad,tσbc,t . Substituting these re-

lationships into eqs (B10) and (B18), we obtain that the one-

generational changes in means and covariances are respectively

given by

�z̄a,t =
n∑

b=1

σab,t sb,t (z̄t ) + O (
ξ4

t

)

�σab,t = νσm
ab −

n∑
c=1

n∑
d=1

σac,tσbd,t sc,t (z̄t )sd,t (z̄t )

+ 1

2

n∑
c=1

n∑
d=1

(σac,tσbd,t + σad,tσbc,t )hcd,t (z̄t ) + O (
ξ5

t

)
.

(B20)

Since we make no assumption about the order of the fitness ef-

fects of traits (i.e., sa,t (z̄t ) and hab,t (z̄t ) can be of order O(1)),

the magnitude of a one-generational change in mean trait z̄a,t and

(co)variance σab,t are respectively of order O(ξ2
t ) and O(ξ4

t ). In

vector and matrix form, equation (B20) corresponds to equa-

tion (3) of the main text, except that in equation (B20), the

selection coefficients depend on time t (due to time-dependent

relatedness coefficients, r◦
2,t (z̄t ), r◦

3,t (z̄t ), and ∂r2,t (z)/∂za). We
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get rid off of this dependency and finally achieve closure in the

next section.

Quasi-equilibrium. Our second step to close the dynamical

system equation (B20) is to assume that dispersal is strong

enough (relative to selection) so that genetic associations be-

tween individuals within groups reach their steady-state val-

ues before any significant changes has occurred in the phe-

notypic distribution, pt (z), at the population level. This quasi-

equilibrium assumption, which is frequently used in population

genetic and social evolution theory (e.g., Kimura 1965a; Nagy-

laki 1993; Kirkpatrick et al. 2002; Roze and Rousset 2005, 2008)

is in line with our assumption that selection is weak. It entails

that we can evaluate r◦
2,t (z̄t ), r◦

3,t (z̄t ), and ∂r2,t (z)/∂za in equa-

tions (B3) and (B4) at their quasi-equilibrium, that is, we take

the limits limτ→∞ r◦
2,τ(z̄t ) = r◦

2 (z̄t ), limτ→∞ r◦
3,τ(z̄t ) = r◦

3 (z̄t ), and

limτ→∞ ∂r2,τ(z)/∂za |z=z̄t = ∂r2(z)/∂za|z=z̄t , while holding pt (z)

constant (we thus denote by r◦
2 (z̄t ), r◦

3 (z̄t ), and ∂r2(z)/∂za |z=z̄t ,

the steady-state values of neutral pairwise relatedness, neutral

three-way relatedness, and the first-order perturbation of pairwise

relatedness, respectively). Substituting these steady-states into the

selection coefficients equations (B3) and (B4) (now independent

of time so written as sa(z̄t ) and hab(z̄t )), which are in turn substi-

tuted into equation (B20), we finally obtain the closed dynamic

equation (3) of the main text.

Computing relatedness coefficients. Computing relatedness co-

efficients under neutrality (i.e., r◦
2 (z̄t ), r◦

3 (z̄t )) is standard in pop-

ulation genetics (e.g., Karlin 1968; Rousset 2004). When gener-

ations are non-overlapping (i.e., a Wright–Fisher life cycle), for

example, the relevant relatedness coefficients for our approach

are given by

r◦
2 (z̄t ) = (1 − m)2

N − (N − 1)(1 − m)2

r◦
3 (z̄t ) = (1 − m)3(1 + 3(N − 1)r◦

2 (z̄t ))

N 2 − (N − 1)(N − 2)(1 − m)3
,

(B21)

where m is the backward probability of dispersal, i.e., the probabil-

ity that a randomly sampled individual in a group is an immigrant

(e.g., eqs. 12a and 12b of Ohtsuki 2010; see also Table 1 of Mul-

lon et al. 2016 for the Moran model). Calculating the first-order

effect of selection on pairwise relatedness, ∂r2(z)/∂za , however,

is more complicated. Under the quasi-equilibrium assumption, a

perturbation of genetic associations between individuals will de-

pend on first-order perturbations of individual fitness and neutral

relatedness coefficients (see Roze and Rousset 2008 for a gen-

eral treatment, in particular their eq. 67). So far, the first-order

effect of selection on pairwise relatedness, ∂r2(z)/∂za , has been

explicitly derived for two standard life-cycles, the semelparous

Wright–Fisher life-cycle (in which all adults die after reproduc-

tion; see eq. 18 of Ajar 2003 and eq. 28 of Wakano and Lehmann

2014) and the iteroparous birth–death Moran life-cycle (in which

a single adult dies after reproduction in each group; see eq. 14 of

Mullon et al. 2016). In both cases, and when traits under selec-

tion affect fecundity, the effect of selection on relatedness can be

written as

∂r2(z)

∂za

∣∣∣∣
z=z̄t

= κ
r◦

2 (z̄t )

1 − m

[[
1 + (N − 1)r◦

2 (z̄t )
]∂wP(zi , z−i , z̄t )

∂zi,a

∣∣∣∣ zi =z̄t
z−i =z̄t

+ [
2r◦

2 (z̄t ) + (N − 2)r◦
3 (z̄t )

]
(N − 1)

∂wP(zi , z−i , z̄t )

∂z j,a

∣∣∣∣ zi =z̄t
z−i =z̄t

]
,

(B22)

where wP(zi , z−i , z̄t ) is the expected number of offspring of a focal

individual (with phenotype zi , with neighbors z−i , and individuals

in other groups with phenotype z̄t ) that successfully establish in

their natal group; and κ = 2 for the Wright-fisher and κ = N for

the Moran life cycle.

Appendix C: Second-order
approximation of lineage fitness

Here, we derive the second-order Taylor expansion of lineage

fitness, W(z,φt ), around the population mean phenotype z̄t (i.e.,

we derive eqs. B-1–B-4 of Appendix B). Let us first recall the

definition of lineage fitness,

W(z,φt ) =
∫
S

wμ(z,φt )q(μ|z,φt )dμ, (C1)

where wμ(z,φt ) is the fitness of an individual with phenotype z in

a group in state μ. Our approach is to develop a second-order Tay-

lor expansion of the individual fitness function wμ(z,φt ), which

we then plug back into eq. (C1) to average it over group compo-

sition, q(μ|z,φt ), and thus obtain lineage fitness.

Our starting point is to rewrite individual fitness as

wμ(z,φt ) = w(z, nμ(z), e(φt )), (C2)

i.e., as a function that depends explicitly on all relevant pheno-
types in the population: (1) z ∈ R

n , the phenotype of the focal

individual (the individual whose fitness is under scrutiny); (2)

nμ(z) ∈ R
(N−1)×n , the set of phenotypes of the N − 1 neighbors

of the focal individual; and (3) e(φt ) ∈ R
N×n , the set of N pheno-

types from a representative (or average) group other than the one

the focal resides in (which depends on the population state φt ).

From these dependencies, the Taylor expansion of individual

fitness, w(z, nμ(z), e(φt )), around z̄t has the generic form,

w(z, nμ(z), e(φt )) = 1 +
n∑

a=1

∑
ẑa∈Z

ξt (ẑa)
∂w

∂ ẑa︸ ︷︷ ︸
βa,t

+ 1

2

n∑
a=1

n∑
b=1

∑
ẑa∈Z

∑
ẑb∈Z

ξt (ẑa)ξt (ẑb)
∂2w

∂ ẑa∂ ẑb︸ ︷︷ ︸
βab,t

+O (
ξ3

t

)
, (C3)
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where 1 is individual fitness in a monomorphic population (i.e.,

when all individuals have phenotype z̄t ); ξt (ẑa) = ẑa − z̄a,t de-

notes the difference between a value ẑa and the average trait value

a (and ξt in O(ξ3
t ) is the maximum deviation between individual

trait value in the population and the population mean trait value

at time t); and the set Z = {z} ∪ nμ(z) ∪ e(φt ) collects the phe-

notypes of the focal, its neighbors, and those in other groups (so

that it has 2N elements). The term βa,t in equation (C3) collects

the marginal effects of a change in trait a on focal fitness: it sums

the marginal effects of changing trait a (∂w/∂ ẑa , where here and

hereafter all derivatives are evaluated when all individuals have

mean phenotype z̄t ) across all individuals that belong to Z . Sim-

ilarly, βab,t collects the interaction effects of changes in traits a

and b on focal fitness (summing the interaction effects of changes

in traits a and b within, and between, all individuals that are in

Z).

We will develop these marginal (βa,t ) and interaction (βab,t )

effects on individual fitness in the next two sections, and then

average them over the group distribution an individual can reside

in, q(μ|z,φt ), to obtain lineage fitness (eq. C1). But first, note

that lineage fitness in a monomorphic population is,

W(z,φt ) =
∫
S

1 × q(μ|z,φt )dμ + O(ξt ) = 1 + O(ξt ). (C4)

MARGINAL EFFECTS
We first develop the marginal effects, βa,t , of varying trait a on

individual fitness. To distinguish the effects of varying the trait in

different individuals, we will use the symbols

zn = {zn,a, . . . , zn,n} ∈ nμ(z), zm = {zm,a, . . . , zm,n} ∈ nμ(z),

(C5)

to denote the phenotypes of two distinct individuals from the focal

group (and distinct from the focal individual), and

znn = {znn,a, . . . , znn,n} ∈ e(φt ),

zmm = {zmm,a, . . . , zmm,n} ∈ e(φt ), (C6)

to denote the phenotypes of two distinct individuals from a group

different to the focal.

With these notations, βa,t can be decomposed into

βa,t =ξt (za)
∂w

∂za
+

∑
zn∈nμ(z)

ξt (zn,a)
∂w

∂zn,a
+

∑
znn∈e(φt )

ξt (znn,a)
∂w

∂znn,a
,

(C7)

where the first, second, and third summands capture the marginal

effect of varying the trait in: the focal; its neighbors; and indi-

vidual in other groups, respectively. Because the fitness function

w(z, nμ(z), e(φt )) is invariant to permutations of elements within

the sets nμ(z) and e(φt ) (i.e., it does not matter to individual fit-

ness which precise neighbor or individual from another group

expresses which phenotype), the derivatives in equation (C7) can

be taken out of their sums,

βa,t = ξt (za)
∂w

∂za
+

⎛
⎝ ∑

zn∈nμ(z)

ξt (zn,a)

⎞
⎠ ∂w

∂zn,a

+
⎛
⎝ ∑

znn∈e(φt )

ξt (znn,a)

⎞
⎠ ∂w

∂znn,a
. (C8)

In order to make the sums in equation (C8) more convenient for

averaging over q(μ|z,φt ), we seek to express them in terms of the

counting measure μ(z) that counts the number of individuals with

phenotype z in a group in state μ (see eq. A-2 in Appendix A).

This is easily achieved for the last sum in equation (C8), which

turns out to be zero:∑
znn∈e(φt )

ξt (znn,a) =
∫
Rn

∫
S

ξt (znn,a)μ(znn)φt (μ)dμdznn

= N
∫
Rn

ξt (znn,a)pt (znn)dznn = 0 (C9)

(this reflects that since there is an infinite number of groups, the

average deviation from the mean in groups other than the focal is

zero).

For the first sum between parenthesis in equation (C8), we

define the conditional counting measure,

μn,z(zn) = δ(zn − z)(μ(z) − 1) + (1 − δ(zn − z))μ(zn), (C10)

where δ(.) is the Dirac-Delta function, so that μn,z(zn) counts the

number of neighbors of the focal that have phenotype zn, given

that the focal individual has phenotype z. With equation (C10),

we can write the first sum of equation (C8) as∑
zn∈nμ(z)

ξt (zn,a) = ξt (za)(μ(z) − 1) +
∑

zn∈nμ(z), zn �=z

ξt (zn,a)μ(zn)

=
∫
Rn

ξt (zn,a)μn,z(zn)dzn. (C11)

Substituting equations (C9) & (C11) into equation (C8) then

gives

βa,t = ξt (za)
∂w

∂za
+

⎛
⎝∫

Rn

ξt (zn,a)
μn,z(zn)

N − 1
dzn

⎞
⎠(N − 1)

∂w

∂zn,a
.

(C12)

Average marginal effects. We proceed to average the marginal

effects of a change in one trait, βa,t , over the group distribution an
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individual can reside in, q(μ|z,φt ), which is necessary to obtain

lineage fitness (eq. C1). From equation (C12), this average can be

written as,

∫
S

βa,t q(μ|z,φt )dμ = ξt (za)
∂w

∂za

+
⎛
⎝∫

Rn

ξt (zn,a)q2(zn|z,φt )dzn

⎞
⎠ (N − 1)

∂w

∂zn,a
, (C13)

where we have defined

q2(zn|z,φt ) =
∫
S

μn,z(zn)

N − 1
q(μ|zn,φt )dμ (C14)

as the p.d.f. for the event of sampling an individual with phenotype

zn within a group, given that within this group a focal individual

with phenotype z has already been sampled (and removed).

Pairwise relatedness. The p.d.f. q2(zn|z,φt ) can be connected

to the notion of pairwise relatedness by noting that two neigh-

bors with the same phenotype may have a common ancestor who

resided in the same group, which in the infinite island model

is equivalent to the event that these individuals are identical-

by-descent (IBD, e.g., Rousset 2002). To make this connection

explicit, we decompose q2(zn|z,φt ) as,

q2(zn|z,φt ) = r2,t (z)δ(zn − z) + kt (z, zn)pt (zn), (C15)

where r2,t (z) is the conditional p.d.f for the event that, given a

focal individual has phenotype z at time t, a randomly sampled

individual among its neighbors is IBD to this focal (this p.d.f. de-

pends on the whole phenotypic distribution, φt , which is captured

by the time index in r2,t (z)). We refer to r2,t (z) as pairwise related-

ness. The two summands in equation (C15) respectively capture

two complementary events: the sampled neighbor is either (1)

IBD with the focal (and thus must have the same phenotype as

the focal, zn = z); or (2) not IBD with the focal and has pheno-

type zn (which may or may not be equal to z). We have written

the p.d.f. for this latter event as kt (z, zn)pt (zn), where pt (zn) is

the marginal probability of sampling an individual with pheno-

type zn from the global population. The function kt (z, zn) can

therefore be viewed as the multiplicative effect of having already

sampled an individual with phenotype z in the group on this

marginal probability.

In our endeavour to obtain an expression for lineage fitness

up to the order ξ2
t , we seek to express q2(zn|z,φt ) to the order of

ξt (as it multiplies ξt (zn,a), which is of order ξt , in eq. C13). We

thus Taylor expand both r2,t (z) and kt (z, zn) in equation (C15) to

the first-order around z̄t , and obtain

q2(zn|z, φt ) =
(

r◦
2,t (z̄t ) +

n∑
a=1

∂r2,t (z)

∂za
ξt (za)

)
δ(zn − z)

+
(

kt (z̄t , z̄t ) +
n∑

a=1

∂kt (z, zn)

∂za
ξt (za) +

n∑
a=1

∂kt (z, zn)

∂zn,a
ξt (zn,a)

)

pt (zn) + O (
ξ2

t

)
, (C16)

where r◦
2,t (z̄t ) is the probability that two randomly sampled in-

dividuals within a group at time t are IBD under neutrality (i.e.,

when the population is monomorphic for z̄t ).

Next, we use the fact that from the definition of q2(zn|z,φt )

(eq. C14), q2(zn|z,φt )pt (z) is the (unconditional) p.d.f. for the

event of sampling one individual with phenotype z and another

with zn without replacement from a group. Thus, three identities

must hold: ∫
Rn

q2(zn|z,φt )pt (z)dzn = pt (z), (C17)

∫
Rn

q2(zn|z,φt )pt (z)dz = pt (zn), (C18)

∫
Rn

∫
Rn

q2(zn|z,φt )pt (z)dzndz = 1, (C19)

which can be used to express kt (z, zn) in terms of r2,t (z). In fact,

substituting equation (C16) into equation (C19), we obtain

r◦
2,t (z̄t ) + kt (z̄t , z̄t ) = 1 ⇒ kt (z̄t , z̄t ) = 1 − r◦

2,t (z̄t ). (C20)

Substituting equation (C20) into equation (C16), which is in turn

substituted into equation (C17) yields,

pt (z) +
n∑

a=1

∂r2,t (z)

∂za
ξt (za)pt (z) +

n∑
a=1

∂kt (z, zn)

∂za
ξt (za)pt (z)

= pt (z) ⇒
n∑

a=1

(
∂r2,t (z)

∂za
+ ∂kt (z, zn)

∂za

)
ξt (za)pt (z) = 0. (C21)

As the above equality holds for all possible ξt (za) and for all

a = 1, . . . , n, we must have

∂kt (z, zn)

∂za
= −∂r2,t (z)

∂za
. (C22)

Substituting equation (C20) into equation (C16), which is in turn

substituted into (C18) and using a similar argument, we obtain

that,

∂kt (z, zn)

∂zn,a
= −∂r2,t (z)

∂za
. (C23)
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Plugging equations (C20), (C22), and (C23) into equation (C16)

then gives us

q2(zn|z,φt ) = q◦
2 (zn|z,φt ) +

(
n∑

a=1

ξt (za)
∂r2,t (z)

∂za

)
δ(zn − z)

−
(

n∑
a=1

(
ξt (za) + ξt (zn,a)

)∂r2,t (z)

∂za

)
pt (zn) + O (

ξ2
t

)
, (C24)

where

q◦
2 (zn|z,φt ) = r◦

2,t (z̄t )δ(zn − z) + (
1 − r◦

2,t (z̄t )
)

pt (zn), (C24b)

is the neutral (conditional) p.d.f. for the event of sampling an indi-

vidual with phenotype zn within the neighborhood of an individual

with phenotype z.

Regression definition of relatedness. It is noteworthy that the

definition of neutral pairwise relatedness as the probability of

IBD between two randomly sampled individuals within a group

that we use, aligns with the “regression definition of relatedness”

(e.g., Grafen 1985, eq. 2.13 of Frank 1998). Under this latter

definition, relatedness is the regression of neighbor phenotype on

focal phenotype: it is the ratio of phenotypic covariance among

neighbors,

ϕab,t =
∫
Rn

∫
Rn

ξt (za)ξt (zn,b)q2(zn|z,φt )pt (z)dzndz, (C25)

to the covariance within individuals, σab,t = ∫
Rn ξt (za)ξt (zb)

pt (z)dz. Substituting equation (C24) into equation (C25) to com-

pute this ratio, we obtain

ϕab,t

σab,t
= r◦

2,t (z̄t ) +
n∑

c=1

κabc,t

σab,t

∂r2,t (z)

∂zc
+ O (

ξ2
t

)
(C26)

where κabc,t = ∫
Rn ξt (za)ξt (zb)ξt (zc)pt (z)dz is the skew between

traits a, b and c within individuals. Our equation (C26) is thus in

line with the result that in the infinite island model and under neu-

trality, relatedness as a regression coefficient is equal to the prob-

ability of identity-by-descent (i.e., ϕab,t/σab,t = r◦
2,t (z̄t ) + O(ξt ),

Rousset 2002; for equivalent expressions to eq. C26, see e.g., eq. 7

of Queller 1992a; eq. 2.13 of Frank 1998; eq. 11 of Wakano and

Lehmann 2014).

Average marginal effects. We can now return to our calculation

of the average marginal effects of a change in one trait (eq. C13).

Substituting equation (C24) into equation (C13), we in fact

obtain∫
S

βa,t q(μ|z,φt )dμ = ξt (za)

(
∂w

∂za
+ (N − 1)r◦

2,t (z̄t )
∂w

∂zn,a

)

+
n∑

b=1

(
ξt (za)ξt (zb) − σab,t

)∂r2,t (z)

∂zb
(N − 1)

∂w

∂zn,a
+ O (

ξ3
t

)
,

(C27)

for the average marginal effect of trait a.

INTERACTION EFFECTS
We now tackle the interaction effects on focal fitness, βab,t

(eq. C3), which we will then average over q(μ|z,φt ). Using no-

tation equations (C5) and (C6), we first decompose βab,t as

βab,t = βsame
ab,t + β

neigh
ab,t + βcross isle

ab,t , (C28)

where

βsame
ab,t = ξt (za)ξt (zb)

∂2w

∂za∂zb
+

∑
zn∈nμ(z)

ξt (zn,a)ξt (zn,b)
∂2w

∂zn,a∂zn,b

+
∑

znn∈e(φt )

ξt (znn,a)ξt (znn,b)
∂2w

∂znn,a∂znn,b
, (C29)

collects the interaction effects of traits a and b within individuals,

β
neigh
ab,t =

∑
zn∈nμ(z)

ξt (za)ξt (zn,b)
∂2w

∂za∂zn,b

+
∑

zn∈nμ(z)

ξt (zb)ξt (zn,a)
∂2w

∂zb∂zn,a

+
∑∑

zn,zm∈nμ(z)

ξt (zn,a)ξt (zm,b)
∂2w

∂zn,a∂zm,b

+
∑∑

znn,znm∈e(φt )

ξt (znn,a)ξt (znm,b)
∂2w

∂znn,a∂znm,b
,

(C30)

collects the interaction effects between neighbors, and

βcross isle
ab,t =

∑
znn∈e(φt )

ξt (za)ξt (znn,b)
∂2w

∂za∂znn,b

+
∑

znn∈e(φt )

ξt (zb)ξt (znn,a)
∂2w

∂zb∂znn,a

+
∑∑
zn∈nμ(z)
znn∈e(φt )

ξt (zn,a)ξt (znn,b)
∂2w

∂zn,a∂znn,b

+
∑∑
zn∈nμ(z)
znn∈e(φt )

ξt (zn,b)ξt (znn,a)
∂2w

∂zn,b∂znn,a
,

(C31)

the interaction effects between individuals between groups. We

proceed to specify each of these in terms of counting measures

and average them over q(μ|z,φt ) sequentially.
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Interaction effects within individuals. We start with interaction

effects within individuals, βsame
ab,t . Using equation (C10), equa-

tion (C29) can be expressed as

βsame
ab,t = ξt (za)ξt (zb)

∂2w

∂za∂zb

+
⎛
⎝∫

Rn

ξt (zn,a)ξt (zn,b)μn,z(zn)dzn

⎞
⎠ ∂2w

∂zn,a∂zn,b

+
⎛
⎝∫

Rn

∫
S

ξt (znn,a)ξt (znn,b)μ(znn)φt (μ)dznndμ

⎞
⎠ ∂2w

∂znn,a∂znn,b
,

(C32)

where the first summand consists of the interaction effect within

the focal individual, the second within neighbors of the focal, and

the third within individuals from other groups than the focal. To

simplify these, we use the fact that because the population size

remains constant, we have

∂2w

∂za∂zb
+ (N − 1)

∂2w

∂zn,a∂zn,b
+ N

∂2w

∂znn,a∂znn,b
= 0 (C33)

(see eq. B.13 of Wakano and Lehmann 2014); and that the third

term of equation (C32) can be expressed as∫
Rn

∫
S

ξt (znn,a)ξt (znn,b)μ(znn)φt (μ)dμdznn

= N
∫
Rn

ξt (znn,a)ξt (znn,b)pt (znn,a)dznn = Nσab,t . (C34)

Substituting equations (C33) and (C34) into equation (C32), we

find that the interaction effects of a and b within individuals can

be written as

βsame
ab,t = (

ξt (za)ξt (zb) − σab,t
) ∂2w

∂za∂zb

+
⎛
⎝∫

Rn

ξt (zn,a)ξt (zn,b)
μn,z(zn)

N − 1
dzn − σab,t

⎞
⎠(N − 1)

∂2w

∂zn,a∂zn,b
.

(C35)

Averaging these interaction effects within individuals over

q(μ|z,φt ) then gives∫
S

βsame
ab,t q(μ|z,φt )dμ = (

ξt (za)ξt (zb) − σab,t
)

(
∂2w

∂za∂zb
+ (N − 1)r◦

2,t (z̄t )
∂2w

∂zn,a∂zn,b

)
+ O (

ξ3
t

)
, (C36)

where we used definition equation (C14) and equation (C24).

Interaction effects between neighbors. Let us now turn to inter-

action effects between neighbors, βneigh
ab,t (eq. C30). It is composed

of four summands: the first two capture the interaction effects be-

tween the focal and its neighbors; the third, between two neighbors

of the focal; and the fourth, between two neighbors from another

group than the focal. We consider these separately below.

Interaction effects between the focal and its neighbors. The first

summand of β
neigh
ab,t (eq. C30) corresponds to the interaction effect

between trait a in the focal and trait b in its neighbors. Using

equation (C10), it can be expressed as

∑
zn∈nμ(z)

ξt (za)ξt (zn,b)
∂2w

∂za∂zn,b

=
⎛
⎝∫

Rn

ξt (za)ξt (zn,b)μn,z(zn)dzn

⎞
⎠ ∂2w

∂za∂zn,b
. (C37)

Averaging equation (C37) over q(μ|z,φt ) then reads as∫
Rn

ξt (za)ξt (zn,b)q2(zn|z,φt )dzn(N − 1)
∂2w

∂za∂zn,b

= ξt (za)ξt (zb)r◦
2,t (z̄t )(N − 1)

∂2w

∂za∂zn,b
+ O (

ξ3
t

)
, (C38)

where we used equation (C24). Similarly, averaging the second

summand of β
neigh
ab,t (eq. C30), which corresponds to the interaction

effect between trait b in the focal and trait a in its neighbors,

yields∫
S

[ ∑
zn∈nμ(z)

ξt (zb)ξt (zn,a)
∂2w

∂zb∂zn,a

]
q(μ|z,φt )dμ

= ξt (za)ξt (zb)r◦
2,t (z̄t )(N − 1)

∂2w

∂zb∂zn,a
+ O (

ξ3
t

)
. (C39)

Interaction effects between neighbors of the focal. The third

summand of β
neigh
ab,t (eq. C30) collects the interaction effects be-

tween neighbors of the focal. To express these in terms of the

counting measure μ(z) and average them over q(μ|z,φt ), we in-

troduce one further conditional counting measure,

μn,z(zn, zm) = δ(zn − z)δ(zm − zn)(μ(z) − 1)(μ(z) − 2)

+ δ(zn − z)(1 − δ(zm − z))(μ(z) − 1)μ(zm)

+ δ(zm − z)(1 − δ(zn − z))(μ(z) − 1)μ(zn)

+ δ(zm − zn)(1 − δ(zn − z))μ(zn)(μ(zn) − 1)

+ (1 − δ(zn − z))(1 − δ(zm − z))(1 − δ(zn − zm))μ(zn)μ(zm)

(C40)

which counts the number of unordered pairs of neighbors that

have phenotypes zn and zm, given that the focal individual has

phenotype z. Integrated over R
n , the first line of equation (C40)

counts the number of pairs of neighbors that have focal phenotype

z; the second and third lines the number of pairs of neighbors

in which only one has the focal phenotype z; the fourth line, the
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number of pairs in which both neighbors have the same phenotype

that is different to the the focal; and the final line, the number of

pairs in which neighbors have phenotypes that are different to one

another, and to the focal.

Using equation (C40), we can then re-write the third sum-

mand of β
neigh
ab,t as

∑∑
zn,zm∈nμ(z)

ξt (zn,a)ξt (zm,b)
∂2w

∂zn,a∂zm,b

=
⎛
⎝∫

Rn

∫
Rn

ξt (zn,a)ξt (zm,b)μn,z(znzm)dzndzm

⎞
⎠ ∂2w

∂zn,a∂zm,b
, (C41)

which averaged over q(μ|z,φt ) reads as[∫
Rn

∫
Rn

ξt (zn,a)ξt (zm,b)q3(zn, zm|z,φt )dzndzm

]

× (N − 1)(N − 2)
∂2w

∂zn,a∂zm,b
, (C42)

where

q3(zn, zm|z,φt ) =
∫
S

μn,z(zn, zm)

(N − 1)(N − 2)
q(μ|z,φt )dμ (C43)

is the conditional p.d.f. for the event of sampling two individuals

without replacement, one with phenotype zn and another with phe-

notype zm in a group, given that a focal individual with phenotype

z has already been sampled in that group at time t. This p.d.f. can

be connected to notions of relatedness as individuals that have

the same phenotype may be IBD. In fact, using a coalescence

argument, we can rewrite q3(zn, zm|z,φt ) as

q3(zn, zm|z,φt ) = δ(zn − z)δ(zm − z)r◦
3,t (z̄t )

+ δ(zn − z)(r◦
2,t (z̄t ) − r◦

3,t (z̄t ))pt (zm)

+ δ(zm − z)(r◦
2,t (z̄t ) − r◦

3,t (z̄t ))pt (zn)

+ δ(zn − zm)(r◦
2,t (z̄t ) − r◦

3,t (z̄t ))pt (zn)

+ (1 − 3r◦
2,t (z̄t ) + 2r◦

3,t (z̄t ))pt (zn)pt (zm) + O(ξt ),

(C44)

where r◦
3,t (z̄t ) is the probability of sampling three individuals

without replacement from a group are IBD in the absence of se-

lection at time t (i.e., three-way relatedness). Each summand of

equation (C44) capture a different possible relationship among

the sampled (zn and zm) and focal (z) phenotype. The first line

of equation (C44) captures the event of sampling two individuals

that are both IBD with the focal (and thus with the same pheno-

type as the focal, z = zn = zm); the next two lines the event of

sampling only one individual IBD with the focal (and thus with

the same phenotype: the two summands respectively capture the

cases z = zn and z = zm); the fourth line, the event of sampling

two individuals that are IBD together (and thus with phenotypes

zn = zm) but not with the focal; and the last line, the event of

sampling two individuals that are not IBD with one another or

with the focal.

Substituting equation (C44) into equation (C42) then gives

us [
ξt (za)ξt (zb)r◦

3,t (z̄t ) + σab,t (r
◦
2,t (z̄t ) − r◦

3,t (z̄t ))

]

× (N − 1)(N − 2)
∂2w

∂zn,a∂zm,b
+ O (

ξ3
t

)
(C45)

for the average interaction effects between neighbors of the focal.

Interaction effects between neighbors from other groups. The

fourth and final summand of β
neigh
ab,t (eq. C30), which collects the

interaction effects between neighbors from other groups, can be

expressed using equation (C10) as

∑∑
znn,znm∈e(φt )

ξt (znn,a)ξt (znm,b)
∂2w

∂znn,a∂znm,b
= N (N − 1)

×
(∫

S

∫
Rn

∫
Rn

ξt (znn,a)ξt (znm,b)
μn,znn (znm)μ(znn)

N (N − 1)
φt (μ)dznmdznndμ

)
︸ ︷︷ ︸

ϕab,t

× ∂2w

∂znn,a∂znm,b
, (C46)

where ϕab,t is the covariance among traits a and b between individ-

uals within groups (see eq. C25). We can then use equation (C26)

to specify this covariance and obtain,

∑∑
znn,znm∈e(φt )

ξt (znn,a)ξt (znm,b)
∂2w

∂znn,a∂znm,b
= N (N − 1)

× r◦
2,t (z̄t )σab,t

∂2w

∂znn,a∂znm,b
+ O (

ξ3
t

)
. (C47)

Since this expression does not depend on group composition μ,

it will be invariant to averaging over q(μ|z,φt ).

Average interaction effects between neighbors. Hence,

the average interaction effects between neighbors (
∫
S

β
neigh
ab,t q(μ|z,φt )dμ), which is given by the sum of equations (C38),

(C39), (C45), and (C47), reads as∫
S

β
neigh
ab,t q(μ|z,φt )dμ = ξt (za)ξt (zb)r◦

2,t (z̄t )(N − 1)

×
(

∂2w

∂za∂zn,b
+ ∂2w

∂zb∂zn,a

)

+
[
ξt (za)ξt (zb)r◦

3,t (z̄t ) + σab,t (r
◦
2,t (z̄t ) − r◦

3,t (z̄t ))

]

× (N − 1)(N − 2)
∂2w

∂zn,a∂zm,b

+ N (N − 1)r◦
2,t (z̄t )σab,t

∂2w

∂znn,a∂znm,b
+ O (

ξ3
t

)
.

(C48)
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This can be further simplified by using the fact than since the total

population size is constant, the following holds,

(N − 1)
∂2w

∂za∂zn,b
+ (N − 1)

∂2w

∂zb∂zn,a
+ (N − 1)(N − 2)

× ∂2w

∂zn,a∂zm,b
+ N (N − 1)

∂2w

∂znn,a∂znm,b
= 0. (C49)

(see eq. B.14 of Wakano and Lehmann 2014). Substituting for

∂2w/(∂znn,a∂znm,b) using equation (C49) into equation (C48) fi-

nally gives∫
S

β
neigh
ab,t q(μ|z,φt )dμ = (

ξt (za)ξt (zb) − σab,t
)
(N − 1)

×
(

r◦
2,t (z̄t )

(
∂2w

∂za∂zn,b
+ ∂2w

∂zb∂zn,a

)

+ (N − 2)r◦
3,t (z̄t )

∂2w

∂zn,a∂zm,b

)
+ O (

ξ3
t

)
.

(C50)

Interaction effects between individuals between groups. The fi-

nal relevant interaction effect, βcross isle
ab,t (eq. C31), is the interaction

between individuals that belong to different groups. However, it

is straightforward to show that these effects vanish in the infinite

island model of dispersal. For example, consider the first sum-

mand of equation (C31), which measures the effect of a change

in trait a of the focal and a trait b in an individual from a group

other than the focal:

∑
znn∈e(φt )

ξt (za)ξt (znn,b)
∂2w

∂za∂znn,b

=
(∫

Rn

∫
S

ξt (za)ξt (znn,b)μ(znn)φt (μ)dμdznn

)
∂2w

∂za∂znn,b

=
(

Nξt (za)
∫
Rn

ξt (znn,b)pt (znn)dznn

)
∂2w

∂za∂znn,b

= 0 × ∂2w

∂za∂znn,b
.

(C51)

Similar arguments show that all the other summands of βcross isle
ab,t

are also zero.

PUTTING IT ALL TOGETHER

Summing equations (C4), (C27), (C36), and (C50), we finally

obtain the second order expansion of lineage fitness,

W(z,φt ) = 1 − 1

2

n∑
a=1

n∑
b=1

σab,t hab,t (z̄t ) +
n∑

a=1

ξt (za)sa,t (z̄t )

+ 1

2

n∑
a=1

n∑
b=1

ξt (za)ξt (zb)hab,t (z̄t ) + O (
ξ3

t

)
, (C52a)

where

sa,t (z̄t ) = ∂w

∂za
+ (N − 1)r◦

2,t (z̄t )
∂w

∂zn,a
, (C52b)

and

hab,t (z̄t ) = hw,ab,t (z̄t ) + hr,ab,t (z̄t ), (C52c)

with

hw,ab,t (z̄t ) = ∂2w

∂za∂zb
+ (N − 1)

[
r◦

2,t (z̄t )

(
∂2w

∂zn,a∂zn,b
+ ∂2w

∂za∂zn,b

+ ∂2w

∂zb∂zn,a

)
+ (N − 2)r◦

3,t (z̄t )
∂2w

∂zn,a∂zm,b

]
,

hr,ab,t (z̄t ) = ∂r2,t (z)

∂za
(N − 1)

∂w

∂zn,b
+ ∂r2,t (z)

∂zb
(N − 1)

∂w

∂zn,a
.

(C52d)

Equation (C52) is equivalent to equation B-1– B-4 of Ap-

pendix B, in which we write the derivatives of individual fitness

w(z, nμ(z), e(φt )) with respect to za , zn,a , and znn,a , in terms of the

derivatives of the individual fitness function w(zi , z−i , z̄t ) (eq. 5

of main text) with respect to zi,a , z j,a , and zk,a , respectively; and

add evaluation signs to all derivatives at the population mean z̄t .

Appendix D: Individual-based
simulations

We performed individual based simulations for a population

composed of Nd groups, each populated by N individuals, using

Mathematica 11.0.1.0 (Wolfram Research 2016). Starting with a

monomorphic population, we track the evolution of the multidi-

mensional phenotypic distribution under the constant influx of

mutations. Each individual i ∈ {1, . . . , Nd N } is characterized by

two traits (zi,1, zi,2). At the beginning of a generation, we calculate

the fecundity fi of each individual according to its traits and those

of its neighbors (using eq. 14). Then, we form the next generation

of adults by sampling N individuals in each group with replace-

ment according to parental fecundity, but to capture limited disper-

sal, the fecundity of each individual from the parental generation

is weighted according to whether or not they belong to the group

on which the breeding spot is filled: if an individual belongs to the

same group in which a breeding spot is filled, its weighted fecun-

dity is fi (1 − m), where m is the dispersal probability; if it belongs

to another group, its weighted fecundity is fi m/(Nd − 1) (as a dis-

perser is equally likely to reach any other group, it lands with prob-

ability 1/(Nd − 1) in a focal group). Once an individual is chosen

to fill the breeding spot, it mutates with probability ν, in which

case we add to parental values a perturbation that is sampled from

a multivariate normal distribution with mean (0,0) and variance-

covariance matrix (
σm

11 σm
12

σm
12 σm

22

). The resulting phenotypic values are
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truncated to remain between 0 and 4. We repeat the procedure for

a fixed number of generations (see Figures for parameter values).
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dynamics: from individual stochastic processes to macroscopic models.
Theor. Popul. Biol. 69:297–321.

Champagnat, N., and A. Lambert. 2007. Evolution of discrete populations
and the canonical diffusion of adaptive dynamics. Ann. Appl. Probab.
17:102–155.

Charlesworth, B. 1990. Optimization models, quantitative genetics, and mu-
tation. Evolution. 44:520–538.

Charlesworth, B. 1994. Evolution in age-structured populations. 2nd ed. Cam-
bridge Univ. Press, Cambridge, U.K.

Charlesworth, B., and D. Charlesworth. 2010. Elements of evolutionary ge-
netics. Roberts and Company Publishers, Englewood, CO.

Chaturvedi, A., D. Croll, M. C. Fischer, F. Guillaume, S. Karrenberg, B. Kerr,
G. Rolshausen, and J. Stapley. 2017. Can evolution supply what ecology
demands? Trends Ecol. Evol. 32:187–197.

Chesson, P. L. 1981. Models for spatially distributed populations: the effect
of within-patch variability. Theor. Popul. Biol. 19:288–325.

Chesson, P. L. 1984. Persistence of a markovian population in a patchy envi-
ronment. Z. Wahrscheinlichkeitstheor. 66:97–107.

Cheverud, J. M. 1985. A quantitative genetic model of altruistic selection.
Behav. Ecol. Sociobiol. 16:239–243.

Christiansen, F. B. 1991. On conditions for evolutionary stability for a con-
tinuously varying character. Am. Nat. 138:37–50.

Clutton-Brock, T. H., A. F. Russell, and L. L. Sharpe. 2003. Meerkat helpers
do not specialize in particular activities. Animal Behav. 66:531–540.

Connallon, T. 2015. The geography of sex-specific selection, local adaptation,
and sexual dimorphism. Evolution. 69:2333–2344.

Cordero, O. X., and M. F. Polz. 2014. Explaining microbial genomic diversity
in light of evolutionary ecology. Nat. Rev. Micro. 12:263–273.

Daley, D. J., and D. Vere-Jones. 2003. An introduction to the theory of point
processes, vol. ii of probability and its applications. Springer, New York,
NY.

Dall, S. R. X., A. I. Houston, and J. M. McNamara. 2004. The behavioural
ecology of personality: consistent individual differences from an adap-
tive perspective. Ecol. Lett. 7:734–739.

Day, T. 2001. Population structure inhibits evolutionary diversification under
competition for resources. Genetica. 112-113:71–86.

Day, T., and S. R. Proulx. 2004. A general theory for the evolutionary dynamics
of virulence. Am. Nat. 163:E40–E63.

Day, T., and P. D. Taylor. 1996. Evolutionarily stable versus fitness maximiz-
ing life histories under frequency-dependent selections. Proc. R. Soc.
Lond., B, Biol. Sci. 263:333–338.
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