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Abstract. This paper explores the use of the Support Vector
Machine (SVM) as a data exploration tool and a predictive
engine for spatio-temporal forecasting of snow avalanches.
Based on the historical observations of avalanche activity,
meteorological conditions and snowpack observations in the
field, an SVM is used to build a data-driven spatio-temporal
forecast for the local mountain region. It incorporates the
outputs of simple physics-based and statistical approaches
used to interpolate meteorological and snowpack-related
data over a digital elevation model of the region. The
interpretation of the produced forecast is discussed, and
the quality of the model is validated using observations
and avalanche bulletins of the recent years. The insight
into the model behaviour is presented to highlight the
interpretability of the model, its abilities to produce reliable
forecasts for individual avalanche paths and sensitivity to
input data. Estimates of prediction uncertainty are obtained
with ensemble forecasting. The case study was carried out
using data from the avalanche forecasting service in the
Locaber region of Scotland, where avalanches are forecast
on a daily basis during the winter months.

1 Introduction

Snow avalanches are of particular interest as natural
hazards because of the complex non-linear relationship with
meteorological conditions, topography and a wide variety
of other factors including human activity as triggers for the
events (McClung and Schaerer, 1993). Local avalanche
reports provide regular assessments of current, and forecasts
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of future, snowpack stability for regions which are typically
considered to be homogeneous with respect to the primary
influences on avalanche activity. Textual forecasts are often
accompanied by a schematic map and may include detailed
information on snowpack formation and its instabilities for
particular aspects and altitudes.

Numerical methods used to assist in avalanche forecasting
range from complex systems involving physical models
(Durand et al., 1999; Lehning et al., 1999) to various
heuristic and statistical decision-support methods (Schweizer
and F̈ohn, 1996; Keiler et al., 2006; Bolognesi, 1993).
Statistical methods of avalanche forecasting link several
available input variables (meteorological factors, snowpack
properties and stability factors as identified byLaChapelle
(1980) to the target outputs. However, the choice of the
target is not evident. Although the verified avalanche
hazard might be seen as an ideal choice (Schweizer and
Föhn, 1996), forecasted avalanche hazard is much more
commonly available (Brabec et al., 2001). Many approaches
have used observations of avalanche activity as a target
and assumed that it is related to avalanche hazard (Buser,
1989; Heierli et al., 2004). However, this relationship is not
always obvious, particularly for low hazard levels and where
observations are missing, for example in stormy conditions
(Schweizer et al., 2003).

Numerical methods are also used to spatialise a forecast
for a mountain region up to the scales of individual slopes
and paths. RecentlyEckert et al. (2007) proved good
results in analysing avalanche occurrences at the township
scale, where aggregated count data of avalanche events
allowed development of a discrete spatial Poisson model
and consideration of spatial autocorrelation effects within
a hierarchical Bayesian model. A Bayesian framework
used for the task allowed extensions to the model such
as integrating climate change effects (Eckert et al., 2010).
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A few examples of more localised forecasting methodologies
have been produced, typically with the aim of forecasting
for individual avalanche paths (McCollister et al., 2003;
Bolognesi, 1993).

The Nearest Neighbours approach is a popular decision
support tool due to its simplicity and apparent interpretability
by practitioners in operational use (Buser, 1989; Gassner
and Brabec, 2002; Purves et al., 2003; Heierli et al., 2004).
The method identifies similar conditions in the past to
predict if avalanching is probable in the current day. It can
also list the most similar individual past events from the
database under these conditions and plot them on the map.
These practices accord well with conventional inductive
avalanche forecasting processes (LaChapelle, 1980; Purves
et al., 2003). The spatialisation of the forecast is left to
the practitioner to interpret by examining the neighbours
(either textually or on a map) or the forecast output may
be classified according to aspects and altitudes as in the
Safran/Crocus/Mepra approach ofDurand et al.(1999). In
forecasts provided by avalanche warning services such detail
is provided in the text where hazardous aspects and altitudes
are outlined and snow conditions therein are described based
on forecaster’s experience and regular fieldwork.

In terms of data availability relevant to avalanche fore-
casting, high spatio-temporal resolutions capabilities already
exist, in the form of high-resolution digital terrain models
and continuous advances in environmental monitoring
network technologies able to provide meteorological data
(Hart and Martinez, 2006). Snowpack formation models
have been developed (Lehning et al., 1999) and significantly
advanced over the recent years (Lehning et al., 2006). In
the temporal domain, there is substantial evidence that the
modelled snowpack conditions can be helpful in predicting
avalanche hazard (Lehning et al., 2006; Schirmer et al.,
2009).

Given that these data are available, an attempt can be made
to develop an exploratory data-driven system to assist in
spatio-temporal forecasting of the avalanche activity. This
paper presents the results of such developments, targeting
avalanches on Ben Nevis and the surrounding mountains
in the Lochaber region of Scotland. Natural avalanche
activity in the region is mainly the result of heavy snowfalls
and associated high winds as a consequence of a maritime
climate together with rapid temperature changes. Human-
triggered avalanches are common as well as the area is a
popular winter climbing venue. Weather reports and local
avalanche forecasts are produced daily in winter months
by thesportscotland Avalanche Information Service(SAIS)
in the area1. In this paper we report on the use of a
Support Vector Machine (SVM), a promising non-parametric
classification method for exploratory data analysis and
predictive modelling of snow avalanches. The study extends
the results ofPozdnoukhov et al.(2008) in which SVM was

1http://www.sais.gov.uk/

applied to a purely temporal problem of predicting the days
when avalanches are probable at the site. In this work, we
demonstrate how similar data-driven methodology is applied
to produce spatialised forecasts of avalanche activity.

The paper is organized as follows. First, in Sect.2.1,
we introduce data-driven classification as an approach
to decision support in avalanche forecasting. Next we
present the basic features of a particular machine learning
classification method, SVM. In Sect.3, the raw data
description and the generated features are introduced, the
classification model is set up and model parameters are
tuned. Section4 describes and discusses the obtained results
on the application of SVMs for spatio-temporal avalanche
forecasting in terms of its ability to predict avalanche events
and provide spatial danger maps. Section5 provides an
insight into the interpretability of the obtained forecasts,
discusses the sensitivity to input parameters and estimates
the prediction uncertainties. Section6 concludes the paper
by resuming the main results and issues raised by this work.

2 Predictive statistical learning from data

2.1 Forecasting as spatio-temporal classification

A wide range of numerical models and tools have been
developed over the last decades to support decision
making processes in environmental applications ranging
from physical models, through expert systems, to a variety
of statistically-based methods. In operational forecasting a
mixture of all three approaches is often used, with process
chains involving physical models and statistical or expert
systems being relatively common (Durand et al., 1999;
Purves et al., 2003; Bolognesi, 1993; Schweizer and F̈ohn,
1996).

Since availability of real time spatially distributed data
describing a wide range of parameters has increased through
technological advances in sensor networks and automated
environmental monitoring (Hart and Martinez, 2006), we can
expect data-driven models to become increasingly important.
Robust adaptive tools are required that can explore incoming
volumes of information, extract useful knowledge suitable
for visualization and predict observed dependencies hidden
in data without making restrictive assumptions about data
generating mechanisms (Breiman, 2001). Such tools are
provided by the emerging field of statistical machine learning
(Hastie et al., 2001). One of the fundamental problems
studied in Statistical Learning Theory (Vapnik, 1998) is that
of binary classification. This problem can be stated as
the identification of a decision rule discriminating the data
into two classes (such as “dangerous” and “safe”) based on
available empirical samples.

Concerning avalanching, due to the inherent complexity of
the phenomenon and a variety of possible and often unknown
triggering mechanisms, any empirical avalanche observation
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dataset might contain samples with identical conditions
(with respect to the registered meteorological and snowpack
parameters) which either led to an avalanche event or not.
In other words, in the input space of factors the “dangerous”
and “safe” classes overlap, hence there is no hard decision
boundary between those conditions. The requirements for
a classifier to provide useful decision boundaries include
its ability to discover non-linear solutions, soft treatment
of input data that allows misclassifications of observed data
samples (either misses or false alarms) and, consequently,
an associated confidence measure. Moreover, it is necessary
to provide a variety of ways to enhance interpretability
of forecasts. In this paper we apply a powerful data-
driven classifier, the Support Vector Machine, which matches
the above mentioned requirements, and discuss its use in
decision support for avalanche forecasting.

2.2 Support Vector Machine

SVM is a machine learning approach derived from
Statistical Learning Theory aimed to deal with data of
high dimensionality by approaching nonlinear classification
problems in a robust and non-parametric way (Vapnik, 1998;
Scḧolkopf and Smola, 2002). Here we describe the main
principles of SVMs which have important implications for
their application in decision-oriented avalanche forecasting.

Firstly, suppose one deals withN linearly separable data
samples(x1,y1),...(xN ,yN ), wherex are the input features
(independent variables) andy ∈ {+1,−1} are the binary
labels. “Linearly separable” data can be discriminated into
two classes by a hyperplane. The idea of SVM is to separate
this dataset by finding the hyperplane that is the farthest
apart from the closest training points of each class. The
minimal distance between the hyperplane and the training
points, which is maximized by the SVM algorithm, is called
the margin. The decision function used to classify the data is
linear, as follows:

f (x,{w,b}) = w ·x +b, (1)

where the vectorw and a threshold constantb define
the orientation of the separating hyperplane. The binary
decisions are taken according to the sign(f (x)). Parameters
{w,b} are optimized in order to maximize the margin, which
is inversely proportional to‖w‖

2. This is a quadratic
optimization problem with linear constraints which has a
unique solution. Moreover,w is a linear combination of the
training samplesxi , many of them having zero weightsαi :

w =

N∑
i=1

yiαixi . (2)

The samples with non-zero weights are the only ones which
contribute to the maximum margin solution. They are the
closest samples to the decision boundary and are called the
Support Vectors. This simple classifier is then extended

to account for overlapping data and presence of noisy or
mislabelled samples such that a misclassification of the
training samples is allowed. A cost hyper-parameterC

is introduced in the optimization in order to control the
trade-off between the maximization of the margin and the
permitted training errors.

Then, the so-called “kernel trick” is used to produce
non-linear decision boundaries. The kernel is a symmetric
semi-positive definite functionK(x,x′). According to the
Mercer theorem this function corresponds to a dot product
in some space (Reproducing Kernel Hilbert Space, RKHS).
By substituting the dot products with kernel functions a
linear method is transformed into a nonlinear one. This is
the case for linear SVM, where the decision function (1)
relies only on the dot products between samples. Omitting
the optimization problem, which is solved numerically to
optimize the weights,αi , the final classification model takes
the form of a kernel expansion:

f (x) =

N∑
i=1

yiαiK(x,xi)+b . (3)

Typical kernels are Gaussian RBFs,K(x,x′) = e
−

(x−x′)
2

2σ2 ,
which value decays with distance between samples thus
leading to a simple interpretation of (3) as of weighted
combination of “similar” samples. The bandwidth parameter
σ of the kernel must be tuned using cross-validation or a
testing dataset.

It has been shown in Statistical Learning Theory that
the maximum margin principle prevents over-fitting in high-
dimensional input spaces, thus leads to good generalization
abilities and accurate predictions (Vapnik, 1998). Theoretical
difficulties faced by conventional nearest neighbours ap-
proaches when applied to high-dimensional datasets (Beyer
et al., 1999) have been previously observed in avalanche
forecasting applications (McCollister et al., 2003).

2.3 Interpretation for decision support

SVM is specifically constructed to solve a binary classi-
fication task and provides hard{+1,−1} decisions. It is
however possible to associate a smooth confidence measure,
p : 0< p(y = {+1,−1}|x) < 1 to characterize an uncertainty
in classification based on the values of the decision function
(1) or (3). This is usually done by taking a sigmoid
transformation off (x) (Platt, 1999):

p(y = 1|x ) =
1

(1+exp(a ·f (x)+b))
, (4)

wherea andb are constants. The value ofa is negative, and if
b is found to be close to zero, then the default SVM decision
thresholdf (x) = 0 coincides with a confidence threshold
level of 0.5. A major advantage of this transformation
is a possibility to introduce a decision thresholdt for the
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Table 1. Forecast verification measures and skill scores (Doswell et al., 1990; Wilks, 1995).

Measure Formula Range and description

Probability of detection (POD) Hits

Hits+Misses
[0 → 1], probability that the event was forecast

or Hit rate when it occurred

Success rate Hits

Hits+FalseAlarms
[0 → 1], the probability that the event occurred
when it was forecast

Overall accuracy (OA)
Hits+Corr.Negatives

Total
[0 → 1], the proportion of correct forecasts

Hanssen and Kuipers
Hit rate – FalseAlarm rate

[−1→ 1], the capacity to discriminate
discriminant (HK) between events and non-events

Heidke skill score (HSS) Hits+Corr.Negatives−Chance

Total−Chance
[−∞ → 1], the fraction of correct predictions accounting
for correct outcomes due to random guess (Chance)

smooth confidence outputs which may later be tuned to
optimize the desired forecast quality measures. Empirical
evidence suggests that (4) can be used to provide an estimate
of class-conditional posteriors (Platt, 1999) if calibrated by
maximizing the likelihood (the negative log-likelihood to
simplify the optimization) on the testing dataset.

The output of the binary classification system can be
characterized by several basic measures computed from the
contingency table. Concerning natural hazards, different
possible forms and interpretations of the forecast are usually
considered. Firstly incategorical forecastsa decision
boundary is directly used to classify the region/time as
being either dangerous or not. The Table1 provides some
conventional forecast quality measures used to assess the
forecast quality. These measures are used here to tune
the hyper-parameters of SVM and the decision threshold.
Secondly, inprobabilistic forecaststhe output of the system
can be interpreted as a continuous measure of the likelihood
of an event in the temporal or spatio-temporal domain of the
forecast. Such forecasts can be used, for example, for risk
assessment. Thirdly, a so-calleddescriptive forecastis often
desirable, since experts wish to interpret and incorporate, for
instance, a detailed list of similar events into their decision-
making process. Concerning the last category, the Nearest
Neighbours methods and their variations commonly named
as the “methods of analogues” are extensively used (Heierli
et al., 2004). In a temporal domain (forecasting days with
avalanching) Support Vector Machines can produce all of the
above forms of forecasts (Pozdnoukhov et al., 2008).

In the spatio-temporal domain a categorical forecast is
simply the predicted class, however, the probabilistic inter-
pretation for predicting the event probability is complicated
due to very low base rates of events at individual avalanche
paths. As insufficient data are available to calibrate
probabilistic post-processing for individual locations, (4) can
be used to provide a confidence measure associated with
binary prediction and helpful in assessing the likelihood of an

avalanche event at a certain location under certain conditions.
The situation is also complicated by the fact that a triggering
mechanism is usually known only for events which were
directly observed, deliberately triggered, or reported by those
who triggered them. To facilitate interpretation, descriptive
forecasts can be produced by providing the corresponding
Support Vectors which are the most valuable discriminating
events in the past related to current conditions. Below, these
ideas are explored in detail showing how the data-driven
SVM classifier can be exploited for exploratory analysis of
avalanching datasets and interpreted for decision support in
spatio-temporal forecasting.

3 Spatio-temporal forecasting with SVM

3.1 Avalanche forecasting in Lochaber region

Avalanche forecasts are produced daily in the Lochaber
region of Scotland, and the Nearest Neighbour-based system
called CORNICE is currently used in decision support
(Purves et al., 2003). The original data on weather
conditions in the region consist of daily measurements of
9 meteorological and snowpack variables starting from the
winter season of year 1991. The list of the available variables
is presented in Table2, along with the class/category
that each variable is assigned to according to the scheme
proposed in (LaChapelle, 1980) (class I – slope stability
factors, class II – snowpack factors and class III –
meteorological factors).

Avalanche activity observations are carried out both by
observers, who are in the field daily, and reported by climbers
and backcountry skiers. The database of events for the period
of 1991–2008 includes 712 avalanche events and includes the
grid coordinates, elevation, slope and aspect of the estimated
release point. There is inherent uncertainty and possible
errors in spatial location and especially the time of the events.
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Table 2. List of the 9 meteorological and snowpack variables recorded daily in the winter season.

Variable Class Description

Snow index III Ordinal index (0–10) of the precipitation as fresh snow on the day
Rain at 900 m III Binary variable indicating if rain is falling at 900 m (“1” value, “0” otherwise)
Snow drift II Binary variable taking “1” values when sufficient snow drifting is observed (“0” otherwise)
Air temperature III Midday air temperature at the automatic weather station measured in◦C
Wind speed III 24 h vector mean speed from the automatic weather station reported in m s−1

Wind direction III 24 h vector mean wind direction from the automatic weather station reported in◦

Cloud cover III Cloud cover as percentage of the sky
Foot penetration II Penetration of the foot in the snow measured in cm at the pit site by forecasters
Snow temperature II Snow temperature at a depth of 10 cm at the pit site measured in◦C

Legend

Gully B

0 500 1,000 1,500
Meters

Gully A

Other gullies

Fig. 1. The hillshade of the DEM of the Lochaber region and
locations of the gullies where avalanches are typically observed.
Two particular gullies used to illustrate some properties of
developed predictive system throughout the paper are marked with
A (“No. 3 Gully” on Ben Nevis face) and B (“The Chancer” on
Aonach Mor).

Avalanches are observed mainly in 49 gullies and slopes on
north to east facing aspects. The locations of these events
is shown in Fig.1 along with a hillshade representation of
the SRTM Digital Elevation Model (DEM) of the region.
Computations were carried out using a 10 m DEM available
through the National Mapping Agency. The avalanche and
weather data were partitioned into a training period from
1991–2005, while the winters of 2006–2008 were used for
validation only.

3.2 Data preparation: conditioning factors

The binary classification problem was formulated to
delineate the conditions in space and time that led to
observed avalanche activity. The input feature vectors
were composed of several groups of factors for every
location in space-time. The idea behind this process is
to generate discriminative predictants related to avalanche
activity. However it is evident that the sets of samples
of safe conditions and avalanche events overlap in every
space of conditioning factors as no triggering mechanism is
incorporated in modelling.

The inputs have to be generated both for every historical
observation to train and validate the model and for every
space-time location provided for prediction. Thus, in order
to produce a spatial danger prediction map for a particular
day these attributes have to be precomputed for every spatial
location on the grid covering the region. Each cell in the 10 m
resolution grid will be described by the conditioning factors
computed for that location for the considered day. The SVM
model then predicts the avalanche danger by assigning a
decision function value (tuned in the [0, 1] interval) to each
one of these points.

The conditioning factors provided to the model are
described hereafter and the complete set of 39 features is
listed in Table3.

3.2.1 Global meteorological and snowpack factors

The first group of inputs includes meteorological parameters
which were considered as global conditioning factors for the
region. The snow index of the current day, the cumulative
snow index over the 2 previous days and snow drifting
were included to incorporate the effects of persistent adverse
conditions. Additionally, a cumulative snow index over the
season was included. Next, a binary feature reporting if the
air temperature was crossing 0◦C and an indicator of global
avalanche activity on the previous day were added. Then,
some other direct meteorological and snowpack observations
for the previous 2 days were included. The snow temperature
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Table 3. List of the 39 input features (predictors).

N Feature Nature Description

1 Elevation z Local Elevation [m]
2 Slope Local Slope [◦]
3 Sin aspect Local Sine transform of the aspect degrees values
4 Cos aspect Local Cosine transform of the aspect degrees values
5 Snow index Global Index of the precipitation as snow on a day (ordinal variable with range 0–10)
6 Cumulative snow index 2 Global Sum of the current and previous day Snow index
7 Cumulative snow index 3 Global Sum of the current Snow index and the ones of the 2 previous days
8 No-settle snow index Global Cumulative Snow index over the current winter
9 Rain Local Binary variable of rain occurrence, based on the observation at 900 m
10 Rain 2 days Local Sum of the Rain indicator over the current and the previous day
11 Snow drift Global Binary variable reporting if snow drifting is occurring

during the observation period in the skiing area
12 Cumulative snow drift 2 Global Sum of the current and previous day’s Snow drifts
13 Cumulative snow drift 3 Global Sum of the current Snow drift and the ones of the 2 previous days
14 Cloud Global Cloud cover as percentage of the sky
15 Foot penetration Global Foot penetration in the snow [cm]
16 1 day settle Global 1 day snow settlement [cm]
17 2 days settle Global 2 days snow settlement [cm]
18 Avalanche activity – 1 Global Indicator of global avalanche activity the previous day in the region
19 Avalanche activity – 2 Global Sum of Avalanche activity over the 2 previous days
20 Air T crossing 0◦C Local Binary variable indicating if the air temperature is

rising above 0◦C from the previous day
21 Elaborate air T Local Hyperbolic tangent transform of the midday air temperature measured in◦C
22 Elaborate air T gradient Local 1 day elaborate air temperature gradient

(current Elaborate air T minus previous day Elaborate air T)
23 Elaborate air T gradient 2 Local 2 days elaborate air temperature gradient

(current Elaborate air T minus 2 days ago Elaborate air T)
24 Elaborate snow T Global Hyperbolic tangent transform of the snow temperature
25 Elaborate snow T gradient Global 1 day elaborate snow temperature gradient

(current Elaborate snow T minus previous day Elaborate snow T)
26 Elaborate snow T gradient 2 Global 2 days elaborate snow temperature gradient

(current Elaborate snow T minus 2 days ago Elaborate snow T)
27 Bad weather yesterday Global Indicator of bad weather conditions the previous day (no visibility)
28 Wind speed Local Locally computed wind speed
29 Sin wind direction Local Sine transform of the local wind direction
30 Cos wind direction Local Cosine transform of the local wind direction
31 Snow accumulation Local Intensity of the snow accumulation
32 Wind speed – 1 Local Previous day locally computed wind speed
33 Sin wind direction – 1 Local Sine transform of the previous day local wind direction
34 Cos wind direction – 1 Local Cosine transform of the previous day local wind direction
35 Snow accumulation – 1 Local Intensity of the previous day snow accumulation
36 Wind speed – 2 Local Pre-previous day locally computed wind speed
37 Sin wind direction – 2 Local Sine transform of the pre-previous day local wind direction
38 Cos wind direction – 2 Local Cosine transform of the pre-previous day local wind direction
39 Snow accumulation – 2 Local Intensity of the pre-previous day snow accumulation

measurement was held constant over the entire region after
a hyperbolic tangent transformation to obtain an increased
sensitivity when approaching the 0◦C melting point (Gassner

and Brabec, 2002). To take into account the temporal
changes of these 2 features (a crucial piece of information
on the evolution of snowpack stability) gradients over the
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2 previous days were also computed. A similar procedure
has been adopted for the global variable of foot penetration,
where the differences between the actual and previous day’s
value have been integrated in the feature vector. These
derived “expert features” were constructed in a dialogue with
a local avalanche forecaster who was asked to list important
indicators of avalanche activity.

3.2.2 Spatially variable terrain features and
meteorological factors

The spatial features comprise topographical characteristics
directly available from avalanche observations and the DEM:
they consist of the elevation, slope and aspect of each spatial
location. Then, in order to model the local avalanche-related
conditions to produce the spatially variable forecast, the
series of daily measurements of meteorological conditions
related to snowpack stability have to be interpolated over the
region taking into account the terrain.

The air temperature measured by the automatic weather
station located at an altitude of 900 m was interpolated
by means of a constant temperature/elevation gradient
of 0.65◦C/100 m (Barry, 1981). Then, as suggested in
(Gassner and Brabec, 2002), a hyperbolic tangent transform
was applied to emphasize the critical 0◦C transition.
Temperature inversion and local orographic effects were not
considered.

Wind fields for a constant wind speed of 10 m s−1

and directions 0◦ − 350◦ were precomputed following the
MicroMet model (Liston and Elder, 2006). The model is
linear with respect to the wind speed and the modelled wind
fields can be easily adjusted according to the observations
on a particular day. Wind direction was included in the
feature vector as N-S and W-E components for the current
and 2 previous days

Snowpack variability in space was taken into account by
considering a snow mass balance index given by the observed
snowfall intensity (Snow index> 0) and the influence of
snow drifting (Snow drift = 1) governed by the precomputed
wind fields. A spatially varying variable indicating the snow
accumulation at a given location was computed and included
in the feature vector for the current and the 2 preceding days.
Ablation was not considered.

Rainfall is recorded as a binary variable at an altitude of
900 m – this was spatialised using current temperature and
elevation over the whole region. Thus, the binary variable
rain was transformed into a continuous one with a hyperbolic
tangent transformation to incorporate the smooth snow-to
rain melting transition. The rain descriptor for the preceding
day was also included in the feature vector.

The presented approach can be seen as a relatively “naive”
approach to modelling local meteorology and snowpack
that could be substituted by a more comprehensive physical
model such as, for example, Alpine3D (Lehning et al., 2006).
While the results of such efforts would be of great interest,

the described simplified system appears to be useful for
extracting the dependencies between indirect factors and
avalanche activity as long the consistency of the data used
for training and the prediction is kept.

The final input vector contained 39 features: 22 spatio-
temporal features (describing local conditions at a given grid
cell) and 17 temporal conditioning factors of global validity
(constant over the region).

3.3 The spatio-temporal classification problem

While it was relatively straightforward to put the registered
avalanche events into a dataset as the class entities
representing avalanche events (with labely = +1), it is much
harder to describe the set of the “safe” conditions (y = −1).
Here lies an important issue – the samples of the “safe” class
have to bring discriminative information. In other words, to
include a sample of the “safe” class one has to be sure that the
snowpack at the given slope is stable under given conditions,
while still representing a “non-trivial” data sample. The
“safe” samples were constructed by combining the spatial
features of potential avalanche paths and the meteorological
conditions on days with good visibility when no avalanche
events were observed. One can, however, expect many false
alarms types of errors produced by a classifier from these
samples, as avalanches could have been triggered in some of
these gullies by climbers. Then, several low-elevation and
flat slope locations (where no avalanche events were ever
observed) were included in the “safe” subset to enrich this
set.

For the training set, this approach resulted in 606 posi-
tively and 89 335 negatively labelled samples while for the
validation set we obtained 106 positively and 5780 negatively
labelled samples. The problem is thus very unbalanced.
Modification of the misclassification costs of the different
classes is usually suggested (Lin et al., 2000) when applying
SVM in such cases. An equivalent approach is to introduce
virtual samples into the dataset. This was done by
generating virtual “avalanche cases” whose input features
were normally distributed around the real caseswithin the
range of observation uncertainty and/or instrumental error.
Particularly, the slope, aspect (usually registered from visual
observations and thus related to considerable uncertainty),
air temperature, snow temperature, wind speed and direction
including the ones for preceding days were sampled to
produce 25 virtual samples for every real avalanche case.
The resulting training set consisted of 15 756 positive and
89 335 negative cases. The validation set consisted of
2756 positives and 5780 negative cases. Data preparation
is an inevitable source of model uncertainty that will be
described in Sect.5.3 in more detail.

This unbalanced problem is likely to be typical in
backcountry avalanche forecasting, as described here, where
positive attempts to trigger slopes thought likely to be
unstable are not undertaken for multiple individual paths,
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Table 4. SVM model: contingency tables for training and validation
datasets. Numbers in brackets refer to real events.

Predicted

Class +1 Class−1

(a) Training set fitting

Actual
Class +1 14131 (545) 1625 (61)
Class−1 3907 85 428

(b) Validation data prediction

Actual
Class +1 2541 (97) 215 (9)
Class−1 1150 4630

and the triggering of avalanches depends on other parameters
(such as the quality of climbing available). In cases
where more complete data are available (e.g.McCollister
et al., 2003where individual avalanche paths were actively
observed within a ski area) it may be that there is less need
to generate virtual samples.

3.4 Tuning of parameters

The proper choice of the hyper-parameters of the classifier
is crucial to avoid overfitting and produce a model with
predictive abilities. The parameters of the classifier were
tuned by considering the HK discriminant, HSS and OA
measures (see Table1 for details) computed on a separate
testing subset consisted of 20% of the data randomly chosen
from the training dataset. The comprehensive choice over
the parameter space (σ andC) and the thresholds resulted
in the following values:σ = 10, C = 0.5. The parameters
of the sigmoid transform (4) were found to bea = −1.2,
b = −0.23 and the decision function thresholdt (tuned on
the p(y = 1|x) values) was set at 0.37. The contingency
table for the training set is shown in Table4a. The
chosen model misclassifies many “safe” samples and misses
61 observed avalanche cases illustrating highly overlapping
data. The choice of the hyper-parameters is another source of
uncertainty that will be taken into account below in Sect.5.

4 Results, validation and discussion

4.1 Avalanche events prediction

The trained SVM model was used to forecast the validation
data of the 2006–2007 and 2007–2008 winter seasons.
Performance curves are presented in Fig.2, and the exact
values for the chosen decision threshold can be found
in Table 4b. The obtained performance measures are:
POD = 0.92, OA = 0.84, Success rate = 0.69, HK = 0.72,
HSS = 0.66. For the two validation seasons, 97 of the
106 avalanches of the season were predicted at the cost of
1150 false alarms (9 days per season on average).

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

Pe
rf

or
m

an
ce

 m
ea

su
re

 

 

HK
HSS
OA

Fig. 2. Performance curves (HK, HSS, OA) computed on the
validation data set. The decision thresholdt pre-selected on the
testing set is 0.37.

Table 5. Nearest Neighbours model: contingency table for the
validation dataset. Numbers in brackets refer to real events.

Predicted

Class +1 Class−1

Actual
Class +1 1415 (55) 1341 (51)
Class−1 827 4953

To assess the performance of an SVM in comparison with
a conventional benchmark method, a Nearest Neighbours
classifier was applied to the dataset. One classic approach
in forecasting is to treat a day as an avalanche day if
3 or more of the 10 nearest neighbours of the sample
under consideration are avalanche releases (Buser, 1989)
was found to be sub-optimal for this dataset. After a
wide search, the best results have been obtained with a
model taking into account 20 neighbours and forecasting
an avalanche if 2 or more were positive examples. The
predictions on the validation set for the retained model
are summarized in Table5. In this case, the performance
scores take the following values: POD = 0.51, OA = 0.75,
Success rate = 0.63, HK = 0.37, HSS = 0.39. These results are
comparable with those typically obtained for applications of
NN, with for example (Heierli et al., 2004) reporting values
of POD = 0.73, OA = 0.73, Success rate = 0.39, HK = 0.34,
HSS = 0.42 for forecasting in the same area as a binary (i.e.
avalanche day/no avalanche day) problem.

These figures report aggregated performance measures
which allow us to quantitatively assess the validity of the
SVM classifier. In the validation seasons, the presented
model is able to efficiently discriminate the avalanche events
from “safe” cases, as indicated by the relatively high HK
discriminant. The relatively large number of false alarms
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is an unavoidable consequence of a well trained classifier
where there is a pronounced overlap between classes as
discussed above. Indeed, these false alarms are likely to
be indicative, at least in some cases, of conditions where
avalanching might have occurred if a trigger was available
(i.e. they might simply indicate that little back country
activity was carried out on the day in question). If compared
with the NN approach, less events are missed by SVM (9
with SVM vs. 51 with NN). This translates to a high POD,
revealing thus a good ability in the detection of the critical
situations resulting in an avalanche release at a given path.
The other performance measures show a similar trend with
relevant differences between the two models. However, it is
important to note that these results are for a single region,
with a low base rate, and for areas with more data with
respect to avalanche events (e.g.McCollister et al., 2003)
performance of the NN method may improve.

Nonetheless, by contrast to our previous work (Pozd-
noukhov et al., 2008) where the improvements in forecasting
performance over traditional NN for temporal forecasts were
less marked, we see a large improvement here. This suggests
that when the target variable (now an avalanche in a specific
location, rather than an avalanche in a region) is more
specific, the ability of SVMs to effectively partition a high-
dimensional space is more important.

4.2 Danger maps evaluation

An example of a produced forecast is presented in Fig.3.
The map illustrates the outputs of the model, rescaled
according to Eq. (4), computed at a resolution of 10 m
for one day in the validation period (15 February 2007).
On that day 3 avalanches were observed and the produced
danger map highlights in the regions where the events
occurred. However, the validation or evaluation of this kind
of prediction is not an evident task as a complete ground
truth is unknown (missing avalanching conditions over the
entire map extent). One possible approach is to relate it to the
avalanche hazard bulletins produced by a human forecaster.
The bulletin for 15 February 2007 is provided as an example:
“The freezing level rose to above the summits and rain fell.
The top layer of the windslab that formed on Tuesday night is
now very wet. Around midday the deeper layers of this snow
remained sub-zero and dry. Easy shears were observed both
between the wet and the dry snow, and between the dry snow
and the old hard snow-ice. Avalanches have occurred where
deep deposits of this windslab are found. This is generally on
North to East aspects above 1000m. The avalanche hazard
is High (Category 4). Cornices are liable to spontaneous
collapse in the mild, wet conditions.” The map produced
appears to broadly represent this description of the actual
avalanche hazard as described by a forecaster. However, it
is questionable as to whether such a map is a useful means of
describing avalanche danger to individuals.

/
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Meters

Legend
Avalanches of 15.02.2007

Avalanche danger
Value

High : 0.79

Low : 0.07

Fig. 3. Map of the avalanche danger prediction for 15 February
2007. The avalanche events observed that day are marked with
white circles.
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Fig. 4. Aspect/elevation diagram of the avalanche danger prediction
for 15 February 2007.

One method of summarising the variability in avalanche
danger is through the use aspect/elevation diagrams, such
as are in use by a number of avalanche forecasting
services. Typically, these are produced by the forecaster
selecting a range of elevations and aspects and shading these
appropriately.

Here we generate such a diagram using the spatialised
forecast (see Fig.4). For every aspect/elevation pair the
maximum avalanche danger is plotted according to every cell
found with this pair of values. The diagram suggests that as
well as the north to east aspects indicated in the forecast,
some hazard is to be found on southeast slopes. Such a
visualization might prompt the forecaster to reassess the
likely locations of hazard by examining the map presented in
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Fig. 5. Evolution of avalanche danger for gullies A and B during the winter season of 2006–2007.

Fig. 3. Here, we can see that the southeast slopes appear to
be primarily in one area of high danger east of the avalanche
events recorded on that day. The diagram itself might also
provide a potential tool for use in presenting information to
the public, which links more directly to a textual forecast,
though it is important to note that no normalization for the
actual distribution of elevation/aspect in the region has been
carried out.

4.3 Time series for fixed spatial location

Here we illustrate how the derived model behaves in
producing forecasts for individual avalanche paths. The time
series of predicted danger (SVM output rescaled in the [0,
1] interval according to (4)) for the two avalanche paths
indicated in Fig.1 is presented in Fig.5 for a validation
period of winter 2006–2007. The avalanche path labelled
with “A”, is “No. 3 Gully” found on the east side of Ben
Nevis at 1180 m with an aspect of 58◦ and a slope of 45◦,
whilst “B”, is “The Chancer” found on the east side of
Aonach Mor at 1170 m, with a similar aspect (= 60◦) but at

lower slope (= 34◦). Avalanche events observed in the gullies
are shown with coloured dots, and days with avalanche
activity registered elsewhere are marked as white circles.

The forecasts demonstrate different temporal behaviour
(for some periods gully A is predicted to be more dangerous
than B and vice versa) while both series follow a common
pattern which is not surprising for a localized mountain
region. The pattern appears to account for the overall
hazard in the area and matches well the actual general
avalanche activity shown with black circles. However,
more detailed validation of the behaviour of the individual
avalanche paths is difficult and requires consideration of
factors other than the avalanches actually reported since
avalanche release on a particular path is an event with a
low base rate which complicates introducing a quantitative
validation measure.

In the case of the two paths shown here, the Chancer
is visited much more commonly by the local avalanche
forecasters, and thus the probability of an event being
observed is higher. This points to an important and well
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Table 6. Descriptive interpretation of the forecast for a particular location-conditions is provided with the closest Support Vectors: the 4 most
relevant historical reference situations found by the SVM model for the current “Forecast” are listed in columns “SV1” to “SV4”.

Variable Forecast SV1 SV2 SV3 SV4

Date 7 Mar 2007 3 Feb 2002 9 Jan 2004 3 Apr 1991 3 Apr 1997
X [m] 219 275 215 955 219 255 216 165 219 175
Y [m] 774 255 771 465 773 965 771 325 773 775
Z [m] 1103 1180 1170 1255 1175
Slope [◦] 27 42 49 32 47
Aspect [◦] 59 70 90 51 42
Snow index 10 10 6 8 8
Rain at 900 m 0 0 0 1 0
Snow drift 1 1 1 1 1
Air temp. [◦C] –0.6 –2.9 –1.0 0.0 –3.0
Wind speed [m s−1] 29 40 27 19 27
Wind dir. [◦] 239 197 240 260 260
Cloud cover [%] 80 100 100 90 100
Foot penetr. [cm] 25 15 20 20 30
Snow temp. [◦C] –0.9 –1.1 –1 –1.2 0

Avalanche yes no yes no yes

known problem in avalanche forecasting – verifying
conditions at the scale of individual slopes, which are
known to vary considerably, without observations of these
slopes. One potential approach to consider this issue in a
spatialised forecast such as that presented here would be to
also consider the likelihood of a) avalanches being observed
(for example, is the area frequented by mountain guides who
regularly report events) and b) avalanches being triggered
(how frequently is the slope actually used). Developments
such as those implemented bySuter and Harvey(2009),
allowing the use of mobile systems for real time reporting
of avalanches may go some way to mitigating this data gap
in the future.

5 Interpretability and uncertainty

Data-driven methods, such as SVMs, are often criticised for
being “black-boxes”. This section addresses this issue by,
firstly, providing descriptive forecasts, secondly, by looking
at the behaviour of the SVM model when specific changes in
weather conditions occur, and thirdly, estimating the forecast
uncertainty with a computational Monte Carlo approach by
running an ensemble of predictive models.

5.1 Support Vectors as reference events

One reason for the popularity of Nearest Neighbours
approaches is due to their ability to provide the reference
avalanche events in the past that are most related to the
current conditions (Buser, 1989; Gassner and Brabec, 2002;
Purves et al., 2003; Heierli et al., 2004). A forecaster

provided with this information has more insight while
producing an avalanche bulletin, and the descriptive nature of
the information corresponds well with the inductive process
of avalanche forecasting. The SVM-based model (3) is
essentially a weighted linear combination of the kernel
functions and thus provides similar functionality. For every
forecast location-conditions inputxf , the historical samples
xi are ordered according to their influenceαiK(xf,xi) and
a predefined number of the most influential events can be
provided.

Table 6 provides an example of 4 reference events and
their original attributes for a prediction point located in the
gully labelled B (“The Chancer”) in Fig.1 on 7 March
2007. These input conditions for a larger number of Support
Vectors can be visualized in a parallel coordinates plot, as
implemented for example in (Purves et al., 2003). However
it has been observed that the exact nearest neighbours in
high-dimensional spaces are relatively meaningless (Beyer
et al., 1999; McCollister et al., 2003). Theoretical analysis
of Vapnik (1998) suggests that Support Vectors produced
by SVM present more meaningful samples for robust
discrimination of data in high-dimensional spaces, thus
providing a tool to retrieve historical records from a data
base of observed events which are the most discriminative
and relevant for a particular prediction case.

For the 4 most relevant location-condition Support
Vectors, we note that 2 out of 4 represent avalanche events.
This is highly suggestive of avalanche conditions for the path
in question, given its low base rate. Indeed, an avalanche did
occur in “The Chancer” on that day.
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By comparing the weather/snowpack measurements and
terrain features of these situations similar conditions can be
noted. For example, all locations on these days in the Support
Vectors are associated with new snow and snow drifting,
and winds are generally from between south and west, while
the avalanche paths lie between east and north-east and are
all over 1000 m, which fits well with the relatively mild air
temperatures of between –3.0 and 0.0◦C.

Such information is potentially useful to the forecaster
especially since it is argued that SVMs provide more
discriminating Support Vectors than NN.

5.2 Sensitivity to input conditions

Another important insight into the produced forecast can be
provided by exploring its variation with respect to varying
input conditions. This helps to quantify the irreducible
uncertainty related to measurement errors and the uncertainty
of the input conditions inferred from the weather forecasts if
these are used operationally as model inputs. This sensitivity
analysis is important to investigate if model behaviour
coincides qualitatively with forecaster’s expectations.

5.2.1 Decision function analysis

It is possible to derive an analytical estimate of the sensitivity
of the decision function to small variations of the individual
input parameters. Assuming the individual input features are
independent, the partial derivative off (x) with respect to
variablexk for a Gaussian RBF kernel-based model is given
by:

∂f (x)

∂xk
=

∂

∂xk

N∑
i=1

yiαi exp
(
−

(x −xi)
2

2σ 2

)
+b

=
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(
yiαi exp

(
−

(x −xi)
2

2σ 2

)
·

(
−

xk
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i

σ 2

))
. (5)

For every input vectorx =
{
x1,x2,...xk

}
encoding,

for example, a particular gully in the current weather,
one can apply (5) and obtain a 39-dimensional gradient

vector ∇f (x) =

(
∂f (x)

∂x1 ,
∂f (x)

∂x2 ,...,
∂f (x)

∂x39

)
associated to that

location-conditions. The magnitude of the components indi-
cates the relative importance of individual input parameters
to the variation of decision function, and the squared norm
‖∇f (x)‖2 is an estimate of the total variation.

For example, an SVM forecast of the avalanche activity in
gully B on the 3 March 2007, a day with southerly winds
and snowfalls of high intensity, is most sensitive to the
variations of the wind direction on the current (0.39) and the
previous day (0.25), snow settle variable (0.24), snow index
(0.22), snow drift (0.19) and wind speed (0.18), to name
the first 6 features corresponding to the highest components
of (5). The variables accord well with the meteorological
conditions. However, this analysis is based on a coarse

approximation since the inputs are inter-related both due to
the natural physical dependencies and the use of numerical
models for spatial interpolation of meteorological parameters
at the data preparation stage. Since these dependencies can
not be processed analytically, a computational approach is
necessary to fully explore the sensitivity of the model.

5.2.2 Computational analysis

For any particular avalanche path on a given day with
associated weather and snowpack conditions, the prediction
can be computed by varying the desired parameters in the
vicinity of the observed conditions (or most likely conditions
from the weather forecast). In particular, model behaviour
under the variations of two of the initial avalanching factors
is very illustrative. The combinations of every possible
values of these 2 variables can take are used to generate the
corresponding 39-dimensional input and computing SVM
prediction therein. A surface whose height is the SVM
decision functionf (x) post-processed into the [0, 1] interval
associated with the varying values of the two variables under
study is plotted as a result. The choice of the primary
variables under consideration can be based on the sensitivity
analysis as described above or on forecaster’s experience of
what are likely to be the most important factors to explore for
a particular case.

As an illustration, the behaviour of the model forecasting
avalanche activity for two gullies (see Fig.1) is examined
under changing wind direction and intensity of snowfall
(Snow index) since these are indicated to be important
features of the avalanche danger in the textual forecast.
Figure 6 shows the surface plots of the SVM decision
function associated with different weather conditions for the
selected gullies.

Figure6a concerns the behaviour of the model in forecast-
ing the avalanche activity in gully A on 9 March 2007, a
day for which the current and preceding weather conditions
were characterized by easterly/south-easterly winds blowing
with snowfalls of high intensity. The conditions on the
forecast day are highlighted on the surface with the box
visible in the region around a wind direction = 240◦ and snow
index = 8. On that day an avalanche was observed at this
location and the model correctly forecasted the event (hit).
The SVM model is consistent in this prediction and provides
high danger levels for wide variety of snowfall intensities
and wind directions. The danger level decreases for easterly
winds (Wind direction∼= 90◦), and the indicator of avalanche
activity falls below the decision thresholdt (gridded black
plane on the figure). This kind of analysis could help to relate
model behaviour and the expert’s perception of the influence
of individual weather parameters on avalanche conditions.

The second situation analysed refers to 3 March 2007,
when an avalanche occurred but was not forecast (miss)
in gully B. The actual weather conditions related to the
considered parameters are: Wind direction = 200◦ (wind
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Fig. 5. Evolution of avalanche danger for gullies A and B during the winter seasonof 2006/2007.
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(a) Correctly detected avalanche event on 9 March 2007 at gully A.
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(b) Missed avalanche event on the3rd of March

2007 at gully B.

Fig. 6. Behavior of the model dealing with changing Wind direction and Snow index at the selected gullies.

The decision thresholdt is represented by the gridded black plane at a height of 0.37.
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Fig. 5. Evolution of avalanche danger for gullies A and B during the winter seasonof 2006/2007.
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  (b) Missed avalanche event on3 March 2007 at gully B.

         

Fig. 6. Behavior of the model dealing with changing Wind direction and Snow index at the selected gullies.

The decision thresholdt is represented by the gridded black plane at a height of 0.37.
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Fig. 6. Behaviour of the model dealing with changing Wind
direction and Snow index at the selected gullies. The decision
thresholdt is represented by the gridded black plane at a height
of 0.37.

blowing from the South), Snow index = 6. Figure6b shows
the model predictions according to the variations of the snow
intensity and wind direction. While the current prediction
falls below the decision threshold, a small variation of wind
direction to westerly winds increases the decision function
above the threshold plane (when Wind direction∼= 270◦).
Such an exploration helps in attributing a low level of
confidence to the obtained prediction related to possible
variations in wind direction.

These examples illustrate how forecasters could graph-
ically explore the sensitivity of a particular path to
particular variables. However, though potentially a powerful
tool, consideration would need to be given to the actual
forecasting process. Typically, only a very small part of
the forecasters day is spent entering data into a model and
exploring results. However, in particular situations, such as

the group discussions carried out by heli-ski guides at daily
meetings, such tools might form powerful support services in
a suite of knowledge discovery process such as that proposed
by McCollister et al.(2003).

5.3 Ensemble of forecasts

Forecasting with an ensemble of models is a conventional
approach to describing modelling uncertainties. It is
widely accepted in meteorology, hydrology and other
fields where uncertainty characterization is considered an
essential tool for decision makers in decision making
and results dissemination (Gneiting and Raftery, 2005;
Anderson and Anderson, 1999; Krzysztofowicz, 2001). A
computational approach to explore variability of the model
with respect to uncertainty in the input parameters is
relatively straightforward. An ensemble of input conditions
is sampled from some informative prior distribution (Jaynes,
2003), then the related numerical models (such as those for
snowpack spatialisation) are run to generate the secondary
input variables, and finally, the ensemble is propagated
through the prediction model and the spread of the produced
outputs is analysed. The uncertainty with respect to input
parameters is irreducible.

The prediction uncertainties concern the inherent proper-
ties of the model and assumptions used in modelling process,
and the lack or inadequacy of data. This kind of uncertainty
estimation in data-driven models is commonly approached
in a Bayesian setting (MacKay, 1992). In this work, we
consider a computational Monte Carlo ensemble approach to
characterize the three sources of uncertainties, one related to
the choice of hyper-parameters, one to the choice of samples
for the training data set and another related to the input
variables.

Our practical implementation of prediction ensemble
is composed of the combinations of 5 SVM models
(5 different combinations of hyper-parameters), 3 different
training subsets and variations in the input parameters (air
temperature, wind speed and direction, snowfall intensity),
resulting in 540 ensemble members2. An example of the
uncertainty characterization for avalanche danger prediction
for 15 February 2007 (Fig.3) with the mean ensemble danger
and the related coefficient of variation (COV) is shown in
Fig. 7. Here, very low values of danger are excluded to
provide a clearer visualisation of the uncertainty in avalanche
danger where it is relevant. The excluded values lie mostly
on flat valley floors. The most notable feature of the COV
is its relatively low values both to windward and leeward
of high elevation ridge crests. This suggests that as these
locations, irrespective of whether the avalanche danger is
high or low, the uncertainty as a result of the ensemble
modelling is low. At lower elevations, the COV increases,

2A single prediction computation on the 10 m resolution grid
takes 5 min on Intel Dual-core 3 Hz desktop.
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Fig. 7. Ensemble mean (left) and prediction uncertainty as
a coefficient of variation of ensemble predictions (right) on
15 February 2007.

indicating that avalanche danger in these locations is less
certain. This accords relatively well with the observations
noted in Sect.4.2where highest areas of hazard are suggested
as being at the highest elevations on north and east facing
slopes. The application of such ensemble forecasts is
probably more suitable for use by forecasters working over
large regions with, perhaps, backgrounds in meteorology and
climatology, rather than the forecasters in Lochaber. In the
former case, the forecasters are more likely to be primarily
office based, and have a good understanding of the potential
of ensemble models to interpret uncertainties. By contrast,
in the latter case, the primarily field based forecasters may
better deal with uncertainty by actually visiting multiple
slopes during their daily observations.

6 Conclusions

In this study, avalanche forecasting was considered to
be a classification problem, where the aim is to find a
decision boundary in the feature space of factors which
discriminate “safe” and “dangerous” conditions. Due
to the inherent complexity of the phenomenon, noise in
data, and dependence on the triggering mechanism, the
data entities representing avalanche events and “no events”
present highly overlapping sets in any space of conditioning
factors decreasing the reliability of Nearest Neighbours
methods (McCollister et al., 2003). Moreover, both
through theoretical considerations (Beyer et al., 1999) and
forecasting practice (McCollister et al., 2003) it has been
noted that such methods may be prone to over-fitting when
dealing with highly-dimensional data.

Facing a situation in which data collection methods have
overtaken our ability to interpret and synthesize data, and
the large part of incoming volumes of information remains
unexplored, new automated machine learning tools provide a

potential way to extract useful knowledge and dependencies
hidden in large volumes of data. Amongst data-driven
approaches, expert systems based on simple decision trees
and Nearest Neighbours methods are relatively popular with
forecasters since they accord well with conventional induc-
tive avalanche forecasting processes. However, in machine
learning these are considered to be relatively simple pattern
classification techniques, and further developments of data-
driven predictive tools must provide similar functionality
and transparency of interpretation. Sensitivity analysis
and uncertainty characterization are essential for bringing
these systems into operational use and real-life forecasting
practices.

The method explored in this study is a Support Vector Ma-
chine, a non-linear classifier which is robust to noise, tolerant
to overlapping classes, and showing promising performance
in many real life high-dimensional classification problems.
The paper provided insights to enhance the interpretability
of the developed data-driven prediction system including
descriptive historical reference events and a computational
analysis of sensitivity and uncertainty. These developments
aid in assessing a level of confidence to the obtained
avalanche activity predictions related to possible variations
in the weather forecasts.

The input conditioning factors used in the forecast were
gathered from direct observations of weather and snowpack
conditions. To integrate spatial variability into modelling,
the main meteorological parameters were spatialised through
the use of simple physically-based models. This relatively
“naive” modeling of the local meteorology and snowpack
could be substituted by a more comprehensive physical
models such as, for example, Alpine3D (Lehning et al.,
2006). However, the work here demonstrates clearly that
SVMs provide a means to generate forecasts which perform
well in comparison with more traditional methods such
as NN, especially where the data are highly dimensional
as is the case in a spatialised forecast. We show a
number of ways of presenting the results of SVM based
forecasts, ranging from simple maps of danger, through
aspect/elevation diagrams to presentation of individual and
informative Support Vectors. Since many measurements
input to the model are likely to contain uncertainty, we also
illustrate how ensemble runs can be produced to illustrate
variations in uncertainty for avalanche danger in space.

In conclusion, the main contributions of this paper are:

1. To use a Support Vector Machine to generate avalanche
danger classifications in a spatialised forecast, where
physically-based modelling is used to interpolate input
data across space.

2. To generate a number of outputs from the resulting
SVM, such as danger maps, aspect-elevation diagrams
and lists of individual support vectors which are likely
to be of use in conventional, inductive avalanche
forecasting.
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3. To demonstrate how sensitivity surfaces can help to
explore variability of the forecast with respect to
individual variables and how ensemble modelling can
provide insights into the uncertainties in the modelling
of avalanche danger, given knowledge about uncertainty
in the input parameters.

In future work we would like to extend this approach
to other areas, in particular where more comprehensive
avalanche databases would reduce the need to generate
virtual events. Furthermore, we see a pressing need for more
direct comparison between methods in avalanche forecasting
(cf. the Snow Model Intercomparison Project in snowpack
modelling; Etchevers et al., 2004) using the same data and
success measures. Finally, and most importantly, more
dialogue with avalanche forecasters is required to assess the
extent to which such approaches could usefully extend the
tools that they currently have available to them.
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