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Abstract: In this paper we derive Piterbarg’s max-discretisation theorem for two different grids considering

centered stationary vector Gaussian processes. So far in the literature results in this direction have been derived

for the joint distribution of the maximum of Gaussian processes over [0, T ] and over a grid R(δ1(T )) = {kδ1(T ) :

k = 0, 1, · · · }. In this paper we extend the recent findings by considering additionally the maximum over another

grid R(δ2(T )). We derive the joint limiting distribution of maximum of stationary Gaussian vector processes

for different choices of such grids by letting T →∞. As a by-product we find that the joint limiting distribution

of the maximum over different grids, which we refer to as the Piterbarg distribution, is in the case of weakly

dependent Gaussian processes a max-stable distribution.
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1. Introduction

Let {X(t), t ≥ 0} be a centered stationary Gaussian process with continuous sample paths, unit variance and

correlation function r(·) which satisfies for some α ∈ (0, 2]

r(t) = 1− C|t|α + o(|t|α) as t→ 0 and r(t) < 1 for t 6= 0,(1)

where C is some positive constant. In various applications only realisations of X on a discrete time grid are

possible. For simplicity, in this paper we shall consider uniform grids of points R(δ) = {kδ : k = 0, 1, · · · } where

δ := δ(T ) > 0 depends on the parameter T > 0. In view of the findings of Berman (see [5, 7]) the maximum

of X taken over such a discrete grid has a limiting Gumbel distribution if

lim
T→∞

(2 lnT )1/αδ(T ) = D,(2)

with D =∞ and the Berman condition

lim
T→∞

r(T ) lnT = r(3)

holds for r = 0. Specifically, for the maximum M(δ, T ) = maxi:0≤iδ≤T X(iδ) over R(δ) ∩ [0, T ] we have

lim
T→∞

sup
x∈R

∣∣∣∣P {aT (M(δ, T )− bδ,T ) ≤ x} − e−e
−x
∣∣∣∣ = 0,
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provided that both (2) and (3) hold, where

aT =
√

2 lnT , bδ,T = aT −
ln(aT δ

√
2π)

aT
, T > 0.(4)

For the maximum over [0, T ] defined thus as M(T ) = maxt∈[0,T ]X(t) it is well-known (see e.g., [21, 1, 2, 7, 26])

that (1) and (3) imply

lim
T→∞

sup
x∈R

∣∣∣∣P {aT (M(T )− bT ) ≤ x} − e−e
−x
∣∣∣∣ = 0,(5)

where

bT = aT + a−1
T ln((2π)−1/2C1/αHαa

−1+2/α
T )(6)

and Hα ∈ (0,∞) denotes Pickands constant, see [24, 25, 6, 21, 2, 26, 11, 3, 14, 12, 9, 17] for more details and

generalisations of Hα.

The seminal contribution [27] derives the joint convergence as T → ∞ of M(T ) and M(δ, T ) showing their

asymptotic independence, i.e.,

lim
T→∞

sup
x,y∈R

∣∣∣∣P {aT (M(T )− bT ) ≤ x, aT (M(δ, T )− bδ,T ≤ y} − e−e
−x−e−y

∣∣∣∣ = 0.

Hereafter we set B∗α/2(t) :=
√

2Bα/2(t)− |t|α , t ≥ 0 with Bα a standard fractional Brownian motion with Hurst

index α/2 ∈ (0, 1); recall that δ = δ(T ) is given by (2). Define further for any D > 0

HD,α = lim
λ→∞

λ−1E
{
emaxk∈N:kD∈[0,λ] B

∗
α/2(kD)

}
∈ (0,∞)

and set (the constant C > 0 below relates to (1))

bT (D) = aT + a−1
T ln((2π)−1/2C1/αHD,αa

−1+2/α
T ).(7)

For R(Da
−2/α
T ), D > 0 (in this case the grid is called Pickands grid and δ = δ(T ) = Da

−2/α
T ), then in view of

[27], Theorem 2 the stated asymptotic independence does not hold since

lim
T→∞

sup
x,y∈R

∣∣∣∣P {aT (M(T )− bT ) ≤ x, aT (M(δ, T )− bT (D)) ≤ y} − e−e
−x−e−y+H

lnHα+x,lnHD,α+y

D,α

∣∣∣∣ = 0,

where the function Hx,y
D,α is defined for any x, y ∈ R as

Hx,y
D,α = lim

λ→∞
λ−1Hx,y

D,α(λ) ∈ (0,∞),(8)

with

Hx,y
D,α(λ) =

∫
s∈R

esP
{

max
t∈[0,λ]

B∗α/2(t) > s+ x, max
k∈N:kD∈[0,λ]

B∗α/2(kD) > s+ y

}
ds.

Since it follows that for any w ∈ R

lim
x→−∞

Hx,w
D,α = e−wHD,α, lim

y→−∞
Hw,y
D,α = e−wHα ∈ (0,∞),(9)
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then

Q(x, y) = e−e
−x−e−y+H

lnHα+x,lnHD,α+y

D,α , x, y ∈ R

is a bivariate distribution function which has Gumbel marginals Q(z,∞) = Q(∞, z) = e−e
−z
, z ∈ R. Moreover

Q is a bivariate max-stable distribution, which we shall refer to as Piterbarg distribution. This multivariate

distribution is of some independent interest for statistical modelling of dependent multivariate risks.

In the extreme case of a dense grid, which in the terminology of [27] means that (2) holds for D = 0, then by

Theorem 3 in [27]

lim
T→∞

sup
x,y∈R

∣∣∣∣P {aT (M(T )− bT ) ≤ x, aT (M(δ, T )− bT ) ≤ y} − e−e
−min(x,y)

∣∣∣∣ = 0

thus the continuous time and the discrete time maxima are asymptotically completely dependent.

In case of two different uniform girds R(δ1) and R(δ2) a natural question that arises is:

What is the joint limiting behaviour of M(T ),M(δ1, T ),M(δ2, T ) for different types of grids?

Motivated by this question, our findings this contribution include:

a) We show that M(δ1, T ) and M(δ2, T ) are always asymptotically independent if one grid is sparse and the

other grid is Pickands or dense. Further, we obtain the joint limiting distribution if one of the grids is Pickands,

and the other grid is Pickands or dense.

b) The Berman condition is relaxed by assuming that (3) holds for some r ∈ [0,∞). When r > 0 the Gaussian

process X is said to be strongly dependent, see [22, 26, 23, 32, 29, 8] for details on the extremes of such Gaussian

processes. The contribution [34] derives Piterbarg’s max-discretisation theorem for strongly dependent Gaussian

processes. In applications, often modelling of the maximum of functionals of a Gaussian vector process is of

interest, see e.g., [38, 4, 10]. Our results in this paper are derived for the more general framework of Gaussian

vector processes extending the recent findings of [31] by considering simultaneously two different grids. This

paper highlights the role of different grids in the approximation of the maximum over a continuous interval. Our

results are therefore of interest for simulation studies, which was the main motivation of [27, 19, 20, 36, 37, 30, 35].

c) As a by-product we show that for weakly dependent stationary Gaussian processes the limiting distributions

are max-stable. In Extreme Value Theory max-stable distributions and processes are characterised in different

ways, see e.g., [15, 13]. In order for a multivariate max-stable distribution to be also useful for statistical

modelling, it is important to find how that distribution approximates the maxima of certain sequences (or

triangular arrays). Piterbarg max-stable distributions are therefore important since we show also their usefulness

in the approximations of maxima over different grids.

Organisation of the article is as follows. Our main results are presented in the next section. All the proofs are

relegated to Section 3 which is followed by an Appendix.

2. Main results

We shall investigate in the following the asymptotics of maxima over different grids of a centered stationary

multivariate p-dimensional Gaussian process {X(t), t ≥ 0}. Each component Xk, k ≤ p of X is assumed

to have a constant variance function equal to 1, continuous sample paths and correlation function rkk(t) =
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Cov(Xk(s), Xk(s+ t)) which satisfies for any index k ≤ p

rkk(t) = 1− C|t|α + o(|t|α) as t→ 0 and rkk(t) < 1 for t 6= 0(10)

for some positive constants C. Hereafter we suppose that X has jointly stationary components with cross-

correlation function rkl(t) = Cov(Xk(s), Xl(s+ t)) which does not depend on s for any s, t positive. The strong

dependence condition for the vector Gaussian process X reads

lim
T→∞

rkl(T ) lnT = rkl ∈ [0,∞), 1 ≤ k, l ≤ p.(11)

In order to exclude the possibility that |Xk(t)| = |Xl(t+ t0)| for some k 6= l, t0 > 0

max
k 6=l

sup
t∈[0,∞)

|rkl(t)| < 1(12)

will be further assumed. For simplicity we consider only two uniform grids R(δ1) and R(δ2). Recall that

δi, i = 1, 2 depend on T > 0; in the case of Pickands grid we set

R(δi) = R(Dia
−2/α
T )

for some constant Di > 0, i = 1, 2. The vector of maxima on continuous time will be denoted by M(T ) and

that with respect to the discrete uniform grid R(δi), i = 1, 2 by M(δi, T ). This means that the kth components

of these two random vectors are Mk(T ) and Mk(δi, T ), respectively which are defined by

Mk(T ) = max
t∈[0,T ]

Xk(t), Mk(δi, T ) = max
t∈R(δi)∩[0,T ]

Xk(t), k ≤ p.

For notational simplicity we shall set below

M̃(T ) =
(
aT (M1(T )− bT ), . . . , aT (Mp(T )− bT )

)
and

M̃(δi, T ) =
(
aT (M1(δi, T )− bδi,T ), . . . , aT (Mp(δi, T )− bδi,T )

)
,

where bδi,T is defined in (4) if the grid R(δi) is sparse, bδi,T = bT (Di) is given by (7) if we consider a Pickands

grid R(δi) = R(Dia
−2/α
T ) and for a dense grid we set bδi,T = bT with bT defined in (6).

In the following x,y1,y2 ∈ Rp are fixed vectors and Z is a p-dimensional centered Gaussian random vector

with covariances

Cov(Zk, Zl) =
rkl√
rkkrll

, 1 ≤ l ≤ k ≤ p.(13)

When rkkrll = 0 we assume that Zk and Zl are independent, i.e., we shall set

Cov(Zk, Zl) = 0.
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The operations with vectors are meant componentwise, for instance x ≤ y means xk ≤ yk for any index k ≤ p,

with xk and yk the kth component of x and y, respectively. Hereafter we define

pT,x,y,δ := P
{
M̃(T ) ≤ x,M̃(δi, T ) ≤ yi, i = 1, 2

}
.

In the first theorem below we discuss the case when one of the grids is sparse. Our results shall establish that

lim
T→∞

sup
x,y1,y2∈Rp

∣∣∣∣pT,x,y,δ − E

{
exp
(
−

p∑
k=1

f(xk, yk1, yk2)e−rkk+
√

2rkkZk
)}∣∣∣∣ = 0,(14)

where the function f is given below explicitly for each particular case.

Theorem 2.1. Let {X(t), t ≥ 0} be a centered stationary Gaussian vector process as defined above and let R(δ1)

be a sparse grid. Assume that (10), (11) and (12) hold and the Gaussian random vector Z has a positive-definite

covariance matrix with elements defined in (13).

i) If R(δ2) is another sparse grid such that R(δ1) ∩ R(δ2) = ∅ or limT→∞ δ1(T )/δ2(T ) = ∞, then (14) holds

with

f(xk, yk1, yk2) = e−xk + e−yk1 + e−yk2 .

ii) Let R(δ2) be a sparse grid such that R(δ1) ∩R(δ2) = R(δ3). If R(δ3) is a non-empty grid such that

lim
T→∞

ln(
δ3(T )

δ1(T )
) = θ1 ∈ [0,∞), lim

T→∞
ln(

δ3(T )

δ2(T )
) = θ2 ∈ [0,∞),

then (14) holds with (write θ = θ2 − θ1)

f(xk, yk1, yk2) = e−xk + e−yk1 + e−yk2 − e−yk1−θ1I(yk1 > yk2 + θ)− e−yk2−θ2I(yk1 ≤ yk2 + θ),

where I(·) is the indicator function.

iii) If R(δ2) = R(D2a
−2/α
T ) is a Pickands grid, then (14) holds with

f(xk, yk1, yk2) = e−xk + e−yk1 + e−yk2 −H lnHα+xk,lnHD2,α
+yk2

D2,α
.

iv) If R(δ2) is a dense grid, then again (14) holds with

f(xk, yk1, yk2) = e−yk1 + e−min(xk,yk2).

We consider next the cases that one grid is a Pickands grid and the second one is either a Pickands or a dense

grid. For positive constants D1, D2, λ and x, z1, z2 ∈ R define (recall B∗α/2(t) :=
√

2Bα/2(t)− |t|α)

Hz1,z2
D1,D2,α

(λ) =

∫
s∈R

esP
{

max
k∈N:kDi∈[0,λ]

B∗α/2(kDi) > s+ zi, i = 1, 2

}
ds

and

Hx,z1,z2
D1,D2,α

(λ) =

∫
s∈R

esP
{

max
t∈[0,λ]

B∗α/2(t) > s+ x, max
k∈N:kDi∈[0,λ]

B∗α/2(kDi) > s+ zi, i = 1, 2

}
ds.
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Theorem 2.2. Under the assumptions of Theorem 2.1 suppose further that R(δ1) = R(D1a
−2/α
T ), D1 > 0 is a

Pickands grid.

i) If R(δ2) = R(D2a
−2/α
T ), D2 ∈ (0,∞) \ {D1} is also a Pickands grid, then for any x, z1, z2 ∈ R

Hz1,z2
D1,D2,α

= lim
λ→∞

Hz1,z2
D1,D2,α

(λ)

λ
∈ (0,∞) and Hx,z1,z2

D1,D2,α
= lim
λ→∞

Hx,z1,z2
D1,D2,α

(λ)

λ
∈ (0,∞)

and further (14) holds with f given by

f(xk, yk1, yk2) = e−xk + e−yk1 + e−yk2 −H lnHα+xk,lnHD1,α
+yk1

D1,α
−H lnHα+xk,lnHD2,α

+yk2

D2,α

−H lnHD1,α
+yk1,lnHD2,α

+yk2

D1,D2,α
+H

lnHα+xk,lnHD1,α
+yk1,lnHD2,α

+yk2

D1,D2,α
.

ii) If R(δ2) is a dense grid, then (14) holds with

f(xk, yk1, yk2) = e−min(xk,yk2) + e−yk1 −H lnHα+min(xk,yk2),lnHD1,α
+yk1

D1,α
.

iii) If both R(δ1) and R(δ2) are dense grids, then again (14) holds with

f(xk, yk1, yk2) = e−min(xk,yk1,yk2).

Remarks: a) From the above results it follows that the joint convergence stated therein is determined by the

choice of the grids. The dependence parameters rlk, l, k ≤ p determine the covariance of the Gaussian random

vector Z and appears explicitly in the definition of the limiting distribution.

Clearly, if each rkk equals 0, i.e., the Berman condition holds for each component of the vector process, then Z

does not appear in any of the limiting results above. For such cases the maxima over a sparse grid is independent

of that taken over a Pickands or a dense grid.

b) Condition (9) can be stated in a slightly more general form putting therein Ck instead of C. Our results can

be restated then with some obvious modifications on the constants involved.

c) In [33] a particular case of Piterbarg’s max-discretisation theorem was investigated, which in our notation

corresponds to rkk = ∞. Considering for simplicity p = 1, so we assume that r11 = ∞, then if (1) holds with

α ∈ (0, 1] and r(t) = o(1), t→∞ a convex function, and (r(t) ln t)−1 is monotone for large t and o(1), then for

any two different sparse, Pickands or dense grids R(δ1) and R(δ2) we have

lim
T→∞

P
{
a∗T (M(T )− b∗T ) ≤ x, a∗T (M(δ1, T )− b∗δ1,T ) ≤ y, a∗T (M(δ2, T )− b∗δ2,T ) ≤ z

}
= Φ(min(x, y, z))(15)

for any x, y, z ∈ R as T →∞, where

a∗T = 1/
√
r(T ), b∗δi,T =

√
(1− r(T ))/r(T )bδi,T

and Φ denotes the distribution function of an N(0, 1) random variable. The proof of the above claim follows by

Theorem 2.1 in [33] and Lemma 4.5.

Consequently, for this case different grids do not play a role in the limiting distribution. Note however that the

noramlisation constant b∗δi,T depends on the type of the grid.



PITERBARG’S MAX-DISCRETISATION THEOREM 7

iv) Set for x,y1,y2 ∈ Rp

G(x,y1,y2) = E

{
exp
(
−

p∑
k=1

f(xk, yk1, yk2)e−rkk+
√

2rkkZk
)}

,

where f and Z are as in Theorem 2.1 and Theorem 2.2. It follows that

lim
x→−∞

Hx,y1,y2

D1,D2,α
= Hy1,y2

D1,D2,α
, lim

y1→−∞,y2→−∞
Hx,y1,y2

D1,D2,α
= e−xHα,

lim
x→−∞,y1→−∞

Hx,y1,y2

D1,D2,α
= lim
y1→−∞

Hy1,y2

D1,D2,α
= Hy2

D2,α
= e−y2HD2,α.

Hence, using further (9) we conclude that G is a non-degenerate multivariate distribution in R3p, which we refer

to as the Piterbarg distribution. One important property of G is that when rkk = 0 for all indices k ≤ p, then

it has unit Gumbel marginals Λ(x) = e−e
−x
, x ∈ R. Moreover, G is a max-stable distribution since

(G(x + lnn,y1 + lnn,y2 + lnn))n = G(x,y1,y2), x,y1,y2 ∈ Rp, n ∈ N.

In Extreme Value Theory max-stable distributions are important for modelling of extremes and rare events, see

e.g., [28, 15] for details.

3. Proofs

In this section we present several lemmas needed for the proof of the main results. In order to establish

Piterbarg’s max-discretisation theorem for multivariate stationary Gaussian processes we need to closely follow

[27], and of course to strongly rely on the deep ideas and the techniques presented in [26]. First, for 1 ≤ k, l ≤ p

define

ρkl(T ) = rkl/ lnT.

Following the former reference, we divide the interval [0, T ] onto intervals of length S alternating with shorter

intervals of length R. Let 0 < b < a < 1 be two positive constants, where b will be chosen below (see (29)). We

shall denote in the sequel

S = T a, R = T b, T > 0.

Denote the long intervals by Sl, l = 1, · · · , nT , and the short intervals by Rl, l = 1, · · · , nT where

nT := [T/(S +R)].(16)

It will be seen from the proofs, that a possible remaining interval with length different than S or R plays no role in

our asymptotic considerations; we call also this interval a short interval. Define further S = ∪nTl=1Sl,R = ∪nTl=1Rl

and thus [0, T ] = S ∪R.

Our proofs also rely on the ideas of [22]; we shall construct new Gaussian processes to approximate the original

ones. For each index k ≤ p we define a Gaussian process ηk as

ηk(t) = Y
(j)
k (t), t ∈ Rj ∪ Sj = [(j − 1)(S +R), j(S +R)),(17)
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where {Y (j)
k (t), t ≥ 0}, j = 1, · · · , nT are independent copies of {Xk(t), t ≥ 0}. We construct the processes so

that ηk, k = 1, · · · , p are independent by taking Y
(j)
k to be independent for any j and k two possible indices.

The independence of ηk and ηl implies

γkl(s, t) := E {ηk(s)ηl(t)} = 0, k 6= l,

whereas for any fixed k

γkk(s, t) := E {ηk(s)ηk(t)}

=

 E
{
Y

(i)
k (t), Y

(i)
k (s)

}
= rkk(s, t), if t, s ∈ Ri ∪ Si, for some i ≤ nT ;

E
{
Y

(i)
k (t), Y

(j)
k (s)

}
= 0, if t ∈ Ri ∪ Si, s ∈ Rj ∪ Sj , for some i 6= j ≤ nT .

For k = 1, · · · , p define

ξTk (t) =
(
1− ρkk(T )

)1/2
ηk(t) + ρ

1/2
kk (T )Zk, 0 ≤ t ≤ T,

where Z = (Z1, . . . , Zp) is a p-dimensional centered Gaussian random vector introduced in Section 2, which is

independent of {ηk(t), t ≥ 0}, k = 1, · · · , p. Denote by {%kl(s, t), 1 ≤ k, l ≤ p} the covariance functions of

{ξTk (t), 0 ≤ t ≤ T, k = 1, · · · , p}. We have

%kl(s, t) = E
{
ξTk (s)ξTl (t)

}
= ρkl(T ), k 6= l

and

%kk(s, t) =

 rkk(s, t) + (1− rkk(s, t))ρkk(T ), t ∈ Ri ∪ Si, s ∈ Rj ∪ Sj , i = j;

ρkk(T ), t ∈ Ri ∪ Si, s ∈ Rj ∪ Sj , i 6= j.

For any ε > 0 set

qε =
ε

(lnT )1/α
.(18)

For notational simplicity we write

M̃ ξ(qε,S) =
(
aT (Mξ1(qε,S)− bT ), . . . , aT (Mξp(qε,S)− bT )

)
and

M̃ ξ(δi,S) =
(
aT (Mξ1(δi,S)− bδi,T ), . . . , aT (Mξp(δi,S)− bδi,T )

)
,

where

Mξk(qε,S) = max
t∈R(qε)∩S

ξTk (t)

and bδi,T is defined in (4) if the grid R(δi) is sparse, bδi,T = bT (Di) is given by (7) if we consider a Pickands

grid R(δi) = R(Dia
−2/α
T ) and for a dense grid bδi,T = bT with bT defined in (6).

We present first four lemmas. Since their proofs are similar to those of Lemmas 3.1-3.4 in [31] we shall not give

them here.
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Lemma 3.1. If R(δ1) and R(δ2) are sparse or Pickands grids, then for any B > 0 there exists some K > 0

such that for all xk, yki ∈ [−B,B], i = 1, 2, k ≤ p∣∣∣∣P{M̃(T ) ≤ x,M̃(δi, T ) ≤ yi, i = 1, 2
}
− P

{
M̃(S) ≤ x,M̃(δi,S) ≤ yi, i = 1, 2

} ∣∣∣∣ ≤ K(lnT )1/α−1/2T b−a

holds for some 0 < b < a < 1 and all T large.

In the following R(qε) = R(ε/(lnT )1/α) denotes a Pickands grid where ε > 0 and qε is defined in (18).

Lemma 3.2. If R(δ1) and R(δ2) are sparse or Pickands grids, then for any B > 0 and for all xk, yki ∈

[−B,B], i = 1, 2, k ≤ p∣∣∣∣P{M̃(S) ≤ x,M̃(δi,S) ≤ yi, i = 1, 2
}
− P

{
M̃(qε,S) ≤ x,M̃(δi,S) ≤ yi, i = 1, 2

} ∣∣∣∣→ 0

as ε ↓ 0.

Lemma 3.3. If R(δ1) and R(δ2) are sparse or Pickands grids, then for any B > 0 and for all xk, yki ∈

[−B,B], i = 1, 2, k ≤ p

lim
T→∞

∣∣∣∣P{M̃(qε,S) ≤ x,M̃(δi,S) ≤ yi, i = 1, 2
}
− P

{
M̃ ξ(qε,S) ≤ x,M̃ ξ(δi,S) ≤ yi, i = 1, 2

} ∣∣∣∣ = 0

uniformly for ε > 0.

Let in the following Φp denote the distribution function of the p-dimensional Gaussian random vector Z and

set for ηk defined in (17)

M̂η(δi,Sj) =

(
max

t∈R(δi)∩Sj
η1(t), · · · , max

t∈R(δi)∩Sj
ηp(t)

)
, M̂η(Sj) =

(
max
t∈Sj

η1(t), · · · ,max
t∈Sj

ηp(t)

)
.

Lemma 3.4. If R(δ1) and R(δ2) are sparse or Pickands grids, then for any B > 0 for all xk, yki ∈ [−B,B], i =

1, 2, k ≤ p ∣∣∣∣P{M̃ ξ(qε,S) ≤ x,M̃ ξ(δi,S) ≤ yi, i = 1, 2
}

−
∫
z∈Rp

nT∏
j=1

P
{
M̂η(Sj) ≤ u(x, z),M̂η(δi,Sj) ≤ u(yi, z), i = 1, 2

}
dΦp(z)

∣∣∣∣→ 0

as ε ↓ 0, where u(x, z),u(yi, z), i = 1, 2 have components

u(xk, zk) =
bT + xk/aT − ρ1/2

kk (T )zk
(1− ρkk(T ))1/2

=
xk + rkk −

√
2rkkzk

aT
+ bT + o(a−1

T ),(19)

u(yki, zk) =
bδi,T + yki/aT − ρ1/2

kk (T )zk
(1− ρkk(T ))1/2

=
yki + rkk −

√
2rkkzk

aT
+ bδi,T + o(a−1

T ),(20)

for all xk, yki ∈ [−B,B], i = 1, 2, k ≤ p.
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Proof of Theorem 2.1: Since all the limits of the probabilities in Lemmas 3.1-3.4 are positive for all xk, yki ∈

[−B,B], i = 1, 2, k ≤ p, by letting ε ↓ 0, we have

P
{
M̃(T ) ≤ x,M̃(δi, T ) ≤ yi, i = 1, 2

}
∼
∫
z∈Rp

nT∏
j=1

P
{
M̂η(Sj) ≤ u(x, z),M̂η(δi,Sj) ≤ u(yi, z), i = 1, 2

}
dΦp(z)

as T →∞. Thus, if we can prove

lim
T→∞

∣∣∣∣ nT∏
j=1

P
{
M̂η(Sj) ≤ u(x, z),M̂η(δi,Sj) ≤ u(yi, z), i = 1, 2

}

− exp
(
−

p∑
k=1

f(xk, yk1, yk2)e−rkk+
√

2rkkzk
)∣∣∣∣ = 0,(21)

where f(xk, yk1, yk2) is defined in Theorem 2.1, then applying the dominated convergence theorem we complete

the proof of Theorem 2.1 for the case i)− iii). Define next the events

Ak =
{

max
t∈[0,S]

ηk(t) > u(xk, zk)
}
, Ap+k =

{
max

t∈R(δ1)∩[0,S]
ηk(t) > u(yk1, zk)

}
and

A2p+k =
{

max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)
}
, k = 1, · · · , p.

i) By the definition of {ηk(t), k = 1, · · · , p} (we write Ack for the complimentary event of Ak)

nT∏
j=1

P
{
M̂η(Sj) ≤ u(x, z),M̂η(δi,Sj) ≤ u(yi, z), i = 1, 2

}
= (P{∩3p

k=1A
c
k})nT

= exp
(
nT ln(P{∩3p

k=1A
c
k})
)

= exp
(
− nTP{∪3p

k=1Ak}+WnT

)
,

where nT is defined in (16). Since limT→∞ P{∩3p
k=1Ack} = 1 we get that the remainder WnT satisfies

WnT = o(nTP{∪3p
k=1Ak}), T →∞.

Next, by Bonferroni inequality

3p∑
k=1

P{Ak} ≥ P{∪3p
k=1Ak} ≥

3p∑
k=1

P{Ak} −
∑

1≤k<l≤3p

P{Ak,Al}

=

3p∑
k=1

P{Ak} −
∑

1≤k<l≤p

P{Ak,Al} −
∑

1≤k<l≤p

P{Ap+k,Ap+l} −
∑

1≤k<l≤p

P{A2p+k,A2p+l}

−
∑

1≤k<l≤p

P{Ak,Ap+l} −
∑

1≤k<l≤p

P{Ak,A2p+l} −
∑

1≤k<l≤p

P{Ap+k,A2p+l}

−
p∑
k=1

P{Ak,Ap+k} −
p∑
k=1

P{Ak,A2p+k} −
p∑
k=1

P{Ap+k,A2p+k}

=: A1 −A2 −A3 −A4 −A5 −A6 −A7 −A8 −A9 −A10.(22)



PITERBARG’S MAX-DISCRETISATION THEOREM 11

Further, Lemma 2 in [27] and (19), (20) imply (recall S = T a)

A1 ∼
p∑
k=1

ST−1(e−xk + e−yk1 + e−yk2)e−rkk+
√

2rkkzk , T →∞.

For A2, by the independence of ηk(t) and ηl(t), k 6= l, Lemma 2 of [27] and (19), (20), we have

A2 =
∑

1≤k<l≤p

P
{

max
t∈[0,S]

ηk(t) > u(xk, zk), max
t∈[0,S]

ηl(t) > u(xl, zl)

}

=
∑

1≤k<l≤p

P
{

max
t∈[0,S]

ηk(t) > u(xk, zk)

}
P
{

max
t∈[0,S]

ηl(t) > u(xl, zl)

}
∼

∑
1≤k<l≤p

ST−1e−xk−rkk+
√

2rkkzkST−1e−yl−rll+
√

2rllzl = o(A1).

Since R(δi), i = 1, 2 is a sparse grid, similar arguments as for A2 lead to

Ak = o(A1), k = 3, 4, 5, 6, 7.

Further, Lemma 2 of [27] implies Ai = o(A1), i = 8, 9. By the first assertion of Lemma 4.1 we have

A10 = o(T a−1) = o(A1).

Consequently, as T →∞

nTP{∪3p
k=1Ak} ∼

p∑
k=1

(e−xk + e−yk1 + e−yk2)e−rkk+
√

2rkkzk ,

which completes the proof of (21).

ii) We proceed as for the proof of case i) using the lower bound (22); we have thus

P{∪3p
k=1Ak} =

3p∑
k=1

P{Ak} −
∑

1≤k,l≤3p

P{Ak,Al}+
∑

1≤k,··· ,l≤3p

P{·}

=

3p∑
k=1

P{Ak} −
∑

1≤k<l≤p

P{Ak,Al} −
∑

1≤k<l≤p

P{Ap+k,Ap+l} −
∑

1≤k<l≤p

P{A2p+k,A2p+l}

−
∑

1≤k<l≤p

P{Ak,Ap+l} −
∑

1≤k<l≤p

P{Ak,A2p+l} −
∑

1≤k<l≤p

P{Ap+k,A2p+l}

−
p∑
k=1

P{Ak,Ap+k} −
p∑
k=1

P{Ak,A2p+k} −
p∑
k=1

P{Ap+k,A2p+k}+
∑

1≤k<,··· ,l≤3p

P {·}

=: A1 −A2 −A3 −A4 −A5 −A6 −A7 −A8 −A9 −A10 +A11.(23)

The estimates for Ai, i = 1, · · · , 9 are the same as for case i), therefore we only need to deal with the terms A10

and A11. It follows that each term of A11 can be bounded by A5, A6 or A7 implying

A11 = o(A1), T →∞.
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Next, the definition of u(yki, zk), i = 1, 2 implies

u(yki, zk) =
√

2 lnT − 1

2

ln lnT√
2 lnT

+
ln δ−1

i (T )√
2 lnT

+
ln(2−1π−1/2)√

2 lnT
+
yki + rkk −

√
2rkkzk√

2 lnT
+

o(1)√
2 lnT

(24)

for sparse grids. From the assumptions we know that limT→∞ ln( δ1(T )
δ2(T ) ) = θ = θ2 − θ1. Consequently, we have

u(yk1, zk)− u(yk2, zk) =

[
ln(

δ2(T )

δ1(T )
) + yk1 − yk2

]
(2 lnT )−1/2 + o(1)(2 lnT )−1/2

∼ [−θ + yk1 − yk2] (2 lnT )−1/2 + o(1)(2 lnT )−1/2

as T →∞. Letting first yk1 > yk2 + θ, we thus have u(yk1, zk) > u(yk2, zk) for sufficiently large T . Further,

A10 =

p∑
k=1

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}

=

p∑
k=1

[
P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk)

}
+ P

{
max

t∈R(δ2)∩[0,S]
ηk(t) > u(yk2, zk)

}

−
(

1− P
{

max
t∈R(δ1)∩[0,S]

ηk(t) ≤ u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) ≤ u(yk2, zk)

})]
=

p∑
k=1

[
P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk)

}
+ P

{
max

t∈R(δ2)∩[0,S]
ηk(t) > u(yk2, zk)

}

−
(

1− P
{

max
t∈R(δ1)∩[0,S]\R(δ2)∩[0,S]

ηk(t) ≤ u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) ≤ u(yk2, zk)

})]
=

p∑
k=1

[
P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk)

}
− P

{
max

t∈R(δ1)∩[0,S]\R(δ3)∩[0,S]
ηk(t) > u(yk1, zk)

}

+P
{

max
t∈R(δ1)∩[0,S]\R(δ3)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}]
.

By Lemma 4.2 and (24) we have for i = 1, 2 as T →∞

P
{

max
t∈R(δi)∩[0,S]\R(δ3)∩[0,S]

ηk(t) > u(yki, zk)

}
∼ δi

S

T
(

1

δi
− 1

δ3
)e−yki−rkk+

√
2rkkzk

∼ ST−1(1− e−θi)e−yki−rkk+
√

2rkkzk , T →∞.

Further, applying Lemma 2 in [27] (recall (24)) we obtain as T →∞

P
{

max
t∈R(δi)∩[0,S]

ηk(t) > u(yki, zk)

}
∼ ST−1e−yki−rkk+

√
2rkkzk , i = 1, 2.

By the second assertion of Lemma 4.1, the third term is o(T a−1).

Next, for yk1 ≤ yk2 + θ, we have u(yk1, zk) ≤ u(yk2, zk) for sufficient large T . Similarly, we have

A10 =

p∑
k=1

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}

=

p∑
k=1

[
P
{

max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}
− P

{
max

t∈R(δ2)∩[0,S]\R(δ3)∩[0,S]
ηk(t) > u(yk2, zk)

}

+P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]\R(δ3)∩[0,S]

ηk(t) > u(yk2, zk)

}]
.
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Again, in view of the second assertion of Lemma 4.1 the third term is also o(T a−1). Consequently,

A10 =

p∑
k=1

T a−1[e−yk1−θ1I(yk1 > yk2 + θ) + e−yk2−θ2I(yk1 ≤ yk2 + θ)]e−rkk+
√

2rkkzk + o(T a−1), T →∞

implying that as T →∞

nTP{∪3p
k=1Ak} ∼

p∑
k=1

(e−xk +e−yk1 +e−yk2 −e−yk1−θ1I(yk1 > yk2 +θ)−e−yk2−θ2I(yk1 ≤ yk2 +θ))e−rkk+
√

2rkkzk ,

which completes the proof of (21).

iii) We proceed as for the proof of cases i) and ii) using the bound (23). By Lemmas 2 and 3 in [27] and (19),

(20) we obtain

A1 ∼ T a−1

p∑
k=1

(e−xk + e−yk1 + e−yk2)e−rkk+
√

2rkkzk , T →∞.

With similar argument as for A2 in the proof of case i), we conclude that

Ak = o(A1), k = 2, 3, 4, 5, 6, 7.

Further, Lemma 2 in [27] implies A8 = o(A1) and Lemma 4.3 yields

A10 = o(T a−1) = o(A1), T →∞.

Similar arguments as for A11 in the proof of case ii) imply

A11 = o(A1), T →∞.

Borrowing the arguments of [26], p. 176 and using Lemma 3 in [27] it follows that

A9 =

p∑
k=1

P
{

max
t∈[0,S]

ηk(t) > u(xk, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}

∼ T a−1

p∑
k=1

H
lnHα+xk,lnHD2,α

+yk2

D2,α
e−rkk+

√
2rkkzk , T →∞.

Consequently, as T →∞

nTP{∪3p
k=1Ak} ∼

p∑
k=1

(e−xk + e−yk1 + e−yk2 −H lnHα+xk,lnHD2,α
+yk2

D2,α
)e−rkk+

√
2rkkzk ,

which completes the proof of the claim in (21).

iv). By Lemma 5 in [27], we have∣∣∣∣P{M̃(T ) ≤ x,M̃(δ1, T ) ≤ y1,M̃(δ2, T ) ≤ y2

}
− P

{
M̃(T ) ≤ x,M̃(δ1, T ) ≤ y1,M̃(T ) ≤ y2

} ∣∣∣∣
≤
∣∣∣∣P{M̃(δ2, T ) ≤ y2

}
− P

{
M̃(T ) ≤ y2

} ∣∣∣∣→ 0, T →∞.
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Now, by Theorem 2.1 of [31], we have

P
{
M̃(T ) ≤ x,M̃(δ1, T ) ≤ y1,M̃(T ) ≤ y2

}
= P

{
M̃(T ) ≤ min(x,y2),M̃(δ1, T ) ≤ y1

}
→ E

{
exp
(
−

p∑
k=1

f(xk, yk1, yk2)e−rkk+
√

2rkkZk
)}

,

as T →∞ with

f(xk, yk1, yk2) = e−min(xk,yk2) + e−yk1

establishing the proof. �

Proof of Theorem 2.2: i) The limiting properties of the two constants can be found in Lemma 4.4. We give

the proof of the relation of (14). As for the proof of Theorem 2.1, in view of Lemmas 3.1-3.4 and the dominated

convergence theorem in order to establish the proof we need to show that (21) holds with

f(xk, yk1, yk2) = e−xk + e−yk1 + e−yk2 −H lnHα+xk,lnHD1,α
+yk1

D1,α
−H lnHα+xk,lnHD2,α

+yk2

D2,α

−H lnHD1,α
+yk1,lnHD2,α

+yk2

D1,D2,α
+H

lnHα+xk,lnHD1,α
+yk1,lnHD2,α

+yk2

D1,D2,α
.

We proceed as in the proof of case ii) of Theorem 2.1 using the bound (23); we have thus

P
{
∪3p
k=1Ak

}
=

3p∑
k=1

P {Ak} −
∑

1≤k,l≤3p

P {Ak,Al}+
∑

1≤k,l,j≤3p

P {Ak,Al,Aj}+
∑

1≤k,··· ,l≤3p

P {·}

=: Σ1 − Σ2 + Σ3 + Σ4.(25)

By Lemmas 2 and 3 in [27] and (19), (20) we obtain that

Σ1 ∼ T a−1

p∑
k=1

(e−xk + e−yk1 + e−yk2)e−rkk+
√

2rkkzk , T →∞.

Further, write

Σ2 = A2 +A3 +A4 +A5 +A6 +A7 +A8 +A9 +A10,(26)

where Ai, i = 2, · · · , 10 are defined in the proof of ii) of Theorem 2.1. Hence, with similar arguments as above

Ai = o(A1), i = 1, · · · , 7 and

A8 ∼ T a−1

p∑
k=1

H
lnHα+xk,lnHD1,α

+yk1

D1,α
e−rkk+

√
2rkkzk ,

A9 ∼ T a−1

p∑
k=1

H
lnHα+xk,lnHD2,α

+yk2

D2,α
e−rkk+

√
2rkkzk ,

A10 ∼ T a−1

p∑
k=1

H
lnHD1,α

+yk1,lnHD2,α
+yk2

D1,D2
e−rkk+

√
2rkkzk
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as T → ∞, where for the estimates of A8 and A9 we applied Lemma 3 in [27] and for the estimate of A10 we

have used Lemma 4.4. Further

Σ3 =
∑

1≤k<l<j≤3p
l6=k+p,j 6=l+p,j 6=k+2p

P{Ak,Al,Aj}+
∑

1≤k<l<j≤3p
l=k+p,j 6=l+p,j 6=k+2p

P{Ak,Al,Aj}+
∑

1≤k<l<j≤3p
l 6=k+p,j=l+p,j 6=k+2p

P{Ak,Al,Aj}

+
∑

1≤k<l<j≤3p
l 6=k+p,j 6=l+p,j=k+2p

P{Ak,Al,Aj}+
∑

1≤k<l<j≤3p
l=k+p,j=l+p

P{Ak,Al,Aj}

=: B1 +B2 +B3 +B4 +B5.

For B1, by the independence of ηk(t) and ηl(t), k 6= l, Lemma 3 of [27] and (19), (20), we have for some constant

K > 0

B1 =
∑

1≤k<l<j≤3p
l 6=k+p,j 6=l+p,j 6=k+2p

P{Ak}P{Al}P{ Aj} ∼ KT 3(a−1) = o(A1).

Similarly, we can show that

Bi ∼ KT 2(a−1) = o(A1), i = 2, 3, 4.

For B5, using Lemma 4.4, we have

B5 ∼ T a−1

p∑
k=1

H
lnHα+xk,lnHD1,α

+yk1,lnHD2,α
+yk2

D1,D2,α
e−rkk+

√
2rkkzk .

Finally, it is easy to see that Σ4 = o(A1) as T →∞. Thus, we have as T →∞

nTP
{
∪3p
k=1Ak

}
∼

p∑
k=1

f(xk, yk1, yk2)e−rkk+
√

2rkkzk ,

with

f(xk, yk1, yk2) = e−xk + e−yk1 + e−yk2 −H lnHα+xk,lnHD1,α
+yk1

D1,α
−H lnHα+xk,lnHD2,α

+yk2

D2,α

−H lnHD1,α
+yk1,lnHD2,α

+yk2

D1,D2,α
+H

lnHα+xk,lnHD1,α
+yk1,lnHD2,α

+yk2

D1,D2,α
,

which completes the proof of (21).

ii) Applying Lemma 5 in [27] we obtain∣∣∣∣P{M̃(T ) ≤ x,M̃(δ1, T ) ≤ y1,M̃(δ2, T ) ≤ y2

}
− P

{
M̃(T ) ≤ x,M̃(δ1, T ) ≤ y1,M̃(T ) ≤ y2

} ∣∣∣∣
≤
∣∣∣∣P{M̃(δ2, T ) ≤ y2

}
− P

{
M̃(T ) ≤ y2

} ∣∣∣∣→ 0, T →∞.

Further, Theorem 2.2 in [31] yields

P
{
M̃(T ) ≤ x,M̃(δ1, T ) ≤ y1,M̃(T ) ≤ y2

}
= P

{
M̃(T ) ≤ min(x,y2),M̃(δ1, T ) ≤ y1

}
→ E

{
exp
(
−

p∑
k=1

f(xk, yk1, yk2)e−rkk+
√

2rkkZk
)}
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with

f(xk, yk1, yk2) = e−min(xk,yk2) + e−yk1 −H lnHα+min(xk,yk2),lnHD1,α
+yk1

D1,α
,

which completes the proof.

iii) By Theorem 2.3 in [31] for the dense grid R(δi), i = 1, 2 and any yi ∈ Rp

lim
T→∞

P
{
M̃(δi, T ) ≤ yi

}
= E

{
exp
(
−

p∑
k=1

e−yki−rkk+
√

2rkkZk
)}

and further

lim
T→∞

P
{
M̃(T ) ≤ x

}
= E

{
exp
(
−

p∑
k=1

e−xk−rkk+
√

2rkkZk
)}

, ∀x ∈ Rp,

hence the claim follows immediately from Lemma 4.5. �

4. Appendix

For the proof of the main results, we need the following technical lemmas. Let in the sequel C be a positive

constant whose value will change from place to place and Φ, ϕ be the survival function and the density function

of an N(0, 1) random variable, respectively.

Lemma 4.1. Suppose that R(δ1) and R(δ2) are sparse grids and a ∈ (0, 1).

i) If limT→∞ δ1(T )/δ2(T ) =∞ or R(δ1) ∩R(δ2) = ∅, then we have for k ≤ p as T →∞

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}
= o(T a−1).

ii) Let R(δ1) ∩ R(δ2) = R(δ3) and limT→∞ ln( δ3(T )
δ1(T ) ) = θ1 ∈ [0,∞), limT→∞ ln( δ3(T )

δ2(T ) ) = θ2 ∈ [0,∞) hold. If

yk1 > yk2 + θ2 − θ1, then we have for k ≤ p as T →∞

P
{

max
t∈R(δ1)∩[0,S]\R(δ3)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}
= o(T a−1),

whereas if yk1 ≤ yk2 + θ2 − θ1

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]\R(δ3)∩[0,S]

ηk(t) > u(yk2, zk)

}
= o(T a−1)

holds.

Proof of Lemma 4.1: The following fact will be extensively used in the proof. From assumption (10), we can

choose an ε > 0 such that for all |s− t| ≤ ε < 2−1/α

1

2
|s− t|α ≤ 1− rkk(s, t) ≤ 2|s− t|α.(27)

i) We first deal with the case limT→∞ δ1(T )/δ2(T ) =∞. It is easy to check that

p∑
k=1

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}
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≤
p∑
k=1

[
P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk2, zk)

}

+P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]\R(δ1)∩[0,S]

ηk(t) > u(yk2, zk)

}]
.

By Lemma 2 of [27] and the definition of u(yk2, zk), we have as T →∞

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk2, zk)

}
∼ Sδ−1

1 (T )Φ(u(yk2, zk))

= CSδ−1
1 (T )T−1δ2(T )

= CT a−1 δ2(T )

δ1(T )
= o(T a−1).

Now, for m,n ∈ N and the ε chosen in (27), we have

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}
= P

{
max

t∈R(δ1)∩[0,S]
ηk(t) > u(yk1, zk), max

t∈R(δ2)∩[0,S]\R(δ1)∩[0,S]
ηk(t) > u(yk2, zk)

}
+ o(T a−1)

≤
[S/δ1]+1∑
n=0

P
{
ηk(nδ1) > u(yk1, zk), max

t∈R(δ2)∩[0,S]\R(δ1)∩[0,S]
ηk(t) > u(yk2, zk)

}
+ o(T a−1)

≤
[S/δ1]+1∑
n=0

P

{
ηk(nδ1) > u(yk1, zk), max

0≤t≤S
|t−nδ1|≤ε

ηk(t) > u(yk2, zk)

}

+

[S/δ1]+1∑
n=0

P

{
ηk(nδ1) > u(yk1, zk), max

0≤mδ2≤S
|nδ1−mδ2|>ε

ηk(mδ2) > u(yk2, zk)

}
+ o(T a−1)

=: ST,1 + ST,2 + o(T a−1),

where [x] denotes the integer part of x. By stationarity we have setting η∗nk(t) = ηk(nδ1) + ηk(t)

ST,1 ≤
[S/δ1]+1∑
n=0

P
{

max
nδ1−ε≤t≤nδ1+ε

η∗nk(t) > u(yk1, zk) + u(yk2, zk)

}

= C S
δ1

P
{

max
0≤t<ε

η∗0k(t) > u(yk1, zk) + u(yk2, zk)

}
.

For the correlation function of η∗0k(t) = ηk(0) + ηk(t), t ∈ [0, ε] we have

1− E(η∗0k(s))(η∗0k(t))√
E((η∗0k(s))2)E((η∗0k(t))2)

≤ 1− rkk(t− s)
2
√

1 + rkk(t)
√

1 + rkk(s)

≤ 2|t− s|α

2− 2εα
≤ 1− exp(−|t− s|α).

Further

V ar(η∗0k(t)) = 2 + 2rkk(t) = 4− 2|t|α(1 + o(1))

as t→ 0. Hence by Slepian’s inequality (see e.g. Theorem 7.4.2 of [21]) we have

P
{

max
0≤t<ε

η∗0k(t) > u(yk1, zk) + u(yk2, zk)

}
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= P

{
max
0≤t<ε

η∗0k(t)√
E((η∗0k(t))2)

√
E((η∗0k(t))2) > u(yk1, zk) + u(yk2, zk)

}

≤ P
{

max
0≤t<ε

W (t)
√

E((η∗0k(t))2) > u(yk1, zk) + u(yk2, zk)

}
,

where W is a Gaussian zero mean stationary process with covariance function exp(−|t|α), thus the condition of

Theorem D.3 in [26] for the case α = β hold. By that theorem

ST,1 ≤ C S
δ1

Φ

(
u(yk1, zk) + u(yk2, zk)

2

)
.

The definition of u(yki, zk), i = 1, 2 implies thus for sparse grids

[u(yki, zk)]2 = 2 lnT − ln lnT + 2 ln δ−1
i (T ) +O(1).(28)

Consequently, from the fact that limT→∞ δ1(T )/δ2(T ) =∞

ST,1 ≤ C
S

δ1(T )

1√
lnT

T−1
√

lnTδ
1/2
1 (T )δ

1/2
2 (T ) = CT a−1

(
δ2(T )

δ1(T )

)1/2

= o(T a−1), T →∞.

Now, let ϑkk(t) = supt≤s≤S rkk(s). Assumption (10) implies that ϑkk(ε) < 1 for all T and any ε ∈ (0, 2−1/α).

Consequently, we may choose some positive constant βkk such that

βkk <
1− ϑkk(ε)

1 + ϑkk(ε)
< 1

for all sufficiently large T . In the following we choose

0 < a < b < min
1≤k≤p

βkk.(29)

For the second term, by stationarity and Berman’s inequality (see eg. Theorem 4.2.1 of [21], Theorem C.2 of

[26]), we have

ST,2 ≤
[S/δ1]+1∑
n=0

∑
0≤mδ2≤S
|nδ1−mδ2|>ε

P {ηk(nδ1) > u(yk1, zk), ηk(mδ2) > u(yk2, zk)}

≤
[S/δ1]+1∑
n=0

∑
0≤mδ2≤S
|nδ1−mδ2|>ε

[
Φ(u(yk1, zk))Φ(u(yk2, zk)) + C exp

(
−u

2(yk1, zk) + u2(yk2, zk)

2(1 + rkk(|nδ1 −mδ2|))

)]

≤ S

δ1

S

δ2

[
Φ(u(yk1, zk))Φ(u(yk2, zk)) + C exp

(
−u

2(yk1, zk) + u2(yk2, zk)

2(1 + ϑkk(ε))

)]
=: ST,21 + ST,22.

Utilising again (28)

ST,21 ≤ C S
δ1

S

δ2

ϕ(u(yk1, zk))

u(yk1, zk)

ϕ(u(yk2, zk))

u(yk2, zk)

≤ C S
δ1

S

δ2

1

lnT
exp

(
−1

2
u2(yk1, zk)

)
exp

(
−1

2
u2(yk2, zk)

)
≤ C S

δ1

S

δ2

1

lnT
T−1(lnT )1/2δ1T

−1(lnT )1/2δ2
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= CT 2(a−1)

as T →∞. Since u(yki, zk) ∼ (2 lnT )1/2, i = 1, 2

ST,22 ≤ C S
δ1

S

δ2
exp

(
−u

2(yk1, zk) + u2(yk2, zk)

2(1 + ϑkk(ε))

)
≤ C T

a

δ1

T a

δ2
T
− 2

1+ϑkk(ε)

≤ CT a−1T
a−

1−ϑ
kk

(ε)

1+ϑkk(ε) (δ1δ2)−1.

Both (29) and limT→∞(lnT )1/αδi(T ) =∞ imply ST,22 = o(T a−1) as T →∞.

Let us consider now the case that R(δ1) ∩R(δ2) = ∅. Without loss of generality, we suppose that u(yk1, zk) <

u(yk2, zk) holds for sufficient large T . By stationarity, for m,n ∈ N and ε > 0 we have

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}

≤
[S/δ1]+1∑
n=0

P
{
ηk(nδ1) > u(yk1, zk), max

0<mδ2≤S
ηk(mδ2) > u(yk2, zk)

}

≤
[S/δ1]+1∑
n=0

P

{
ηk(nδ1) > u(yk1, zk), max

0<mδ2≤S
|nδ1−mδ2|≤ε

ηk(mδ2) > u(yk1, zk)

}

+

[S/δ1]+1∑
n=0

P

{
ηk(nδ1) > u(yk1, zk), max

0<mδ2≤S
|nδ1−mδ2|>ε

ηk(mδ2) > u(yk2, zk)

}

= C S
δ1

P
{
ηk(0) > u(yk1, zk), max

0<mδ2≤ε
ηk(mδ2) > u(yk1, zk)

}

+

[S/δ1]+1∑
n=0

P

{
ηk(nδ1) > u(yk1, zk), max

0<mδ2≤S
|nδ1−mδ2|>ε

ηk(mδ2) > u(yk2, zk)

}
=: RT,1 +RT,2.

Using the well-known results for bivariate Gaussian tail probability (see e.g., [16]) setting r = rkk(mδ2) we have

RT,1 ≤ C S
δ1

∑
0<mδ2≤ε

P {ηk(0) > u(yk1, zk), ηk(mδ2) > u(yk1, zk)}

= C S
δ1

∑
0<mδ2≤ε

[
Φ(u(yk1, zk))Φ

(
u(yk1, zk)

√
1− r√
1 + r

)]
.

Since by (27)
1− r
1 + r

=
1− rkk(mδ2)

1 + rkk(mδ2)
≥ 1

4
(mδ2)α

and using (28) we obtain

RT,1 ≤ C S
δ1

∑
0<mδ2≤ε

[
Φ(u(yk1, zk))Φ

(
1

2
(mδ2)α/2u(yk1, zk)

)]

= CT a−1
∑

0<mδ2≤ε

Φ

(
1

2
(mδ2)α/2u(yk1, zk)

)
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= CT a−1
∑

0<mδ2≤ε

1

(mδ2)α/2u(yk1, zk)
exp

(
−1

8
(mδ2)αu2(yk1, zk)

)

= CT a−1
∑

0<mδ2≤ε

1

[mδ2(lnT )1/α]α/2
exp

(
−1

4
[mδ2(lnT )1/α]α

)

≤ CT a−1 1

[δ2(lnT )1/α]α/2

∑
0<m≤[ε/δ2]+1

exp

(
−1

4
[mδ2(lnT )1/α]α

)

≤ CT a−1 1

[δ2(lnT )1/α]α/2

= T a−1o(1),

where we used additionally the fact that limT→∞(lnT )1/αδi(T ) = ∞, i = 1, 2. By repeating the calculations

for ST,2 we obtain further RT,2 = o(T a−1) as T →∞, which completes the proof.

ii) If yk1 ≤ yk2 + θ2− θ1, then we have u(yk1, zk) ≤ u(yk2, zk) for sufficient large T . By stationarity we have for

m,n ∈ N and ε > 0

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]\R(δ3)∩[0,S]

ηk(t) > u(yk2, zk)

}

≤
[S/δ1]+1∑
n=0

P
{
ηk(nδ1) > u(yk1, zk), max

t∈R(δ2)∩[0,S]\R(δ3)∩[0,S]
ηk(t) > u(yk2, zk)

}

≤
[S/δ1]+1∑
n=0

P

{
ηk(nδ1) > u(yk1, zk), max

0<mδ2≤S
|nδ1−mδ2|≤ε

ηk(mδ2) > u(yk2, zk)

}

+

[S/δ1]+1∑
n=0

P

{
ηk(nδ1) > u(yk1, zk), max

0<mδ2≤S
|nδ1−mδ2|>ε

ηk(mδ2) > u(yk2, zk)

}

≤ C S
δ1

P
{
ηk(0) > u(yk1, zk), max

0<mδ2≤ε
ηk(mδ2) > u(yk1, zk)

}

+

[S/δ1]+1∑
n=0

P

{
ηk(nδ1) > u(yk1, zk), max

0<mδ2≤S
|nδ1−mδ2|>ε

ηk(mδ2) > u(yk2, zk)

}
=: MT,1 +MT,2.

Using the same estimates for RT,1 and RT,2, we get that both MT,1 and MT,2 are o(T a−1). The proof when

yk1 > yk2 + (θ2 − θ1) is similar. This completes the proof of the lemma. �

The next lemma extends Lemma 2 of [27] to the non-uniform sparse grid. Let R(δ∗) = {t1(T ) < t2(T ) < ....}

be a non-uniform grid on [0, T ] such that

δmax := max
tk(T )∈[0,T ]

(tk(T )− tk−1(T )) ≤ δ0 and δmin(lnT )1/α := min
tk(T )∈[0,T ]

(tk(T )− tk−1(T ))(lnT )1/α →∞

as T →∞.

Lemma 4.2. For S = T a, a ∈ (0, 1) we have for any k ≤ p

P
{

max
t∈R(δ∗)∩[0,S]

ηk(t) > uT

}
= ](R(δ∗) ∩ [0, S])Φ(uT )(1 + o(1))

as T →∞, where uT = (2 lnT )1/2(1 + o(1)) and ](A) denotes the number of the elements of the set A.
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Proof of Lemma 4.2: By Bonferroni inequality for all T large (set ΘT := ](R(δ∗) ∩ [0, S]) and u := uT )

ΘT∑
l=1

P {ηk(tl(T )) > u} ≥ P
{

max
t∈R(δ∗)∩[0,S]

ηk(t) > u

}

≥
ΘT∑
l=1

P {ηk(tl(T )) > u} −
∑

1≤m<l≤ΘT

P {ηk(tm(T )) > u, ηk(tl(T )) > u}

=: PT,1 − PT,2.

By the stationarity of ηk

PT,1 = ΘTΦ(u),

whereas for the second term we have for all ε > 0 sufficiently small

PT,2 =
∑

1≤m<l≤ΘT
tl(T )−tm(T )≤ε

P {ηk(tm(T )) > u, ηk(tl(T )) > u}+
∑

1≤m<l≤ΘT
tl(T )−tm(T )>ε

P {ηk(tm(T )) > u, ηk(tl(T )) > u}

=: PT,21 + PT,22.

Similarly as in the calculations of RT,1 setting r = r(tl(T )− tm(T )) we have

PT,21 =
∑

1≤m<l≤ΘT
tl(T )−tm(T )≤ε

P {ηk(0) > u, ηk(tl(T )− tm(T )) > u}

≤
∑

1≤m<l≤ΘT
tl(T )−tm(T )≤ε

Φ(u)Φ

(
u

√
1− r√
1 + r

)
.

Since by (27)
1− r
1 + r

=
1− rkk(tl(T )− tm(T ))

1 + rkk(tl(T )− tm(T ))
≥ 1

4
(tl(T )− tm(T ))α ≥ 1

4
δαmin

and the fact that u = uT = (2 lnT )1/2(1 + o(1)) and δmin(lnT )1/α →∞ we get

PT,21 ≤ ΘTΦ(u)
ε

δmin
Φ

(
1

2
uδ
α/2
min

)
≤ CΘTΦ(u)

ε

δmin

1

uδ
α/2
min

exp(−1

8
u2δαmin)

≤ CΘTΦ(u)
1

uδ
α/2
min

= ΘTΦ(u)o(1).

Recalling the bound derived for ST,2, by stationarity and Berman’s inequality

PT,22 ≤
∑

1≤m<l≤ΘT
tl(T )−tm(T )>ε

[
Φ

2
(u) + C exp

(
− u2

1 + ϑkk(tl(T )− tm(T ))

)]

≤ CΘ2
T

[
Φ

2
(u) + C exp

(
− u2

1 + ϑkk(ε)

)]
,

where ϑkk(·) is defined in the proof of Lemma 4.1. Noting that ΘT ≤ S/δmin = T a/δmin and by repeating the

calculations for ST,2 we obtain further PT,22 = ΘTΦ(u)o(1) as T →∞, which completes the proof. �
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Lemma 4.3. If R(δ1) and R(δ2) are sparse and Pickands girds, respectively, then for k ≤ p as T →∞

P
{

max
t∈R(δ1)∩[0,S]

ηk(t) > u(yk1, zk), max
t∈R(δ2)∩[0,S]

ηk(t) > u(yk2, zk)

}
= o(T a−1).

Proof of Lemma 4.3: Since R(δ1) and R(δ2) are sparse and Pickands girds, respectively, we have

lim
T→∞

δ1(T )/δ2(T ) =∞.

Consequently, the proof is similar to that of the case that limT→∞ δ1(T )/δ2(T ) =∞ of Lemma 4.1, and therefore

we omit further details. �

Let X be a centered stationary Gaussian process which satisfies condition (1) (as in the Introduction). For the

proof of Theorem 2.2 we shall determine the asymptotic behaviours, as u→∞, of the following probabilities

PS(u, x) = P
{

max
t∈R(δ1)∩[0,S]

X(t) > u, max
t∈R(δ2)∩[0,S]

X(t) > u+
x

u

}
and

PS(u, x, y) = P
{

max
t∈R(δ1)∩[0,S]

X(t) > u, max
t∈R(δ2)∩[0,S]

X(t) > u+
x

u
, max
t∈[0,S]

X(t) > u+
y

u

}
,

where R(δ1) = R(cu−2/α) and R(δ2) = R(du−2/α) with c > d > 0.

For λ ∈ (c,∞) along the lines of the proof of Lemma D.1 in [26] (see also the proof of Lemma 12.2.3 of [21])

Pλu−2/α(u, x) ∼ H0,x
c,d,α(λ)Φ(u) and Pλu−2/α(u, x, y) ∼ H0,x,y

c,d,α (λ)Φ(u)

as u→∞, where

H0,x
c,d,α(λ) =

∫
s∈R

esP
{

max
k∈N:kc∈[0,λ]

B∗α/2(kc) > s, max
k∈N:kd∈[0,λ]

B∗α/2(kd) > s+ x

}
ds

and

H0,x,y
c,d,α (λ) =

∫
s∈R

esP
{

max
k∈N:kc∈[0,λ]

B∗α/2(kc) > s,

max
k∈N:kd∈[0,λ]

B∗α/2(kd) > s+ x, max
t∈[0,λ]

B∗α/2(t) > s+ y

}
ds.

The next result can be shown along the same lines of the proof of Theorem D.2 in [26].

Lemma 4.4. For any x, y ∈ R we have

0 < H0,x
c,d,α = lim

λ→∞

H0,x
c,d,α(λ)

λ
<∞ and 0 < H0,x,y

c,d,α = lim
λ→∞

H0,x,y
c,d,α (λ)

λ
<∞.

Furthermore, for any S > 0

PS(u, x) ∼ SH0,x
c,d,αu

2/αΦ(u) and PS(u, x, y) ∼ SH0,x,y
c,d,αu

2/αΦ(u)

as u→∞.
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Lemma 4.5. Let {ZT,ij , 1 ≤ i ≤ p, 1 ≤ j ≤ m}, T > 0 be a random matrix. Suppose that the following

convergence in distribution

ZT,j := (ZT,1j , . . . , ZT,pj)
d→ (W1, . . . ,Wp) =: W , T →∞

is valid for any index j ≤ m. If further ZT,ij ≤ Zi1 holds almost surely for any index i ≤ p, 2 ≤ j ≤ m, then we

have the joint convergence in distribution

(ZT,1, . . . ,ZT,k)
d→ (W , . . . ,W ), T →∞.

Proof of Lemma 4.5: Assume for simplicity that m = p = 2. By the assumptions, Lemma 2.3 in [18] implies

the convergence in distributions

(ZT,11, ZT,12)
d→ (W1,W1), (ZT,21, ZT,22)

d→ (W2,W2), T →∞.

Hence we have the convergence in probability

ZT,12 − ZT,11
p→ 0, ZT,22 − ZT,21

p→ 0, T →∞,

which then entails that

(ZT,11, ZT,21, ZT,12, ZT,22)
d→ (W1,W2,W1,W2), T →∞

establishing thus the proof. �
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