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Background. Human immunodeficiency virus (HIV) takes advantage of multiple host proteins to support its
own replication. The gene ZNRD1 (zinc ribbon domain–containing 1) has been identified as encoding a potential
host factor that influenced disease progression in HIV-positive individuals in a genomewide association study and
also significantly affected HIV replication in a large-scale in vitro short interfering RNA (siRNA) screen. Genes
and polymorphisms identified by large-scale analysis need to be followed up by means of functional assays and
resequencing efforts to more precisely map causal genes.

Methods. Genotyping and ZNRD1 gene resequencing for 208 HIV-positive subjects (119 who experienced
long-term nonprogression [LTNP] and 89 who experienced normal disease progression) was done by either TaqMan
genotyping assays or direct sequencing. Genetic association analysis was performed with the SNPassoc package
and Haploview software. siRNA and short hairpin RNA (shRNA) specifically targeting ZNRD1 were used to
transiently or stably down-regulate ZNRD1 expression in both lymphoid and nonlymphoid cells. Cells were infected
with X4 and R5 HIV strains, and efficiency of infection was assessed by reporter gene assay or p24 assay.

Results. Genetic association analysis found a strong statistically significant correlation with the LTNP phenotype
(single-nucleotide polymorphism rs1048412; ), independently of HLA-A10 influence. siRNA-based func-P p .0004
tional analysis showed that ZNRD1 down-regulation by siRNA or shRNA impaired HIV-1 replication at the
transcription level in both lymphoid and nonlymphoid cells.

Conclusion. Genetic association analysis unequivocally identified ZNRD1 as an independent marker of LTNP
to AIDS. Moreover, in vitro experiments pointed to viral transcription as the inhibited step. Thus, our data strongly
suggest that ZNRD1 is a host cellular factor that influences HIV-1 replication and disease progression in HIV-
positive individuals.

Humans show remarkable variation in their vulnera-

bility to infection with human immunodeficiency virus

(HIV), especially with respect to clinical outcome after

infection [1]. The considerable heterogeneity in the ep-

idemic is at least partially determined by variations in
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Retrovirologia, Hospital Universitari Germans Trias i Pujol, Ctra. Del Canyet s/n,
Badalona, Barcelona 08916, Spain (jaeste@irsicaixa.es).

Clinical Infectious Diseases 2010; 50:1022–1032
� 2010 by the Infectious Diseases Society of America. All rights reserved.
1058-4838/2010/5007-0013$15.00
DOI: 10.1086/651114

genes that influence virus replication and immunity [1].

The HIV type 1 (HIV-1) genome codes for only 15

proteins, requiring many cellular factors to complete

the virus replication cycle [2]. Thus, a large number of

host factors are likely to contribute to the variability of

HIV-related phenotypes, including genetic variants that

may be more or less advantageous for viral replication.

Recent advances in genomics and RNA interference

have led to the conduct of genomewide surveys to iden-

tify cellular genes that affect human disease [3–5] and

HIV replication [6–10]. The first genomewide associ-

ation analysis for determinants of HIV-1 host control

in humans identified a number of genomic regions as-

sociated with HIV load set point and/or disease pro-
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Table 1. Phenotype Data on Patients Included
in the Study

The table is available in its entirety in the online
version of Clinical Infectious Diseases

gression [7]. Among them, a locus on human chromosome 6,

close to the ZNRD1 (zinc ribbon domain–containing 1) and

RNF39 (ring finger protein 39) genes but also to HLA loci,

strongly correlated with HIV disease progression [7]. A ge-

nomewide functional screen also identified ZNRD1 among

1250 host factors required for HIV-1 replication [6]. Knowledge

of cellular factors and their interaction within the HIV-1 life

cycle are essential for a better understanding of virus replication

and disease pathogenesis, as well as for finding novel potential

therapeutic targets [11]. At least one identified cellular gene,

CCR5 (CC chemokine receptor 5), has been successfully ex-

ploited as a target for anti-HIV intervention [12, 13].

Despite their enormous power and interest, large-scale ge-

nomewide screens should be taken only as starting points. Ide-

ally, the identified genes should be analyzed in a physiologically

relevant cell system, and genetic associations should be vali-

dated in independent populations.

ZNRD1 encodes a protein consisting of 2 zinc ribbon do-

mains [14]. The C-terminal domain is well conserved in many

organisms as a transcription-associated motif [15]. Homology

searches identified ZNRD1 as encoding an RNA polymerase I

subunit [15]. By typing previously described and new poly-

morphisms in the ZNRD1 genomic region together with HLA-

A10, we unequivocally identify ZNRD1 as an independent

marker of long-term nonprogression (LTNP). In vitro exper-

iments showed that knockdown of ZNRD1 expression inhibited

HIV replication at transcription in both lymphoid and non-

lymphoid cells.

METHODS

Patients and samples. In total, 208 HIV-infected patients

(119 who experienced LTNP and 89 who experienced normal

disease progression) were included in the study (Table 1). Pro-

gressors from the HIV unit of the Hospital Universitari Ger-

mans Trias i Pujol were selected on the basis of having a CD4

cell count of !200 cells/mL with 10 years or fewer of reported

infection. Samples from LTNP patients were provided by the

HIV BioBank, using eligibility criteria modified from that re-

ported elsewhere [16]. Eligibility criteria were confirmed HIV

infection for 110 years, CD4 cell counts of 1500 cells/mL

throughout the course of infection, and viral loads of !5000

copies/mL without antiretroviral therapy.

Blood samples were processed in accordance with current

procedures. All patients who participated in the study provided

informed consent, and protocols were approved by the Sci-

entific Committee of Fundació IrsiCaixa.

Genotyping of DNA samples. The entire coding sequence

of the ZNRD1 gene was amplified by polymerase chain reaction

(PCR) and sequenced using an ABI Prism 3100 genetic analyzer

(Applied Biosystems). Primers were as follows: for fragment 1,

5′-CGAGACACGGTTCGCAATTA-3′ (forward) and 5′-CAAC-

CCAACCGATCTTGAGT-3′ (reverse); for fragment 2, 5′-GGC-

GGTTGTACATTTGGTCT-3’ (forward) and 5′-AATAAGGGAT-

GGGACCAAGG-3′ (reverse); and for fragment 3, 5′-GTTTAGG-

GGAGCCAGTCCTCC-3′ (forward) and 5′-GCCTCATTCCT-

GACTCTACTTTT-3′ (reverse).

The rs3869068 single-nucleotide polymorphism (SNP)

was typed using the TaqMan SNP genotyping assay

(C 26544924_10; Applied Biosystems). HLA-A10 typing of

DNA samples was performed using the HLA-B low-resolution

bulk SSP kit (Olerup) [17].

Cells. HeLa-P4R5-MAGI, TZM-bl, SupT1, and MOLT-

CCR5 cells (AIDS Research and Reference Reagent Program,

US National Institutes of Health) were cultured in Dulbecco

modified Eagle medium (DMEM; Gibco) or Roswell Park Me-

morial Institute (RPMI) 1640 l-glutamine medium (Gibco).

Culture media were supplemented with 10% heat-inactivated

fetal calf serum and antibiotics.

Drugs. Zidovudine was purchased from Sigma-Aldrich.

HIV integrase inhibitor L-731988 was obtained from Merck

[18]. Fusion inhibitor T-20 was synthesized by the Service of

Peptide Synthesis, University of Barcelona (Spain).

Short interfering RNAs. Short interfering RNAs (siRNAs)

targeting ZNRD1 transcript (ZNRD1_1, UCGCUGUGGCU-

UCAACAUCA; ZNRD1_2, CUCGAUGUGGUCAUGAAG-

GAA) and RNF39 transcript (RNF39_1, ACGCCCATTGCA-

GGAGTATTA; RNF39_2, CCGCCGCAGCCTGAGGTCTAA)

were purchased from Qiagen. Nontargeting siRNA control

(siNT) was a commercially available pool from Dharmacon;

siRev/Env (siRNA targeting a viral sequence) has been described

elsewhere [19].

Generation of cell lines stably expressing short hairpin

RNAs. Commercial self-inactivating lentiviral expression vec-

tors (pLKO.1-puro; Sigma) were used to express a short hair-

pin RNA (shRNA) targeting ZNRD1 (shZNRD1, UGUGGC-

UUCAACAUCAACGUU). Briefly, shRNA-expressing lentivi-

ruses were generated by cotransfecting in 293-T cells the pLKO-

1 vector, a helper plasmid (psPAX2), and a vesicular stomatitis

virus G protein–expressing plasmid. Target cells were infected

and shRNA-expressing cells selected as described elsewhere

[19].

Western blot. Cells were harvested, washed, and lysed in

chilled hypotonic buffer (cell lysis buffer; Invitrogen). After

running the samples, membranes were blocked, incubated with

primary antibodies (ZNRD1, 1:1000, Abnova; Actin, 1:2000,
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Figure 1. Polymorphisms analyzed and the linkage disequilibrium (LD) pattern of the ZNRD1 gene. A, Genomic location of genes (green boxes) and
single-nucleotide polymorphisms (SNPs) (arrows) present on chromosome 6p21. In the upper panel, the relative location of SNPs previously associated
with differential human immunodeficiency virus type 1 clinical outcomes is represented [7, 30, 31]. Below, the ZNRD1 gene region screened with
relative positions of analyzed SNPs is shown. SNPs with positive associations after Bonferroni correction are shown in boldface type. B, Linkage
disequilibrium (LD) blocks in the ZNRD1 gene, estimated by means of Haploview software following the 4-gamete-rule algorithm. Haplotypes associated
with long-term nonprogression are indicated in the boxes, along with corresponding corrected P values (nominal P values are shown in parentheses).
Correction for multiple testing was performed by permutation analysis. Colors and values within the LD plot correspond to D′/LOD and D′ LD values,
respectively (D′ is the value of D [Hedridgeos multiallelic D] between the 2 loci; LOD is the log of the likelihood odds ratio, a measure of confidence
in the value of D′).

Santa Cruz Biotechnology) overnight at 4�C, and then incu-

bated with a horseradish peroxidase–conjugated antibody [20].

Membranes were revealed with SuperSignal West Pico chemi-

luminescent substrate (Pierce Biotechnology). For RNF39, dif-

ferent commercial antibodies were tested, but none of them

could specifically detect RNF39 protein (data not shown).

Real-time quantitative PCR. Total RNA was obtained us-

ing the RNeasy Mini kit (Qiagen). Relative levels of ZNRD1
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Figure 2. Linkage disequilibrium (LD) pattern of the chromosome 6
region associated with human immunodeficiency virus (HIV) disease pro-
gression.

Table 2. Position, Hardy-Weinberg (HW) Equi-
librium, and Genotype Frequency of the Ana-
lyzed Single-Nucleotide Polymorphisms

The table is available in its entirety in the online
version of Clinical Infectious Diseases

and RNF39 messenger RNAs (mRNAs) were measured by real-

time quantitative PCR (qPCR) and normalized to GUSB mRNA

expression. For human genes, primers and DNA probes were

commercially purchased (assay-on-demand Hs00205908_m1

for ZNRD1, Hs00961882_m1 for RNF39, and Hs99999908_m1

for GUSB; Applied Biosystems).

Viral DNA was extracted using a QiaAmp DNA extraction

kit (QIAmp DNA Blood Mini kit; Qiagen). Quantitative am-

plification of the long terminal repeat [LTR] for viral entry

detection was performed as described elsewhere (primers, 5′-

CAAGCAGCCATGCAAATGTT-3′ [forward] and 5′-TGCACT-

GGATGCAATCTATCC-3′ [reverse]; probe, 5′-AAAGAGACC-

ATCAATGAGGAAGCTGCAGA-3′) [21]. Viral integration was

detected by Alu-LTR preamplification followed by LTR qPCR

[22].

For analyzing HIV-1 transcription, complementary DNA was

used for qPCR of total viral RNA, unspliced RNA, and multiply

spliced RNA, as previously elsewhere [23].

HIV infection and replication. HIV-1 stocks of NL4-3 and

clinical isolate 92UG024 were grown in lymphoid MT-4 cells,

as described elsewhere [24, 25]. The R5 HIV-1 strain BaL was

grown in peripheral blood mononuclear cells stimulated with

phytohemagglutinin and interleukin 12.

HeLa-P4R5-MAGI or TZM-bl cells were seeded in 96-well

plates and infected; 48 h after infection, cells were lysed and

kept frozen until the b-galactosidase assay was performed.

SupT1 cells [25] were infected for 4 h, washed, and resuspended

in RPMI 1640 medium. HIV production was analyzed 3, 5, or

7 days after infection by HIV p24 enzyme-linked immunosor-

bent assay (Innotest HIV p24 antigen; Innogenetics) in culture

supernatants.

b-Galactosidase detection assay. b-Galactosidase activity

in 30 mL of cell extract was quantified by a colorimetric assay,

as described elsewhere [20, 26]. Absorbance was measured at

405–620 nm.

siRNA and plasmid transfection. TZM-bl cells ( )51.5 � 10

were seeded in 24-well plates. A day later, siRNA or plasmids

were mixed with Lipofectamine 2000 reagent (Invitrogen) in

serum-free medium (Invitrogen) and then added to previously

washed cells. After 4 h, fresh DMEM was added [20, 26]. Plas-

mid DNA was transfected in SupT1 cells by means of Amaxa

Nucleofection technology (Lonza), in accordance with the man-

ufacturer’s recommendations [20, 26]. Then, cells were recov-

ered and seeded in prewarmed 24-well plates. Cell viability and

expression were monitored 2 days after transfection.

RNA from Jurkat cells was extracted using the RNeasy kit

(Qiagen), in accordance with the manufacturer’s instructions.

After reverse transcription with hexamers (Expand RT;

Roche), ZNRD1 was amplified using the following primers,

which introduced, respectively, EcoRI and ClaI (shown in

boldface type): 5′-GAATTCgccaccATGTCTGTCATGGACCT-

CGCCAATAC-3′ and 5′-ATCGATggctcaAGAGTCTTCCTTC-

TCCTGGAACTTG-3′. PCR products were digested with EcoRI

and ClaI, introduced into the pLPCX expression vector (Clon-

tech), and checked by sequencing.

Statistical analysis. The paired Student t test was used for

comparison between groups. Associations for each SNP and

odds ratios were computed using logistic regression, as imple-

mented in SNPassoc R library software [27]. The reference class

was homozygosity for the major allele among controls. Analyses

were done under 4 different genetic models: codominant, dom-

inant, recessive, and additive [28]. The best model was chosen

using the Akaike information criteria. Bonferroni correction

for 13 nonmonomorphic SNPs was used to correct for multiple

comparisons. An additional factor of correction of 2.5 was

applied to account for the use of 4 different genetic models.

Using this criterion, the corrected level of statistical significance

was set to .0023.

Haplotype blocks were estimated using the 4-gamete-rule

algorithm, as implemented in Haploview software [29]. Hap-

lotype comparisons between groups were performed using the

x2 test. Correction for multiple testing was performed by per-

mutation analysis (100,000 random permutations).

RESULTS

Association between polymorphisms in the ZNRD1 gene and

the LTNP phenotype. The genetic location of ZNRD1 is

shown in Figures 1 and 2. To dissect and map the putative

causal gene influencing HIV disease progression on the human

chromosome 6 locus, the entire coding region of ZNRD1 was

resequenced in HIV-positive progressor patients and LTNP pa-

tients. In addition, previously associated polymorphisms—the

rs3869068 SNP, near rs9261174 [7], and HLA-A10 [32]—were

typed.

Fifteen SNPs were found throughout the gene. Twelve SNPs

were informative enough to undergo genetic association anal-
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Table 3. Associations between ZNRD1 Single-Nucleotide Polymorphisms (SNPs) and Long-Term Nonpro-
gression (LTNP)

SNP

Patients, no. (%) Crude
Pa after

adjustment
for HLA-A10LTNP Progression Pa OR (95% CI)

rs9280878 (dominant model) .00074b .03145c

NI/NI 85 (73.9) 82 (92.1) 1.00 (reference)
NI/insG, insG/insG 30 (26.1) 7 (7.9) 0.25 (0.1–0.6)

rs9261268 (additive model) .00049b .00944c

GG 72 (74.3) 80 (92.0) 1.00 (reference)
GA 22 (21.0) 7 (8.0) 0.27 (0.11–0.63)
AA 5 (4.8) 0 (0)

rs1048412 (recessive model) 4.37 � 10�5b .00046b

AA, AG 90 (87.4) 89 (100) 1.00 (reference)
GG 13 (12.6) 0 (100) 0.0375 (0.002–0.64)

NOTE. Shown are frequencies, P values, and odds ratios (ORs) for the 3 SNPs with statistically significantly associations
with the LTNP phenotype, before and after adjustment for the presence of HLA-A10. All data are adjusted for sex. CI, confidence
interval; insG, G insertion; NI, no insertion.

a P value for SNP in best-fitting genetic model.
b Statistically significant after Bonferroni correction ( ).P ! .0023
c Statistically significant by only.P ! .05

ysis, together with rs3869068 (Figure 1A). All SNPs were in

Hardy-Weinberg equilibrium and had a successful genotyping

frequency of 190% (Table 2).

Three of the SNPs—rs9280878 ( , dominant mod-P p .00074

el), rs9261268 ( , additive model), and rs1048412P p .00049

( , recessive model)—were found to be statisti-�5P p 4.37 � 10

cally significantly associated with the LTNP phenotype after Bon-

ferroni correction (defined as ) (Table 3). The rs3869068P ! .0023

SNP showed a positive nominal P value (recessive ).P p .0029

To complete our analysis, HLA-A10 genotypes were added to the

model. Despite the high linkage disequilibrium of the genomic

region, the rs1048412 SNP still remained statistically significantly

associated with disease progression ( ) (Table 1),P p .00046

whereas HLA-A10 was not associated with progression after Bon-

ferroni correction ( ).P p .00938

The linkage disequilibrium structure of the ZNRD1 genomic

region was determined, with 2 haplotype blocks determined

(Figure 1B). The larger block contained 6 SNPs and included

3 ZNRD1 exons. The second block contained 3 SNPs and in-

cluded the last exon of the ZNRD1 gene (Figure 1B). Positive

associations, with analysis performed using all possible marker

haplotypes contained in the blocks, were found and involved

a haplotype in each of the blocks (Figure 1B) [29].

Inhibition of HIV-1 replication due to down-regulation of

ZNRD1 expression but not of RNF39 expression. The effect

of ZNRD1 and RNF39 on HIV-1 infection was evaluated using

RNA interference. HeLa-P4R5-MAGI cells were transiently

transfected with siRNAs targeting ZNRD1 (siZNRD1_1 and

siZNRD1_2) and RNF39 (siRNF39_1 and siRNF39_2), and

their effect was assessed by real-time qPCR; siZNRD1_1 and

RNF39_2 were the sequences that achieved the best silencing

(Figure 3A). Western blot analysis of ZNRD1 protein levels

showed a correlation with mRNA levels (Figure 3B).

siRNA-transfected HeLa-P4R5-MAGI cells were infected

with the X4-tropic NL4-3 strain. Transfection with siZNRD1_1

inhibited HIV-1 replication (Figure 3C), compared with that

in mock-transfected or siNT-transfected cells, whereas neither

of the siRNAs targeting RNF39 was able to inhibit replication.

siZNRD1_2, which produced only a mild reduction in ZNRD1

expression levels, did not statistically significantly inhibit HIV-

1 replication (Figure 3C).

The role played by ZNRD1 in HIV-1 infection was confirmed

by infecting siRNA-treated HeLa-P4R5-MAGI cells with the

R5-tropic laboratory-adapted strain BaL and the clinical isolate

UG024 (Figure 3D). ZNRD1 silencing impaired viral replication

of BaL and UG024 to an extent similar to that of NL4-3 (mean

inhibition � standard deviation [SD], for NL4-63% � 15%

3, for BaL, and for UG024) (Figure70% � 15% 72% � 6%

3D).

TZM-bl cells stably expressing a shRNA targeting ZNRD1

(TZMshZNRD1) or a nontargeting control shRNA (TZMshCTRL)

were generated. Specific down-regulation of ZNRD1 gene ex-

pression was confirmed at the mRNA (Figure 3E) and protein

(Figure 4) levels. Acute infection of TZMshZNRD1 cells inhibited

HIV-1 NL4-3 replication (mean decrease � SD, 60% �

), compared with that in wild-type TZM-bl cells or0.1%

TZMshCTRL cells (mean � SD, ) (Figure 3F). No101% � 3%

changes were observed in cell viability or in CD4 receptor and

HIV coreceptor cell-surface expression (data not shown).



Figure 3. Inhibition of human immunodeficiency virus type 1 (HIV-1) replication due to ZNRD1 RNA interference–mediated silencing in HeLa-derived
cell lines. A, RNA interference–mediated inhibition of ZNRD1 and RNF39 transcript expression. Relative messenger RNA (mRNA) quantification of
ZNRD1 and RNF39 in HeLa-P4R5-MAGI cells transfected with different short interfering RNAs (siRNAs) targeting these cellular transcripts is shown.
A nontargeting siRNA (siNT) and a siRNA targeting a viral sequence (siRev/Env) were used as controls. Values were normalized to those of mock-
transfected cells. Means � standard deviations (SDs) for 3 independent experiments are represented. B, Western blot of ZNRD1 in HeLa-P4R5-MAGI
cells transfected with siRNA targeting ZNRD1 transcript. C, Inhibition of HIV-1 replication in siRNA targeting ZNRD1, but not RNF39, mRNA. The
percentage of HIV-1 NL4-3 replication compared with mock control is shown. Means � SDs for at least 3 independent experiments are represented.
D, Inhibition of replication of R5 and X4 HIV-1 strains by siZNRD1-treated cells. The percentage of viral replication for 3 different viruses compared
with the mock control is shown. Means � SDs for 3 independent experiments are represented. E, ZNRD1 mRNA stable down-regulation by short
hairpin RNA (shRNA) in TZM-bl cells. Relative ZNRD1 mRNA quantification in wild-type TZM-bl cells (TZMwt), cells harboring a nontargeting control
shRNA (TZMshCTRL), and stably silenced ZNRD1 cells (TZMshZNRD1) is shown. Values were normalized to those of wild-type cells. Means � SDs for 3
independent experiments are represented. F, Inhibition of HIV-1 replication in TZMshZNRD1 cells. The percentage of HIV-1 NL4-3 replication compared
with that in wild-type cells is shown. Means � SDs for at least 3 independent experiments are represented. bgal, b-galactosidase; ND, no drug.
* ; ** ; *** .P ! .05 P ! .005 P ! .0005
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Figure 4. Inhibition of ZNRD1 protein expression in TZM-bl cells.

Figure 5. Impairment of human immunodeficiency virus type 1 (HIV-1) replication in lymphoid cells due to ZNRD1 inhibition by short hairpin RNA
(shRNA). A, ZNRD1 messenger RNA (mRNA) stable down-regulation by shRNA in SupT1 cells. Relative ZNRD1 mRNA quantification in wild-type SupT1
cells (SupT1wt), cells harboring a control shRNA targeting luciferase (SupT1shLUC), and stably silenced ZNRD1 cells (SupT1shZNRD1) is shown. Values were
normalized to those of wild-type cells. Means � standard deviations (SDs) for 3 independent experiments are represented. ** . B, GrowthP ! .005
kinetics of SupT1 cells containing shRNAs. Cell growth during 5 days was measured as the number of cells per milliliter. Means � SDs for 2 different
measurements are represented. C, Inhibition of HIV-1 replication in SupT1shZNRD1 cells. Percentage of HIV-1 NL4-3 replication compared with wild-type
cells is shown. Means � SDs for at least 3 independent experiments are represented. ND; no drug. ** ; *** . D, Time course ofP ! .005 P ! .0005
p24 production in SupT1 cells. p24 production in cell supernatants was measured 3, 5, and 7 days after infection. Inhibition of HIV-1 NL4-3 replication
was maintained during the course of infection. A representative experiment is shown. CAp24, HIV-1 capsid 24 antigen.

Effect of ZNRD1 on HIV-1 replication in lymphoid cells.

A SupT1 lymphoid cell line stably down-regulating ZNRD1

expression (SupT1shZNRD1) or harboring a shRNA targeting the

luciferase gene (SupT1shLUC) were generated (Figure 5A).

Changes in the expression of CD4, CXCR4, or CD8 were not

detected (data not shown), nor were any detrimental effects on

cell viability or proliferation observed in a growth kinetics curve

(Figure 5B).

Acute infection of the engineered shRNA-expressing SupT1

cells with NL4-3 showed that ZNRD1 down-regulation inhib-

ited HIV-1 replication (mean inhibition � SD, ),64% � 19%

compared with that in wild-type or control cells (mean inhi-

bition � SD, ) (Figure 5C and 5D).5% � 20%

Restoration of HIV replication due to complementation of

wild-type ZNRD1 expression in shZNRD1 cells. SupT1 and

TZM-bl cell lines stably down-regulating ZNRD1 expression

were transfected with a wild-type ZNRD1 expression plasmid

(pZNRD1) or, alternatively, with a green fluorescent protein

expression plasmid as a control. Recovery or overexpression of

wild-type ZNRD1 was measured by real-time qPCR, which

showed an increase in ZNRD1 expression in pZNRD1-trans-

fected cells, compared with that in mock-transfected cells (Fig-

ure 6). Overexpression of the wild-type protein completely re-

stored ZNRD1 mRNA expression levels in SupT1 cells, in which

shZNRD1 inhibition was more modest, but only partially re-

stored them in TZM-bl cells, in which inhibition was more

potent (Figure 6). Acute infection with NL4-3 restored HIV-1

replication levels in both TZMshZNRD1 and SupT1shZNRD1 cells

transfected with the ZNRD1 expression plasmid (mean � SD,

for TZMshZNRD1 and for SupT1shZNRD1),51% � 4% 150% � 40%

compared with those in mock-transfected cells (mean � SD,

for TZMshZNRD1 and for SupT1shZNRD1)13% � 10% 42% � 3%

or cells transfected with the control plasmid (mean � SD,

for TZMshZNRD1 and for SupT1shZNRD1)8% � 1% 29% � 5%

(Figure 7).
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Figure 6. Restoration of ZNRD1 expression in TZM and SupT1 cell
lines.

Figure 7. Recovery of human immunodeficiency virus type 1 (HIV-1) replication due to restoration of ZNRD1 expression in TZM-blshZNRD1 and SupT1shZNRD1

cell lines. The percentage of HIV-1 NL-43 replication in the different TZM-bl cells (A) or SupT1 cells (B) transfected with a green fluorescent protein–
expressing control plasmid (pGFP) or a plasmid expressing wild-type ZNRD1 (pZNRD1) is shown. HIV-1 replication was recovered in shZNRD1 cells
when ZNRD1 expression was restored. Means � standard deviations for at least 3 independent experiments are represented. bgal, b-galactosidase;
CAp24, HIV-1 capsid 24 antigen. * ; ** ; *** .P ! .05 P ! .005 P ! .0005

Effect of ZNRD1 on viral transcription from the LTR

promoter. MOLT-CCR5 cells persistently infected with HIV-

1 strain NL4-3 were cocultured together with HeLa-P4R5-

MAGI cells transfected with siZNRD1_1 or siNT (nontargeting

siRNA control). Fusion was monitored by intracellular b-ga-

lactosidase staining of overnight cocultures. ZNRD1 depletion

did not alter HIV-1 envelope–mediated fusion (Figure 8).

Proviral DNA was measured 8 h after infection in TZMshZNRD1

and SupT1shZNRD1 cells together with their respective control

and parental cell lines. No differences were observed between

shZNRD1 and control cells (Figure 9A), indicating that ZNRD1

down-regulation did not affect viral entry or reverse transcrip-

tion [21]. Viral integration at 24 h was quantified by Alu-LTR

PCR followed by proviral DNA PCR [22]. Again, ZNRD1 in-

hibition did not alter HIV-1 proviral DNA integration (Figure

9A). Similar results were obtained with HeLa-P4R5-MAGI cells

transfected with siZNRD1 (data not shown).

Viral transcription was measured 3 days after infection by

real-time qPCR of different viral mRNA species (gag, nef, and

multiply spliced tat/rev/nef). In all cases, ZNRD1 silencing led

to a statistically significant decrease in the relative amount of

viral mRNA, compared with that in control or wild-type cells

(Figure 9B). Taken together, these results pointed to viral tran-

scription as the step inhibited by ZNRD1 silencing.
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Figure 8. No inhibition of human immunodeficiency virus (HIV) fusion
due to ZNRD1 silencing.

Figure 9. Inhibition of human immunodeficiency virus type 1 (HIV-1) transcription due to down-regulation of ZNRD1 expression. A, HIV-1 proviral
DNA, measured by quantitative polymerase chain reaction (qPCR), in TZM-bl and SupT1 cells at 8 (black bars) and 24 (white bars) h after infection,
in this case preceded by a first round of Alu–long terminal repeat PCR. The number of HIV-1 proviral copies per cell was obtained using a standard
curve and quantification of the cellular gene RNAseP. Values are expressed as percentages compared with those in wild-type cells. Means � standard
deviations (SDs) for 3 independent experiments are represented. AZT, zidovudine. B, Relative ratios of different HIV-1 transcripts (nef, gag, and multiply
spliced messenger RNAs) measured by real-time qPCR and normalized to b-actin in TZM-bl cells 3 days after infection. Means � SDs for 3 replicates
of a representative experiment are represented. * ; ** ; *** .P ! .05 P ! .005 P ! .0005

DISCUSSION

The results of different genomewide screens have been pub-

lished, which have aimed to describe genes that confer different

susceptibilities to AIDS or cellular genes that are functionally

required for viral replication [6–8, 10, 30, 33]. Strikingly, little

overlap can be identified between them [4], therefore making

essential the replication of genetic data in independent cohorts

and further functional validation and characterization of se-

lected genes [34].

Here, taking as a starting point the results of genomewide

analyses [6, 7], we validated, clarified, and functionally char-

acterized the implication of ZNRD1 in HIV-1 replication. Using

RNA interference, we clearly demonstrated that ZNRD1 de-

pletion, but not RNF39 depletion, impaired HIV replication.

Importantly, ZNRD1 down-regulation hampered HIV repli-
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cation in lymphoid cell lines without altering cell viability or

proliferation, expanding its relevance to cells that are natural

HIV targets. Moreover, we narrowed the molecular step at

which ZNRD1 affects viral replication to the transcriptional

level. Importantly, we found that genetic polymorphisms lo-

cated in the ZNRD1 gene were statistically significantly asso-

ciated with the LTNP phenotype independently of HLA-A ef-

fects, thus providing further indication that the ZNRD1 gene

is a novel cofactor that affects the course of HIV infection both

in vitro and in vivo.

Every step of the HIV life cycle depends on the cellular

machinery [35]. For ZNRD1, we have narrowed down its mode

of action to viral transcription from the LTR promoter, dis-

carding any effect on early events of virus replication. In agree-

ment with our data, Brass et al [6] have suggested that ZNRD1

could act before Gag translation. Additional work will be

needed to clearly understand the mode of action of ZNRD1 in

HIV-1 infection. An important element to elucidate would be

the apparent partial effect of transient and stable RNA inter-

ference of ZNRD1. In addition, the potency of RNA-dependent

knockdown appeared to correlate with the potency of inhibition

of virus replication, but total knockout could not be achieved.

These results, together with the observation that complemen-

tation of ZNRD1 expression in wild-type cells did not increase

virus replication, suggest that a low level of expression of

ZNRD1 may be sufficient to allow replication and that complete

gene knockout should be required to abolish virus production.

Human susceptibility to viral infection can be seen as the

final result of a dynamic interplay between the genetic makeup

of the individual host and the pathogen, with environmental

influences adding another layer of complexity. In the middle

of such an intricate picture, however, several genetic polymor-

phisms have been described that clearly influence the outcome

of HIV infection, specially in the HLA region, where ZNRD1

is located [7, 31, 36, 37]. Genetic complexity and the high

linkage disequilibrium of the region challenges the effect of

ZNRD1 on HIV disease progression [32, 37]. Unlike the find-

ings of these studies, our data point to a role for the ZNRD1

gene in HIV disease progression independent of the HLA-A10

allele, a factor proposed to be responsible for much of the effect

of ZNRD1 [32]. Polymorphisms in the ZNRD1 gene remained

statistically significantly associated with the LTNP phenotype

when HLA-A10 was introduced as a covariable in the analysis.

In addition, the effect of HLA-A10 was not statistically signif-

icantly associated with progression, suggesting a more discrete

effect (if any) and an independent role for ZNRD1, in accor-

dance with the findings of other association studies [7, 30, 31,

37]. Although the earlier studies were based on the complex

spatial structure and linkage disequilibrium pattern of a rela-

tively large region, we took a more focused approach on in-

dividual polymorphisms around the ZNRD1 gene, because of

its demonstrated effect on HIV-1 replication in cell culture.

Observations of determinants for host control of infection

based on SNPs need to be replicated in relevant populations,

followed by deeper genomic and functional analyses of the

associated region to verify putative causal variants. Identifica-

tion of polymorphisms in relevant genes might be the key to

unraveling the basis of the pathogenesis of HIV-1 disease. We

did not identify any point mutations or polymorphisms with

clear functional implications, either at the mRNA or protein

level. However, the rs9280878 SNP has been predicted to create

a novel splice site that leads to a different mRNA isoform

without altering the gene coding sequence. Moreover, the SNP

with the lowest P value (rs1048412) is located in the 3′ un-

translated region of the ZNRD1 gene, a region putatively in-

volved in posttranscriptional mRNA regulation by, for example,

microRNAs [38]. Thus, the possibility that the identified SNPs

might have an effect on mRNA properties could not be dis-

carded [39]. Polymorphisms or haplotypes that affect such fea-

tures as mRNA biogenesis, transport, or stability may have an

effect on ZNRD1 and lead to altered expression levels, with

effects on HIV replication resembling the results obtained in

vitro. Future work will shed light on the putative regulatory

mechanisms (if any) that underlie the identified SNPs.

A key therapeutic strategy for treating HIV-positive patients

has been to simultaneously target multiple virus-encoded pro-

teins to overcome the emergence of resistance. The identifi-

cation and characterization of cellular cofactors represent a

promising alternative. Indeed, the use of cellular genes as targets

for antiviral drugs is already becoming a reality, as shown for

the CCR5 coreceptor and its antagonist, maraviroc [40, 41].

Targeting multiple host cell gene products would minimize the

acquisition of drug resistance and provide long-lasting blocking

of virus replication.
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