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A Résumé (français) 

Le rôle anti-tumoral des lymphocytes T CD4 et leur capacité à reconnaître les néo-antigènes tumoraux n’a 

été établi que récemment, alors que le rôle des lymphocytes T CD8 dans les mêmes processus est bien connu. 

Le faible nombre de cellules T CD4 spécifiques des tumeurs dans la circulation limite en effet leur étude. 

Notre but est d’élargir les connaissances actuelles sur les lymphocytes T CD4 spécifiques des tumeurs et 

d’étudier leur capacité à éliminer les cellules tumorales. Pour ce faire nous avons mis au point une procédure 

optimisée pour la détection des lymphocytes T spécifiques des tumeurs directement à partir d’échantillons 

ex vivo. La fonctionnalité de ces cellules détectées pourra ainsi être évaluée au niveau de la cellule seule. De 

plus une des clefs à l’utilisation des cellules T CD4 dans l’immunothérapie dépendra de notre capacité de 

mieux comprendre comment réguler la différentiation de ces cellules de manière à promouvoir la formation 

de cellules « stem cell memory » ou bien « central memory ». 

Au cours de ma thèse, j'ai développé une nouvelle approche pour une meilleure détection des lymphocytes 

T CD4 reconnaissant des déterminants viraux, bactériens et tumoraux. En utilisant une combinaison de 

molécules améliorant l'interaction TCR-pCMH de classe II ainsi que l'utilisation d'un panel de multimères 

pCMH de classe I et II marqués par de multiples fluorochromes, nous avons pu améliorer la détection de 

cellules spécifiques à partir d’échantillons in vitro et ex vivo de patients grâce à une MFI augmentée ainsi 

qu’une augmentation du pourcentage de cellules détectées. Malgré ces avancées, l'évaluation de l'affinité 

du TCR des lymphocytes T CD4 reste compliquée en raison de leur faible affinité. Pour résoudre ce problème, 

nous explorons des méthodes innovantes telles que la SPR, basée sur l’analyse de cellules entières pour 

déterminer la capacité fonctionnelle des lymphocytes T CD4 spécifiques à la tumeur. Nous développons un 

biocapteur nanoplasmonique sophistiqué capable d’évaluer avec un grand débit, en temps réel et sans 

marquage, le sécrétome de cellules individuelles. La combinaison de ces outils aura un impact sur les 

connaissances futures liées aux lymphocytes T CD4 et notre capacité à étudier ces cellules dans les essais 

cliniques liés au cancer. 

Au cours de ma thèse, j'ai également contribué à valider un prédicteur bio-informatique pour la liaison de 

peptide aux molécules du CMH de classe II. Ce nouveau prédicteur est capable de prédire avec une plus 

grande précision les peptides qui se lieraient au complexe MHC classe II en comparaison aux prédicteurs 

actuels. Nous avons effectué des tests d'immunogénicité pour valider les peptides prédits par le logiciel et 

identifier de nouvelles cibles qui pourraient être étudiées dans le domaine des lymphocytes T CD4 anti-

tumoraux. 

Enfin, nous avons cherché à mieux comprendre comment réguler la différenciation des lymphocytes T CD4 

par la modulation de l'expression des miARN. Notre objectif est de promouvoir la formation de phénotypes 

TSCM et TCM en raison de leur grande capacité à proliférer et à générer des cellules effectrices. Nous avons 
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cherché à identifier des candidats miARN (miR) qui pourraient être thérapeutiquement ciblés pour influencer 

la différenciation des cellules T CD4 naïves en cellules TSCM et TCM CD4 spécifiques des cellules tumorales. 

Plus de recherche est nécessaire pour valider l'impact sur la différenciation lymphocytes T CD4 des miARN 

identifiés dans ce projet en modulant leur expression avec des analogues ou des inhibiteurs de miARN dans 

des cellules primaires humaines ainsi que dans des modèles murins.  
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B Summary (english) 

In contrast to the well-known role of CD8 T cells in tumor cell recognition and elimination, CD4 T have only 

recently gained increasing importance in tumor immunity, including the recognition of neo-antigens. 

However, due to the low numbers of circulating tumor-specific CD4 T cells, their characterization at antigen 

level is still very limited. Our goal is to expand the knowledge on tumor-specific CD4 T cells and their ability 

to eliminate tumor cells by optimizing tools for their direct ex-vivo visualization and functional profiling at 

the single cell level. Moreover, a key to CD4 T cell usage in immunotherapy will also depend on a better 

understanding of the regulation of their differentiation, to promote stem cell memory and central memory 

phenotypes. 

During my thesis I developed a novel approach for the improved detection of viral-, bacterial- and tumor-

specific CD4 T cells. by using a combination of compounds improving TCR-pMHC class II interaction as well as 

the use of multicolor coded panel of pMHC class I and II multimers. We were able to improve on specific cell 

detection as a higher MFI of staining and an increase in percentage of cell detected was achieved on both in 

vitro and ex vivo patient samples. Despite these advances the evaluation of CD4 T cells TCR affinity remains 

complicated due to their low affinity. We have started exploring methods for such evaluation using 

innovative methods such as whole cell based SPR as well performing functional analysis of tumor-specific 

CD4 T cells at increased throughput we are developing an advanced nanoplasmonic biosensor which 

evaluates in real time and label-free manner the secretome of individual cells. the combination of these tools 

will impact the future knowledge we possess on CD4 T and our capacity to monitor these cells within cancer 

related clinical trials. 

During my thesis I also contributed to validating a bioinformatic predictor for peptide binding to MHC class II 

molecules. This new predictor could predict with greater accuracy peptides that would bind to the MHC class 

II complex compared to the predictors that are already available. We performed immunogenicity assays to 

validate the peptides predicted by the software and identified novel targets which could be investigated in 

the anti-tumor CD4 T cell field. 

Finally, we aimed to better understand how to regulate CD4 T cell differentiation through the modulation of 

miRNA expression. Our goal was to promote TSCM and TCM phenotype formation due to their great capacity 

to proliferated and generate effector cells. We aimed at identifying optimal miRNA (miR) candidates that 

could be therapeutically targeted to influence the differentiation of Naïve CD4 T cells into TSCM and TCM CD4 

T cells capable of targeting tumor cells. more work is needed to validate the impact on CD4 T differentiation 

of miRNA identified in this project by modulating their expression with miRNA mimics or inhibitors in primary 

cells and latter in murine models. 
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C Résumé large public (français) 

Le cancer en Suisse représente 30% des décès chez les hommes et 23% de décès chez les femmes selon 

l’office fédérale de la santé publique. Cette proportion n’est pas négligeable et s’étend à travers le monde. 

De nouvelles et nombreuses études pour guérir le cancer sont en cours d’investigation mais les plus 

prometteuses sont celles ayant pour but de moduler le système immunitaire du patient de manière à éliminer 

les tumeurs. Nombre de ces études se basent sur l’utilisation de cellules lymphocytaires qui portent à leur 

surface la protéine CD8 et donc nommés CD8. Ces cellules ont la capacité de tuer directement les cellules 

tumorales mais cela n’est pas suffisant pour complétement éradiquer les cellules cancéreuses. Il y a de plus 

en plus de preuves qui démontrent que l’utilisation d’autres cellules lymphocytaires, qui cette fois-ci 

expriment la protéine CD4 et donc nommés CD4, ont un effet bénéfique pour l’éradication de cellules 

cancéreuses. Toutefois dû au faible nombre de ces cellules spécifiques en circulation et un manque d’outils 

pour la détection de ces cellules il est difficile de les étudier. 

Ce projet de thèse a donc pour but d’améliorer la détection et la surveillance de ces cellules CD4 capables de 

reconnaitre les tumeurs. La problématique a été divisée en trois axes. Le premier consistent à améliorer 

l’identification de ces lymphocytes CD4 reconnaissant les tumeurs. L’utilisation de molécules appelées 

peptide-CMH class II (pCHM class II) couplées avec une molécule fluorescente ont été utilisées pour marquer 

les molécules TCR retrouver à la surface des cellules CD4. En plus des complexes pCHM, l’utilisation d’autres 

molécules optimisatrices ont été cruciales pour une meilleure détection de cellules reconnaissant les 

tumeurs dans les échantillons de patient. Le deuxième axe a été le fruit de notre collaboration avec le groupe 

du Professeur Gfeller qui a développé un algorithme capable de prédire des peptides qui pourraient être 

présentés à la surface des complexe CMH class II. Son utilisation permettrait de découvrir de nouveaux 

peptides qui pourraient être utilisé pour cibler, dans le cadre de thérapies contre le cancer, des cellules 

tumorales sans risque d’endommager les cellules saines. Nous avons démontré aux cours de ce projet que 

ce nouvel algorithme était plus performant que les algorithmes déjà existants. Finalement dans le dernier 

projet je me suis intéressé à la modulation du phénotype de cellules CD4 de manière à avoir des cellules 

capables de proliférer considérablement et capables de donner naissance à des cellules effectrice tueuses 

des cellules cancéreuses. Les micro-ARN sont capables d’inhiber ou d’activer de nombreuses fonctions 

cellulaires. Nous nous sommes donc intéressés à identifier des micro-ARN différemment exprimés parmi 

plusieurs sous-types de cellules CD4 et à comprendre si la modulation de l’expression de ces micro-ARN 

résultait en un changement du phénotype des cellules. 

Nous espérons que ce travail permettra un meilleur suivi ainsi que l’utilisation des lymphocytes CD4 dans les 

futures thérapies visant les patients cancéreux. 
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E Abbreviations 

Ab Antibody  

ACT Adoptive cell transfer therapy  

ADCC  Antibody dependent cell cytotoxicity  

AICD Activation induced cell death  

ALR AIM2-like receptor 

APC  Professional antigen presenting cells  

BCR B cell receptor 

Breg Regulatory B cell 

C Complement system  

CARs Chimeric antigen receptor 

CBM CARMA1/Bcl10/MALT1 complex 

cDC Common DC  

CDC Complement-dependent cytotoxicity  

CLIP  Class II-associated invariant chain peptide  

CLR C-type lectin receptor 

CP Connecting peptide  

CTLA-4 Cytotoxic T-lymphocyte-associated antigen 4  

CXCR3 Chemokine receptor-3  

DAG Diacylglycerol  

DAMP Danger associated molecular pattern 

DC Dendritic cell 

ECD  Extracellular domain  
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ELISA Enzyme-linked immunosorbent assay  

ELISpot Enzyme-linked immunosorbent spot  

EOT  Extraordinary optical transmission  

ER  Endoplasmic reticulum  

FcR Fc receptor 

ICD  Immunologic cell death  

IFN-  Interferon-gamma  

IL Interleukin  

ILC Innate lymphoid cell 

IP3 Inositol 1,4,5-trisphosphate  

IRF IFN regulatory factor 

ITAM Immunoreceptor-tyrosine-based activation motifs  

LacNAc N-Acetyl-D-lactosamine  

MAIT  Mucosal-associated invariant T  

MAPK Mitogen-activated protein kinase 

MHC  Major histocompatibility complex  

MP-SPR Multiparametric Surface Plasmon Resonance 

NEMO  NF-κB essential modifier  

NK Natural killer cell 

NLR NOD-like receptor 

NOD Nucleotide-binding oligomerization domain  

NTAmers Reversible multimer 

nTreg  Natural regulatory T cell 
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PAMP Pathogen associated molecular pattern 

PBMCs  Peripheral blood mononuclear cells  

PD-1 Programmed cell death protein 1  

pDC Plasmacytoid DC 

PGE2 Prostaglandin E2  

PH Pleckstrin homology domain  

PIP3 Phosphatidylinositol 3,4,5-trisphosphate  

PKI Protein kinase inhibitor  

pMHC  Peptide MHC  

RAG  Recombination-activating gene 

RIG-I Retinoid acid-inducible gene I  

RISC RNA-induced silencing complex  

RLR RIG-I-like receptor 

RT Reverse transcribed  

SCA-1 Stem cell antigen-1  

scFv Antibody single chain  

SLP Synthetic long peptide 

SPR Surface Plasmon Resonance 

TCR T cell receptor 

TEM Effector memory T cells  

Tfh T follicular helper cell 

ThCTL  T cytolytic cell 

TLR Toll-like receptor  
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TN Naïve T cell  

TNFα Tumor necrosis factor alpha  

TRAF6  Necrosis factor receptor-associated factor 6  

TReg Regulatory T cell 

TRIF TIR domain-containing adaptor inducing IFN-β  

TRM Tissue-resident memory T cell 

TSCM Stem cell memory T cell 

TTE or TEMRA Terminal effector T cell 

TTM  T “transitional” memory T cell 
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G Introduction 

G.1 The immune system 

On a day to day basis our body is subjected to numerous viruses, bacteria and other foreign agents. To protect 

itself, it has devised three lines of defence. The first line of defence consists of a physical barrier composed 

of tissues such as the epithelia surfaces, the mucosa in the gastrointestinal tract and the respiratory tract. 

These first lines of defence are lined with enzymes and mucus which inhibit the attachment of microbes or 

have direct antimicrobial properties. Once these barriers are breached and pathogens can access the inner 

layers of tissues they will encounter the innate immune system which is the fast and non-specific acting 

branch of our immune system. Where this initial response is not enough to control or to clear the foreign 

pathogen, the adaptive immune system becomes activated and will help clearing the infection site by a 

specific targeting of the invading bodies. Both the innate and adaptive systems are tightly interrelated (1). 

G.1.1 Innate immunity 

The innate immune system is a fast acting and non-pathogen-specific system which is composed of cells such 

as neutrophils, basophils, monocytes, macrophages, mast cells, dendritic cells, natural killer cells (NK) and 

innate lymphoid cells (ILCs) and soluble molecules, such as the complement system and anti-microbial 

peptides. Since innate immune cells are not able to specifically detect the pathogens, they must rely on other 

mechanisms to discriminate between self and non-self. Pathogens express constitutively molecules such as 

lipoproteins, lipopolysaccharide, peptidoglycan, lipoteichoic acids and nucleic acids of viral or bacterial origin, 

that make up a panel of signals known as pathogen associated molecular patterns (PAMPs). Innate immune 

cells can also respond to signals derived from stressed or dying cells, known as danger associated molecular 

patterns (DAMPs) (2). These conserved structures are recognized through a limited number of germ line-

encoded pattern recognition receptors (PRR) found on immune cells. These receptors can be divided in five 

different classes: the more extensively studied Toll-like receptor (TLR) (3), nucleotide-binding oligomerization 

domain (NOD)-like receptors (NLRs) (3), retinoid acid-inducible gene I (RIG-I)-like receptors (RLRs) (3), C-type 

lectin receptors (CLRs) (4) and two AIM2-like receptors (ALRs) (5). Upon PAMP recognition by PRRs, 

proinflammatory and antimicrobial responses will be triggered. Adaptor molecules (MyD88, TIR domain-

containing adaptor inducing IFN-β (TRIF)) will be triggered and will determine the quality of the response 

(6,7). To ensure a downstream activation via phosphorylation, ubiquitination, or protein-protein interactions 

TLR will recruit several adaptor molecules which will induce the activation of transcription factors such as NF-

κB, mitogen-activated protein kinases (MAPKs) or IFN regulatory factors (IRFs) (6,8,9), resulting in the 

synthesis of a broad range of molecules, including cytokines, chemokines, cell adhesion molecules, and 

immunoreceptors (8). This mechanism is crucial for the early response to infections, but it also plays an 

important role in the activation and maturation of the adaptive immune response (10). 
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As mentioned above, the innate immune system is comprised of multiple cell types. which develop in the 

bone marrow before migrating to the periphery (11). Granulocytes play an important role in early 

inflammatory reactions as they have the capacity to migrate from the blood into the tissues in response to 

chemoattractants such as interleukin (IL)-8 and eotaxin (12). Once in the site of infection, granulocytes detect 

via a multitude of PRR at their cell surface or within the cell the foreign bodies and become fully active. At 

this point they will start to release granules containing antimicrobial agents, enzymes and toxic reactive 

oxygen derived products (13). Granulocytes are short lived cells, yet their lifespan can be modulated 

depending on the length and intensity of the infection (14). Mast cells are part of the granulocyte lineage, 

and when mature, they are tissue resident. Mast cells main activation mechanism relies on IgE-mediated 

reaction via the FcRI and mediate functions such as vasodilation, angiogenesis, bacterial and parasite 

elimination. As these cells secrete multi-potent molecules they are involved in regulating organ and tissue 

functions as well as regulating other cells of the immune system (15). NK appeared early during evolution 

compared to adaptive immune cells, and still outnumber B cells in the circulation by a 3-to-1 ratio (16). NK 

cells are cytotoxic in nature and have the capacity to lyse any target that lacks self-major histocompatibility 

complex (MHC) class I molecules (missing self-theory). Human NK cells can be divided into two main subsets 

based on the expression levels of CD56 (neural adhesion molecule NCAM) and CD16 (low affinity Fc receptor) 

(16). The CD56bright NK cells are around 5% of total circulating NK cells, they express high levels of CD56 and 

no CD16. Functionally they have little cytolytic capacity but are capable of strong cytokine secretion. On the 

contrary NK CD56dim constitute 95% of circulating NK cells and have high expression of CD16 and dim 

expression of CD56. They can efficiently lyse target cells (16). ILCs have been recently described and 

considered as the innate counterparts of CD4 T lymphocytes, as they lack rearranged antigen receptors but 

mirror CD4 T helper (Th)1, Th2, Th17 in function (17). T-bet expressing, interferon-gamma (IFN-) secreting 

ILC1s react to intracellular pathogens like viruses and to tumors, ILC2s express the transcription factor GATA3 

and respond to helminths and allergens by secreting type 2 cytokines. Finally, ILC3s depend on the expression 

of the transcription factor RORT and can produce IL-17 and/or IL-22. ILC3 main function is to protect the 

body against extracellular microbes such as fungi and bacteria (17). ILCs intervene early in the immune 

response by reacting swiftly to signals and can provide pro and anti-inflammatory effector functions. 

Macrophages are non-migratory, strategically positioned, myeloid cells characterized by their avid 

phagocytosis (18). They can be classified into two categories: the classically activated M1 macrophages which 

are associated with viral and bacterial inflammation and IFN signaling and the alternatively activated M2 

macrophages who respond to allergies, helminths and asthma and secrete type two cytokines like IL-4 and 

IL-13 (19). Macrophages are equipped with a large array of sensing molecules which help them to ingest dead 

cells, debris and foreign material from their immediate surroundings. Macrophages are capable of 

orchestrating the inflammatory reaction by providing chemokines and cytokines that will recruit and activate 

other players of the innate immune system as well as by secreting growth factors (18). Contrary to 
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macrophages, dendritic cells (DCs) are highly mobile sentries capable of triggering T cell responses by 

presenting antigen through their numerous surface peptide MHC class I and II complexes, upon migration to 

the tissue-draining lymph nodes. DCs are considered as professional antigen presenting cells (APC) and are a 

bridge between the innate and adaptive immune system. DCs have many different subsets of which the two 

major common DC (cDC) are cDC1 and cDC2. cDC1 are present in blood and in lymphoid and non-lymphoid 

tissues, they are characterized by the expression of CD141, the chemokine receptor XCR1, C-type lectin 

CLEC9A, the cell adhesion molecule CADM1 (20). This subpopulation is capable to perform cross-presentation 

and prime CD8 T cells efficiently. cDC2 can be found in blood, lymphoid and non-lymphoid tissues. This 

subpopulation is heterogeneous and is characterized by different markers depending on their localization, 

for example CD1a in the dermis and CD103 in the gut (21,22). cDC2s have been described to be potent 

stimulators of naïve T cell proliferation and to be able to cross-present antigens. Another important 

subpopulation is known as plasmacytoid DCs (pDCs) which are specialized in inducing anti-viral immune 

responses and secreting type I interferons (23).  

 

Figure 1: representation of cells from the innate and of the adaptive immune systems. The cells of the innate immune system are 
fast acting but do not act in a specific manner. The adaptive immune system is slow acting but acts in a specific manner and it induces 
a memory in case of future encounters with the same pathogen. Adapted from (24). 

The complement (C) system is part of the innate immune system and regroups many distinct plasma proteins 

that work with one another to opsonize pathogens and prompt inflammatory responses necessary to fight 

infections. Several of the complement proteins are proteases which act through a triggered-enzyme cascade 

(25). They can mediate protection against infection through three ways: by covalently binding pathogens 
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(opsonization) to engulfing them by phagocytes via complement receptors. By acting as chemoattractants 

and activators of phagocytes at the site of the complement activation. By creating pores in the bacterial 

membrane resulting in damage and bacterial death (26). 

Furthermore, there are cell types such as NKT, T cells and Mucosal-associated invariant T (MAIT) with 

particular phenotypic traits which set them in between the two main innate and adaptive immune systems. 

NKT cells were first discovered in mice as cells with intermediate expression of αβ-TCR and robust expression 

of key cytokines such as IL-4, IFN- and TNF-α, thus increasing the interest of these cells (27). NKT cells were 

reported in other species such as humans and other primates and can be divided in two subsets: Type I NKT 

with an invariant TCRα-chain Vα14-Jα18 and Type II NKT which have more TCR diversity (27). These cells did 

not require MHC class II expression for their development but were reactive to the CD1d molecules (28). 

Both capacities to recognize MHCI molecules and their capacity to secrete cytokines suggest a distinct 

immunoregulatory function. T cells also are hybrid cells that are, for the most part CD8 and CD4 negative 

and their  TCR length and conformation resemble less to conventional TCRs but more to immunoglobulins 

(29). This observation seemed to imply that T cells recognize antigens as would an antibody instead of a 

conventional MHC/peptide/TCR complex recognized by αβT cells. Furthermore, the expression by T cells 

of the NKG2D activating receptor is similar to the one of NK cells. Stress antigen recognizing T cells 

functions include wound healing, removing of distressed and transformed cells and modulating excessive 

inflammation. Finally, these cells are of remarkable plasticity as they can undertake the role and appearance 

of professional antigen presenting cells (29). Part of this set of unconventional cells are the MAIT cells which 

are involved in multiple infection and non-infectious diseases. MAIT cell activation is innate-like rapid and is 

TCR-dependent but can also be independent. their TCR has a particular affinity for the microbial riboflavin-

derivative antigens which is presented by MHC class II–like protein MR1 molecules (30). MAIT cell role in 

immunity is still to this date unclear. 

G.1.2 Adaptive immunity or acquired immunity 

The previously described innate immune system is fast acting but has the restriction of not being pathogen 

specific. In contrast, the adaptive immune system is slower in responding to an infection but will then involve 

cells that are highly specialized and are able to specifically recognize pathogens. A fraction of these cells will 

then be capable of forming a memory to a specific pathogen in order to reduce the response time to the 

same pathogen and to generate a stronger response upon a second encounter (31). The capacity of B and T 

cells to recognize specific antigens is ensured via the high frequency of gene rearrangement during the 

development of the B and T cell receptors (BCR and TCR) in these cell populations. This high diversity allows 

for a staggering number of possibilities: 1018 BCR and 1015 α:β TCRs are theoretically estimated (32,33). 

B-lymphocytes are bone marrow maturing lymphocytes, involved in the humoral responses which are 

characterized by the production of antibodies by B cells and their progeny, plasma cells (34). The binding of 
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the BCR to a specific antigen will induce a first activation signal that along with the associated TLR signals and 

the cytokine costimulatory helper signal will cause the B cell to activate and to differentiate into plasma cells 

and secrete antibodies (35). Antibodies are 150KDa molecules composed of four structures: two “heavy” and 

two “light” chains which are linked to one another by disulphide bonds. The region which determines an 

antibody specificity is found at the N-terminus, called the antigen-binding site. Antibodies can be classified 

in five isotype classes: IgM, IgD, IgG, IgA, and IgE. They are distinguishable according to the C-terminus regions 

of the heavy chains which does not participate in antigen binding and is constant (34). Antibodies can work 

in three main ways to hinder pathogens: they are capable of binding to the target surface and neutralizing it. 

They can activate macrophages and other immune cells by binding to Fc receptors (FcRs) or finally by 

activating the complement system pathway by binding to C1q. Complementing their humoral role, B cells are 

considered as professional APC enhancing T lymphocyte-mediated immunity (36). Furthermore, they have 

the capacity to secrete pro-inflammatory cytokines which will impact T cell activation. Finally a population of 

B cells known as regulatory B cells (Bregs) is able to modulate the immune responses via IL-10 or IL-35 

secretion (37,38). 

The second major player of the adaptive immune system is comprised of T lymphocytes which can be 

subdivided into two major subgroups: CD8 and CD4 T cells. T cells first originate from thymocytes which are 

hematopoietic progenitor cells found in the thymus. These precursor cells will differentiate into T cells 

through the process of thymopoiesis. The cells will undergo a process of beta-selection, positive selection, 

and negative selection that will shape the cells into a set of T cells able to respond to foreign pathogens, 

while being immunologically tolerant towards self-antigens (39). The TCR is the key component that allows a 

T cell to recognize a foreign antigen presented to them by professional APC in the lymph nodes which will 

trigger T -cell activation (40). To be able to recognize a wide variety of peptides, each T cell has its own unique 

TCR, generated by the action of the recombination-activating genes (RAG) (41). RAG genes encodes for the 

RAG-1 and RAG-2 recombinase enzymes capable to generate DNA double breaks which initiate V(D)J 

recombination (42). CD8 T cell TCRs and co-receptor CD8 protein will bind to the MHC Class I molecules. CD4 

T cell TCRs and co-receptors CD4 on the other hand can bind to Class II MHC molecules (43). Once activated 

T cells will undergo clonal expansion and will migrate to the site of infection where they will carry out their 

primary function which for CD8 T cells it will consist in cytotoxic functions (44). Helper CD4 T cells will 

contribute to cytotoxic T cell activation and growth, as well as B cell antibody class switching. Their helper 

capacity extends to the innate immune system were they can for example maximize bactericidal activity by 

macrophages (45–47). Beyond the helper function of CD4 T cells, direct cytolytic function by CD4 T cells is 

being presently investigated, with preliminary evidence already published (48,49). Furthermore, CD4 T cells 

can also assume a regulatory phenotype (TReg) whose purpose is to maintain peripheral tolerance, prevent 

autoimmunity and limit chronic inflammatory diseases. Their presence can be detrimental in some 

circumstances such as cancer as they suppress immunity and limit anti-tumor immunity (50). 
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G.2 CD4 T cell-mediated immunity 

CD4 T cells were first discovered in 1960s (51) and named as such in 1970s (52). These cells have been the 

focus of extensive research as they are an essential part of the human adaptive immune response. Depending 

on the threat encountered these cells will be able to initiate an adapted response to the pathogen by helping 

CD8 cytotoxic T cells and B lymphocytes, as well as the innate immune system (53). 

G.2.1 The development of CD4 T cells 

T cell progenitors consist of hematopoietic stem cells that migrate from the bone marrow to the thymus. At 

this point these precursor cells lack the expression of CD4 or CD8 surface proteins and are called double 

negative (DN). Once they have reached the subcapsular zone in the thymus the lymphocytes will be 

rearranging their TCR , , α and  in order to form two linages of T cells: α/ or /. A cell with a correctly 

assembled receptor will be allowed to survive and transition to the next stage where it will become double 

positive (DP) as it will concomitantly express CD4 and CD8 surface proteins (54). At this stage cells express 

the master transcription factors ROR, TCF-1 and LEF-1 without which the cell would dye (55–57). The 

functional cells will undergo positive and negative selections which consist of evaluating the capacity of the 

lymphocyte TCR to bind to the peptide-MHC (58). 

Positive selection will consist of verifying the capacity of lymphocytes to bind to MHC complexes. MHC class 

I and class II will be loaded with peptides and in the case the T cell does not bind the MHC it will undergo 

apoptosis. On the contrary when the TCR binds to the MHC complex a survival signal is initiated and thus the 

cell will be positively selected. At this stage depending on whether the TCR bound strongly or not to an MHC 

class II complex the cell will commit to be a single positive (SP) CD4 T cell or a SP CD8 T cell, respectively. In 

fact, by binding to the MHC class II complex, intracellular signals will be sent inducing the upregulation or 

downregulation of master transcription factor such as ThPOK or Runx3. ThPOK will reduce the expression of 

Runx3 driving downregulation of CD8 expression; on the contrary if there is a poor TCR-MHC class II binding 

ThPOK levels will be low resulting in Runx3 levels to be high and drive upregulation of CD8. These genes will 

drive SP CD4 or CD8 T cell differentiation (59). 

Lymphocytes should have the capacity to recognize a pathogenic antigen presented by the MHC but also 

tolerate our own cells thus the need for a negative selection process. As TCR’s bind to a moderate degree to 

MHC and thus pass positive selection, cell whose TCR will bind too strongly to the MHC complex will be 

destined to be eliminated (60). It is believed that the cell death stems from a strong activation of the cells 

resulting in an activation induced cell death (AICD) (61). This system will eradicate immature lymphocytes 

that will most likely be self-reactive and attacking our own cells. Cell passing both selection stages will be 

allowed to leave the thymus and to circulate as mature T cells (54). 
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Figure 2: T cell development in the thymus. Lymphoid progenitors migrating from the bonne marrow to the thymus, will undergo a 
complex maturation process after which, if they pass amongst other a positive and a negative selection step, they will be ready for 
export to peripheral lymphoid sites as single positive cells. Adapted from (62). 

G.2.2 Peptide-MHC molecules and antigen presentation 

The TCR, a cell surface heterodimer, is the key component that allows a T cell to recognize a foreign antigen 

by recognizing sequences of peptides (called epitopes) that are presented by the MHC. The MHC is a cell 

surface protein found on all cells. The MHC complex holds in its peptide-binding groove the antigen epitope 

bound by T cells’ TCR and subsequently trigger T-cell activation (40). The MHC gene family is divided into 

three subgroups: class I, class II, and class III (63). Class I MHC molecules have a α3 domain not present in 

MHC class II molecules, therefore they can only be recognized by CD8 co-receptors which binding domain is 

a conserved loop in the α3 domain. CD4 co-receptors can recognize class II MHC molecules as they can bind 

the MHC complex at the β2 and α2 domains (43). Class III molecules are Bf, C2, and C4 components of the 

complement system genetically located between class I and class II genes (64). 

To be able to recognize a wide variety of peptides, each T cell has its own unique T cell receptor obtained 

through TCR rearrangement. Unlike most genes, which have a stable sequence in each cell which expresses 

them, the T cell receptor is made up of a series of alternative gene fragments. With the help of DNA-

interacting enzymes, the DNA is cut and gene segments are put together which signifies that each T cell will 

have its unique TCR coded from a unique genomic sequence. Furthermore, the uniqueness of each TCR is 

reinforced by errors introduced during the cutting and joining process (41). This phenomenon will impact the 

type of peptide the TCR will recognize as well as which MHC it will recognize it from. The TCR will be able to 

discriminate between the MHC class I: HLA-A, -B, -C, which structure can accommodate peptides between 

8–10 residues. The peptide is accommodated in the peptide binding groove of the MHC molecule and will be 

bound through conserved hydrogen bonds. These peptides are anchored to the MHC as well through the 
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peptide side chains at the P2 or P5/6 and PΩ residue sites (65). The assembly of the peptide-MHC class I 

complex happens within the endoplasmic reticulum (ER) where the high affinity peptide is loaded with the 

help of catalysing proteins such as Tapasin and the help of other chaperons before traveling to the cell surface 

(66). MHC class II molecules are encoded by the gene regions HLA-DR, -DP, -DQ, which in turn can 

accommodate longer peptides: from 13 to 25 residues. They are also bound within the MHC binding groove 

but the side chains are docked at the P1, P4, P6, and P9 MHC pockets (65). The loading of the peptide onto 

MHC class II will happen in late endosomal compartments. The loading process follows the following steps: 

firstly, the invariant chain, a protein folded with the MHC in the ER, is cleaved by cathepsin proteases. 

Secondly a short fragment called class II-associated invariant chain peptide (CLIP) will remain bound to the 

peptide-binding groove of the MHC class II (65). Lastly the CLIP peptide is replaced by a higher affinity 

peptide, this exchange will be accelerated by the HLA-DM complex or inhibited by the HLA-DO complex 

(67,68). The peptide-MHC class II complex will then migrate to the cell membrane. 

The binding of the peptide within the MHC class II groove can assume different “registers”. The change of 

register refers to the possibility of one peptide assuming different binding modes by sliding through the MHC 

class II binding groove (69). Specific TCR may selectively recognise specific registers. One clear illustration is 

the one observed for the OVA (325-336) peptide that was found to bind to the I-Ad MHC class II with four 

different registers of which two resulted in a failed stimulation of T-cell hybridoma OVA (325-336) specific 

(70). The observation that T cells could not cross-recognise between different registers highlighted the 

possibility that TCR binding is affected by the position of the peptide within the MHC binding groove which 

results in distinct T cell responses. This type of shift might as well present an opportunity in exploiting cells 

that have the capacity to defeated central tolerance (69).  
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Figure 3: structural differences between MHC class I and class II molecules and peptide loading mechanisms. A) Structure 
representation of both MHC class I and class II molecules. B) Structures of MHC class I and class II molecules, respectively bound to a 
HIV- derived peptide and a hemagglutinin-derived peptide (in yellow). The binding pockets for these peptides are marked in green. 
Finally Indicated in grey are the binding sites for the catalyzing proteins either Tapasin or MHC-DM. C) a simplified representation of 
the processing steps required for the loading of high affinity peptides to the MHC class I or II complexes. Adapted from (65). 

G.2.3 TCR structure and signaling  

T cell receptors are composed of two polypeptide chains, each consisting of a constant (C) region and a 

variable (V) terminal region which contributes to the antigen binding domain. The exons encoding for the 

antigen binding domain are assembled from the V (variable), D (diversity), and J (joining) gene segments 

which by DNA rearrangement make up the complex process of V(D)J recombination (71). The V(D)J DNA 

region undergoes heavy editing where double strand breaks are introduced to delete or invert fragments and 

ligate segments together (72).The process is regulated as the genome rearrangement will start by the D and 

J joining followed by the V segment joining to the DJ segment. This recombination is what brings the great 

diversity among TCR structures enabling them to recognize theoretically up to 1015 different antigens (73). 
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Figure 4: somatic V(D)J recombination of alpha and beta chains of the TCR complex. (A) Progressive and organized rearrangements 
of the V, D and J segments for TCR beta chains and V and J segments for the TCR alpha chains is guaranteed by recombination steps. 
(B) Subdivision of TCR variable region domains in CDR1, CDR2 and CDR3 regions. (C) Final TCR organization of the two subunits: 
constant region and variable region. Adapted from (74). 

Structurally the TCR heterodimer is composed of TCRα and TCRβ chains, both of which have an extracellular 

domain (ECD) with variable (Vα and Vβ) and constant (Cα and Cβ) domains, a membrane proximal connecting 

peptide (CP) (75), a transmembrane segment and a cytoplasmic tail (76). The variable region of the TCR that 

will bind to the antigen presented by MHC complexes is made of hypervariable CDR3α and CDR3β loops (77). 

Despite their capacity in antigen recognition the two TCR subunits do not possess an intracellular signaling 

domain. It is thus associated in a noncovalent way to three dimeric signaling modules: CD3δε, CD3γε, and 

CD3 in a 1:1:1:1 stoichiometry (78). The CD3,  or  subunits are composed of an extracellular 

immunoglobulin domain, a short CP, a transmembrane segment and intracellular immunoreceptor-tyrosine-

based activation motifs (ITAMs). The CD3 subunit differs from the other 3 as it is composed of a short 

extracellular sequence and three ITAMs, as well as a transmembrane segment (79). 

Upon peptide MHC (pMHC) binding to the TCR, the CD4 co-receptor molecule will bind to the pMHC and thus 

recruiting the LcK kinase to the TCR complex where it will phosphorylate ITAM signaling motifs. The 

phosphorylation of two tyrosines in the ITAM motifs will create binding sites for the tandem SH2 domains of 

the ZAP70 kinase (80). Once ZAP70 has been recruited and activated it will phosphorylate the linker for 

activation of T cells (LAT), which acts as a signaling hub as it has four major phosphorylation sites Y132, Y171, 

Y191, and Y226 which are implicated in downstream signaling (81,82). The Y132 site is implicated in recruiting 

PLC1 which will activate the Ras-MAPK pathway and provide calcium. The other 3 sites phospho-Y171, -

Y191, and -Y226 will recruit Grb2 and Gads, adaptors to whom will bind the SOS and SLP-76 proteins which 

in turn will result in the activation of Ras, Raf and Rho GTPase effector responses (81,83–85). The combination 

of the activation of the Ras-GTPase and SOS protein leads to a rapid and bistable amplification of the Ras 

activation. Raf is activated by Ras leading to the MEK activation and ultimately the activation of the MAP 

kinase ERK (86). MAP kinase activates transcriptional regulators such as Elk which culminate in T cell 

activation (87). In addition to the LAT signalosome assembly and downstream activation, the TCR and the 

CD28 costimulatory molecule activate PI3K. By a chain of phosphorylation’s starting from PI3K on 

phosphatidylinositol 4,5-Bisphosphate (PIP2) followed by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) 

the ITK kinase can be recruited to the plasma membrane (88). The pleckstrin homology (PH) domain of PIP3 

is used by ITK to bind to. So, SPL-76 will bind to ITK through its SH3 domain. These interactions will localize 
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ITK at the plasma membrane and cause its activation. Activated ITK can phosphorylate PLC-1 resulting in its 

activation. PLC-1 activation will result in the hydrolysis of PIP2 to generate secondary messengers’ inositol 

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). At this point IP3 is no longer bound to the membrane but 

is free to diffuse in the cytoplasm where it will bind to its receptor IP3R found in the ER. The binding to its 

cognate receptor will result in the release of Ca2+ stored in the ER. Ca2+ will cause an influx of extracellular 

calcium through plasma membrane channels. High levels of Ca2+ in the cytoplasm have per effect to activate 

many proteins such as the transcription factor NFAT (80) leading to T cell activation. Two further mechanisms 

are able to regulate gene expression after TCR engagement and they are the PKC-IKK-NF-B pathway and 

the TSC1/2-mTOR signaling pathway. DAG is the trigger for PKC signaling through the C1 lipid binding 

domain (89). PKC will cause the formation of a tri-molecular complex called the CARMA1/Bcl10/MALT1 

(CBM) complex by phosphorylating each of the adaptor molecules forming the complex (90,91). The complex 

will recruit tumor necrosis factor receptor-associated factor 6 (TRAF6) to degrade the regulatory protein of 

the IKK complex the IKKγ, or NF-κB essential modifier (NEMO) (92,93). This release of inhibition will results 

in the phosphorylation of IB inducing it’s ubiquitination and degradation, as a result NF-B is released and 

translocated into the nucleus to regulate gene expression (94,95). Finally upon TCR engagement PI3K-Akt 

and DAG-RasGRP1-Ras-Mek1/2- Erk1/2 pathways will activate both mTORC1 and mTORC2 (96). This 

activation pathway has been linked with the regulation of effector CD4 T helper cell generation (97). 

To ensure that the TCR responds to appropriate ligands and for the proper duration a negative regulation of 

the TCR signaling exists, which is regulated by either TCR-generated signals or stemming from other surface 

receptors. As a few examples, the SHP-1 phosphatase dephosphorylates Lck and thus blocks further 

phosphorylation within the complex. This will allow phosphatases such as SHIP-1 and CD45 to 

dephosphorylate unprotected sites leaving only a partial  domain phosphorylation (98). The well-known 

Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) inhibitory receptor binds to CD80 and CD86 which 

results in the recruitment of the phosphatase SHP1 and PPA2 to inhibit TCR signaling (99). The equally known 

programmed cell death protein 1 (PD-1) inhibitory receptor binds to the PD-L1 and PD-L2 ligands and results 

in the recruitment of SHP1 inhibiting as well TCR signaling (100). 
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Figure 5: representation of the major TCR signalling pathways. Upon binding of the peptide MHC complex to the TCR a signalling 

cascade will ensue resulting in the activation of DNA transcription factors such as NF-B, NFAT, FOS, JUN and AP-1. Adapted from 
(101). 

G.2.4 TCR-pMHC interaction 

The interaction between TCR and the pMHC complex is key to T cell activation and therefore for a robust 

protective response against pathogenic occurrences. The TCR is highly specialized in recognizing multiple 

pMHC yet can discriminate between pMHC even if there is only one amino acid that is different. Once the 

recognition of a pMHC occurs there is the formation of a immunological synapse: a contact point between 

the T cell and the APC involving the TCR and pMHC complexes as well as associated co-receptors, integrins 

and varied signaling proteins (102). The result is a complex signaling cascade resulting in T cell activation as 

explained in the previous chapter. The current advances in the field of TCR and pMHC interaction stem from 

a large number of crystallographic studies. The point of interaction between the TCR and the pMHC resides 

in the variable loops CDR1 and CDR2 coded by 42 Vα and 46 Vβ genes, respectively (103,104). The randomly 

joining of V and J in the TCRα chain or by V, D and J in the TCRβ make up the third variable loops CDR3. 

Crystallographic study suggested the presence of the CDR3 region to be in the centre of the binding site 

where it comes into contact with the peptide. The CDR1 and CDR2 loops on the contrary are located on the 

side regions of the TCR which make contact with the MHC complex in specific and conserved way (105). On 
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the TCR the CDR2 loops of the α and β subunits only gets in contact with the MHC structure, on the contrary 

the CDR1 and CDR3 loops get into contact with both peptide and MHC atoms (106). 

The portion of the TCR coming into contact with the pMHC is relatively flat, sometimes with a central cavity. 

On the other hand the MHC surface contains two high peaks which allows it to achieve a large interface to 

which the TCR can bind best (107). At the opposite, one could imagine that not all amino acids bound to the 

MHC are in contact with the TCR. In fact, only one-third of the peptide surface is not occluded and available 

to be recognized by contact to a TCR. TCRs contact from 5 to 7 of a span of 8 residues of MHC class I bound 

peptides (8-mers and 9-mers) and from 6 to 7 of a span of 9 residues of MHC class II bound peptides (13-

mers and 16-mers) (106). It is understood in the field that the affinity of a CD4 T cell TCR for a pMHC class II 

is weak in comparison to CD8 T cell TCRs, respectively KD =13 μM and KD=52 μM (108). Despite this weak 

protein to protein binding affinity it has been raised that in regards to CD4 T cells the low-affinity cells are 

major responders in the primary immune response (109). 

Upon formation of the immune synapse the co-receptors are recruited, in the case of T helper cells it is the 

CD4 co-receptor that will interact with class II pMHC. CD4 proteins are transmembrane glycoproteins 

consisting of four Ig-like extracellular domains, a short stalk linking them to the transmembrane domain and 

a cytoplasmic tail that interacts with Lck (110). The CD4 binds MHC class II through its membrane-distal D1 

domain which binds the α2 and β2 domains of the MHC class II molecule. Although there is a great 

polymorphism among MHC class II molecules (HLA- DR, -DP, and -DQ alleles) the region to which CD4 binds 

the MHC is relatively conserved. For the β-chains, 11 of 12 residues are absolutely conserved and for the α-

chains, all three CD4-contacting residues are conserved among all human MHC class II alleles resulting in a 

cross-reactivity of CD4 to MHC class II proteins (110). On the contrary to pMHC class I complex which are 

stabilized by the CD8 complex to the TCR, the pMHC class II complex cannot rely on such help as the 

dissociation constant (KD) between the CD4 protein and the pMHC complex has been evaluated to be 

between KD 150 and 200 μM compared to CD8 co-receptor having a KD of 10 to 200 μM for the pMHC class I 

(111). Despite this low affinity for the pMHC class II by the CD4 co-receptor its involvement remains highly 

important for the efficient phosphorylation of adjacent TCRs thanks to its protein kinase p56lck, therefore 

contributing to CD4 T cell activation. 

G.2.5 Tools for the evaluation of TCR specificity 

Ever since their first usage more than 20 years ago (112), fluorescent multimerized pMHC molecules have 

been used and evolved to detect antigen-responsive T cells, from the first tetramer staining (112), to the first 

use of a pMHC microarray allowing cell-capture based on specificity (113,114), to the use of heavy metal ions 

as tags in mass cytometry which increased the number of specificities up to 109 (115), to the new approach 

utilizing a combination of fluorochromes to label either in a dual color code (116), or with a multivalent code 

(115) pMHC class I multimers, or using panels of more than 100 pMHC class I DNA-barcoded multimers (117). 
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Novel tools also include NTAmers, which are pMHC class I multimers built on NTA-Ni2+-His-tag interactions 

that upon addition of imidazole instantly decay in their constituents. By using Cy5 labelled pMHC molecules, 

NTAmers allow measurements of pMHC monomer dissociation kinetics on CD8 T cells (118). 

Despite all the advances made in epitope-specific detection with pMHC class I multimers, little progress has 

been made with pMHC class II molecules. This is linked with the CD4 molecule not greatly increasing pMHC 

binding avidity, the overall lower affinity between TCR and MHC class II complexes, the conformational 

diversity of pMHC complexes, the high polymorphism of HLA-DP, -DQ, -DR molecules and the poor quality of 

class II multimers linked to technical difficulties in the generation of these reagents (119). Recent advances 

have improved pMHC class II multimers: the addition of a leucine zipper instead of the transmembrane and 

cytoplasmic domains to prevent dissociation of the alpha and beta chains (120), the addition of a C-terminal 

His-tag, which allows gentle affinity purification of the complexes (121), the use of conditional peptide tags 

to improve the degree of peptide loading (122), or the linking of the peptide to the beta chain via a long and 

flexible linker (123). These advances have led to improved staining of antigen-specific CD4 T cells as 

demonstrated in a recent publication which used a combinatorial pMHC class II tetramer staining to 

successfully visualize up to 6 different CD4 T cell specificities after vaccination with the seasonal flu shot in 

rheumatoid arthritis patients (124). To ameliorate detection of low affinity cells, new structures are being 

developed using large backbones such as dextran to increase the number of single pMHC class II monomers 

that can interact with TCR structures, thus increasing avidity (125). 

G.2.6 CD4 T cell priming and differentiation 

Once a CD4 T cell leaves the thymus, it will circulate in the body until it will recognize via their TCR, in the 

secondary lymphoid organs, an antigen presented by the MHC complex at the surface of an APC cell. Upon 

formation of the immune synapse a first signal of activation will be transmitted to the cell core of the CD4 T 

cell (126). The secondary signal necessary for T cell activation is provided by co-stimulatory molecules such 

as CD28 on T helper cells which will bind to the B7.1 (CD80) or the B7.2 (CD86) APC surface proteins, that will 

launch CD4 T cell proliferation. This vital signal for T cell activation can be inhibited by the expression of CTLA-

4 (CD152) at the surface of T cells and will compete for B7 binding thus reducing T cell activation (127). T cells 

will also rely on survival signals which are transmitted to the cell upon recognition of foreign antigens. These 

signals are given by T cell surface proteins such as ICOS, 4-1BB and OX40 binding to their respective ligands 

ICOSL, 4-1BBL and OX40L presented by APC cells following pathogen recognition (127). The third signal 

resides in the cytokines found in the microenvironment surrounding the CD4 T cell (128). These will 

determine the polarization of CD4 T cells and the function they will have (see next sub-chapter). The result 

of these 3 signals will lead to CD4 T proliferation and activation. 

Upon antigen recognition naïve T cells will become activated and will change their expression of various 

homing molecules resulting in a cell with effector functions, migrating to the infection site (129). Once the 
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pathogen has been eradicated, the majority of effector cells (90 to 95%) will die by apoptosis. Only a few of 

a heterogeneous pool of T cells will be left behind, which will compose the “memory” reservoir of T cells. The 

memory cells are divided into two distinct groups based on their effector function, proliferative capacity, and 

migration potential. These subsets are named: central memory T cells (TCM) and effector memory T cells (TEM). 

On the one hand, TCM are characterized by their ability to extensively proliferate, they express CCR7 and 

CD62L (L-selectin) and produce interleukin (IL)-2. On the other hand TEM are less proliferative, they do not 

express CCR7 and CD62L but are capable of producing effector cytokines such as IFN (130). Neither of these 

subsets express CD45RA on the contrary to Naïve cells. Their localization differs as TCM are predominantly 

found in secondary lymphoid organs and TEM in peripheral compartments and have immediate effector 

functions (130,131). Memory T cells can persist for a lifetime in the absence of antigen and even MHC 

molecules. In addition to these two main memory subsets there are others which have been described such 

as the TSCM population with retains a stem cell-like property and a naïve phenotype as they express CCR7, 

CD45RA, CD62L, CD27, CD28 and IL-7Rα. They can be distinguished from naïve cells as they express the two 

additional markers CD95 and CD58 (132). These cells have been shown to have a strong self-renewal capacity 

and multipotent ability to generate all memory subsets including TCM, TEM and effector cells. TSCM are viral and 

self-tumor antigen specific which has been used to efficiently reconstitute immunodeficient hosts and 

mediate superior antitumor responses in mouse models (133). The T “transitional” memory (TTM) cells are 

found in the peripheral blood of healthy individuals. TTM do not express CCR7 or CD62L but do express CD28. 

As the phenotype of TTM and the magnitude of proliferation in response to IL-15 , TTM cells have been 

characterized as more differentiated than TCM but not more than TEM cells (134). The administration of IL-15 

will result in the expansion of a subset of TEM cell that will re-express the CD45RA marker, these cells are 

called terminal effector (TTE or TEMRA) (135). TTE cells will therefore express CD45RA but none of the other 

markers such as CCR7, CD27, CD28 or CD62L. They are often considered as terminally differentiated cells as 

they express markers of senescence such as KLRG-1, CD57 and phosphorylation of histone H2AX as well as 

by having low proliferative and functional capacity (134). Finally, an additional population of memory T cells 

has been identified within barrier tissues such as mucosal surfaces and epithelia. As they are non-circulating 

cells, they have been called tissue-resident memory (TRM). Due to their strategic localization TRM cells are 

capable to rapidly respond to antigens and execute immediate effector functions. The expression of adhesion 

molecules like CD44 and CD69 will help the cell to remain in the peripheral tissues as will the downregulation 

of CD62L and CCR7 proteins (136). These multiple subsets of differentiated CD4 T cells might be formed 

following one of the multiple suggested differentiation mechanisms. One of these is the “one cell one fate”, 

were one naïve T cell gives rise to either memory or effector cells (137). Or the “one cell multiple fates”, were 

one Naïve T cell gives rise to both memory or effector cells. This second differentiation model regroups three 

proposed models which try to explain T cell differentiation into memory and effector cells. The asymmetric 

division model, where upon formation of an immunological synapse between APC and T cells, asymmetric 
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division will give birth to two daughter cells with different fates. The signal strength model, where the 

strength of the three activatory signals necessary for T cell activation will determine the amplitude of 

expansion and the fate of the primed T cell. Finally, the decreasing-potential model where upon the repeated 

encounter of antigens, T cells will differentiate towards more differentiated cells culminating with terminal 

effector cells (137). This model is thought to follow a linear progression along the major subsets TN, TSCM, TCM, 

TTM, TEM, and TTE depending on cell proliferative capacity and loss of function (134).  

 

Figure 6: faith of the Naïve T cell upon priming. Representation of the linear progression of major T cell subsets with their loss of 
proliferation potential and the increase of their effector function. Adapted from (134). 

G.2.7 CD4 T cell polarization and plasticity 

After antigen stimulation of CD4 T cells not only will they go through the differentiation process described 

above, but they will acquire a defined functional, highly plastic cell fate influenced by the microenvironment 

(138). CD4 T cell subsets can be characterized by the expression of lineage defining master transcription 

factors, distinct cell surface markers and by the secretion of unique sets of cytokines. Distinguishable CD4 T 

cell subsets include Th1, Th2, Th17, Th17-Th1, Th22, Th9, T follicular helper cells (Tfh), T regulatory (Treg) 

and T cytolytic (ThCTL) (139–142). Table 1 depicts a picture of the multiple facets of CD4 T cell polarization: 

the sets of activating cytokines present in the microenvironment around the T cells will send distinct signals 

resulting in the expression of master transcription factors. The T cells will then acquire a phenotype 

characterized by sets of cell surface markers and the secretion of sets of cytokines with a precise end goal. 

Effector cytokines produced by polarized CD4 T cells will contribute by positive feedback to increase the 

differentiation of further naïve T cells while inhibiting the polarization of opposing subsets (143). As an 

example, Th1 cells producing IFN will inhibit Th2 cytokine production and therefore Th2 commitment. In the 

same manner IL-4 production will inhibit IFN and IL-12 production thus inhibiting Th1 commitment (144). 
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The fate of one CD4 T cell is not unchangeable, in fact it is now well known that these different CD4 T cell 

subsets own substantial heterogeneity and plasticity which means that a Th cell can share characteristics of 

other Th cells and potentially lose its original feature and transition to another Th subset (145). As an example 

Th17 cells have been extensively studied as they have the capacity to acquire Th1 phenotype under chronic 

inflammation, but also can regulate the resolution of the immune response by converting to Tregs (146). This 

flexibility of T cells stems from a flexible expression of multiple master regulators. It is now believed that 

master regulators such as T-bet and GATA3, transcription factors for respectively Th1 and Th2 commitment, 

can be co-expressed as in post-viral infection in Th2 cells resulting in Th2+1 cells which feature both Th1 and 

Th2 cell characteristics (147). The expression of the multiple master transcription factors is controlled 

positively and negatively by factors such as the STAT DNA binding protein family. On the contrary to cytokine 

receptors which can be downmodulated, STATs are not differentially expressed among different subsets and 

their action can be redundant. For example, T-bet expression is driven by IL-12 acting via the STAT4 pathway. 

Th2 cells are resistant to the effect of IL-12 as they downregulate the IL-12 receptor. However, T-bet 

expression can still be induced via type I IFNs acting via the STAT1 signaling pathway resulting in the 

repolarization of Th2 cells in the setting of viral infection (148). Stemming from these few examples it would 

be naïve to believe that a simple transcription factor is all that regulates a T helper cell subset. It is more likely 

that complex cellular decisions are regulated by multiple transcription factors working in concert. 

CD4 T CELL 
POLARISATION 

ACTIVATING CYTOKINES 
MASTER 

TRANSCRIPTION 
FACTORS 

PHENOTYPE CYTOKINE EXPRESSION PRIMARY FUNCTION 

TH1 
T HELPER TYPE 1 

IL-12 
IFN-γ 

Tbet, STAT4 CXCR3+ 
IFN-γ 

TNF-α and β 

Production of pro-
inflammatory cytokines; 
cell-mediated immunity 

TH2 
T HELPER TYPE 2 

IL-4 
IL-2 

GATA3, STAT6 
CRTH2+ 
CCR4+ 

IL-4, IL-5 
IL-13 

Production of anti-
inflammatory cytokines; 

promote allergic 
response; evoke strong 

antibody response 

TH17 
T HELPER TYPE 17 

TGF-β, IL-6, IL-21, IL-23 RORγt, STAT3 
CCR6+ 

CD161+ 
IL-17, IL-21 
IL-22, IL-26 

Respond to bacteria, 
fungi, and viruses; Auto-

immune diseases 

TH17-TH1 
T HELPER TYPE 17/1 

IL-12 RORγt, T-bet CXCR3+, CCR6+, CD161+ IFN-γ, IL-17 
Contributions to 

inflammation and 
autoimmunity 

TH22 
T HELPER TYPE 22 

IL-6 BNC2, FOXO4, AhR 
CCR4+ 

CCR10+ 
IL-22 

Mucosal immune 
response; inflammatory 

diseases; barrier 
defence 

TH9 
T HELPER TYPE 9 

TGF-β 
IL-4 

PU.1, IRF4 CCR6+ IL-9 

Humoral immunity 
through B cell 

interactions; functions 
on many cell types 

including mast cells and 
other CD4 T cells 

TFH 
FOLLICULAR HELPER T 

CELLS 

IL-6 
IL-21 

BCL6, IRF4 
CXCR5+ 
ICOS+ 

IL-4 
IL-21 

Antigen specific B cell 
immunity 

NTREG 
NATURAL REGULATORY 

T CELLS 

TGF-β 
IL-2 

FoxP3, STAT5 
CD25+ 

FOXP3+ 
TGF-β 
IL-10 

Maintenance of self-
tolerance 

THCTL 
T CYTOLYTIC 

IL-2 EOMES ? 
Granzyme B, Perforin, 

FASL 
Killing of infected cells 
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Table 1: Summary of CD4 T cell polarization. Each CD4 T cell polarization can be defined by the presence of cell surface molecules, a 
master transcription factor and an array of produced cytokines. The polarization of the CD4 T cells is influenced by the set of cytokines 
and other molecules present in the environment. Table compiled from (139–142) 

G.2.8 microRNA involvement in CD4 T cell differentiation and polarization 

As each CD4 T cell secretes sets of defined cytokines they also are unique by their microRNAs (miRNAs) 

profiles, that undergo specific changes when a naïve T cell respond to specific TCR-mediated activation and 

commit to a defined cell fate (149). miRNAs are small non-coding RNAs found in many organisms including 

humans and mice whose function is to regulate the expression of protein-encoding genes at the post-

transcriptional level. The production of miRNA starts with the polymerase II which transcribes what is called 

a primary transcript (pri-miRNA), which is composed of two paired sequences linked by a stem-loop structure 

and can be the size of several hundred nucleotides to several kilobases. The stem-loop is cleaved in the 

nucleus by RNAse III family nucleases Drosha and Pasha and releases a 60- to 110- nucleotide pre-miRNA 

hairpin precursor (150). The newly formed pre-miRNAs are exported to the cytoplasm via a RanGTP/exportin 

5 dependent mechanism (151). In the cytoplasm the Dicer enzyme will further process the miRNA by cleaving 

the loop holding the two sequences together thus releasing the duplex in single 19- to 22- nucleotide mature 

miRNA. The miRNA will be incorporated into the RNA-induced silencing complex (RISC) which can direct the 

cleavage and/or translational repression of messenger RNAs (152,153). The belief that repression of 

messenger RNAs is the only function of miRNA is far from the truth. It is becoming evident that miRNAs have 

also nuclear functions as they might be positively activating genes or inhibiting their transcription, block 

maturation of non-coding RNAs, affect alternative splicing (154–158). Other functions of miRNAs within the 

nucleolus such as affecting ribosomal RNA maturation are controversial (158). 

Previous studies have shown the central role of miRNAs in regulating the development and homeostasis of 

the immune system. By using mice deficient for genes involved in the maturation of miRNAs a deregulation 

of differentiation was reported, as Dicer-deficient CD4 Th2 cells switched into Th1 (159). Similarly, the 

induction of Treg cell differentiation is influenced by a miR network including miR-99a and miR-150 which 

cooperates to repress the expression of the Th17-promoting factor mTOR (160). The critical impact on CD4 T 

cell differentiation that miRNAs have was further demonstrated when the involvement on Th17 

differentiation of miRNA-18a was identified (161). The presence of miRNA-18a limited Th17 differentiation 

and upon the use of inhibitors for this miRNA the expression levels of CCR6 and the master transcription 

factor RORt increased in mouse and human CD4 T cell resulting in increased numbers of Th17 cells. The 

expression levels of one miRNA was shown to influence the outcome of Th cell differentiation. By modulating 

the expression of miRNA, it was possible to modulate not only the formation of one cell subset but multiple 

processes such as the T cell cycle, survival and memory T cell differentiation. In fact the elimination of miRNA 

-15/16 family showed such an impact (162). Yet, a clear view on targetable miR candidates influencing human 

CD4 T cell differentiation is still lacking. Since TSCM have gained increased interest in cancer immunology due 
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to their stem cell like nature (163), the targeting of miRs to influence the differentiation of CD4 T cell could 

be very beneficial to cancer immunotherapy (164). In fact the transfer of TSCM in a humanized mouse model 

mediated superior antitumor responses as they had a long-term persistence in the host and high proliferative 

capacity (133). A key to using these cells is to understand the epigenetic modification, including miR 

expression, that could mediate TSCM induction or maintenance. 

 

Figure 7: Current model on the microRNA biogenesis and post-transcriptional suppression of mRNA. Initially starting as Pri-mRNA 
transcripts they are processed into pre-mRNA which are in turn transported to the cytoplasm by Exportin 5. In the cytoplasm double 
strands from Pre-miRNA as well as dsRNA are released through the action of Dicer complexes. This process will give rise to miRNA or 
siRNA. One of the strands of either miRNA and siRNA will be assembled in RISC complex and will target mRNA through translational 
repression or mRNA cleavage. Adapted from (165). 

G.3 Cancer immunity 

The immune system was primarily shaped to discriminate between self and non-self. This ability confers the 

immune system the capacity to protect the host against invading pathogens such as viruses, bacteria and 

fungi with at the same time the capacity to tolerate host cells. Tumor cells being self-derived and T 

lymphocytes undergoing negative selection there is a limited set of antigens to which lymphocytes can 

respond to in case of tumor formation. Despite this limitation there is a recognition and an attack by 

lymphocytes on tumor cells (166). However, the antitumoral immunity is often insufficient to reject 

established neoplastic lesions. This goes in line with the three Es theory of cancer immunoediting: 

elimination, equilibrium and escape (167), where the elimination phase is indeed when cancer cells are 
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eliminated by cells of the innate and adaptive immune system. “Equilibrium” when the cancer cells that have 

not been eliminated are constantly subjected to selection pressure which contains them but does not 

eradicate them completely. And the last E is the Escape phase resulting from the selective pressure when 

mutant cells with resistance to immune detection and/or elimination will be able to expand. To avoid both 

the innate and adaptive immune system, tumor cells can make use of several immune evasion strategies. 

G.3.1 Cancer recognition by the innate immunity 

The last two decades have provided a large number of studies supporting the role of the innate immune 

system in controlling cancer. For early control of viral infection NK cells are important due to their capacity 

in killing target cells without prior encounter. Their role has also been observed in regards to the surveillance 

of malignant transformation induced by carcinogen or transplanted tumors (168,169). Clinical evidence in 

cancer patients has suggested that tumor biopsies which have NK cell infiltrates are associated with a 

favorable prognosis (170). Direct tumor lysis by NK cells is believed to be principally perforin mediated but 

can also be mediated through death receptor-mediated pathways such as TRAIL and FasL (171,172). Amongst 

other ways NK cells can kill their target, they can bind via the CD16 membrane protein to Fc regions of 

antibodies bound to tumor cells and provoke an antibody dependent cell cytotoxicity (ADCC) event (173). 

Upon activation NK cells are powerful cytokine producers and secrete TNFα and IFN amongst other 

cytokines. IFN is thought to have anti-tumor activity as it induces MHC class I expression sensitizing tumor 

cells to CD8 T-cell killing (174). The further combination of IFNγ and TNFα cytokines can drive senescence of 

tumor cells (175). By secreting multiple cytokines NK cells will not only act directly on tumor cells but also 

indirectly by modulating the activity of other leukocytes.  

Besides NK cells, cells such as macrophages are highly present in the tumor stroma. Myeloid cells are highly 

plastic resulting in different effector functions depending on the signals they receive from the environment. 

As described in chapter G.1.1, macrophages can be divided into two subtypes M1 and M2. The M1 

macrophages are considered to be pro-inflammatory, inhibiting angiogenesis and supporting the adoptive 

immune response. Inversely M2 macrophages support angiogenesis and are immunosuppressive (176). 

Macrophages found in the tumor bed are known as Tumor-associated macrophages (TAMs). They have been 

associated with a poor prognosis for patients as they facilitate angiogenesis, immunosuppression, and 

inflammation thus promoting tumor growth (177). 

DCs with their two main populations pDCs and conventional DCs have a part to play in tumor immunity. The 

environment in the tumor site will influence DC functions like it does for macrophages. A lack of T cell 

costimulatory signals is observed in DCs in a immunosuppressive microenvironment as well as an expression 

of inhibitory PD-L1 molecules and IDO (178). PAMP molecules are needed in order to achieve a pro-

inflammatory phenotype by DCs and induce an protective T cell response. Yet PAMPs are lacking in the tumor 

environment. However, DAMPs can be released upon immunologic cell death (ICD) of tumor cells resulting 
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in the activation of DCs. To boost the immune response against tumor cells ICD can be induced by treatment 

of tumor cells with cytotoxic anti-tumor therapy. This process is a double edged sword as the release of 

DAMPs may promote the development or progression of tumors as a result of triggered chronic inflammation 

(179). 

G.3.2 Cancer recognition by the adaptive immunity 

Similarly to the innate immunity several components of the adaptive immunity can either eradicate cancer 

cells or promote their proliferation (180). The adaptive immunity will aim to target antigens specific of tumor 

cells by the usage antibodies, B cells, T cells. Despite tumors being part of self, cancer derived peptides such 

as cancer-testis antigens (i.e. NY-ESO-1), differentiation antigens (i.e. Melan A) do exist (180). Furthermore 

frequent mutations within tumor cells will result in the formation of neoantigens which will be phagocytosed 

by APC cells or pinocytosed by DCs (180). After processing, exogenous peptides will be presented by MHC 

class II molecules and endogenous peptides will be presented by MHC class I molecules (181). Peptides bound 

to MHC class II will be presented to CD4 T cells resulting in their subsequent activation and proliferation. 

Activated CD4 T cells can mediate the activation of naïve B cells within the lymph nodes which subsequently 

will secrete antibodies which can bind to tumor-derived antigens (182). The binding of antibodies will initiate 

ADCC or Complement-dependent cytotoxicity (CDC) dependent lysis of tumor cells (182). Similar to CD4 T 

cell activation, CD8 T cells will also become activated upon interaction with tumor-derived peptides 

presented by MHC class I molecules. CD8 T cell will traffic to the tumor bed where they will exert cytotoxicity, 

release inflammatory signals and tumor antigens to feed the cycle of antigen presentation (180). Despite the 

action of both the innate and the adaptive immune system, it is often not enough to control and eradicate 

tumors. 

CD4 T cell subsets can be characterized by the expression of lineage defining master transcription factors, 

distinct cell surface markers and the secretion of unique sets of cytokines as described in chapter G.2.6. All 

subsets of CD4 T cells can be found in the tumor core and at its margins; however, the presence of certain 

CD4 T cell subpopulations have been associated with distinct clinical outcome in cancer patients. In the meta-

analysis performed by Fridman et al., the presence of Th1 polarized CD4 T cells was linked with a good 

prognosis in most cancer types such as melanoma, head and neck, breast, bladder, urothelial, ovarian, 

colorectal, renal, prostatic and lung cancer (183). Th1 cells have been linked with the generation and 

maintenance of effector cytotoxic CD8 T cells tumor specific and memory T cells through the licensing of 

dendritic cells through CD40-CD40L interactions (184,185). Th1 also have been described as capable of 

recognizing neoepitopes and were successful in recent vaccination trials (186–188). The recent discovery of 

the Th9 subset was also linked with favoring anti-cancer immunity and tumor elimination as these cells 

activate both innate and adaptive immune responses (189). Tfh cells seem to possess anti-tumoral activity 

since their presence was associated with the augmented CD8 T cell responses and an impairment of tumor 



38 
 

growth in mice (190). On the contrary in the presence of CD4 Th2, Th17 or Treg polarized cells, a poor 

prognosis was observed in the majority of tumors probably because of inhibition of cytotoxic responses and 

tumor control (191,192), with some exceptions. Indeed, Th2 cells have been associated with a favorable 

prognosis in Hodgkin’s lymphoma and breast cancer, Th17 cell presence in esophageal and gastric cancer is 

associated with better survival and Treg presence associates with favorable overall survival in head and neck 

cancer, Hodgkin’s lymphoma, colorectal, breast and bladder tumors (183). By considering the frequent 

negative effect of Treg on tumor immunity, a trial using a humanized anti-CCR4 monoclonal antibody to 

deplete the Treg population was performed on 10 patients with solid cancers and 4 out of 10 patients had a 

prolonged survival (193). These observations argue for a critical role of CD4 T cells in dictating either a pro- 

or anti-tumoral milieu within the tumor bed. Yet, characterization of these cells in patients at antigen-specific 

level is still very limited. Furthermore, effective immunomonitoring techniques will become valuable if CD4 

T cells are to be used in clinical settings. 

 

 

Figure 8: The cancer-immunity cycle. Illustration of each single step which is required for an effective antitumoral T cell response. 
Adapted from (180). 

G.3.3 Cancer immune escape mechanisms 

One of the reasons why it is so difficult to eliminate tumor cells is due to the mechanisms that they have to 

sabotage the cancer immunity cycle and counteract T cell-mediated rejection. Tumor cells are further aided 

by their supporting stroma as seen previously where the environment within and around tumors will have 

detrimental effects on DC maturation or will cause T cell tolerance or anergy in the absence of appropriate 
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co-stimulatory signals from APCs (194). Immature myeloid precursor are recruited by tumor which then 

become Myeloid-derived suppressor cells (MDSC) as they secrete immunosuppressive cytokines such as TGF-

β and IL-10. TGF-β will inhibit T, B, and NK cell functions, while promoting the function of Tregs (195). IL-10 

is known to inhibit macrophage and DC functions, promotes M2 polarization and indirectly prevents antigen-

specific CD4 T cell activation (196). The presence of TAM contributes to immune escape as they directly or 

indirectly recruit natural regulatory T (nTreg) which natural function is to prevent excessive inflammation 

and autoimmunity (197). Tregs are “hijacked” by the tumors to induce a tolerogenic environment. In addition 

to the immunosuppressive cytokines secreted by Treg cells they are capable of depleting IL-2, inducing 

tolerogenic DC cells and causing cytolysis of effector CD8 T cells via Granzyme B and Perforin (50). TAM can 

also contribute to T cell suppression by depleting L-arginine in the tumor microenvironment. L-arginine is 

necessary for T cell function as its depletion results in the inhibition of the CD3  chain re-expression after 

internalization of the TCR (197,198). 

The second mechanism of tumor immunosuppression involves the expression of immunosuppressive 

molecules or their receptors. These molecules include PD-1, IDO, CTLA4 and LAG-3 among others, known as 

the immune checkpoints which can inhibit the activation of T lymphocytes leading to tumor escape (199). 

PD-L1 can be expressed constitutively by both tumor and stromal cells and can be induced by IFN (200). 

Upon binding between PD-1 and PD-L1 or PD-L2 there is an inhibition of immune cells such as activated T 

cells, B cells, monocytes, NK cells, and certain DCs (199). CTLA-4 similarly to PD-1 belongs to the CD28 family 

and upon interaction with its ligands (B7-1, B7-2) it delivers a negative signal (200). Tumor cells as well as 

Myeloid cells express another immunosuppressive key factor, the enzyme Indoleamine 2,3-dioxygenase 

(IDO). IDO reduces local tryptophan essential for effector T cell survival and the generation of cytotoxic 

metabolites (201). Finally, a last example of immunosuppressive mechanism within tumors resides in the 

expression of FasL. FasL expression was associated with poor CD8 infiltration and a high presence of Treg 

cells. FasL is upregulated in endothelial cells after tumor-derived vascular endothelial growth factor A (VEGF-

A), IL-10 and prostaglandin E2 (PGE2) expression. FasL will confer to endothelial cells the capacity to kill 

effector CD8 T cells but not Treg cells (202). 

G.4 Malignant Melanoma 

Malignant melanoma is a type of cancer originating from melanocytes which are pigmented cells mostly 

found in the skin. The role of melanocytes is to protect the skin from the damaging effect of UV radiation by 

secreting melanin pigments. Melanoma is most frequently found in the skin but can also originate in the eye 

and inner ear (203–205). 

G.4.1 Epidemiology 

Despite the numerous advances made in the field of cancer treatment cutaneous melanoma is responsible 

for 75% of skin cancer mortality due to its invasive and metastatic nature. In fact during the 2011-2015 period 
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2% of all cancer deaths were attributed to melanoma (206). According to the world cancer research fund 

melanoma is the 19th most common cancer worldwide resulting in 300,000 new cases in 2018, with 

Switzerland ranking 8th on the overall highest rate of melanoma in the world (Australia being the country 

with the highest rate). This resulted in 3147 new cases of skin melanoma in Switzerland and 391 deaths in 

2018 according to the international agency for research on Cancer from the world health organization (WHO) 

(source: Globocan 2018). 

G.4.2 Risk factors 

The risk factors linked to melanoma can be divided into two categories: environmental and genetic factors. 

The most known and important environmental risk factor for melanoma formation is the sun and the UV 

radiation it emits which leads to DNA damage. If this damage is not repaired by the nucleotide excision DNA 

repair machinery it will lead to the formation of aberrant cells (207,208). In human malignancies p53 is a 

tumor suppressor gene and one of the most frequently mutated genes (209). Unique to UV radiation 

mutations are found in the p53 genes which dysregulate many fundamental cell processes such as cell cycle 

arrest, DNA repair, apoptosis, genomic integrity maintenance, cellular senescence (210,211).  

There is evidence where the ethnic origin of individuals is linked with the incidence of melanoma in 

populations. Individuals with increased amounts of melanin presence such as within the black population, 

will be 10 times less frequently affected by melanoma compared to the white population as they are better 

protected from the damaging effect of UV radiation emitted by the sun (209). Around 8 to 12% of patients 

have a family history of melanoma (212). Finally the number of naevi both common and atypical represents 

a good predictor for cutaneous malignant melanoma (205). 

G.4.3 Diagnosis 

The key to managing melanoma disease remains the early detection of skin abnormalities such as 

pigmentation alterations. A set of criteria can be used by clinicians and by the public to recognize melanoma 

in the early stages: Asymmetry, Border irregularity, Color variegation, Diameter > 6mm and Evolving which 

initials have been abbreviated into ABCDE criteria (213). Upon suspicion of a melanoma event a histological 

analysis is performed on a tissue biopsy to confirm the initial suspicion. The analysis of the tissues will give 

important information on the maximum thickness (mm) (Breslow thickness), the presence of ulcerations and 

clearance of the surgical margins. It is no longer included in the American Joint Committee on Cancer (AJCC) 

8th edition (published in 2019) the need for the mitotic rate and the presence and extent of regression (214). 

The report will also include information on the anatomical location (including extra-cutaneous sites, such as 

mucosa, conjunctiva). A degree of sun damage of the surrounding skin is necessary. Finally the pathologist 

should also include the melanoma type (superficial spreading melanoma, lentigo maligna melanoma (LMM), 

acral lentiginous melanoma, nodular melanoma, and others) (214). Melanomas are then staged from I to IV, 
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IV being the most advanced stage in disease progression. The stages are based on the tumor characteristics, 

presence of metastatic lymph nodes and the presence and location of distant metastases (214). 

 

Table 2: Clark and Breslow staging of melanoma and the risks associated to the progression level. Adapted from (215)  

G.4.4 mutations 

Valuable information has been learned in recent years about the molecular basis of melanoma genesis, 

progression and response to therapy. The frequently (40% to 60% of cases) found mutation of BRAF V600 in 

melanoma is a predictor of efficacy of RAF inhibitors (216). Mutational aberrations activating KIT may predict 

response to tyrosine kinase inhibitors. Sensitivity to MEK inhibition might be found on NRAS-mutant tumors 

(217). The understanding of these gene mutations among others gives an understanding of melanoma 

malignancy which remains incomplete. Melanoma is a cancer with a high mutational load which is due to UV 

mutagenesis (218). UV-light mutations are linked with a high cytidine to thymidine (C>T) transitions. This 

results in either “passenger” mutations which do not confer a fitness advantage to tumor cells or will be 

“driver” mutations which do confer a fitness advantage. The drawback from these randomized mutational 

events results in very unique melanoma tumors from one patient to another which results in very different 

treatment responses (219). 

G.4.5 Treatment of melanoma 

There is an extensive guideline on the management of local and locoregional disease which has been 

published by the European Society for Medical Oncology (ESMO) (220). For localized melanoma it is 

recommended to excise the primary tumor within the safety margins. When surgery is not possible 

radiotherapy can be used. In the case of locoregional lymph node metastases or in-transit disease, 

therapeutic dissection is indicated. Non-resectable satellites may be treated using perfusion of melphalan a 

chemotherapeutical agent and/or tumor necrosis factor alpha (TNFα). In the case of systemic metastatic 

disease, good results have been obtained with α-CTLA-4 or α-PD-1 immunotherapy strategies as well as with 

kinase inhibitors (220). Chemotherapy can be used as a second line treatment. In the 2019 report it was 

emphasized the move in the field towards a personalized medicine for precision treatment of patient (220). 

Personalized medicine still present challenges as patients require to be screened for mutations of specific 

markers resulting in each individual patient requiring tailored drug therapies (221). 
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G.5 Cancer immunotherapy and immunomonitoring 

The role of the immune system in the fight against cancer is now well established. Yet it is not sufficient on 

its own to clear out tumors. But the immune system can be manipulated to attack tumors which is the 

principle of cancer immunotherapy. This course of treatment in patients and it’s high success rate in clinical 

trials, resulted in its classification as “breakthrough of the year” by Science in 2013 (222). This line of research 

saw the Nobel prize in Physiology or Medicine awarded to the immunologists James Allison and Tasuku Honjo 

for their research on targeting CTLA-4 or PD-1 for the improved elimination of tumors in patients (223). 

Unfortunately, the success rate varies with such course of treatment as it is still complicated to overcome 

mechanisms that cancer cells employ to evade immune surveillance. There are several strategies that have 

been tackled to modulate the immune system such as: vaccination, adoptive cell transfer and the use of 

immunomodulatory agents. During immunotherapy it is important to follow up on changes brought upon 

the immune system to provide insight on therapy efficacy and to evaluate the response at the cellular and 

molecular level, this is called immunomonitoring. 

G.5.1 Tumor antigens and Neoantigens 

As described before it is essential for cells of the adaptive immune system to recognize target antigens to 

elicit a specific anti-tumor T cell response. As to not elicit autoimmunity tumor antigens need to be 

specifically expressed on tumor cells, but ideally be absent on host cells. Tumor antigens can be split into 

antigens with high tumor specificity or low specificity. Within the category of antigens with high tumor 

specificity there are three classes of antigens: cancer-germline antigens, antigens derived from viral proteins 

and antigens resulting from point mutations (224). Several types of cancers originate from viruses, as such 

viral proteins are produced inside cancerous cells and peptides derived by these antigens can be detected by 

T cells (225). Another source of tumor-specific antigens are cancer-germline genes. This family of proteins is 

expressed in a wide variety of cancer types and little to no expression is observed in most normal tissues 

except on germline and trophoblastic cells. These antigens include melanoma-antigen encoding (MAGE) 

genes, LAGE/NY-ESO1, SSX,… (226–228). Finally, we find antigens which are encoded by mutated genes 

resulting in new antigenic peptides which are no more recognized as self, called neoantigens. Some tumors 

such as the previously described melanoma has a high mutational rate resulting in more mutated antigens 

and therefore are more immunogenic. The drawback of neoantigens is that they are patient-specific resulting 

in complications when it comes to immunotherapy protocols as no one treatment will fit all. Thanks to 

progresses made in sequencing technologies and in predictive tools, the field of cancer medicine is rapidly 

moving towards personalized treatment as mutated antigens from individual patients are screened for their 

immunogenic potential and used in vaccine trials (229–231). The second category of low affinity antigens 

comprises differentiated antigens and overexpressed antigens. Differentiation antigens are defined as 

proteins expressed by tumors of a particular histological type and the corresponding healthy tissue. Proteins 

such as tyrosinase, gp100/pmel and Melan-A/MART-1 are found for the most part in melanoma cells (232–
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234). Overexpressed antigens as the name indicates, are proteins overexpressed by multiple tumor types as 

compared to their healthy counterpart, which makes them as attractive candidates for immunotherapy. 

However their targeting is associated with the risk of developing an autoimmune reaction as they are 

expressed on healthy tissues (224). 

 

Figure 9: target antigen types for cancer immunotherapy. Classification of target antigens with their prevalence for tumor tissues as 
well as their capacity to break tolerance and finally their shared presence amongst multiple patients. Adapted from (235). 

G.5.2 Anti-tumor vaccination 

Prophylactic vaccine aims to protect against viral and bacterial infections by inducing a strong neutralizing 

antibody response, therapeutic vaccines for cancer therapies aims to establish an active effector T cell 

response as well as to generate a memory pool of T cells against a specific tumor target. Peptide based 

vaccines are composed of an emulsion containing target peptides such as the ones described in the previous 

sub-chapter, and one or more immune stimulatory adjuvants. Since several tumor-associated antigens 

belong to the self and are present on healthy tissues, there is only a limited number of circulating T cells, 

mostly of low TCR affinity, capable of reacting to such peptides. To break tolerance strong adjuvants, co-

stimulators and repeated vaccinations have to be used (235). Furthermore, these cells have to overcome the 

immunosuppressive environment found in and around tumors. Vaccination has initially been focused on 

targeting CD8 T cells. As a first example, between 2003 and 2011 a clinical trial (LUD 00-018 study, 

ClinicalTrials.gov Identifier NCT00112229) was performed by the Research groups at the Ludwig Institute of 

Cancer Research, the CHUV and UNIL. In this study 29 patients diagnosed with stage III or IV melanoma were 

vaccinated with Melan-A analogue (ELA) or native (EAA)peptide ± Tyrosinase (YMD) peptide, CpG-B-7909 and 

Montanide ISA-51 adjuvants in order to stimulate tumor antigenic specific CD8 T lymphocytes. In this study, 

a high frequency of functionally competent CD8 T cells response was indeed observed (236). A second 

example is vaccination based on the use of synthetic long peptides (SLP). SLP are a sequence of amino acids 

identical to the viral or tumor-associated antigens. The use of these SLP are crucial to activate dendritic cells, 

in fact they cannot directly bind MHC class I (237). Through the uptake and presentation on dendritic cells of 
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the peptide, CD4 and CD8 T cell anti-tumor responses will be induced. This type of vaccination process 

resulted in promising results as in phase I/II clinical trial 1 patient out of 35 resulted in complete disease 

regression and 5 patients achieved stable disease (237). Lastly vaccination trials were also based on 

recombinant tumor antigen proteins. In particular a study using the NY-ESO-1 protein, Montanide ISA-51, 

and CpG ODN 7909 was administered to patients (238). This formulation aimed to stimulate B cells and T 

helper cells in particular the anti-tumor Th1 CD4 cells. Most vaccinated patients generated antibody and Th1 

responses post-vaccination and in a few of them it was followed by the generation of CD8 T cells specific for 

the NY-ESO-1 peptide. The presence of specific CD8 T cells resulted from the antibody induced cross-priming 

of the peptide by the dendritic cells (238). This study showed the importance of not only inducing T helper 

responses but also inducing antibody response as they helped to generate tumor-specific CD8 T cells. The 

combination of multiple cell responses can determine the efficiency of a vaccination treatment. The role of 

CD4 T cells is becoming more evident in anti-tumor vaccinations as Th1 cells have been described to support 

the generation and maintenance of effector tumor-specific CD8 cytotoxic and memory T cells, by licensing 

dendritic cells through CD40-CD40L interactions (184,185) and to recognize peptides encoded by mutated 

genes within the tumor, the so called neoantigens (186,187). A recent vaccination trial targeted up to 20 

personal tumor neoantigens by using long-synthetic peptides and showed strong T cell response. Class II 

stimulation was achieved with 60% of the predicted neoantigens whereas for class I only 20% of neoantigens 

induced a response. In this trial, 4 out of 6 patients had no recurrence at 25 month post-vaccination (188). 

Neoepitopes offer new and interesting targets for personalized cancer immunotherapy due to their selective 

expression on cancerous tissues as a consequence of somatic mutations (239). The identification of these 

mutations in patients is possible through the analysis of the immunopeptidome by mass spectrometry which 

is labor-intensive but yields invaluable information on the antigenic repertoire of tumors. The understanding 

of the immunopeptidome will improve on the development of T cell-based therapies and vaccines (240). 

G.5.3 Adoptive T cell transfer 

Adoptive cell transfer therapy (ACT) consists of the isolation of autologous tumor infiltrating lymphocytes 

from patients, the amplification ex vivo after the selection of tumor-reactive cells the re-infusion into patients 

as such or after the selection of tumor-reactive cells. Prior to ACT lymphodepletion is necessary to eliminate 

Treg cells and eliminate lymphocytes which would compete with transferred cells for the homeostatic 

cytokines such as IL-7 and IL-15. This course of treatment has resulted in good responses in metastatic 

melanoma patients and clinical tumor regressions (50% of patients) (241). ACT most currently uses CD8 T 

cells as the main effector cells due to their innate capacity to kill target cells. More and more CD4 T cells are 

coming under the spotlight as new evidence of their crucial role in anti-tumor immunity was revealed (242). 

The infusion of CD4 T cells specific for the NY-ESO-1 antigen in patients with refractory metastatic melanoma 

resulted in a durable clinical remission (243). Similarly the use of CD4 Th1 cells recognizing the erbb2 

mutation isolated from a patient and reinfused in the same metastatic cholangiocarcinoma patient, resulted 
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in tumor regression and a stabilization of disease (186). Finally in a recent paper, the group of Rosenberg 

highlighted the feasibility of using autologous CD4 T cells transduced with a HLA-DP4 restricted TCR specific 

for the MAGE-A3243-258 cancer testis antigen, as it resulted to be safe and efficient in controlling the tumor in 

a proportion of treated metastatic patients (244,245). 

 

Figure 10: anti-tumor T cell generation for ACT. Cells are collected from patients followed by the establishment of various in vitro 
culture to generate cells for reinfusion into cancer patients. Adapted from (241). 

G.5.4 CAR T cells 

Limitations of ACT include the necessity to culture TIL. Furthermore, the limited availability of cancer specific 

antigens not expressed by healthy tissues can result in complications to identify proper cancer-specific T cells. 

ACT can circumvent such problems by using cells from patients which are genetically engineered to express 

tumor-specific TCRs or chimeric antigen receptors (CARs). The use of cells which have been modified to 

produce CARs has been explored with great success (246). The CAR is made of an antibody single chain (scFv), 

a hinge region and a transmembrane domain. The intracellular domain must be capable of intracellular 

signalling therefore it is most often composed of their CD3, CD28 or 41BB depending on the CAR generation: 

1st generation had CD3 only, 2nd generation had one costimulatory domain and CD3 and the 3rd generation 

had CD3 and two additional costimulatory domains (246,247). CAR T cells had so much success that the FDA 

rapidly approved the use of anti CD19 CAR T cells for the treatment of patients with B cell acute lymphoblastic 

leukaemia or large B cell lymphoma. Unfortunately, there is a high relapse rate within patients as there are 

still issues with acquired resistance (248). Despite the successes in the field of B cell malignancies CAR T cells 

results have been disappointing for solid tumors. Once more the identification of a proper tumor associated 

antigen is one of the hurdles for the generation of proper CAR T cell. Complications have also been 

encountered for the trafficking of the CAR T-cells to the solid tumor sites. Once at the tumor site the cells will 
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be met by a tumor microenvironment with an immunosuppressive effect (249). These issues, especially the 

immunosuppressive microenvironment will decrease the penetration capacity of the modified T cells. Finally 

resistance and toxicities are detrimental to CAR T cell therapy (250). Strategies to remediate such 

shortcomings are under investigation. 

G.5.5 Checkpoint blockade 

For the successful activation and function of an immune response a number of checkpoints have to be 

passed. These checkpoints are constituted of a large number of inhibitory pathways set in place to maintain 

self-tolerance as well as to modulate the duration and amplitude of physiological immune responses in 

peripheral tissues to avoid surrounding tissue damage. It is now clear that tumors use these mechanisms to 

evade the immune system resulting in immune resistance especially against T cells (251). Immune 

checkpoints are often made of a ligand and its receptor. The two most known inhibitory receptors are PD-1 

and CTLA-4 whose TCR inhibitory function was covered in chapter G.2.3. By blocking the interaction between 

PD-1 and its ligand PD-L1 with nivolumab or pembrolizumab it is possible to restore T cell responses which 

were previously attenuated (252). Similarly, by injecting an anti-CTLA-4 (ipilimumab) antibody it was possible 

to unleash T cell functions (253). The great success these antibodies have had in clinical trials prompted the 

approval of these compounds by the regulatory agencies in many different countries. Their approval came 

despite the toxicities they displayed as to their ability to overcome immune tolerance, resulting in frequent 

autoimmune adverse events (254,255). The combination of both treatments anti PD-1 and anti-CTLA-4 

resulted in increased rates of objective clinical responses (around 60%) thus showing their importance within 

cancer therapy strategies (256,257). Despite these remarkable results, patients showed a de novo or adaptive 

resistance to these treatments prompting the identification of additional molecules with similar effects such 

as TIGIT, VISTA, LAG-3, B7-H3, CD73 and others (258). As an example, TIGIT was initially identified in 2009 as 

it suppressed the activation of T cells. TIGIT binds to CD155 and CD112 on APC cells and competes for their 

binding with the CD266 or CD96. By competing with CD266 which delivers a positive co-stimulatory signal 

TIGIT can deliver an inhibitory signal to the cell (259). Promising results in preclinical trials resulted in the 

attention of many pharmaceutical companies (258). Similarly, LAG-3 was shown to limit the magnitude of 

CD4 T cell responses, thus including LAG-3 in the family of negative regulators of T cells. Anti-LAG-3 antibodies 

have been developed and amongst others, LAG525 antibody is undergoing phase I or II testing (260). The 

search for a new checkpoint inhibitor is a hot topic and the focus of numerous pharmaceutical companies. 
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Figure 11: immune checkpoint receptors and ligands currently in use or as emerging candidates. Non-exhaustive representation of 
the various receptors and the ligands with whom they interact. Upon interaction the positive of negative signal generated are 
represented. Adapted from (258). 

G.5.6 Immunomonitoring 

The overall goal of immunotherapy is to tailor therapies depending on patient’s needs. Great efforts are 

invested to customize the therapeutic agents such as peptides, vaccination protocols, ACT, CAR T cells and 

other checkpoint blockade inhibitors that will be given to patients in order to get the best immune response 

against tumor cells. One major hurdle in the field is the lack of effective immunomonitoring. It consists in 

monitoring the changes that occur in the immune system during immunotherapy bringing valuable insight 

into the efficacy of treatments and the identification possible biomarkers for patients’ stratification. Up to 

date immunomonitoring techniques included classical techniques such as immunofluorescence, flow 

cytometry and mass cytometry but also of new techniques are emerging such as next-generation sequencing, 

immune profiling at the single cell level and metabolic studies (261). There is a need for more ways of 

monitoring the immune response generated from cells such as T lymphocytes. The use of pMHC class I 

multimers allowed to monitor antigen-specific CD8 T cell responses with great accuracy (262). Not much has 

been attempted in the field of CD4 T cells due to the difficult staining of CD4 T cells with pMHC class II 

multimers. Initial attempts have been made in the field with reasonable success but there is still a great 

margin for improvement (263). 
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H My PhD projects 

Nowadays multiple roads are being extensively investigated for the cure of cancer patients. Yet, despite the 

numerous advances made in the field, there are still patients who are partially or not cured by current 

therapies. Current cell-based methods are often making use of CD8 T cells as main effectors due to their 

ability to recognize and eliminate tumors. CD4 T cells have only recently gained increasing importance in 

tumor immunity, including their capacity to recognize and respond to neo-antigens. However, due to the low 

numbers of circulating tumor-specific CD4 T cells, their characterization at antigen level is still very limited. 

Moreover, a key to CD4 T cell usage in immunotherapy will also depend on a better understanding of the 

regulation of their differentiation, to promote stem cell memory (TSCM) and central memory (TCM) phenotypes. 

These are some of the questions that I addressed during my PhD thesis.  

My PhD work was divided into two main aims: 

1. Develop and optimize new high-throughput tools for the direct ex-vivo functional evaluation of 

multiple tumor antigen-specific CD4 T cells. 

2. Identify miRNA candidates influencing the differentiation of CD4 T cells for improved cancer 

immunotherapy. 

The first aim was further subdivided in two projects. Firstly, the development of an optimized multimer 

staining procedure to detect larger percentages of tumor-specific cells and to better discriminate them from 

negative cells. The optimized procedure was used in a combinatorial staining setting to increase the number 

of specificities investigated within one precious patient sample.  

The second sub-aim was a collaborative project with the group of Prof. David Gfeller and consisted in the 

cellular validation of a bioinformatic predictor for peptide binding to MHC class II molecules. By testing the 

immunogenicity of predicted peptides, we could confirm the potency of the predictor and identify novel 

targets to be investigated in the anti-tumor CD4 T cell field. 

The second aim consisted in better understanding the regulation of CD4 T cell differentiation, to promote 

TSCM and TCM phenotypes. We aimed at identifying optimal miRNA (miR) candidates that could be 

therapeutically targeted to influence the differentiation of Naïve CD4 T cells into SCM or CM CD4 T cells 

capable of targeting tumor cells. 

The overall goal of my work was to expand the knowledge on tumor antigen-specific CD4 T cells and to 

identify ways to better track them and exploit these cells in cancer immunotherapy.  
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I Optimized combinatorial pMHC class II multimer labelling for precision 

immune monitoring of tumor-specific CD4 T cells in patients 

I.1 Introduction 

In the CD8 T cell field great advances have been made via the development of peptide MHC class I tetramers, 

that allow the detection of antigen-specific T cells (112). From the initially generated molecules, several 

improvements have been made to increase the binding avidity of such complexes to CD8 T cell TCR’s (121) 

and to concomitantly label cells of different specificities in the same sample, utilizing a combination of 

fluorochromes either in a dual color code (116), or with a multivalent code (115) or using panels of more 

than 100 pMHC class I DNA-barcoded multimers (117). Further, novel tools also include reversible multimers 

(NTAmers), that allow measurements of pMHC class I monomer dissociation kinetics on CD8 T cells (118). 

Improvements in multimer staining have not only come from improvements in the technology of multimer 

generation, but also by the usage of molecules such as Dasatinib, a protein kinase inhibitor (PKI) which has 

been shown to prevent TCR downregulation and to improve specific CD8 T cell detection (264–266). The 

further usage of an anti-fluorochrome antibody (Ab) to stabilize pMHC class I multimers at the T cell surface 

via Ab cross-linking also resulted in an improvement in tetramer staining (265,266). 

Despite the advances in epitope-specific detection of CD8 T cells using pMHC class I multimers, little progress 

has been made with pMHC class II molecules. The reasons why the pMHC class II field has been lagging behind 

as well as the improvements made to remedy to production shortcomings were addressed in the chapter 

G.2.2. These advances have led to improved staining of antigen-specific CD4 T cells, mainly in the context of 

viral infections or autoimmunity (124). Instead, only scant results are available on the detection of human 

tumor-specific CD4 T cells in patients.  

In the same line as the usage of Dasatinib to ameliorate detection of CD8 T cells, we reasoned that this 

reagent and other molecules which mediate a direct or indirect effect on TCR-pMHC class II interactions could 

improve the detection of antigen-specific CD4 T cells. We thus generated in house different pMHC class II 

multimers and reversible pMHC class II NTAmers and used them in combination with several molecules 

known to impact on TCR-pMHC interactions. For instance, previous studies have shown that galectin-3, a 

sugar-binding lectin, is capable to form a lattice on the cell surface and to bind to various glycosylated T-cell 

surface receptors such as TCR’s (22), thus inhibiting the co-localization of TCR’s with CD8 molecules (267,268) 

and impairing TCR-pMHC class I interaction. This effect is reversed by the addition of N-Acetyl-D-lactosamine 

(LacNAc), a competitive binder to galectin (267,268). Furthermore, it has been suggested that the presence 

of sialic acid may increase the affinity for galectins to the LacNAc motif of galectin-binding proteins (269). 

Neuraminidase, an enzyme specifically promoting desialylation, influences TCR clustering and the 

engagement of peptide/MHC ligands resulting in an enhancement in tetramer staining (269). Furthermore, 
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the usage of neuraminidase disrupts cell surface charges, allowing for a TCR and CD8 co-capping with pMHC 

(270). 

I.2 Aim 

The aim of this project is to bring innovation within the field of CD4 T cell immunomonitoring with improved 

monitor tools for the detection of tumor-specific CD4 T cells.  

I.3 Co-author contribution 

This work is presented in an article in second revision (add date and year) in the Journal for ImmunoTherapy 

of Cancer (JITC). 

For this study I designed the experiments with my supervisors, I performed and analysed the majority of the 

experiments and I participated to the writing of the manuscript. The multimers used in this study were 

generated by Philippe Guillaume from the Ludwig Institute for Cancer Research, Lausanne Branch, University 

of Lausanne, Switzerland. Daniel Speiser, George Coukos and Alexandre Harari provided patient samples and 

reagents. 



51 
 

I.4 Manuscript 

 



52 
 



53 
 



54 
 



55 
 



56 
 



57 
 



58 
 



59 
 



60 
 



61 
 



62 
 



63 
 



64 
 



65 
 



66 
 



67 
 



68 
 



69 
 



70 
 



71 
 



72 
 



73 
 



74 
 



75 
 



76 
 



77 
 



78 
 



79 
 



80 
 



81 
 

 



82 
 

I.5 Discussion 

Since the first use of peptide-MHC tetramers, these reagents have represented an invaluable tool for the 

detection of specific T cells. In a period of personalized immunotherapy, it has become essential to gather as 

much information as possible on the effects of therapies in patients. As an example, it would be vital in a 

vaccination trial to be able to monitor the expansion of tumor-specific cells, to isolate them and conduct 

functional assays to evaluate the efficacy of vaccination, thus improving outcome of clinical trials. pMHC class 

II multimers would be an excellent tool to move to numerous single cell exploratory analyses of CD4 T cells, 

as TCR sequencing, transcriptomics, assessment of oligoclonal expansion, and cloning (263). In this study we 

have used pMHC class II multimers loaded with viral- bacterial- or tumor-specific antigens to detect specific 

CD4 T cells. Due to a lack of consensus within the field on the optimal temperature for pMHC class II staining 

(124,263,271) we first started by establishing the ideal temperature for pMHC class II multimer staining and 

between 4°C,15°C, RT and 22°C, RT resulted as the most favorable temperature. Increasing the temperature 

of staining did not result in an increase in non-specific binding by our multimers despite this being reported 

on PBMC (272). Staining with higher temperatures such as a physiologic temperature resulted in a decrease 

in MFI which could be explained by pMHC class II internalization (273). However, due to the low affinity of 

pMHC class II for the TCR and high off rate, staining with pMHC class II remains challenging and not yet 

optimal for immunomonitoring of clinical trials. In this project we investigate a novel and improved 

methodology to detect as many specific cells as possible and with the brightest staining possible. To do so 

we introduced an optimized staining procedure (OSP) which uses LacNAc, Dasatinib, neuraminidase as well 

as an anti-fluorochrome secondary Ab to cross-link pMHC class II multimers at the T-cell surface. With this 

new procedure we observed a significant increase in specific multimer staining intensity of CD4 T cell clones 

without an increase in background staining. This increase in cells detected goes in line with the publication 

from the group of Brian Evavold who has used 2D-binding to evaluate T cell affinity and observed that with 

conventional tetramer staining a large portion of low affinity cells were not properly detected by tetramers 

(109). Unfortunately, at the moment the 2D-binding methods still has drawbacks as it is low throughput and 

time consuming. 

In an era where multiple strategies are available for immunotherapy it is vital to time them correctly for an 

improved response and thus require optimal immunomonitoring (274). We here bring an OSP staining 

procedure that allows for an improved detection of tumor-, viral- and bacterial-specific cells of in vitro 

cultured cells as well as a detection of higher frequency of cells from ex vivo patient samples with little to no 

background staining. A further longitudinal study of melanoma patient samples pre- and post-vaccination 

protocol with the 30 amino acid peptide SLP NY-ESO-179–108 (275) showed an increase in NY-ESO-187-99 specific 

cells detected with our OSP compared to the standard staining procedure showing the feasibility of using the 

OSP for immunomonitoring. Not only were we able to follow the increase of specific cells post-vaccination 
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but by adding two supplementary markers CD45RA and CCR7 we could evaluate the differentiation of cells 

from mostly naïve pre-vaccination transitioning to CM or EM cells post-vaccination. To use this OSP for 

immunomonitoring, multiple fluorochrome labels were used to label multimers. Single fluorochromes or a 

combination of two fluorochromes were used to stain clones of multiple specificity both CD4 T cell as well as 

CD8 T cell all mixed together. Such combinatorial staining with either fluorochromes, metals or DNA barcodes 

has been performed in the field of CD8 T cells but not yet implemented for CD4 T cells (117). Once more our 

OSP showed better results compared to the standard staining in the detection of specific cells as well as the 

frequency of detected cells which was higher with the OSP. Despite our usage of only 10 multimers, the usage 

of fluorochrome combinations has not been exhausted thus leaving room for the increase of specificities 

possibly investigated within one sample. Transition towards a DNA based multimer labelling method could 

also be considered. 

As we are probably increasing the affinity of the TCR for pMHC class II molecules with the OSP, there could 

be reduction in cell viability as described in the CD8 T cell field (276) but not yet reported in the CD4 T cell 

field. Cells could encounter AICD similarly to the negative selection process in the thymus (61) and we indeed 

observed such phenomenon. We also observed a certain toxicity on the cells from the use of neuraminidase 

which had been documented (277,278). We also observed to a lesser extent a reduction of cell viability due 

to Dasatinib treatment yet we did not find any further proof in literature, on the contrary Dasatinib has been 

implemented in several tetramer staining procedures without mention of negative impact upon cells 

(124,263,266). To alleviate the impact on cell survival of TCR-pMHC class II binding we used reversible 

multimers also known as NTAmers which have the capacity to dissociate the pMHC monomers to the 

fluorescent backbone upon the addition of imidazole. Following the separation of the backbone from the 

individual pMHC class II monomers resulted in a rapid dissociation of pMHC class II from the TCR reducing 

the activation signals sent to the cell (108). When using the NTAmer we observed an increase in cell viability 

further proving our claim where increased interaction between TCR and pMHC class II complex increased cell 

mortality. 

This study shows the usefulness of using class II multimers for immunomonitoring in combination to the OSP 

for improved staining performances. In this study we propose two optimization techniques: 1) a first 

optimization staining procedure for the detection of specific CD4 T cells for an immunomonitoring oriented 

approach where the focus would be to screen specific cells as well as sequence their TCR. This optimization 

would include LacNAc, Dasatinib, neuraminidase, standard multimers as well as secondary Ab. This multimer 

staining can be complemented with any other markers such as CD45RA or CCR7 to evaluate phenotypically 

the tumor-specific cells. 2) a second optimization staining procedure where the focus would be to preserve 

cells for further cell culture or use of CD4 T cells in cell-based therapies. In this second procedure we would 

not use neuraminidase and use reversible multimers as we showed that by using such combination, we 
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significantly increase cell viability. Despite removing neuraminidase, we still achieve an improved staining 

upon CD4 T cells. Questions remain to be addressed pertaining to the affinity level of cells that were detected 

with the optimization protocol but not with the standard protocol as it would be interesting if we were to be 

able to detect lower affinity cells as they have been described to be major responders in the primary immune 

response (109). We believe that this optimized staining procedure will help to bring tumor-specific CD4 T 

further in the spotlight and to an active role within immunotherapy. 

  



85 
 

J Robust prediction of HLA class II epitopes by deep motif deconvolution 

of immunopeptidomes 

J.1 Introduction  

Part of the tumor immunity cycle consist in APC cells taking up antigens of tumor cells upon their death. 

Following this process APC cells will migrate to the lymph nodes where they will present fragments of the 

peptides to T cells via the MHC class I and II molecules, resulting in the subsequent activation of the 

lymphocytes (180). Upon activation, T cells will migrate to the tumor bed where CD8 T cells will kill tumor 

cells. Due to this fact, CD8 T cells are considered the main actor however, to have an effective and durable 

anti-tumor immunity, CD4 T cells are key even more so than CD8 T cells. CD4 T enhance antigen presentation, 

co- stimulation, T cell homing, T cell activation, and effector functions (279). These effects are targeted by 

cancer vaccine approaches with promising clinical activity (280). Yet the limited accuracy or current 

predictors of epitopes potentially presented by MHC class II molecules has restricted vaccination and therapy 

designs targeting this cell type. 

Hurdles in this field have been similar to the ones encountered in the generation and usage of pMHC class II 

multimers. Once more the high polymorphism of MHC class II molecules as well as the extended length of 

peptides presented in the MHC class II groove, result in difficulties to determine the core binding region of 

HLA class II ligands. Further complications arise from the knowledge that usually nine amino acids are found 

in the peptide binding groove of MHC class II molecules and are anchored via the residues at position P1, P4, 

P6 and P9. Since MHC class II molecules in nature bind peptides between 13 and 25 residues it implicates 

that several residues are outside of the groove. Despite the main affinity being dictated by the binding core, 

flanking peptides affect peptide-MHC binding and therefore influence immunogenicity (281). These flanking 

regions complexify the prediction of peptide binding affinities. 

Several prediction methods had been developed such as NetMHCII and NetMHCIIpan, both relying heavily 

on the amount of peptide binding data generated with high-throughput peptidomics (282,283). Other 

methods have also been developed but NetMHCII and NetMHCIIpan remained the best methods for 

predicting binding affinities to MHC class II molecules (284,285). In this study unbiased mass spectrometry 

was combined with a motif deconvolution algorithm to profile and analyze a total of 99,265 unique peptides 

eluted from HLA-II molecules. This made this set of data one of the largest datasets of HLA-II ligands available 

to date. The motif deconvolution algorithm (MoDec) relies on motif to be found anywhere on the peptide 

instead of attempting to align on peptide residues. MoDec can learn the motifs from peptides, identify their 

preferred binding core position offsets and their weight. MoDec was then applied to known melanoma-

associated antigens and viral and bacterial proteins. The top predictions from both MixMHC2pred (MoDec) 
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and the currently used NetMHCIIpan were tested for their immunogenicity in melanoma patients and healthy 

donors to compare their performance as accurate predictor for MHC class II antigen binders. 

J.2 Aim 

The aim of this project was to develop a new program capable of predicting the binding strengths of epitopes 

to MHC class II molecules. Our goal was to test the immunogenicity of top predicted peptides from both 

MixMHC2pred and NetMHCIIpan in melanoma patient samples and healthy donor samples and determine 

the performance of MixMHC2pred in comparison to NetMHCIIpan. 

J.3 Co-author contribution 

This work is presented in an article published on the 11.2019 in the journal Nature Biotechnology. For this 

study I performed the in vitro validation of the predicted viral and tumor antigens, I analysed the data and I 

wrote the material and method and result section concerning the experimental work that I performed. I 

discussed the results with my supervisor and with our collaborators in the group of Prof D. Gfeller. 

Table 4a and b Georg Alexander Rockinger and Camilla Jandus generated the table  

Figure 2C I designed and performed the experiment. 

Supplementary 
Figure 9 

I designed and performed the experiment. 
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Supplementary Table 4. Viral, bacterial and tumor-associated epitopes. (a) List and full sequence of the viral, bacterial and tumor-
associated antigens included in the experiment. 

Antigen Antigen type Sequence

CMV pp65 Viral

MESRGRRCPEMI SVLGPI SGHVLKAVFSRGDTPVLPHETRLLQTGI HVRVSQPSLI LVSQYTPDSTPCHRGDNQLQVQHTYFTGSEVENVSVNV

HNPTGRSI CPSQEPMSI YVYALPLKMLNI PSI NVHHYPSAAERKHRHLPVADAVI HASGKQMWQARLTVSGLAWTRQQNQWKEPDVYYTSAFVF

PTKDVALRHVVCAHELVCSMENTRATKMQVI GDQYVKVYLESFCEDVPSGKLFMHVTLGSDVEEDLTMTRNPQPFMRPHERNGFTVLCPKNMI I

KPGKI SHI MLDVAFTSHEHFGLLCPKSI PGLSI SGNLLMNGQQI FLEVQAI RETVELRQYDPVAALFFFDI DLLLQRGPQYSEHPTFTSQYRI Q

GKLEYRHTWDRHDEGAAQGDDDVWTSGSDSDEELVTTERKTPRVTGGGAMAGASTSAGRKRKSASSATACTSGVMTRGRLKAESTVAPEEDTDE

DSDNEI HNPAVFTWPPWQAGI LARNLVPMVATVQGQNLKYQEFFWDANDI YRI FAELEGVWQPAAQPKRRRHRQDALPGPCI ASTPKKHRG

EBV, BMLF-1 Viral

MVPSQRLSRTSSI SSNEDPAESHI LELEAVSDTNTDCDLDPMEGSEEHSTDGEI SSSEEEDEDPTPAHAI PARPSSVVI TPTSASFVI PRKKWD

LQDKTVTLHRSPLCRDEDEKEETGNSSYTRGHKRRRGEVHGCTDESYGKRRHLPPGARAPRAPRAPRVPRAPRSPRAPRSNRATRGPRSESRGA

GRSTRKQARQERSQRPLPNKPWFDMSLVKPVSKI TFVTLPSPLASLTLEPI QDPFLQSMLAVAAHPEI GAWQKVQPRHELRRSYKTLREFFTKS

TNKDTWLDARMQAI QNAGLCTLVAMLEETI FWLQEI TYHGDLPLAPAEDI LLACAMSLSKVI LTKLKELAPCFLPNTRDYNFVKQLFYI TCATA

RQNKVVETLSSSYVKQPLCLLAAYAAVAPAYI NANCRRRHDEVEFLGHYI KNYNPGTLSSLLTEAVETHTRDCRSASCSRLVRAI LSPGTGSLG

LFFVPGLNQ

Flu H3NA, HA Viral

MKTI I ALSYI FCLVFAQKLPGNDNSTATLCLGHHAVPNGTLVKTI TNDQI EVTNATELVQSSSTGRI CDSPHRI LDGKNCTLI DALLGDPHCDG

FQNEKWDLFVERSKAFSNCYPYDVPDYASLRSLVASSGTLEFI NEEFNWTGVTQSGGSYACKRGSVNSFFSRLNWLYKSEYKYPALNVTMPNNG

RFDKLYI WGVHHPSTDREQTNLYVRASGRVTVSTKRSQQTVI PNI GPRPWVRGLSSRI SI YWTI VKPGDI LLI NSTGNLI APRGYFKI HTGKSS

I MRSDAPI GTCSSECI TPNGSI PNDKPFQNVNKI TYGACPRYVKQNTLKLATGMRNVPEKQTRGI FGAI AGFI ENGWEGMVDGWYGFRHQNSEG

TGQAADLKSTQAAI DQI NGKLNRLI EKTNEKFHQI EKEFSEVEGRI QDLEKYVEDTKI DLWSYNADVLVALENQHTI DLTDSEMNKLFEKTRKQ

LRENAEDMGNGCFKI YHKCDNACI GSI RNGTYDHDVYRDEALNNRFQI KGVELKSGYKDWI LWI SFAI SCFLLCVVLLGFI MWACQKGNI RCNI

CI

HA-1 (first 300 aa) Viral

MFSRKKRELMKTPSI SKKNRAGSPSPQPSGELPRKDGADAVFPGPSLEPPAGSSGVKATGTLKRPTSLSRHASAAGFPLSGAASWTLGRSHRSP

LTAASPGELPTEGAGPDVVEDI SHLLADVARFAEGLEKLKECVLHDDLLEARRPRAHECLGEALRVMHQI I SKYPLLNTVETLTAAGTLI AKVK

AFHYESNNDLEKQEFEKALETI AVAFSSTVSEFLMGEVDSSTLLAVPPGDSSQSMESLYGPGSEGTPPSLEDCDAGCLPAEEVDVLLQRCEGGV

DAALLYAKNMAKYMKDLI

Tetanus toxoid (aa 581-980)Bacterial

SVDDALI NSTKI YSYFPSVI SKVNQGAQGI LFLQWVRDI I DDFTNESSQKTTI DKI SDVSTI VPYI GPALNI VKQGYEGNFI GALETTGVVLLL

EYI PEI TLPVI AALSI AESSTQKEKI I KTI DNFLEKRYEKWI EVYKLVKAKWLGTVNTQFQKRSYQMYRSLEYQVDAI KKI I DYEYKI YSGPDK

EQI ADEI NNLKNKLEEKANKAMI NI NI FMRESSRSFLVNQMI NEAKKQLLEFDTQSKNI LMQYI KANSKFI GI TELKKLESKI NKVFSTPI PFS

YSKNLDCWVDNEEDI DVI LKKSTI LNLDI NNDI I SDI SGFNSSVI TYPDAQLVPGI NGKAI HLVNNESSEVI VHKAMDI EYNDMFNNFTVSFWL

RVPKVSASHLEQYGTNEYSI I SSM

CAMEL Tumor-associated
MLMAQEALAFLMAQGAMLAAQERRVPRAAEVPGAQGQQGPRGREEAPRGVRMAVPLLRRMEGAPAGPGGRTAACFSCTSRCLSRRPWKRSWSAG

SCPGMPHLSPDQGRF

Gp-100 Tumor-associated

MDLVLKRCLLHLAVI GALLAVGATKVPRNQDWLGVSRQLRTKAWNRQLYPEWTEAQRLDCWRGGQVSLKVSNDGPTLI GANASFSI ALNFPGSQ

KVLPDGQVI WVNNTI I NGSQVWGGQPVYPQETDDACI FPDGGPCPSGSWSQKRSFVYVWKTWGQYWQVLGGPVSGLSI GTGRAMLGTHTMEVTV

YHRRGSRSYVPLAHSSSAFTI TDQVPFSVSVSQLRALDGGNKHFLRNQPLTFALQLHDPSGYLAEADLSYTWDFGDSSGTLI SRALVVTHTYLE

PGPVTAQVVLQAAI PLTSCGSSPVPGTTDGHRPTAEAPNTTAGQVPTTEVVGTTPGQAPTAEPSGTTSVQVPTTEVI STAPVQMPTAESTGMTP

EKVPVSEVMGTTLAEMSTPEATGMTPAEVSI VVLSGTTAAQVTTTEWVETTARELPI PEPEGPDASSI MSTESI TGSLGPLLDGTATLRLVKRQ

VPLDCVLYRYGSFSVTLDI VQGI ESAEI LQAVPSGEGDAFELTVSCQGGLPKEACMEI SSPGCQPPAQRLCQPVLPSPACQLVLHQI LKGGSGT

YCLNVSLADTNSLAVVSTQLI MPGQEAGLGQVPLI VGI LLVLMAVVLASLI YRRRLMKQDFSVPQLPHSSSHWLRLPRI FCSCPI GENSPLLSG

QQV

MAGE-A1 Tumor-associated

MSLEQRSLHCKPEEALEAQQEALGLVCVQAATSSSSPLVLGTLEEVPTAGSTDPPQSPQGASAFPTTI NFTRQRQPSEGSSSREEEGPSTSCI L

ESLFRAVI TKKVADLVGFLLLKYRAREPVTKAEMLESVI KNYKHCFPEI FGKASESLQLVFGI DVKEADPTGHSYVLVTCLGLSYDGLLGDNQI

MPKTGFLI I VLVMI AMEGGHAPEEEI WEELSVMEVYDGREHSAYGEPRKLLTQDLVQEKYLEYRQVPDSDPARYEFLWGPRALAETSYVKVLEY

VI KVSARVRFFFPSLREAALREEEEGV

MAGE-A12 Tumor-associated

MPLEQRSQHCKPEEGLEAQGEALGLVGAQAPATEEQETASSSSTLVEVTLREVPAAESPSPPHSPQGASTLPTTI NYTLWSQSDEGSSNEEQEG

PSTFPDLETSFQVALSRKMAELVHFLLLKYRAREPFTKAEMLGSVI RNFQDFFPVI FSKASEYLQLVFGI EVVEVVRI GHLYI LVTCLGLSYDG

LLGDNQI VPKTGLLI I VLAI I AKEGDCAPEEKI WEELSVLEASDGREDSVFAHPRKLLTQDLVQENYLEYRQVPGSDPACYEFLWGPRALVETS

YVKVLHHLLKI SGGPHI SYPPLHEWAFREGEE

Melan-A Tumor-associated
MPREDAHFI YGYPKKGHGHSYTTAEEAAGI GI LTVI LGVLLLI GCWYCRRRNGYRALMDKSLHVGTQCALTRRCPQEGFDHRDSKVSLQEKNCE

PVVPNAPPAYEKLSAEQSPPPYSP

NY-ESO1 Tumor-associated
MQAEGRGTGGSTGDADGPGGPGI PDGPGGNAGGPGEAGATGGRGPRGAGAARASGPGGGAPRGPHGGAASGLNGCCRCGARGPESRLLEFYLAM

PFATPMEAELARRSLAQDAPPLPVPGVLLKEFTVSGNI LTI RLTAADHRQLQLSI SSCLQQLSLLMWI TQCFLPVFLAQPPSGQRR

Trp-2 Tumor-associated
VLHSFTDAI FDEWMKRFNPPADAWPQELAPI GHNRMYNMVPFFPPVTNEELFLTSDQLGYSYAI DLPVSVEETPGWPTTLLVVMGTLVALVGLF

VLLAFLQYRRLRKGYTPLMETHLSSKRYTEEA

Tyrosinase Tumor-associated

MLLAVLYCLLWSFQTSAGHFPRACVSSKNLMEKECCPPWSGDRSPCGQLSGRGSCQNI LLSNAPLGPQFPFTGVDDRESWPSVFYNRTCQCSGN

FMGFNCGNCKFGFWGPNCTERRLLVRRNI FDLSAPEKDKFFAYLTLAKHTI SSDYVI PI GTYGQMKNGSTPMFNDI NI YDLFVWMHYYVSMDAL

LGGSEI WRDI DFAHEAPAFLPWHRLFLLRWEQEI QKLTGDENFTI PYWDWRDAEKCDI CTDEYMGGQHPTNPNLLSPASFFSSWQI VCSRLEEY

NSHQSLCNGTPEGPLRRNPGNHDKSRTPRLPSSADVEFCLSLTQYESGSMDKAANFSFRNTLEGFASPLTGI ADASQSSMHNALHI YMNGTMSQ

VQGSANDPI FLLHHAFVDSI FEQWLRRHRPLQEVYPEANAPI GHNRESYMVPFI PLYRNGDFFI SSKDLGYDYSYLQDSDPDSFQDYI KSYLEQ

ASRI WSWLLGAAMVGAVLTALLAGLVSLLCRHKRKQLPEEKQPLLMEKEDYHSLYQSHL
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Supplementary Table 4. Viral, bacterial and tumor-associated epitopes. (b) Best scoring candidate epitopes predicted by 
MixMHC2pred or NetMHC2pan that were tested for immunogenicity in two melanoma patients (LAU1352 and LAU1357) and a 
healthy donor (HD). 

Type Gene Peptide Predicted_by Lau_1352_Immunogen Lau_1357_Immunogen HD_Immunogen

Viral/bacterial CMV_pp65_(101-120) SI CPSQEPMSI YVYALPLKM netMHCIIpan

Viral/bacterial CMV_pp65_(111-130) I YVYALPLKMLNI PSI NVHH Both x x x

Viral/bacterial CMV_pp65_(171-190) QQNQWKEPDVYYTSAFVFPT Both

Viral/bacterial CMV_pp65_(181-200) YYTSAFVFPTKDVALRHVVC MixMHC2pred

Viral/bacterial CMV_pp65_(341-360) QYDPVAALFFFDI DLLLQRG MixMHC2pred x x

Viral/bacterial CMV_pp65_(41-60) LLQTGI HVRVSQPSLI LVSQ netMHCIIpan

Viral/bacterial EBV_BMLF_1_(1-20) MVPSQRLSRTSSI SSNEDPA MixMHC2pred

Viral/bacterial EBV_BMLF_1_(201-220) SQRPLPNKPWFDMSLVKPVS netMHCIIpan

Viral/bacterial EBV_BMLF_1_(211-230) FDMSLVKPVSKI TFVTLPSP Both

Viral/bacterial EBV_BMLF_1_(221-240) KI TFVTLPSPLASLTLEPI Q netMHCIIpan

Viral/bacterial EBV_BMLF_1_(311-330) TI FWLQEI TYHGDLPLAPAE MixMHC2pred NA NA NA

Viral/bacterial EBV_BMLF_1_(321-340) HGDLPLAPAEDI LLACAMSL netMHCIIpan

Viral/bacterial EBV_BMLF_1_(331-350) DI LLACAMSLSKVI LTKLKE Both

Viral/bacterial EBV_BMLF_1_(361-380) DYNFVKQLFYI TCATARQNK netMHCIIpan

Viral/bacterial EBV_BMLF_1_(391-410) KQPLCLLAAYAAVAPAYI NA Both

Viral/bacterial EBV_BMLF_1_(71-90) PARPSSVVI TPTSASFVI PR Both

Viral/bacterial Flu_H3N2_HA_(1-20) MKTI I ALSYI FCLVFAQKLP Both

Viral/bacterial Flu_H3N2_HA_(121-140) YASLRSLVASSGTLEFI NEE netMHCIIpan

Viral/bacterial Flu_H3N2_HA_(201-220) PSTDREQTNLYVRASGRVTV netMHCIIpan

Viral/bacterial Flu_H3N2_HA_(231-250) PNI GPRPWVRGLSSRI SI YW netMHCIIpan x

Viral/bacterial Flu_H3N2_HA_(241-260) GLSSRI SI YWTI VKPGDI LL Both x

Viral/bacterial Flu_H3N2_HA_(251-270) TI VKPGDI LLI NSTGNLI AP Both

Viral/bacterial Flu_H3N2_HA_(271-290) RGYFKI HTGKSSI MRSDAPI netMHCIIpan

Viral/bacterial Flu_H3N2_HA_(41-60) LVKTI TNDQI EVTNATELVQ MixMHC2pred

Viral/bacterial Flu_H3N2_HA_(521-540) VELKSGYKDWI LWI SFAI SC MixMHC2pred

Viral/bacterial HA_1_(181-200) GTLI AKVKAFHYESNNDLEK Both

Viral/bacterial HA_1_(201-220) QEFEKALETI AVAFSSTVSE MixMHC2pred

Viral/bacterial HA_1_(211-230) AVAFSSTVSEFLMGEVDSST Both

Viral/bacterial HA_1_(71-90) HASAAGFPLSGAASWTLGRS MixMHC2pred

Viral/bacterial TT_(591-610) KI YSYFPSVI SKVNQGAQGI Both x x

Viral/bacterial TT_(661-680) FI GALETTGVVLLLEYI PEI MixMHC2pred

Viral/bacterial TT_(671-690) VLLLEYI PEI TLPVI AALSI Both x

Viral/bacterial TT_(691-710) AESSTQKEKI I KTI DNFLEK MixMHC2pred

Viral/bacterial TT_(711-730) RYEKWI EVYKLVKAKWLGTV Both

Viral/bacterial TT_(721-740) LVKAKWLGTVNTQFQKRSYQ MixMHC2pred x x x

Viral/bacterial TT_(731-750) NTQFQKRSYQMYRSLEYQVD netMHCIIpan

Viral/bacterial TT_(791-810) I NI NI FMRESSRSFLVNQMI Both x

Viral/bacterial TT_(821-840) DTQSKNI LMQYI KANSKFI G Both

Viral/bacterial TT_(841-860) I TELKKLESKI NKVFSTPI P Both x

Viral/bacterial TT_(851-870) I NKVFSTPI PFSYSKNLDCW netMHCIIpan x

Viral/bacterial TT_(891-910) I NNDI I SDI SGFNSSVI TYP MixMHC2pred

Viral/bacterial TT_(941-960) I EYNDMFNNFTVSFWLRVPK Both x

Tumor-associated antigen CAMEL_(1-20) MLMAQEALAFLMAQGAMLAA Both

Tumor-associated antigen Gp_100_(1-20) MDLVLKRCLLHLAVI GALLA netMHCIIpan

Tumor-associated antigen Gp_100_(11-30) HLAVI GALLAVGATKVPRNQ Both

Tumor-associated antigen Gp_100_(151-170) YVWKTWGQYWQVLGGPVSGL Both

Tumor-associated antigen Gp_100_(171-190) SI GTGRAMLGTHTMEVTVYH MixMHC2pred

Tumor-associated antigen Gp_100_(191-210) RRGSRSYVPLAHSSSAFTI T netMHCIIpan

Tumor-associated antigen Gp_100_(201-220) AHSSSAFTI TDQVPFSVSVS Both

Tumor-associated antigen Gp_100_(211-230) DQVPFSVSVSQLRALDGGNK Both

Tumor-associated antigen Gp_100_(221-240) QLRALDGGNKHFLRNQPLTF netMHCIIpan

Tumor-associated antigen Gp_100_(231-250) HFLRNQPLTFALQLHDPSGY netMHCIIpan

Tumor-associated antigen Gp_100_(261-280) DFGDSSGTLI SRALVVTHTY netMHCIIpan

Tumor-associated antigen Gp_100_(401-420) TPAEVSI VVLSGTTAAQVTT Both

Tumor-associated antigen Gp_100_(421-440) TEWVETTARELPI PEPEGPD MixMHC2pred

Tumor-associated antigen Gp_100_(441-460) ASSI MSTESI TGSLGPLLDG MixMHC2pred

Tumor-associated antigen Gp_100_(451-470) TGSLGPLLDGTATLRLVKRQ MixMHC2pred

Tumor-associated antigen Gp_100_(471-490) VPLDCVLYRYGSFSVTLDI V netMHCIIpan

Tumor-associated antigen Gp_100_(571-590) LADTNSLAVVSTQLI MPGQE Both

Tumor-associated antigen Gp_100_(601-620) GI LLVLMAVVLASLI YRRRL MixMHC2pred

Tumor-associated antigen Gp_100_(71-90) SNDGPTLI GANASFSI ALNF netMHCIIpan x

Tumor-associated antigen Gp_100_(81-100) NASFSI ALNFPGSQKVLPDG netMHCIIpan

Tumor-associated antigen MAGE_A1_(161-180) EADPTGHSYVLVTCLGLSYD MixMHC2pred

Tumor-associated antigen MAGE_A1_(271-290) LAETSYVKVLEYVI KVSARV Both x

Tumor-associated antigen MAGE_A1_(281-300) EYVI KVSARVRFFFPSLREA netMHCIIpan

Tumor-associated antigen MAGE_A1_(91-110) SCI LESLFRAVI TKKVADLV Both

Tumor-associated antigen MAGE_A12_(101-120) LETSFQVALSRKMAELVHFL Both

Tumor-associated antigen MAGE_A12_(141-160) RNFQDFFPVI FSKASEYLQL Both

Tumor-associated antigen MAGE_A12_(151-170) FSKASEYLQLVFGI EVVEVV MixMHC2pred

Tumor-associated antigen MAGE_A12_(171-190) RI GHLYI LVTCLGLSYDGLL MixMHC2pred

Tumor-associated antigen MAGE_A12_(271-290) FLWGPRALVETSYVKVLHHL MixMHC2pred x x

Tumor-associated antigen MAGE_A12_(281-300) TSYVKVLHHLLKI SGGPHI S netMHCIIpan

Tumor-associated antigen MAGE_A12_(91-110) EQEGPSTFPDLETSFQVALS MixMHC2pred

Tumor-associated antigen NY_ESO_1_(121-140) VLLKEFTVSGNI LTI RLTAA Both

Tumor-associated antigen NY_ESO_1_(141-160) DHRQLQLSI SSCLQQLSLLM Both

Tumor-associated antigen NY_ESO_1_(81-100) RGPESRLLEFYLAMPFATPM Both x

Tumor-associated antigen Trp_2_(51-70) LFLTSDQLGYSYAI DLPVSV Both

Tumor-associated antigen Trp_2_(71-90) EETPGWPTTLLVVMGTLVAL MixMHC2pred

Tumor-associated antigen Tyrosinase_(1-20) MLLAVLYCLLWSFQTSAGHF netMHCIIpan

Tumor-associated antigen Tyrosinase_(131-150) KDKFFAYLTLAKHTI SSDYV netMHCIIpan

Tumor-associated antigen Tyrosinase_(171-190) NI YDLFVWMHYYVSMDALLG Both

Tumor-associated antigen Tyrosinase_(201-220) AHEAPAFLPWHRLFLLRWEQ MixMHC2pred

Tumor-associated antigen Tyrosinase_(381-400) ANDPI FLLHHAFVDSI FEQW Both

Tumor-associated antigen Tyrosinase_(431-450) PLYRNGDFFI SSKDLGYDYS MixMHC2pred

Tumor-associated antigen Tyrosinase_(471-490) ASRI WSWLLGAAMVGAVLTA netMHCIIpan

(x: immunogenic epitopes; NA: peptide that could not be tested)
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J.5 Discussion 

In cancer immunotherapy there has always been a deep interest in the identification of antigens which could 

be associated with one particular cancer type and exploited therapeutically. The knowledge of cell specificity 

has brought great advances in the medical field in the form of vaccination for infectious diseases and cancer. 

Vaccination has been most effective for cancers of infectious (viral) etiology as the target antigen is only 

present on diseased cells (286). However, for cancers of non-viral origin the finding of a good target remains 

complicated. Currently, the field of tumor immunology is moving towards a more personalized approach, 

particularly by exploiting neoantigens which are resulting from unique mutations due to errors in the DNA 

replication and repair processes in cancer cells. Neoantigens represents new attractive targets for vaccination 

(286). The complication remains to predict which of the neoepitopes will bind adequately to MHC molecules 

and be immunogenic. Nowadays there are good MHCI peptide predictors such as NetMHC but despite the 

availability of NetMHCII improvement is needed in the MHC class II peptide binding prediction field. 

In this study a large panel of 99265 unique peptides eluted from HLAII molecules were analyzed with a motif 

deconvolution algorithm (MoDec). The data was then used to train an epitope prediction algorithm. The 

developed predicting algorithm was called MixMHC2pred and unlike previous prediction programs relies on 

a probabilistic framework instead of a strict alignment of peptides (287,288). What this entails is an algorithm 

that detects binding motifs on the whole length of a peptide and not only the supposed binding site. This 

allows also the learning by the algorithm of the preferred binding core position offsets by the peptide and 

their weight. Further, one of the limitations of current predictors was their ability to predict peptide binding 

only to the HLA-DR molecules (283). Advances in this regard were made with the MixMHC2pred algorithm 

as it was able to predict peptide binding also to HLA-DP or HLA-DQ alleles in addition to HLA-DR ones. This 

aspect was also addressed by the creators of the NetMHCIIpan-3.0 software back in 2014 and they now offer 

with the 3.2 version a larger array of HLA alleles (281). In comparison to the other existing motif 

deconvolution methods, MixMHC2pred resulted in improved resolution and speed needed to resolve 

interrogations making it particularly useful for large HLA-II peptidomics datasets. 

Although our work is not exhaustive in terms of understanding the complexity of MHC class II antigen 

presentation, it represents an improved tool for the binding prediction of tumor associated antigens as well 

as neoantigens, to be selected for vaccination trials after proper evaluation of their immunogenicity. To test 

the MixMHC2pred capacity to predict good MHC binding peptides, known melanoma associated antigens as 

well as and viral and bacterial proteins were screened with both MixMHC2pred and NetMHCIIpan. The top 

candidates were tested in immunogenicity assays with melanoma patient samples as well as healthy donor 

samples. A higher fraction of true positives was predicted by MixMHC2pred compared to NetMHCIIpan. This 

improved prediction of true epitopes was further confirmed when validating neoepitope binding to MHC 

class II. 
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In conclusion MixMHC2pred offers a peptide-binding algorithm which has the capability of predicting higher 

numbers of true positive binding peptides compared to the existing NetMHCIIpan algorithm. Both have the 

capacity to predict peptides binding to the multiple common HLA-II alleles -DR, -DP and -DQ but 

MixMHC2pred can do so faster. However, as other prediction algorithms, MixMHC2pred is not able to predict 

immunogenicity which still needs to be confirmed experimentally. Furthermore, it does not consider the 

binding stability of the peptide to the MHC which also can influence peptide immunogenicity.  
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K Unlocking the anti-tumor CD4 T cell potential by modulating T cell 

differentiation via miRNA manipulations 

K.1 Introduction 

Since the discovery of the first miRNA back in 1993 in C. elegans, many others have been discovered in 

multiple organisms such as plants, mouse and humans (289). They are expressed differently from one tissue 

to another and even within the same tissue there are significant differences suggesting a role of miRNA in 

development (290). In fact, miRNA have already been linked with the ability to regulate fat metabolism, 

insulin secretion, haematopoiesis, muscle development and many other mechanisms. Interestingly, miRNA 

have been shown to maintain stemness within cells and modulate their differentiation (290). In that regard 

a large number of miRNAs have been identified in the complex mechanism of haematopoiesis in which blood 

cells will undergo a series of proliferation and differentiation processes from their original hematopoietic 

stem cell and give rise to both the myeloid and lymphoid lineages. miRNAs have numerous functions within 

these cells, the three main being: maintaining hematopoietic stem cell lineage by inhibiting differentiation, 

specifying commitment to either the myeloid or the lymphoid lineage (such as miR-223 and 181) and 

supporting differentiation of granulocyte-macrophage precursors and megakaryocyte-erythroid precursors 

(such as miR-451, miR-16, miR-150, miR-155, miR-221 and miR-222 (291)). miR-221 and miR-222 were linked 

with targeting KIT and thus preventing erythroid differentiation (292), while miR-99 is a broadly conserved 

miRNA family who is expressed in hematopoietic stem cells. This miRNA is less known in regard to its function 

within hematopoietic cells but one study has linked its expression with a capacity to regulate self-renewal of 

hematopoietic stem cells. miR-99 acts on cell differentiation by inhibiting it and inhibiting the cell cycle entry 

(293). Further, miR-21 was identified as an important regulator of T cell effector versus memory formation. 

miR-21 expression was strongly induced and caused changes in the transcriptional network by negative 

targeting ERK, AP-1, and AKT pathways. These pathways are major signaling pathways and by acting on them 

miR-21 is also acting on cell differentiation, resulting in an inhibition of the development of a memory 

transcriptome (294).  
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Figure 12: miRNAs regulation of multiple cell types. miRNA can regulate multiple facets of cell differentiation and lineage 
commitment by inhibiting of promoting cells to assume a distinct fate. Adapted from (295). 

 

Once a T cell has encountered an antigen which it will recognize upon TCR-MHC engagement it will become 

activated. The T lymphocyte will start proliferating and migrating to the infection site or the tumor bed. 

Beside TEM and TCM, the existence of another subset of differentiated T cells was recently described and called 

TSCM cells. These cells were part of viral and tumor-reactive T cell populations which upon activation released 

cytokines and proliferated in response to IL-15 (296). These cells were mostly studied in the CD8 T cell field. 

They were first discovered in mice thanks to advances in flow cytometry. TSCM cells expressed high levels of 

the stem cell antigen-1 (SCA-1) and markers for memory such as IL-2Rβ and chemokine receptor-3 (CXCR3) 

(164). Their identification in humans and non-human primates was more complicated as there was no human 

orthologue for SCA-1. The discovery of TSCM cells as a human cell population was the result of the discovery 

in mice that TSCM could be generated from naïve cells by modulation with the GSK3 inhibitor TWS119. It was 

thought that Wnt signaling promoted the generation of CD44lowCD62LhighSca-1highCD122highBcl-2high 

multipotent CD8 T cells (297). However, it resulted that the modulation by TWS119 of mTOR1 and not of Wnt 
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was resulting in the induction of Tscm cells. Similarly to the mouse cells the TSCM in human and non-human 

primate were largely of a naïve-like phenotype with memory marker such as CD95, CXCR3, IL-2Rβ, CD58 and 

CD11a (132,133). Therefore, TSCM cells were put in the progressive T cell differentiation pathway in between 

TN cells and memory T cells (134). TSCM represent only 2-3% of circulating T lymphocytes (296). TSCM cells are 

linked with long-term persistence within hosts after transfer, great capacity of self-renewal and ability to 

generate memory cells as well as effector cells. The power of T cell proliferation capacity of less differentiated 

cells was demonstrated when the group of Dirk H. Busch transferred in normal recipient mice one single 

antigen-specific naive T cell. It resulted in a broad expansion of specific cells as well as their differentiation 

into multiple subsets of T cells (298). It was shown early on that the injection of early differentiated CD8 T 

cells in mice resulted in the eradication of established tumors whereas this was not achievable with late 

differentiated effector cells (299). Later on these observations were confirmed and even accentuated when 

TSCM cells were injected in tumor bearing mice, resulting in the best anti-tumoral response even surpassing 

the use of early differentiated and proliferation capable TCM cells (133). TSCM have not been thoroughly 

investigated within the CD4 T cell field. Their existence is known and there have been studies in several 

contexts such as CD4 T cell tropic retrovirus infections such as with HIV-1. TSCM due to their particular nature 

could support both the transcriptionally-silent form of infection as well as a productive viral replication (300). 

furthermore the virus can exploit this cell stemness to its advantage and establish a durable, self-renewable 

viral reservoir (301). Little to no information can be found about the use of CD4 TSCM in an anti-tumor context 

but a preliminary study demonstrated the possibility of modulating the formation of CD4 TSCM via the 

modulation of mTOR signaling (163). Despite this limited knowledge in CD4 TSCM, the powerful anti-tumor 

response encouraged scientists to determine the signaling pathways mediating TSCM induction, since TSCM cells 

could then be used in anti-tumor therapeutical approaches. 

Several attempts have been made to understand the pathway mediating TSCM modulation. One such target is 

the Wnt signaling cascade whose functions include cell determination and proliferation. Wnt controls the 

regulation of target genes which upon Wnt aberrant activity will result in uncontrolled cell growth and 

survival. A malfunctioning Wnt signaling cascade can result in oncogenesis (302). Acting on the Wnt signaling 

pathway by using the activator TWS119 on TN cells inhibited the glycogen synthase kinase-3β (GSK-3β). This 

effect seamed to generate differentiation of TN cells to TSCM (133). Controversy surrounds these results as ex-

vivo TSCM cells were not excluded from the initial TN population (163). Metabolism might also play an 

important role in T cell differentiation thus the targeting of the mTOR kinase might be relevant for the 

generation of TSCM cells. Indeed, mTORC1 appeared to be a target as it was pointed out as a major regulator 

of CD4 TSCM cell differentiation that could be modulated by the mTORC1 inhibitor TWS119 (163). It was 

reported that the inhibition of mTORC1 and simultaneous activation of mTORC2 signaling gives rise to TSCM 

cells independently of Wnt signaling (163). 
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These observations brought insight in the pharmacological induction of CD4 TSCM cells. But other natural 

occurring mechanisms cannot be excluded when it comes to the modulation of TN cells towards the TSCM 

subset. As miRNA have also been implicated in the maintenance of stemness within hematopoietic stem cells 

they could be plausible candidates to the TSCM subset generation. Yet, at the present time little is known about 

miR expression in human TN, TSCM and TCM cells.  

K.2 Aim 

The aim of this project is to identify miRNA which are differentially expressed between the various TN, TSCM 

and TCM cells subsets and to correlate their expression with those of the mRNA that they are targeting. The 

goal is to then modulate the expression of the identified miRNA candidates in tumor-specific CD4 T cells to 

induce a TSCM phenotype, given its great potential in anti-tumor control in mouse models. 

K.3 Material and methods 

K.3.1 Human T lymphocytes 

The peripheral blood mononuclear cells (PBMCs) were isolated from blood of healthy donors obtained from 

the blood transfusion centre of Lausanne. Blood was diluted with PBS and mononuclear cells were purified 

by centrifugation over Ficoll-Plaque TM Plus (Amersham Bioscience, Uppsala, Sweden), then washed three 

times with RPMI 1640. The mononuclear cells were collected and immediately used for cell sorting. 

Experiments were performed in accordance to the guidelines of the Ethics Commission of the Canton de 

Vaud.  

K.3.2 mRNA sequencing and miRNA array 

The mRNA sequencing and the miR array were performed by a former MD-PhD candidate in the group of 

Prof Pedro Romero. The methods for the mRNA sequencing are included in the publication (163). For the 

miRNA array the labelled miRNA was hybridized onto a human miR microarray and the assay was run in 

standard conditions by the company IMGM laboratories GmbH. 

K.3.3 Flow cytometry 

After isolation from fresh blood samples, cells were immediately stained with the following markers: 

LIVE/DEAD fixable dead cell stain (Vivid, Invitrogen, CA, united states) diluted 1:800 in PBS, anti-human CD3 

AF700 (clone HIT3a, Biolegend, London, UK), anti-human CD4-PE (clone RPA-T4, Biolegend, London, UK), anti-

human CD8-APC-Cy7 (clone B9.11, Beckman Coulter, CA, USA), anti-human CCR7-BV421 (clone G043H7, 

Biolegend, London, UK), anti-human CD45RA-PE-CF594 (clone HL100, BD, NJ, USA), anti-human CD95-APC 

(clone DX2, Biolegend, London, UK), anti-human CD58-FITC (clone 1C3, BD, NJ, USA). After 30min incubation 

at RT, cells were washed with PBS and resuspended in PBS at a concentration of 10 million/ml and sorted 

using either an Aria IIU or the Aria III (Becton Dickinson, NJ, USA). The cells were collected in Eppendorf tubes 

containing RPMI 1640 containing 8% of human serum, 2 mM glutamine, 1% (vol/vol) nonessential amino 
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acids, 50μM 2β-mercaptoethanol, penicillin (50 U/ml) and streptomycin (50 µg/ml) (R8 media) and 

centrifuged at 400g for 5min. The supernatant was collected by pipetting and discarded with care to not 

disturb the cell pellet. The cells were then either frozen at -80°C as a dry pellet if the miRNA had to be 

extracted or resuspended in 0.5 mL trizol reagent (Thermo Fisher scientific, MA, USA) for mRNA extraction. 

The data from the cell sorting was analysed using FlowJo software (FlowJo). 

K.3.4 miRNA extraction and miRNA RT-qPCR 

Total RNA was extracted from the dry pellets of the sorted cells conserved at -80°C using the mirVana™ 

miRNA Isolation Kit, without phenol (Thermo Fisher scientific, MA, USA). The dry pellet was resuspended in 

600 μl of lysis binding buffer and mixed well to obtain a homogeneous lysate. 60 μl of homogenate additive 

was added and vortexed, then kept on ice for 10 min. 600 μl of Acid-Phenol: Chloroform (Thermo Fisher 

scientific, MA, USA) was added to the samples with caution. The mix was vortexed for 30-60 seconds and 

then centrifuged at 15’000 rpm for 5 min at RT. Once the interphase was compact, the aqueous upper-phase 

(approximatively 600 μl) was transferred to a new collecting tube. If the phases are not clear the 

centrifugation step can be performed once more. 750 μl of absolute ethanol (99.5%pure) (Thermo Fisher 

scientific, MA, USA) was added to the collected volume, representing 1.25 volumes of the transferred liquid. 

The mix was mixed up and down a few times. A filter cartridge provided in the kit was placed in a fresh 

collecting tube and a maximum of 700 μl at the time of the mix was added to the column. The columns were 

centrifuged for 30 sec at 10’000 rpm to let the liquid pass through the filter. The flow through was discarded 

and this step was repeated until the totality of the solution has passed. Next, 700 μl of washing solution 1 

(containing ethanol) was added to the column and the tube was centrifuged for 30 sec at 10’000 rpm. The 

flow through was discarded. At this stage 500 μl of washing solution 2/3 was added to the column and the 

tubes were centrifuged for 30 sec at 10’000 rpm. This washing step was repeated twice. After the last wash, 

the columns were centrifuged one more time for 1 min to get rid of all liquid on the cartridge. The cartridge 

was then placed on a clean collection tube and the RNA was eluted with 50 μl of nuclease-free water (Thermo 

Fisher scientific, MA, USA) warmed up prior to its usage to 95°C. In the case of low cell numbers, a lower 

volume of H2O can be used to elute the samples. The tube was then incubated for 2-5 min, then centrifuged 

at 10’000 rpm for 2 min to elute the sample. The quantity of collected material is then evaluated using 

Nanodrop one (Thermo Fisher scientific, MA, USA). 

After extracting total RNA, the miRNA had to be reverse transcribed (RT) to cDNA. This was done with the 

TaqMan Advanced miRNA cDNA Synthesis Kit (Thermo Fisher scientific, MA, USA) which allows for the RT 

of all miRNA without having to add specific primers at this stage. The protocol includes 4 steps: 1) a poly(A) 

tailing reaction, 2) an adaptor ligation phase 3) the actual RT reaction and 4) the amplification reaction (miR-

Amp). These steps were performed following the manufacturers quick reference guide. Once the miRNA was 

transformed into cDNA we performed the RT-qPCR which was also detailed in the manufacturers’ quick 
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reference guide and required the usage of the TaqMan Fast Advanced Master Mix (Thermo Fisher scientific, 

MA, USA) and of the TaqMan Advanced MicroRNA Assay (Thermo Fisher scientific, MA, USA). The latter 

item consisted of the individual miRNA primers chosen to be investigated in this assay. We used the primers 

for hsa-miR-146a-5p, hsa-miR-155-5p, hsa-miR-21-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-99b-5p and 

hsa-miR-630. Two further miRNA primers were ordered to provide a housekeeping reference. We selected 

two miRNA which were stably expressed in our miR array dataset, miR were hsa-miR-16-5p and hsa-miR-

4428. 15 μl of the RT-qPCR master mix including primers and nuclease-free water were added to a 

MicroAmp Fast 96-Well Reaction Plate (0.1mL) plate (Thermo Fisher scientific, MA, USA). The cDNA 

template was diluted 1:10 according to the manufacture’s guidelines and 5 μl were added per well. The plate 

was then run on an ABI 7500 Real Time PCR System (Thermo Fisher scientific, MA, USA) using the standard 

Fast RT-qPCR thermal profile and by performing 40 cycles. The data was then collected and analyzed on Excel 

(Windows, NM, USA) and plotted in graphs via Prism – GraphPad (GRAPHPAD SOFTWARE, LLC, CA, USA). 

K.3.5 mRNA extraction and mRNA RT-qPCR 

To extract the total RNA from cells frozen in trizol, 100 μl of Roti®-Phenol/Chloroform/Isoamyl alcohol (Carl 

Roth Gmbh, Karlsruhe, Germany) were added to the thawn samples and vortexed for 5 sec until the samples 

was of a homogeneous pink. Samples were incubated for 5 min at RT, then centrifuged for 15 min at 12’000 

rpm. The supernatant was then harvested (around 200 μl) and transferred to a clean Eppendorf tube where 

0.5 μl of Glycogen (Thermo Fisher scientific, MA, USA) were added as well as 250 μl of isopropanol (Thermo 

Fisher scientific, MA, USA). The samples were incubated for 10 min and then centrifuged at 12’000rpm for 

10 min. The supernatant was discarded and 500 μl of 70% ethanol were added to the samples and quickly 

vortexed. Next, the samples were centrifuged at 12’500rpm for 5 min. The supernatant was discarded and 

the tube left open until the ethanol was completely evaporated. The RNA pellet was resuspended in 12 μl of 

nuclease-free water and let stand at 55°C for 15 min at 400rpm. The total RNA was stored at -80°C. 

To reverse transcribe the recovered total RNA we used the iScript™ Reverse Transcription Supermix (Bio-Rad, 

CA, USA). 1 μg of total RNA was added to 4 μl of the iScript RT supermix and the volume was adjusted to 20 

μl with nuclease-free water. The reaction was incubated in a T3000 thermocycler (Biometra, Châtel-Saint-

Denis, VD, CH) with the following profile: priming for 5 min at 25°C, reverse transcription for 20 min at 46°C 

and RT inactivation for 1 min at 95°C. The final product was diluted 1:5 in nuclease-Free water and conserved 

at -20°C. 

The RT-qPCR reaction was performed with the KAPA SYBR® FAST qPCR kit (Merck & Co., NJ, USA). For one 

reaction 5 μl of Sybergreen were added with 2.6 μl of nuclease-free water, 0.2 μl of the forward primer and 

0.2 μl of the reverse primer. This mix was plated on 48-well Eco™ Plates (VWR, PA, USA) and 2 μl of diluted 

cDNA were added to the appropriate wells. The plate was then sealed with Eco™ Adhesive Seals (VWR, PA, 

USA) and placed in the Illumina Eco Real-time PCR System (Thermo Fisher scientific, MA, USA). The plate was 
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run for quantification with the standard thermal profile for 40 cycles. The data was then collected and 

analysed on Excel (Windows, NM, USA) and plotted in graphs via Prism – GraphPad (GRAPHPAD SOFTWARE, 

LLC, CA, USA). 

K.4 Results 

K.4.1 Analysis of the miRNA involvement in human CD4 T cell differentiation 

A key to CD4 T cell usage in immunotherapy will depend on a better understanding of the regulation of CD4 

T cell differentiation, to promote TSCM and central memory TCM phenotypes. We aimed at identifying optimal 

miR candidates that could be therapeutically targeted to influence the differentiation of naïve CD4 T cells 

into TSCM or TCM CD4 T cells capable of targeting tumor cells. 

Four different CD4 T cell populations were sorted (TN, TSCM, TCM and TEMRA) from 4 healthy donors’ PBMCs 

using key markers of T cell differentiation such as CD45RA, CCR7, CD95 and CD58 (Figure 13A). Total RNA 

was extracted including the small RNA fraction. After evaluating RNA concentration and purity the miR were 

purified and prepared for one-color hybridization. The labelled miRNA was hybridized onto a human miR 

microarray and the assay was run in standard conditions by the company IMGM laboratories GmbH. By 

performing a bioinformatics analysis of the miR array data we were able to identify miR that were 

differentially expressed between differentiated CD4 T cell populations. The most differentially expressed miR 

were found between the TN and the TCM population: miR-146a-5p, miR155-5p, miR-21-5p, miR-221-3p, miR-

222-3p and miR-99b-5p. Between TN and TSCM population only miR-630 and finally between TCM and TSCM miR-

222-3p and miR-99b-5p were differentially expressed (Figure 13B).  

To confirm this differential expression of miR between the differentiated CD4 T cells, we proceeded to sorting 

highly pure TN, TSCM and TCM populations from 6 healthy donors, as done for the miR array. In addition, we 

also decided to sort the TEM population as it represents a later stage of differentiation that could give us 

further insights into the expression of our candidate miRs across T cell stages. The total RNA including miR 

was extracted using the same process as in the miRNA array. The miR were then amplified and by performing 

real-time quantitative PCR (RT-qPCR) we were able to evaluate the level of expression of the target miR. By 

comparing both datasets, we could observe similar trends (Figure 13C). As an example: in the miR array as 

with the RT-qPCR, miR-21-5p had increased levels of expression in TSCM and in TCM cells compared to TN cells. 

We could also observe the reduced expression of miR-222-3p and miR-99b-5p in TSCM cells compared to TCM 

cells. The miR-630 is not represented in the data as it was not detected by RT-qPCR probably due to a lack of 

sensitivity of the assay. This data has brought to light novel miRNA targets other than the extensively 

investigated miR-146a, -155 and -21. 
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Figure 13: Analysis of miRNA expression in differentiated human CD4 T cells. A) Representative gating strategy for the sorting of 
differentiated CD4 T cells: TN, TSCM, TCM and TEM. B) Heatmap representation of the differentially expressed miRNA between CD4 T 
cell populations, as assessed by miR Array on 4 HDs. C) RT-qPCR evaluation of the miRNA target expression in the different sorted 
CD4 T cell populations. T test was used to evaluate the statistical significance P<0.05. Results from 6 HDs. 

K.4.2 Differentially expressed mRNA targets correlating with different miRNA expression  

To link a miR to a cell function, an mRNA sequencing was done on the same samples as the miR array, on 4 

human healthy donors. RNA was purified and an amount of 10 ng of total RNA was amplified. The cDNA from 

the amplification reactions were cut and libraries were generated and sequenced at 100 nucleotides single 

read mode on an Illumina HiSeq 2000 instrument. Form this data a bioinformatics analysis was performed to 
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identify genes differentially expressed between the different CD4 T cell subsets. We focused on genes that 

are predicted and validated targets of the miR that we have identified using the miR array. 

We were able to create heat maps of the target genes comparing their expression in two by two populations: 

TN vs TSCM, TN vs TCM and TCM vs TSCM (Figure 14). We were selecting genes that are either downregulated when 

miRs are expressed (anticorrelated) (Figure 14A), or genes that are upregulated (correlated) (Figure 14B) to 

miR expression as it was reported that despite being known for downregulating gene, miR are also able to 

act as activators of gene expression (158). We observed that several genes were downregulated between 

the comparaisons between TN vs TSCM, TN vs TCM and TCM vs TSCM but we also observed a greater number of 

upregulated genes between the same T cell populations and were targets either validated or predicted of 

the miR-146a, 155, 21, 221, 222, 99b or 630. In fact, when comparing TN vs TSCM we identified 8 genes as being 

downregulated and 6 being upregulated when their validated target miRNA expression was changed 

between the two subsets. Similarly, between TN vs TCM, 35 genes were downregulated and 118 were 

upregulated and finally TCM vs TSCM resulted in 6 genes upregulated and 3 were downregulated. 
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Figure 14: mRNA targets correlating with miRNA expression. Heatmap representation of the mRNA expression within the TN, TSCM 
and TCM populations. A) Heatmap of the target mRNA anticorrelated with the levels of expression of the miRNA. From top to 
bottom the heatmaps are comparing TN vs TCM, TN vs TSCM and TCM vs TSCM. The scale ranges from genes which are higher expressed 
in red and lower expressed in blue. B) Heatmap of the mRNA positively correlating with the level of expression of miRNA. All mRNA 
targets represented had an adjusted P value P<0.05 and represent previously validated targets of our miR of interest. On the left 
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can be seen the comparison between TN vs TCM. On the top right are represented the TN vs TSCM comparison and bellow it the one 
between TCM vs TSCM. The scale color also ranges from higher expression in red to lower expressed in blue. 

Since the list of mRNAs either up or down regulated was of a large scale we further refined our selection 

strategy. The first approach was to focus on the genes which have been predicted or validated to be targeted 

by our differentially expressed miRNA (Figure 15). In this figure we observe a greater number of validated 

targets within the various cell types compared to the ones depicted in the previous heatmap. This finding can 

be explained by two facts. As one mRNA can be targeted by several miRNA, the mRNA target has to be 

considered as two or more separate targets. Furthermore, the Venn diagram is taking into account mRNA 

targets both upregulated or downregulated. We observed that the most differentially expressed genes were 

found in between TN vs TCM probably due to the fact that most miRNA differentially expressed were found in 

between these subsets (Figure 13B). Between TN vs TSCM and TCM vs TSCM less genes were found as 

differentially expressed and targets of our candidate miRNA. The greater difference between TN vs TCM 

compared to the smaller difference between TN vs TSCM and TCM vs TSCM goes in line with the doctrines of CD4 

T cell differentiation (137). Another approach was to look at the genes which were validated or predicted 

targets only of the miRNA of interest, namely the miR-21-5p, miR-221-3p, miR-222-3p, miR-99b-5p and miR-

630, each one individually (Figure 16). This second approach would also restrict further the number of genes 

to be investigated. We observed similar results obtained with the previous Venn diagrams were most target 

genes were found between the TN vs TCM subsets. miR-222-3p had targets differentially expressed between 

TN vs TCM and TCM vs TSCM. miR-630 as only differentially expressed between TN vs TSCM had target genes only 

in between these T cell subsets. Out of these validated targets represented in the Venn diagrams in Figure 

15 we focused on the top 10% differentially expressed and were targeted by the miRNA represented in the 

Figure 16. We obtained a list of target genes that are reported in Table 3 with the indication if the gene is 

either up or down regulated, between which pair of differentiated CD4 T cell subsets, and for which miR it is 

a predicted/validated target. 

 

Figure 15: Venn diagram representation of validated and/or predicted target genes of our candidate miRNA.  
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Figure 16: Venn diagram representation of the genes (predicted and validated) targeted by individual miRNA of interest. 

TN Vs TSCM TN Vs TCM TCM Vs TSCM 

Up Down Up Up Down Up Down 

CD200 TIMM8A ZEB2 BCAT1 ZNF772 LYPLAI NPDC1 

CCDC6 BCL2L2 NPDC1 CDKN1A TCF4 SMC6 INPP4B 

PP2CA IGFIR AUTS2 TOP2A ZNF667 LYN SOD2 

ATXN1 ZFHX3 KIT KNL1 MIR99AHG   AKT3 

TNFA1P8 TGFBR2 WEE1 MYO6 GP5   KIF5C 

MTDH TMEM192 THBS1 AUTS2 ENAH   FOS 

  C18orf32 RRM2 B3GNT5 IGF1R     

  ZNF502 FAS ELOVL4 PFKFB2     

    PLXND1 FASLG       

    NETO2 LONRF2       

    CCL20 SEMA5A       

all targets of miR-630 targets of miR-21, 221, 222 or 99b targets of miR-99b or 222 
Table 3: list of top genes targeted by miRNA. Genes are represented depending on weather they are up or down regulated compared 
to the different cell types. miRNA which are targeting the genes are indicated at the bottom of the table. 

The biological relevance of the genes listed in Table 3 was evaluated by searching in the literature for known 

functions in overall cell differentiation, and if available in CD4 T cells. If nothing was found for these 2 criteria, 

we searched for any overall known role of the gene in cellular biology. Indeed, pertinent information could 

not be found for several genes such as C18orf32 or ZNF772. Others on the contrary revealed interesting 

functions. As a few examples ATXN1 has been shown to be involved in the Notch signaling pathway which is 

controlling a range of developmental processes (303). ATXN1 was also associated to regulate cerebellar 

biogenetics through the GSK3β-mTOR pathway (304) and its function could be modulated through the use 

of rapamycin as it would act on the mTOR pathway. Another gene such as LYN encodes for a tyrosine kinase, 

member of the Src family kinases. It was proposed that Lyn promotes progenitor cell expansion via the 

erythroid cell-intrinsic mechanism. In fact the absence of Lyn expression in deficient mice resulted in an 
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impaired proliferation of peripheral B cells (305). Another gene of interest from this list was the AKT3 gene 

which has been described as responsible for the survival and proliferation of embryonic stem cells as it 

controls p53 activity. Without AKT3, p53 accumulates in the nucleus which in turn will activate downstream 

targets such as Mdm2, p21, and Fas resulting ultimately in apoptosis and cell cycle arrest at the G1 phase 

(306). One last example is the WEE1. It is an oncogenic kinase capable of regulating the cell cycle as a 

checkpoint of the G2M phase (307). When WEE1 overexpression results in an increased cell proliferation as 

it was observed in gastric cancer cells (308). These are only a few examples of mRNA targets for miRNA 

identified in this study. This first approach to identify targets could in the future be extended to the other 

validated genes and even to the predicted target genes.  

K.5 Discussion 

This data revealed miR that have been extensively investigated such as miR-146a which expression in CD8 T 

cells correlates with a memory phenotype and has emerged as a critical regulator of the immune system [62]. 

miR-155 was reported to contribute to Th17 and Treg cell function by suppressing DNA transcription 

inhibitors [63]. miR-21 was reported to be a negative modulator of signal transduction downstream of the 

TCR in T lymphocytes [64], by comparing TN and TCM. However, our data also gives new insights into novel 

miR that could potentially influence CD4 T cell differentiation, especially towards the TSCM phenotype, as they 

have been reported to influence differentiation and control cell cycle of other tissue cells. In fact, miR-221 

and 222 are relatively unknown but seem to have an important function in human adipocyte differentiation, 

since the downregulation of these miR is crucial for this process [65]. Regarding miR-99b, it has been reported 

to be capable of potentiating endothelial cell differentiation from pluripotent human embryonic stem cells 

by regulating key genes [66], but nothing is known on the role of these miRs in the differentiation of CD4 T 

cells. 

We have started the evaluation by RT-qPCR of mRNA potentially targeted by the miRNA, as we identified a 

panel of interesting candidate genes (Table 2). We expect this data to be in line with the data obtained with 

the RNA sequencing. We plan to modulate, in future experiments, the level of expression of the various 

miRNA targets in CD4 T cells with either miRNA mimics or inhibitors. To do this, we will be sorting primary 

human cells of the various subsets investigated here: naïve, central memory and stem cell memory and 

transfect the cells using the TransIT Transfection Reagent with miRNA identified earlier. Upon physiologic 

stimulation (CD3-CD28) and an incubation over time cell phenotype will be evaluated using the markers 

CD45RA, CCR7, CD58, CD95 to assess the cell differentiation. The use of miRNA mimics as well as inhibitors 

is now widely used (309). The feasibility of using of miRNA mimics as a therapeutic treatment for the 

enhancement of chemosensitivity in advance prostate cancer is now being investigated, as the use of mimics 

of miR-217 and miR-181b-5p was observed to increased significantly the apoptosis of the cancerous cells 

(310). Similarly in the field of neurosurgery it was shown that the inhibition of miR-155 with miRNA inhibitors 

following cerebral ischemia resulted in improved stroke recovery (311). The use of Antagomirs was possible 
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in primary T and B cells of human and mice, by employing an Antagomir modified with cholesterol to facilitate 

the entry into the primary cells in an efficient way. The miRNA resulted as 99.5% inhibited without impacting 

cell viability (312). Even though miRNA mimics and inhibitors are known to the field they have not been 

extensively used for the understanding of cell differentiation. One study attempted to use these products to 

induce mesenchymal stem cell differentiation into neuroblasts or neuroblastomas (313). The combination of 

inhibitors and mimics for miR-107, 124 and 381 was needed to push mesenchymal stem cells to differentiate 

probably due to a synergistic effect. Despite these studies, to our knowledge miRNA mimics and inhibitors 

have not yet been used to modulated CD4 T cell differentiation.  

Once the impact on miRNA on T cell differentiation will have been validate in primary CD4 T cells. The miRNA 

inhibitors or mimics will be used in mice to confirm the impact of these molecules on the differentiation 

process of CD4 T cell. The functionality of differentiated TSCM and TCM through the use of mimics and inhibitors 

will have to be evaluated. The use of tumor bearing mice transfused with tumor specific cells made to be 

SCM or CM like through miRNA modulation could be used to see the feasibility of using such process and cell 

subtypes to control tumors. Such assays would show the pertinence of these subsets of T cells for tumor 

control and how to induce them 
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L General Discussion 

For a long time CD4 T cells have been in the shadow casted by the CD8 T cell’s capacity to kill tumor cells. Yet 

CD4 T cells greatly contribute to CD8 T cell responses, in fact more and more studies have investigate the 

contribution of both CD4 and CD8 T cell responses in tumor immunity (314). Within these studies, one 

showed the importance of CD4 T presence when the number of CD8 T cells was suboptimal for tumor 

rejection (315). Tumor-specific CD8 T cells also needed tumor-specific CD4 T cells help to maintain their 

functionality and to avoid exhaustion (316). The role of CD4 T cells within anti-tumor immunity is now well 

accepted in the field. The group of Steven Rosenberg performed a safety and efficacy trial on several cancer 

patients by injecting CD4 T cells retrovirally transduced with a MAGE-A3 specific TCR resulting in several cases 

of complete or partial responses. This further sediment the potential of using CD4 T in anti-tumor therapies. 

Yet when using CD4 T one has to be cautious as for their functional plasticity. 

L.1 Perspectives in T cell immunomonitoring 

The first project covered in this thesis aimed to answer the need of developing better tools for the 

immunomonitoring of antigen-specific CD4 T cells. Despite the knowledge that pMHC class II multimers could 

be used to detect CD4 T cells, their implementation has been difficult due to many hurdles in the pMHC class 

II generation which have been encountered throughout the years (121). This has left the field of CD4 T cells 

specific detection lagging behind the CD8 T cells field with the nowadays common usage of pMHC class I. In 

fact some optimization attempts have been made in the CD8 T cells field over the years (265,266), but 

surprisingly they have not often been implemented in prominent groups using pMHC class I multimers (317–

320). We here decided to optimize pMHC class II multimer staining, since standard multimer staining is 

known to miss a large proportion of cells with low affinity TCRs (109). We decided to use a combination of 

optimizing molecules such as LacNAc, Dasatinib, neuraminidase and a secondary antibody directed towards 

the multimer label to improve pMHC class II staining of tumor-specific CD4 T cells. We achieved an improved 

detection of tumor-specific CD4 T cells with the combination of the previously cited molecules, without 

increase of background. By using a combination of fluorochromes, multiple specificities can be investigated 

within one sample. Finally we observed an increase in cell death upon optimized cell staining which was 

primarily caused by the use of neuraminidase, a known toxic agent (277). We demonstrated for the first time 

that TCR-pMHC class II improved binding resulted in AICD which was known for CD8 T cells, but not for CD4 

T cells (276). Even though we achieved improvement in tumor-specific CD4 T cells staining and detection, 

several questions remain unanswered such as the TCR affinity (Koff) value of the detected CD4 T cells, as 

compared to the ones detected with the standard staining procedure. To address this we are developing 2 

methods: one relies on the usage of reversible multimers caller NTAmers (321) and the other on a novel 

methodology of surface plasmon resonance (SPR) performed on whole cell (322). We have encountered 

difficulties with the usage of NTAmers, but we have obtained initial encouraging results with the use of the 
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whole cell SPR method in collaboration with the group of Hatice Altug at the EPFL. This novel method consists 

of using a multiparametric Surface Plasmon Resonance biosensor (MP-SPR). The chip used has been 

functionalized with a planar lipid bilayer linked to biotin. Streptavidin followed by a biotinylated monomers 

pMHC class II were run on the chip. This process created a scaffold to which the tumor-specific T cells can 

bind to and build a TCR-MHC class II synapse (322). The interaction can be measured using the same principal 

of conventional SPR. In preliminary experiments we could confirm that the optimization procedure improves 

the detection of low affinity cells which are more likely involved in tumor immunity (323). This method places 

itself among the rare methods existing up to date to measure the low TCR-pMHC class II affinity with a whole 

cell (the other one being 2D binding and the not yet functional pMHC class II NTAmers). The capacity to 

measure CD4 T affinity opens a myriad of possibilities including the possible comparison of the affinity of TCR 

affinity for viral-, bacterial-, TAA-, and neoantigens. This method could also be used as an immunomonitoring 

tool for the detection and selection of tumor-specific CD4 T cells after vaccination trials. It could give novel 

information on the optimal affinity of the clonotypes generated post vaccination trials and thus allow for the 

harvesting of this cells for clonal expansion and ACT. TCRs with optimal affinity could also be sequenced for 

the generation genetically modified CD4 T cells expressing the desired TCR. This novel method in combination 

with the optimization staining procedure can greatly improve our current understanding of CD4 T cells. 

Beside TCR affinity studies, the set of cytokines that a CD4 T cell secrete dictates its pro- or anti- tumor 

response. It is thus important to evaluate the cytokines that are secreted by CD4 T cells that are tumor specific 

to select the ones with anti-tumor function and discard the ones that would be pro-tumoral. Up to date 

several techniques exist to study secreted proteins, including i) enzyme-linked immunosorbent assay (ELISA) 

which evaluates the cytokine concentrations present in cell-free supernatants from culture experiments. The 

volume needed for this type of assay is usually more than 50 µl thus limiting its sensitivity ii) enzyme-linked 

immunosorbent spot (ELISpot) where cell-derived cytokines are directly captured on an antibody pre-coated 

plate and then revealed similarly to ELISA assay (324). Luminex technology works on cell-free supernatants 

and rely on a mixture of color-coded beads, pre-coated with analyte-specific capture antibodies and a 

sandwich detection antibody system. The Polystyrene beads are read on a dual-laser flow-based detection 

instrument (325). And MSD technology which can evaluated up to 10 cytokines in culture supernatants. This 

technology relies on capture and detection antibodies and an electrochemiluminescence revelation 

technique (326), iii) cytokine production within cells can be visualized through Intracellular Cytokine Staining 

(327), providing single-cell resolution of secreted proteins, but implying cell loss due to fixation and 

permeabilization. Arrays of subnanoliter wells (nanowells) are poorly used but provide a useful system to 

isolate single cells, analyze their secreted proteins and recover the cell of interest. They offer the advantage 

to control mechanical and environmental cues compared to traditional assay. Two general approaches have 

emerged: one that uses open arrays and local capture of secreted proteins as antibodies are usually fixed at 

the bottom of the wells (328), and a second (called microengraving) that relies on closed with a glass slide 
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supporting immobilized antibodies arrays to capture secreted proteins, which is subsequently removed from 

the array (329). As for the future, new platforms are relying on label-free, real-time biosensors such as 

nanoplasmonic biosensors featuring nanoscale structures as they provide high sensitivity and robustness 

without the need of complex instrumentation as it was necessary with surface plasmon resonance biosensors 

(330). In collaboration with the research group at the EPFL led by Prof. H. Altug, we are developing a 

nanoplasmonic biosensor platform integrated with a microfluidic live cell culture for the real-time monitoring 

of cellular secretion at the single cell level, without the usage of cellular labels (Figure 17A and B). 

Nanoplasmonic biosensors consisting of gold nanohole arrays (NHAs) (Figure 17C and D) support the 

extraordinary optical transmission (EOT) which allows the NHAs to be highly sensitive to minute local 

refractive index changes such as when a cytokine binds to its probe (Figure 17E). To sense such variations the 

system relies on a high-resolution spectroscopic imaging of multiple sensor arrays simultaneously by utilizing 

normal broadband illumination and simple bright field transmission optics (330). The current prototype 

system consists in a nanoplasmonic biosensor incorporating miniaturized microfluidics chambers on a NHA. 

The chambers are composed of a cell region unit that captures individual cells, surrounded by a plasmonic 

unit coated with specific anti-cytokine antibodies. The proof-of concept of the system has been performed 

using the EL4 lymphoma line secreting IL-2 upon activation (331). We plan to perform In vitro assay with 

tumor-specific CD4 T clones followed by the analysis of cytokines secreted by ex vivo isolated tumor-specific 

CD4 T cells from patient samples, using the optimized multimer staining procedure. Since cells are maintained 

alive in the chambers of this system they could be recuperated and either put into culture or their TCR could 

be sequenced to generated libraries of functional TCR, which could be used to genetically engineer patient 

cells for ACT. This approach would bring further depth in the capacity to monitor CD4 T cells in cell-based 

cancer therapies. 

 

 

Figure 17: Microfluidic-integrated biosensor design, principal and experimental configuration. A) Representation of the 
components for the biosensor system consisting of a microfluidic cell module and an optical detection module. CD4 T cell are 



148 
 

immobilized in a zigzag single-channel PDMS unit. Detection modules are directly adjacent to the cells as to capture the secreted 
cytokines. The module is functionalized with specific anti-cytokine antibodies. A beam of collimated broadband light illuminates the 
microarrays at normal incidence. The transmitted light is coupled to a spectrometer and dispersed along one dimension to form a 
spectroscopic image on a CCD camera. This readout system records simultaneously the EOT spectra of all sensors. B) Pictures of the 
cell culture module and the detection module. C) SEM image of the nanohole structures with a hole diameter of 200 nm and a 
periodicity of 600 nm. D) This scheme represents the immobilized antibody for the specific detection of IL-2. The biotinylated antibody 
is bound to a streptavidin in its turn bound the PEGylated alkanethiol molecules sitting on the gold surface. E) Sensing principle of 
the real-time plasmonic detection where the sensorgram (EOT shift vs. time) reveals the real-time binding dynamics of cytokines to 
antibodies. Adapted from (330). 

L.2 Perspectives in epitope prediction and new MHC class II allele targeting 

The capacity to predict new target antigens in cancer immunotherapy has always been a challenge since 

antigens which are exclusively expressed by cancer cells are limited. The identification of novel and 

appropriate targets which could be used in cancer vaccination therapies is invaluable as there is a need to 

overcome the peripheral immune tolerance (332). In the second project we thus collaborated with the group 

of David Gfeller in the development of a new peptide prediction algorithm for MHC class II molecules, 

MixMHC2pred (MoDec). We are currently using this publicly available tool to identify epitopes derived from 

tumor-associated antigens and neo-antigens, to be presented by different MHC class II molecules. In 

particular, we have been focusing on a conserved MHC class II molecules, the HLA-DR52b allele. This HLA 

allele is of interest for immunotherapy as it less polymorphic than DRB1 alleles, and it is expressed by half of 

the Caucasian population. The NY-ESO-1119-143 peptide was previously described to bind to the DR52b MHC 

class II complex and specific responses were observed after vaccination in a significant proportion of patients 

(333). Using MoDec we have identified several TAA but also shared neo-antigens that contain epitopes 

predicted to be good binders to this allele. If their immunogenicity is confirmed, they could represent 

interesting targets for either vaccination in large cohorts of patients or for the generation of TCR banks for 

ACT.  

Further, by combining the use of optimized combinatorial multimer staining and new epitope targeting 

attempts should be made to identify optimal conditions of tumor-specific CD4 T cell priming, as reported in 

the CD8 T cell field (334).  

L.3 Perspectives for the modulation of CD4 T cell differentiation by miR 

targeting 

In addition to the immunomonitoring approaches described above it would be beneficial in CD4 T cell-based 

therapies to also select the optimal differentiation stage of the tumor-specific effector CD4 T cells of interest. 

In fact, T cells become functionally exhausted when being infused in patients (335). Transfer of TSCM and TCM 

cells would remedy this shortcoming as they offer the capacity to self-renew and are long lived cells. We thus 

started investigating the possibility to modulate CD4 T cells differentiation into TSCM or TCM cells by acting on 

the miRNA expression. Unfortunately there is not one single miRNA which modulate such process and often 

a combination of finely tuned expression of many miRNA gives rise to a particular phenotype as multiple 
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miRNA can target the same mRNA (336). We thus relied on two sets of data: a miRNA array and a mRNA 

sequencing of TN, TSCM and TCM cells from healthy donors. From these data sets we identified miRNA 

differentially expressed between the various populations and a set of differentially expressed mRNA , that 

are predicted or validated targets of the miRNA identified. Future experiments will attempt to modulate 

miRNA expression via the use of miRNA mimics or inhibitors and evaluate their impact on CD4 T cell 

differentiation. The target mRNA expression will also be measured to identify the mechanistic pathway 

affected by the miRNA modulation. In parallel, it would also be interesting to monitor the expression of the 

identified miRNA in a disease context. To that aim, tumor-specific CD4 T cells from melanoma patient samples 

before and after PD-1 treatment (Pembrolizumab) were sorted to collect the TN, TSCM, TCM and TEM cells and 

conserved. Quantification of the candidate miR expression will be performed and compared to the one in T 

cells of HDs. 

Further, the influence of CD4 T helper cell polarization on the level of miR expression in memory and effector 

subsets should also be considered. In that regard, in an initial evaluation on 4 healthy donors we observed 

that the frequencies of Th1, Th2, Th17, Th* and Tfh varied among TN, TSCM, TCM or TEM cell subsets. For 

example, Th1, Th2, Th17 and Th* frequencies increase in TCM compared to TSCM and a statistically increase in 

frequency was observed in TEM cells. Tfh cells are mostly found in TSCM and in TCM differentiated cells (Figure 

18). These changes in frequency could contribute to the miR phenotype that we have observed and needs 

further evaluation by directly sorting Thelper subsets based on chemokine receptor expression. Cell sorting 

would rely on markers for cell differentiation such as CD45RA, CCR7, CD58 and CD95 to discriminate between 

TN, TSCM, TCM or TEM. Furthermore, the cell surface markers CXCR3, CRTH2, CCR4, CCR6, CXCR5 would be used 

to discriminate between a few of the possible polarization of CD4 T cells such as Th1, Th2, Th17, Tfh and Th*. 

The road to using miRNA in therapeutic approaches is still long but there are examples of phase 1 or 2 clinical 

trials with positive results (310,337). The use of Mirvavirsen (miR-122 inhibitor) was shown to reduce levels 

of hepatitis C virus RNA in patients (338). The TagomiR (miR-16 mimic) was used to target mesothelioma cells 

of patients with malignant pleural mesothelioma with good safety profile and encouraging signs of activity 

(339). These results prove the potential of miRNA as a therapeutic agents within the field of cancer and 

beyond. 
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Figure 18: frequency of key Th subsets in differentiated CD4 T cell subsets. From left to right on top is represented A) the frequency 
of differentiated cells within peripheral PBMCs. B) Following the first graphic the frequency of Th1 or Th2 among the differentiated 
cells. On the bottom line similarly represented the Th17, Tfh and Th* frequencies within the four differentiated CD4 T cells subsets. 
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