Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Published in final edited form as:

Title: Innate and adaptive effects of inflammasomes on T cell responses. Authors: Dostert C, Ludigs K, Guarda G Journal: Current opinion in immunology Year: 2013 Jun Volume: 25 Issue: 3 Pages: 359-65 DOI: 10.1016/j.coi.2013.02.008

JNIL | Université de Lausanne Faculté de biologie et de médecine

INNATE AND ADAPTIVE EFFECTS OF INFLAMMASOMES ON T CELL RESPONSES

Catherine Dostert¹, Kristina Ludigs², and Greta Guarda^{2,3}

¹ Life Sciences Research Unit University of Luxembourg 162a, avenue de la Faïencerie 1511 Luxembourg

² Department of Biochemistry Chemin des Boveresses 155 1066 Epalinges - Switzerland

³ to whom correspondence should be addressed: Greta Guarda Department of Biochemistry Chemin des Boveresses 155 1066 Epalinges - Switzerland Phone +41-21-692-5708 Fax +41-21-692-5705 E-mail: Greta.Guarda@unil.ch

Running title:

INFLAMMASOMES AND ADJUVANTICITY

Summary

Inflammasomes are protein complexes that form in response to pathogen- or hostderived stress signals. Their activation leads to the production of inflammatory cytokines and promotes a pyrogenic cell death process. The massive release of inflammatory mediators that follows inflammasome activation is a key event in alarming innate immune cells. Growing evidence also highlights the role of inflammasome-derived cytokines in shaping the adaptive immune response, as exemplified by the capacity of IL-1 β to support Th17 responses, or by the finding that IL-18 evokes antigen-independent IFN- γ secretion by memory CD8⁺ T cells. A deeper understanding of these mechanisms and on how to manipulate this powerful inflammatory system therefore represents an important step forward in the development of improved vaccine strategies.

Highlights:

- inflammasome activation leads to production of bioactive IL-1 β and IL-18
- IL-1β promotes Th17 differentiation, IL-18 supports IL-12-driven Th1 polarization
- IL-18 drives non-cognate lymphocyte activation, thereby improving immunity
- manipulation of inflammasome activity and substrates can ameliorate vaccine strategies

Keywords:

NLR; inflammasome; IL-1; IL-18; adjuvant; antigen-dependent T cell response; antigen-independent T cell response

Glossary:

AIM2, absent in melanoma 2; **ASC**, apoptosis speck protein with caspase recruitment domain; **DAMP**, danger-associated molecular pattern; **ICSBP**, interferon consensus sequence binding protein; **NLR**, NOD-like receptor; **NLRC**, NLR family, caspase recruitment domain containing; **NLRP**, NLR family, pyrin domain containing; **PAMP**, pathogen-associated molecular pattern; **TCR**, T cell receptor

Introduction

Sensing of different PAMPs or DAMPs can lead to activation of inflammasomes [1,2]. The huge inflammatory potential liberated upon inflammasome assembly is a basic defense mechanism employed to control different infections and its central role in innate immune responses has been largely demonstrated over the past years. Mounting evidence suggests that inflammasomes might be important for adaptive immune responses as well. We will therefore present here the current understanding on how inflammasomes tailor adaptive immune responses.

Inflammasomes: intracellular platforms for caspase-1 activation

Inflammasomes are intracellular caspase-1 activating multiprotein complexes that are induced by different PAMPs or DAMPs (as schematically represented in Figure 1; for general review on inflammasome function, see [1,2]). They are formed by association of NLR family members with the adaptor protein ASC and procaspase-1 through homotypic domain interactions. Their formation results in the proteolytic activation of caspase-1, which in turn processes different substrates. Several NLRs, such as NLRP1, NLRP3 and NLRC4 have been shown to form functional inflammasomes in response to a wide array of stimuli. Furthermore AIM2, a member of the PYHIN family, can recruit ASC and caspase-1 in response to double-stranded DNA [2].

Regulation of caspase-1-dependent cytokines

Active caspase-1 has several known targets, including cytokines from the interleukin (IL)-1 family. In addition, its activity is implicated in the unconventional secretion of other danger signals, such as the alarmin high-mobility group box 1 (HMGB1), and in a process of inflammatory cell death called pyroptosis [3-5].

IL-1 β and IL-18, the two best-characterized inflammasome-dependent cytokines, are cleaved by caspase-1 from their inactive intracellular precursors, pro-IL-1 β and pro-IL-18 [6]. IL-1 α , another IL-1 family member, does not however require cleavage for its activity. It is often secreted concomitantly with IL-1 β , though its release in response to certain stimuli and *in vivo* can be independent of the inflammasome [7,8]. Since IL-1 α and IL-1 β both signal through the IL-1R complex, the contribution *in vivo* of both cytokines is not always clear. It is therefore important to keep in mind

that dependency on IL-1R does not yet imply caspase-1 dependency. IL-18 signals via a distinct receptor, the IL-18R, which belongs to the IL-1 receptor superfamily and is structurally very similar to IL-1R.

In contrast to IL-1, whose expression requires an NF- κ B activating signal, *IL-18* mRNA is considered to be constitutively expressed in many cell types and therefore largely regulated through caspase-1-dependent cleavage [9]. However, LPS treatment of macrophages strongly augments *IL-18* transcript abundance [10]. Notably, a PU.1 and an ICSBP binding site have been located in the promoter of *IL-18*, which suggests its upregulation also by IFNs [11,12]. As type I IFNs can significantly reduce pro-IL-1 α and pro-IL-1 β levels [13], it is plausible that IFNs shift the balance of the two major caspase-1 substrates in favor of pro-IL-18.

Main effects of IL-18 and IL-18 on T helper cell polarization

The most prominent feature of IL-1 β with regard to the adaptive immune response is to favor T helper type 17 (Th17) differentiation (as summarized in Figure 2) [14-16]. This lymphocyte subset secretes IL-17 and participates in host defense against extracellular bacteria and fungi, but is also involved in autoimmunity.

IL-18 acts instead as an amplifier of IFN-γ production by Th1 cells (Figure 2) [11]. IL-18R is poorly expressed on naïve T cells, but is upregulated upon priming, allowing enhanced Th1 polarization of activated T lymphocytes. Furthermore, IL-18R expression is increased following exposure to IL-12, the major Th1-polarizing cytokine. IL-18, in turn, helps induce the IL-12 high affinity receptor, establishing a feed-forward Th1-amplifying loop [11,17]. Surprisingly, in the absence of a Th1polarizing environment, IL-18 can promote the differentiation of Th2 cells, a CD4⁺ T cell subset dominating allergic responses and characterized by the expression of IL-4 and IL-13 [11,17,18].

Although the effects of IL-1 β and IL-18 on adaptive immune cells have been well characterized, the *in vivo* relevance of inflammasomes in adaptive immune responses remains more elusive. The following sections will therefore summarize the recent data on their *in vivo* effects and pinpoint the drawbacks of the models that have been used.

INFLAMMASOMES AND ADJUVANTICITY

Inflammasome activation and adjuvants

It was long known that DAMPs can activate dendritic cells (DCs), thereby favoring T cell priming. Uric acid was identified, in a study by Rock and coworkers, as a danger signal released from dying cells that acts as an efficient T cell adjuvant [19]. Interestingly, DAMPs such as uric acid, ATP, or mitochondrial DNA activate the NLRP3 inflammasome, raising the question on whether or not its activity is important for T cell priming under such conditions. Indeed, uric acid crystals were shown to promote Th17 responses in an ASC- and caspase-1-dependent manner when applied subcutaneously [20]. However, in a uric acid-mediated asthma model Th2-polarized responses proceeded independently of the inflammasome [21].

This is reminiscent of what has been observed for alum, a clinically approved adjuvant that is routinely used in human vaccines. Alum has unanimously been shown to activate the NLRP3 inflammasome *in vitro*, but the *in vivo* role of the inflammasome in alum-induced adjuvanticity remains controversial [22-26]. IL-18 and IL-1 preferentially drive Th1/Th17 responses, whereas alum rather polarizes Th2 type immunity, which – by some groups – was found to be unaltered in the absence of caspase-1 or Nlrp3 [24,25]. Along this line, whereas IL-1 signaling and inflammasome activity have been implicated in allergic reactions, the importance of the latter in the establishement of such Th2 responses has not been unambiguously delineated [26-28]. Therefore, the definitive role of the NLRP3 inflammasome in adjuvanticity might occur through indirect mechanisms, be strongly influenced by the context, and still remains to be clarified.

Of note, it has been shown that tumor cells treated with chemotherapeutic agents can act as effective adjuvants to prime anti-tumor T cell responses through release of ATP and subsequent P2X7-dependent inflammasome activation [29]. As illustrated hereafter, additional implications of inflammasomes in the development of adaptive immunity come from the study of naturally occurring immune responses.

Lessons from autoimmune and autoinflammatory conditions

Recent reports link the inflammasome to Multiple Sclerosis (MS), a demyelinating inflammatory disease of the central nervous system, where autoreactive T cells target oligodendrocytes [30,31]. IL-1 signaling has been implicated in the development of

MS, a Th1- and Th17-driven pathology [30-32]. Inflammasome-deficient mice are protected from disease progression in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS (Table 1) [33-36]. The exact function of the inflammasome in this process is however unclear, since two recent reports describe the implication of Nlrp3 and ASC in EAE progression [34,36], whereas another study finds an inflammasome-independent role for ASC [35]. These divergent findings could be due to differences in the immunization protocols used for EAE induction, as suggested in [33,36].

A second example is cryopyrin-associated periodic syndromes (CAPS), human disorders which present with recurrent fever and inflammation and are in many cases due to gain-of-function mutations in NLRP3 [37]. Knock-in (KI) mice harboring constitutively active NLRP3 mutations have been established and recapitulate several aspects of the human disease, such as skin and systemic illness together with increased IL-1 β production in the myeloid compartment [38,39]. The NLRP3-R258W KI mouse develops skin inflammation with neutrophil infiltration and predominant Th17 differentiation, whereas in the NLRP3-A350V KI mouse the autoinflammatory process was shown to be T and B cell-independent. The reason for these different observations in the two KI models remains unclear. Interestingly, a recent study showed increased IL-17 serum levels as well as Th17 frequency in CAPS patients, which could be reduced by blocking IL-1 β *in vivo*, suggesting that inflammasome-derived IL-1 β is important in the differentiation of Th17 in human autoinflammatory conditions (Table 1) [40].

Inflammasomes and T cell responses in infections

IL-1 has been shown to promote Th17 polarization in the context of different types of infections (Table 1) [41-46]. The use of knockout mouse strains highlighted the role of caspase-1 and ASC in Th17 priming during *Candida albicans* infection [42]. *C. albicans*-induced IL-1 β drives the differentiation of Th17 cells secreting IL-17 alongside with IFN- γ [47]. In line with this observation, the absence of IL-1 often leads to decreased numbers of IL-17- as well as IFN- γ -producing cells [41-44]. Moreover, IL-1 can promote T cell proliferation, and its suppressive effects on regulatory T cells and IL-10 production by T cells provide a mechanistic interpretation for the former observation [47,48]. It is therefore not surprising that in some infectious models, inflammasome deficiency leads to a generalized reduction of T cell responses [42,44]. In addition, it has recently been demonstrated that upon influenza A infection, IL-1R signaling in DCs is necessary to promote $CD8^+$ T cell responses, illustrating how paracrine IL-1 can contribute to mature DCs [49]. Since this study was based on *IL-1RI*-knockout mice, the precise contribution by inflammasomes, however, remains to be determined.

Bordetella pertussis infection of *IL-1RI*-deficient animals showed decreased protection and diminished Th17 responses [43]. Yet, because both IL-1 β and IL-1 α promote Th17 polarization, the contribution by the inflammasome in the priming phase was shown using a selective caspase-1 inhibitor. The use of *Nlrc4-* and *Nlrp3-* further suggested inflammasome relevance in inducing Th17 responses upon *Legionella pneumophila* and *Schistosoma mansoni* infection, respectively [44,45]. In contrast, caspase-1 ablation did not reduce IL-17 production in the context of *Helicobacter pylori* infection, while IL-18 deficiency promoted it, pinpointing the relevance of inflammasome substrates in modulating the adaptive immune response [41].

IL-18 has been shown to promote IFN-γ production in several infectious models, including *Propionibacterium acnes*, *Mycobacterium bovis*, *Leishmania major*, and the intracellular fungal parasite *Cryptococcus neoformans* [11,50]. However, it was noticed early on that the effects of IL-18 on Th1 polarization are different from those of IL-12. While IL-12 is a crucial factor for Th1 polarization, IL-18 only has the ability of acting on IL-12-primed cells to strengthen their Th1 differentiation [50].

Infectious models make a strong case for the *in vivo* Th17/Th1 polarizing properties of the inflammasome substrates IL-1 β and IL-18. As discussed in the next section, IL-18 also owns the surprising ability to elicit IFN- γ secretion by memory T cells in the absence of antigenic-triggering, questioning – in some experimental settings – its factual contribution to bona fide Th1 polarization.

Inflammasome and non-cognate lymphocyte activation

Recent findings highlight inflammasome importance in mediating non-cognate IFN- γ release, thereby "adjuvating" immune responses (illustrated in Figure 3). *Salmonella* Typhimurium infection or injection of heat-inactivated lysates stimulated the release of IFN- γ by splenic memory cytotoxic T cells of unrelated specificity [51].

This effect, as shown by the use of knockout mice, was mediated by IL-18 released upon NLRC4 inflammasome activation in DCs as early as two hours after the insult. Importantly, non-cognate CD8⁺ T lymphocyte-derived IFN- γ contributed to the management of the infection [51]. Similarly, splenic natural killer (NK) and memory CD8⁺ T cells produced innate IFN- γ secretion starting from eight hours after *Listeria monocytogenes* infection [52]. Inflammatory monocytes were the key cells eliciting, in a caspase 1-dependent manner, lymphocyte-derived IFN- γ release, suggesting that different cell subsets could contribute to IL-18 secretion either sequentially or depending on the infectious agent. In addition, an analogous mechanism takes place in draining lymph nodes where, upon *Pseudomonas aeruginosa* infection, the major source of IL-18 are subcapsular sinus macrophages, which are strategically positioned to capture invading pathogens and particles [53]. Innate IFN- γ secretion by CD8⁺ T cells and other lymphocyte subsets was observed upon additional bacterial, viral, and protozoan infections, underlining how broadly this phenomenon might contribute to immune responses [51-53].

Recent studies attributed not only to IL-18, but also to IL-1 β , in combination with IL-23 the ability to stimulate IFN- γ as well as IL-17 secretion without need for TCR triggering [30,54]. These results further suggest that inflammasome-driven innate lymphocyte functions could be relevant to antifungal and autoimmune responses.

An environment rich in IFN- γ coinciding with antigen presentation to naïve T lymphocytes favors the priming of robust Th1 responses. The advantage of evoking IFN- γ production by lymphocytes could, therefore, be twofold: it helps to activate innate immune cells to control pathogen spread during primary encounter and the development of a Th1-polarized memory response for future challenges.

Concluding Remarks

While emerging evidence highlights the importance of inflammasome-derived IL-18 to elicit innate IFN- γ secretion by lymphocytes, its impact on the concomitant priming of antigen-specific T cells has not been explicitly addressed. Furthermore, to carefully evaluate inflammasome relevance in the priming and polarization of adaptive immune responses, the contribution of the different inflammasomes, their substrates, and IL-1 α should be individually addressed. The current understanding is in fact strongly hindered by the lack of such complete information. Hopefully, future work will enable us to better define the role of each of these players.

Nonetheless, the key role of IL-1 in supporting Th17 polarization and the importance of IL-18 in promoting Th1-tailored responses as well as non-cognate IFN- γ release are supported by multiple lines of evidence. The divergent functions of IL-1 β and IL-18 in shaping adaptive immunity render the possibility of controlling these two substrates appealing, particularly for vaccination purposes. Favoring IL-18 production represents a promising way to achieve protective Th1 responses. Type I IFNs are known to inhibit pro-IL-1 synthesis and activity of the canonical NLRP3 inflammasome, while they might promote pro-IL-18 [11,13,32,55]. Thus, an attractive adjuvant could combine an inducer of type I IFN to an activator of an alternative inflammasome, such as the AIM2 inflammasome [2], maybe in the form of nucleic acids or safe viral agents.

The last decade witnessed the discovery of inflammasomes as key players of the innate immune response and led to improved clinical treatments for autoinflammatory disorders. The role of inflammasomes in the adaptive immune response has only recently emerged and anticipates a better control of adaptive immunity over the coming years.

Acknowledgements

We thank S. Bedoui, University of Melbourne, Parkville, Australia, and K. Maslowski, UNIL, Lausanne, Switzerland, for critical reading of the manuscript. Studies in the group of GG are funded by the Swiss National Science Foundation (PP00P3_139094). CD is supported by the National Research Fund, Luxembourg.

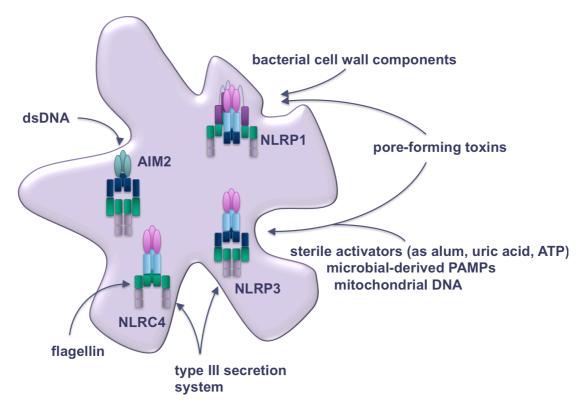
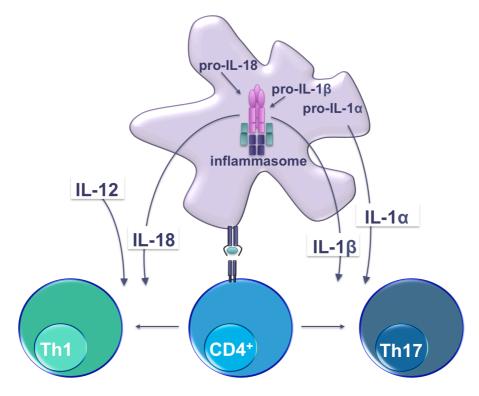
The authors declared no conflicts of interest.

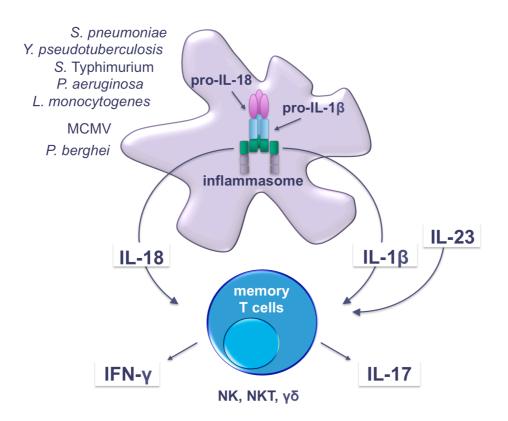
Tables and Figure Legends

Table 1. Implications of inflammasomes in the development of adaptive immune					
responses in autoinflammatory, autoimmune, and infectious diseases. (n.a., not					
assessed; arrows in brackets indicate a mild effect)					

	IFN-γ	IL-17		
disease/infection model	(Th1)	(Th17)	disease/experimental model	refs
CAPS	→ ,(7)	7	CAPS patients, NLRP3-R258W KI	40,38
EAE	И	R	caspase-1 ^{-/-} , Asc ^{-/-} , Nlrp3 ^{-/-} , IL-18 ^{-/-}	30,
(inact. <i>M. tuberculosis/</i> pertussis toxin)	r	Ы	IL-1RI ^{-/-}	33-36
M. tuberculosis	Я	n.a.	AIM2 ^{-/-}	46
<i>B. pertussis</i> (adenylate cyclase toxin)	(¥),n.a.	И	<i>IL-1RΓ</i> ^{/-} , caspase-1 inhibitor	43
C. albicans	Я	R	Asc ^{-/-} , caspase-1 ^{-/-}	42
L. pneumophila	n.a.	R	caspase-1 ^{-/-} , IL-1RI ^{/-} , Nlrc4 ^{-/-}	45
	n.a.	7	IL-18 ^{-/-}	
S. mansoni	Я	R	Nlrp3 ^{-/-} , Asc ^{-/-}	44
H. pylori	→ →	(7) →	caspase-1 ^{-/-} , IL-18 ^{-/-} IL-1RГ ^{/-}	41

Figure 1. Schematic overview of the best-characterized inflammasomes and their main activators.


Figure 2. Effects of IL-1 and IL-18 in the polarization of T cell responses.

IL-1 β and IL-18 are processed into their active form by the inflammasome and can differentially influence the polarization of T cells. Whereas IL-18 supports Th1 differentiation in synergy with IL-12, IL-1 β promotes Th17 differentiation. IL-1 α shares with IL-1 β this ability, but its secretion can be independent of the inflammasome.

Figure 3. Inflammasome-derived cytokines elicit non-cognate memory T cell effector functions.

In the above-depicted infectious models, it was shown that inflammasome-derived IL-18 drives IFN- γ production by memory CD8⁺ T cells, even in the absence of TCR stimulation. Similarly, IL-1 together with IL-23 can elicit IL-17 secretion by activated CD4⁺ and CD8⁺ T cells in an antigen-independent manner. Furthermore, other lymphocyte subsets such as NK, NKT, or $\gamma\delta$ T cells can respond to IL-18 and IL-1 contributing to the innate production of IFN- γ and IL-17.

References

- 1. Schroder K, Tschopp J: The inflammasomes. Cell 2010, 140:821-832.
- 2. Rathinam VA, Vanaja SK, Fitzgerald KA: Regulation of inflammasome signaling. *Nat Immunol* 2012, 13:333-332.
- 3. Keller M, Ruegg A, Werner S, Beer HD: Active caspase-1 is a regulator of unconventional protein secretion. *Cell* 2008, 132:818-831.
- 4. Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD, Dixit VM: Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. *J Immunol* 2010, 185:4385-4392.
- 5. Bergsbaken T, Fink SL, Cookson BT: Pyroptosis: host cell death and inflammation. *Nat Rev Microbiol* 2009, 7:99-109.
- 6. Dinarello CA: Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. *Blood* 2011, 117:3720-3732.
- 7. Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, Tschopp J: Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. *Proc Natl Acad Sci U S A* 2010, 107:19449-19454.
- Gross O, Yazdi AS, Thomas CJ, Masin M, Heinz LX, Guarda G, Quadroni M, Drexler SK, Tschopp J: Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. *Immunity* 2012, 36:388-400.
- 9. Arend WP, Palmer G, Gabay C: IL-1, IL-18, and IL-33 families of cytokines. *Immunol Rev* 2008, 223:20-38.
- Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW, 3rd, et al.: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. *Genome Biol* 2009, 10:R130.
- 11. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H: Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. *Cytokine Growth Factor Rev* 2001, 12:53-72.
- 12. Nagai T, Devergne O, Mueller TF, Perkins DL, van Seventer JM, van Seventer GA: Timing of IFN-beta exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-beta-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation. *J Immunol* 2003, 171:5233-5243.
- Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Forster I, Farlik M, Decker T, Du Pasquier RA, Romero P, et al.: Type I interferon inhibits interleukin-1 production and inflammasome activation. *Immunity* 2011, 34:213-223.

*This work investigates the inhibitory role of type I IFNs at the level of inflammasome activity and at the level of pro-IL-1 expression.

- 14. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. *Immunity* 2006, 24:179-189.
- 15. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F: Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. *Nat Immunol* 2007, 8:942-949.

- 16. Kryczek I, Wei S, Vatan L, Escara-Wilke J, Szeliga W, Keller ET, Zou W: Cutting edge: opposite effects of IL-1 and IL-2 on the regulation of IL-17+ T cell pool IL-1 subverts IL-2-mediated suppression. *J Immunol* 2007, 179:1423-1426.
- 17. Blom L, Poulsen LK: IL-1 Family Members IL-18 and IL-33 Upregulate the Inflammatory Potential of Differentiated Human Th1 and Th2 Cultures. *J Immunol* 2012, 189:4331-4337.
- Yoshimoto T, Mizutani H, Tsutsui H, Noben-Trauth N, Yamanaka K, Tanaka M, Izumi S, Okamura H, Paul WE, Nakanishi K: IL-18 induction of IgE: dependence on CD4+ T cells, IL-4 and STAT6. *Nat Immunol* 2000, 1:132-137.
- 19. Shi Y, Evans JE, Rock KL: Molecular identification of a danger signal that alerts the immune system to dying cells. *Nature* 2003, 425:516-521.
- 20. Conforti-Andreoni C, Spreafico R, Qian HL, Riteau N, Ryffel B, Ricciardi-Castagnoli P, Mortellaro A: Uric acid-driven Th17 differentiation requires inflammasome-derived IL-1 and IL-18. *J Immunol* 2011, 187:5842-5850.
- *The authors show that uric acid-driven Th17 differentiation is abrogated by deficiency of inflammasome components, IL-1R and IL-1 α .
- 21. Kool M, Willart MA, van Nimwegen M, Bergen I, Pouliot P, Virchow JC, Rogers N, Osorio F, Reis e Sousa C, Hammad H, et al.: An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. *Immunity* 2011, 34:527-540.
- 22. Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA: Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. *Nature* 2008, 453:1122-1126.
- 23. Li H, Willingham SB, Ting JP, Re F: Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. *J Immunol* 2008, 181:17-21.
- 24. Franchi L, Nunez G: The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. *Eur J Immunol* 2008, 38:2085-2089.
- 25. McKee AS, Munks MW, MacLeod MK, Fleenor CJ, Van Rooijen N, Kappler JW, Marrack P: Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. *J Immunol* 2009, 183:4403-4414.
- 26. Kool M, Fierens K, Lambrecht BN: Alum adjuvant: some of the tricks of the oldest adjuvant. *J Med Microbiol* 2012, 61:927-934.
- Krause K, Metz M, Makris M, Zuberbier T, Maurer M: The role of interleukin-1 in allergy-related disorders. *Curr Opin Allergy Clin Immunol* 2012, 12:477-484.
- Corazza N, Kaufmann T: Novel insights into mechanisms of food allergy and allergic airway inflammation using experimental mouse models. *Allergy* 2012, 67:1483-1490.
- 29. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, et al.: Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. *Nat Med* 2009, 15:1170-1178.

- 30. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC: A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. *J Exp Med* 2006, 203:1685-1691.
- 31. Matsuki T, Nakae S, Sudo K, Horai R, Iwakura Y: Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. *Int Immunol* 2006, 18:399-407.
- Ludigs K, Parfenov V, Du Pasquier RA, Guarda G: Type I IFN-mediated regulation of IL-1 production in inflammatory disorders. *Cell Mol Life Sci* 2012, 69:3395-3418.
- 33. Furlan R, Martino G, Galbiati F, Poliani PL, Smiroldo S, Bergami A, Desina G, Comi G, Flavell R, Su MS, et al.: Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. *J Immunol* 1999, 163:2403-2409.
- 34. Gris D, Ye Z, Iocca HA, Wen H, Craven RR, Gris P, Huang M, Schneider M, Miller SD, Ting JP: NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. *J Immunol* 2010, 185:974-981.
- 35. Shaw PJ, Lukens JR, Burns S, Chi H, McGargill MA, Kanneganti TD: Cutting edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. *J Immunol* 2010, 184:4610-4614.
- 36. Inoue M, Williams KL, Oliver T, Vandenabeele P, Rajan JV, Miao EA, Shinohara ML: Interferon-beta therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. *Sci Signal* 2012, 5:ra38.
- 37. Goldbach-Mansky R: Current status of understanding the pathogenesis and management of patients with NOMID/CINCA. *Curr Rheumatol Rep* 2011, 13:123-131.
- 38. Meng G, Zhang F, Fuss I, Kitani A, Strober W: A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. *Immunity* 2009, 30:860-874.
- 39. Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C, Putnam CD, Boyle DL, Firestein GS, Horner AA, et al.: Inflammasomemediated disease animal models reveal roles for innate but not adaptive immunity. *Immunity* 2009, 30:875-887.
- 40. Lasiglie D, Traggiai E, Federici S, Alessio M, Buoncompagni A, Accogli A, Chiesa S, Penco F, Martini A, Gattorno M: Role of IL-1 beta in the development of human T(H)17 cells: lesson from NLPR3 mutated patients. *PLoS One* 2011, 6:e20014.
- 41. Hitzler I, Sayi A, Kohler E, Engler DB, Koch KN, Hardt WD, Muller A: Caspase-1 has both proinflammatory and regulatory properties in Helicobacter infections, which are differentially mediated by its substrates IL-1beta and IL-18. *J Immunol* 2012, 188:3594-3602.
- **This work highlights how IL-1 and IL-18 can differentially affect immune responses and immunopathology during *H. pylori* infection.
- 42. van de Veerdonk FL, Joosten LA, Shaw PJ, Smeekens SP, Malireddi RK, van der Meer JW, Kullberg BJ, Netea MG, Kanneganti TD: The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. *Eur J Immunol* 2011, 41:2260-2268.

*Splenocytes from *caspase-1-* and *Asc*-deficient mice infected with *C. albicans* show impaired production of IL-17 and IFN-γ upon restimulation.

- 43. Dunne A, Ross PJ, Pospisilova E, Masin J, Meaney A, Sutton CE, Iwakura Y, Tschopp J, Sebo P, Mills KH: Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol 2010, 185:1711-1719.
- 44. Ritter M, Gross O, Kays S, Ruland J, Nimmerjahn F, Saijo S, Tschopp J, Layland LE, Prazeres da Costa C: Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. *Proc Natl Acad Sci U S A* 2010, 107:20459-20464.

*The authors demonstrate that restimulation of bulk lymphocytes from *Asc-* and *Nlrp3*-deficient mice challenged with *S. mansoni* exhibit reduced production of IL-17 and IFN-γ.

45. Trunk G, Oxenius A: Innate instruction of CD4+ T cell immunity in respiratory bacterial infection. *J Immunol* 2012, 189:616-628.

**This work studies the effects of the inflammasome and its substrates on Th17 development following *L. pneumophila* infection in a highly controlled system.

- 46. Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M, Yamamoto M, Takeda K: Critical role of AIM2 in Mycobacterium tuberculosis infection. *Int Immunol* 2012, 24:637-644.
- 47. Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M, Monticelli S, Lanzavecchia A, Sallusto F: Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. *Nature* 2012, 484:514-518.

**This paper shows that *C. albicans* and *S. aureus*-specific Th17 cells produce IFN- γ and IL-10, respectively, and that IL-1 β is critical to induce the *C.albicans*-associated phenotype.

- 48. O'Sullivan BJ, Thomas HE, Pai S, Santamaria P, Iwakura Y, Steptoe RJ, Kay TW, Thomas R: IL-1 beta breaks tolerance through expansion of CD25+ effector T cells. *J Immunol* 2006, 176:7278-7287.
- 49. Pang IK, Ichinohe T, Iwasaki A: IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8(+) T cell responses to influenza A virus. *Nat Immunol* 2013.
- 50. Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, Okamura H, Nakanishi K, Akira S: Defective NK cell activity and Th1 response in IL-18-deficient mice. *Immunity* 1998, 8:383-390.
- 51. Kupz A, Guarda G, Gebhardt T, Sander LE, Short KR, Diavatopoulos DA, Wijburg OL, Cao H, Waithman JC, Chen W, et al.: NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8(+) T cells. *Nat Immunol* 2012, 13:162-169.

***In vivo* evidence that Nlrc4 inflammasome-derived IL-18 in *S*. Typhimurimchallenged mice triggers IFN- γ production by non-cognate memory CD8⁺ T cells, facilitating pathogen control.

- 52. Soudja SM, Ruiz AL, Marie JC, Lauvau G: Inflammatory monocytes activate memory CD8(+) T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. *Immunity* 2012, 37:549-562.
- 53. Kastenmuller W, Torabi-Parizi P, Subramanian N, Lammermann T, Germain RN: A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. *Cell* 2012, 150:1235-1248.

**Within lymph nodes, macrophages produce IL-18 upon *P. aeruginosa* infection, leading to innate IFN- γ secretion by neighboring memory CD8⁺, NK and NKT lymphocytes.

- 54. Lalor SJ, Dungan LS, Sutton CE, Basdeo SA, Fletcher JM, Mills KH: Caspase-1processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. *J Immunol* 2011, 186:5738-5748.
- 55. Hernandez-Cuellar E, Tsuchiya K, Hara H, Fang R, Sakai S, Kawamura I, Akira S, Mitsuyama M: Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. *J Immunol* 2012, 189:5113-5117.