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N.B.:   A la fin du mois de novembre, cinquante nouveaux cas ont été rajouté à notre 

étude. De ce fait, nous ne pouvons pas remettre à la Faculté la version finale de l’article 

dans les temps impartis par le Travail de Master. 

Ainsi, comme convenu avec la Professeur A. Angelillo-Scherrer, une version intermédiaire 

de l’article vous est transmis, comprenant un descriptif de mon implication dans cette 

étude. 

Dans le cadre de ce travail fait conjointement avec un médecin doctorant, mon rôle a 

consisté en: 

- récolte et tri des échantillons sanguins  

- aide au travail de laboratoire (préparation et analyse) 

- recherche, tri et établissement d’une base de données concernant les patients 

inclus dans l’étude 

- m’occuper de toute la partie épidémiologique et populationnelle de l’étude 

- analyse statistique 

- participation à l’écriture de l’article  

- écriture d’un poster et présentation orale à la “poster session” au Congrès Suisse 

de Médecine Interne en mai 2011 

-  présentation de nos résultats au colloque du Service d’hématologie (à venir) 
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Abstract 
Aim: Gas6 is known to be elevated in sepsis, correlating with the severity of infection and 

organ failure. We aimed to investigate the performance of Gas6 plasma levels at 

admission to predict the risk of mortality in a cohort of septic patients. 

Methods: We used prospectively collected data and plasma samples from the “Sepsis 

Cohorte Romande”. Gas6 level was measured by ELISA at admission and expressed in 

percentage relative to its level in a pool of normal plasma. 

Results: Non-survivors (n=21) presented higher Gas6 levels than survivors (n=73) (median 

258% vs 164%, IQR 194 and 117 respectively) (p=0.0027). Gas6 correlated positively with 

different cytokines and was the best mortality predictor, as shown by the ROC curves area. 

In patients with septic shock (n=66), using 249% as a cut-off value, Gas6 measurement 

had a specificity of 67% and a sensitivity of 81% for predicting mortality. ROC curve area 

was 0.75. Positive and negative predictive values were 57% and 87%, respectively. 

Conclusion: Thus, Gas6 plasma level at admission might be a useful tool to predict 

mortality in patients with septic shock. Although Gas6 hold promise as an early sepsis 

marker, its precise implication in sepsis remains to be elucidated. Our observation should 

be further investigated in larger prospective clinical trials. 
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Introduction 
 Sepsis is the presence of a systemic inflammatory response syndrome (defined by 

two or more of fever or hypothermia, tachypnea, tachycardia, leukocytosis or leukopenia or 

>10% bands) with a proven or suspected microbial aetiology. It is referred as severe when 

signs of organ dysfunction occur and as septic shock when sepsis-induced hypotension 

ensues or when vasopressors or inotropes are necessary to maintain blood pressure 

despite adequate fluid resuscitation, in the presence of perfusion abnormalities(1,2). 

Annual incidence of severe sepsis in United States has been estimated to 3 cases per 

1000 population with a mortality rate of 28,6%(3). In Europeans Intensive Care Units 

(ICU), frequency of sepsis has be reported to be as high as 35% with a mortality of 27% 

and 50% for patients in sepsis and septic shock, respectively(4). Gram-positive bacterias 

are the leading cause of sepsis, followed by Gram-negative and fungal infection. 

The pathophysiology of sepsis is complex(5). It can be seen as an inappropriate immune 

response to pathogen invasion, which results from both hyper-inflammatory state and 

immunoparalysis. On one hand, the activation of immune cells and endothelium after 

exposition to microbial products leads to cytokine production and coagulation activation. 

This further activates immune cells, which give rise to a second burst of cytokine resulting 

in amplification of the inflammatory response. This « cytokine storm » as well as 

coagulation activation result in microvasculature trouble and in increased vascular 

dilatation and permeability which cause tissue ischemia and organ failure(6). This classical 

conception of sepsis pathophysiology is now believed to represent only the early phase of 

this process and would be in fact responsible of a minor proportion of mortality. On the 

other hand, anti-inflammatory molecules are also secreted in an attempt to controlate 

immune reaction during sepsis. Furthermore, apoptosis induced by cytokines such as 

TNF-alpha results in down-regulation of inflammation: lymphocytes and dendritic cells 

death and macrophage phagocytosis of apoptotic cells result in loss of immune effector 

cells and to further anti-inflammatory molecules secretion(7). This compensatory anti-

inflammatory response syndrome may results in immunoparalysis with inability to clear the 

original pathogen invasion or predisposes to secondary infection(8). 

No biomarker has been found to accurately diagnose and monitor septic patients. Clinical 

score based on physiologic measurement and laboratory parameters, such as APACHE or 



         

6 

SOFA scores, are the currently tools used to follow patient's evolution. Mortality in sepsis is 

more or less stable over the paste decade. To date, the only proved adjunctive drug 

treatment which reduces it in patients with severe sepsis or septic shock is recombinant 

activated Protein C(9). 

 

 Gas6, whose gene was first described in fibroblast during growth arrest phase(10), 

is a vitamin K-dependent secreted protein also expressed in endothelial(11), vascular 

smooth muscle(12), bone marrow(13) and central nervous cells(14). It shares 44% 

homology with the amino acid sequence of Protein S, a coagulation regulatory protein 

which acts as a Protein C co-factor(11). Gas6 is composed of four domain: a Gla domain, 

which require gamma-carboxylatation to be functional and interacts with membrane 

phospholipids, four EGF-like domains and a Sex-Hormone Binding like domain which 

interacts with its receptors Tyro-3, Axl, Mer(15). Those form the TAM family and are 

tyrosine kinase exhibiting a widespread distribution in adult tissues (16). Gas6 bind the 

three receptors with differing potency (Axl>Mer>>>Tyro3)(15) while Protein S activates 

Tyro3(17) and Mer(18). Recently, two additional TAM family ligand were found: tubby and 

tubby-like protein (19). Gas6 and its receptors are implicated in a number of cellular 

functions including reversible growth arrest(10), survival(20), proliferation(12,20), 

adhesion(21) and migration(22). 

They have been found to participate in a number of pathophysiological events linked to 

sepsis (Fig. 1). Gas6 is a regulator of innate immunity(23,24), promoting an anti-

inflammatory comportment in antigen-presenting cells by inhibition of cytokine 

production(23,25) and facilitation of apoptotic cells phagocytosis(26). However, it acts on 

an opposite way on endothelium as more adhesion molecule and cytokine secretion occur 

after its activation by Gas6(27). Murine sepsis models with Gas6 or TAM KO mice have 

thus been developed (28)(L. Burnier, unpublished data): LPS injection, intraperitoneally E. 

coli inoculation or caecal ligation and puncture lead to higher inflammatory cytokines levels 

and death in these mice, indicating that Gas6 may have a protective role during sepsis.  

In human, plasma Gas6 level is known to be elevated in inflammatory conditions, including 

sepsis(29)and correlates with organ dysfunction and disease severity(30). Four studies 

have examined its plasmatic levels in patients with sepsis(29-32) without finding 

differences between survivors and non-survivors at admission. It should be emphasized 
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that three of them disposed of a limited septic patients number (<50)(30-32) and one 

comprised only 5% of non-survivors (8 on 169 sepsis cases)(29).  

As we disposed of a cohort of septic patients of a certain importance with a more 

representative non-survivors number, we aimed to prospectively investigate the 

performance of Gas6 plasma levels at admission to predict the risk of mortality. 

 
Material and methods 
Subjects 
 The study cohort is composed of 113 patients from «Sepsis Cohorte Romande» 

(SEPCORO). Briefly, adults subjects presenting severe sepsis or septic shock, according 

to the standards definitions(2,33), were prospectively enrolled in Intensive Care Unit (ICU) 

of surgery or medicine, in Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, 

Switzerland, from February 2008 to august 2010. Blood sampling were performed at 

admission (J0), J3, J7 and then weekly until discharge from ICU or death and conserved at 

-80°C until use. Exclusion criterias were HIV status, haematological malignancy or 

immunosuppressive treatment.  

The research protocol was accepted by the research ethical committee of the faculty of 

Biology and Medicine, Lausanne University, Switzerland. 

 

Gas6 and sAxl ELISAs 
 Plates (96 wells Maxisorp™, Nunc) were coated with 100 µL per well of polyclonal 

goat anti-human Gas6 antibody (AB885, R&D Systems) diluted in 0.1M NaHCO3 pH 8.2 

and incubated overnight at 4°C. After two washing with PBS-Tween 0.05%, they were 

blocked with 100 µL PBS-BSA 1%- sucrose 5% and then incubated 2 hours at room 

temperature. Samples diluted 50 and 100 times and normal plasma serial dilution with 

PBS-BSA 1% were added after three additional washes, followed by an overnight 

incubation at 4°C. After three washing, we used biotynitilated polyclonal goat antibody 

(BAF885, R&D Systems) for the detection, adding 100 µL in each well, and leaving it two 

hour at room temperature. Signal was then amplified with Avidin-HRP (BD Pharmingen™) 

and plates incubated during 20 minutes at 37°C.  Finally, OPD (SIGMA-ALDRICH®) was 

added and plates were blocked with 50 µL HCL 3M 5 minutes later. Absorbance was 
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measured at 492 nm and the result was expressed in percentage relative to normal 

plasma, using its serial dilution as standard curve. 

We used a commercial kit from R&D Systems (DY154) to measure sAxl, following the 

instruction provided. 

 

Statistical analysis 
 Nonparametric tests were used throughout the study. We used the two-sample 

Wilcoxon rank-sum (Mann-Whitney) test to evaluate differences between groups and 

Spearman's rank correlation coefficient for correlations.  

To study Gas6 evolution in time, we used a linear mixed model, calculated with aleatory 

constants and effects. These were employed for the estimation of the effect of survival, 

time and interaction between time and survival on Gas6. A non-structured covariance 

between the repeated measures was used.  

The relation between Gas6 and the other variable measured was assessed with univariate 

linear regression. Then, univariate logistic regression was performed to examine the 

association between the mortality and each of the predictor separately. Taking into account 

the number of non-survivors and the fact that the outcome (survival or non-survival) was 

binary, we used univariate logistic regression to test the independence of Gas6 effect on 

mortality versus each confondant found with the method described above..  

Receiver operating characteristic (ROC) curve was employed to examine the performance 

of variables to predict intra-hospital mortality and Kaplan-Meier curves were drawn to 

study survival.  

Statistical analyses and graphics were performed using the softwares STATA and Prism 

Graphpad. 

 

Results 
Study population 
 94 patients were finally enrolled comprising 73 survivors (77.7%), a proportion of 57 

males (60.6%) and a median age of 65 years old (P25-P75 : 50-74)(Table 1). We reported 

66 septic shock (70.2%) and 28 severe sepsis (29.8%). The gravity scores used were 

Acute Physiology and Chronic Health Evaluation II (APACHE II) with median value 27.5 
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points (P25-P75: 23.3-37) and Sequential Organ Failure Assessment (SOFA) with median 

value 11 points (P25-P75: 9-13). The median value for the c-reactive protein (CRP) was 

231.5 mg/L (P25-P75 : 130.8-315) and for the procalcitonin (PCT) 22.3 µg/L (P25-P75 : 

5.2-53.3). The three main diagnosis for ICU (Intensive Care Unit) admission were 

pneumonia (33%), peritonitis (26.6%), fasciitis (12.8%) and most common pathogens were 

E. Coli (23.4%), S. Pneumoniae (19.1%), S. pyogenes (10.6%) ; we have to notice that in 

13.8% no pathogen was found. 

 

Plasma levels of Gas6 
 Gas6 plasma levels at admission were higher in patients with fatal outcome  

(median 258%, IQR 194) than in survivors (median 164%, IQR 117) (n=94, p=0.0027)(Fig. 

2). As blood sample were performed in different number at different time points, we 

decided to make a model to give us a mean to analyse repeated measures. The linear 

mixed model to study Gas6 evolution during ICU stay showed that, all time confound, 

survivors had a mean level of Gas6 96.6 units lower than non-survivors. As the interaction 

between survival and time was not statistically significant, suggesting that difference in 

Gas6 level between survivors and non-survivors remained constant in time, we made an 

other model (Fig. 3). With this one, non-survivors exhibited a mean Gas6 level of 255.9% 

versus 176.1% in survivors at admission. It then diminished from 0.66 units each day in 

both groups, however, this diminution was not statistically significant. Whatever model we 

used, Gas6 curve remained more elevated in non-survivors than in survivors. 

As the number of non-survivors diminished rapidly after J0 to become statistically not 

significant, we focused our next analysis on results from the first blood sample. 

 

Correlations of Gas6 with clinical scores and markers of inflammation 
 Cytokines were measured in 90 out of the 94 patients of our cohort. Gas6 at 

admission correlated positively with plasma levels of IL-6, IL-8 and IL-10 (Table 2). 

Correlations with IL-1b and TNF-alpha were not significant. There were no correlation 

between Gas6 and CRP, procalcitonin, SOFA and APACHEII scores. 

IL-1beta, IL-6, IL-8, IL-10, TNF-alpha and PCT were tested to find if they were in relation 

with Gas6. Univariate linear regression showed that IL-10 was the only marker to be in 

relation with Gas6 but, according to univariate logistic regression, it did not influence 
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mortality significatively (p=0.176). Furthermore, multivariate logistic regression showed 

that Gas6 effect on mortality was independent from IL-10.  

In fact, Gas6 admission level predicted mortality better than the other tested markers, as 

shown by the ROC curves areas (Table 2). 

 

Gas6 level at admission in ICU can predict intra-hospital mortality in patient with septic 
shock 
 Septic shock is known to have poorer outcome than severe sepsis, as illustrated by 

the number of patients with fatal outcome in each group of our cohort (n=20 vs 2). Thus, 

we decided to focus our survival analyses on this population. 

In patients with septic shock (n=66), considering 249% as a cut-off value, Gas6 

measurement had a specificity of 66.7% (95% CI: 41%-86.7%) and a sensitivity of 81.3% 

(95% CI: 67.4%-91.1%) with a positive likelihood ratio of 2.44 for predicting mortality. ROC 

curve area was 0.75 (SE: 0.07, 95% CI: 0.60-0.89)(Fig. 4). Positive and negative 

predictive values for mortality were 57% and 87%, respectively. Kaplan-Meier curves 

comparison showed that there was a significant difference (p=0.0009) between survival 

times in the two groups (Fig. 5). 

 

sAxl level at ICU admission also discriminate between survivors and non-survivors 
 Gas6 has been found to circulate in human plasma bound to one of its receptor in 

soluble form, sAxl(34). Thus, we decided to measure sAxl in the ICU admission blood 

sample. Survivors exhibited lower sAxl plasma levels than non-survivors (median 34 ng/ml 

vs 47 ng/ml, IQR 15.5 and 25.5 respectively) (p=0.01)(Fig. 6). In the entire population, sAxl 

correlated positively with Gas6 and TNF-alpha (rho 0.35 and 0.24;n=94 and 90 

respectively; p<0.05). ROC curve area for sAxl was 0.69 in the entire population and 0.72 

in septic shock group. 

 

Discussion 
 Opposite to our hypothesis based on observations of murine sepsis models, non-

survivors exhibit higher Gas6 plasmatic level than survivor. Indeed, the role of Gas6 in 

sepsis is not so clear even in murine models, as highlighted by the fact that its adjunction 
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in Gas6 KO mice does not lead to any survival improvement (L. Burnier et al. unpublished 

data). 

Gas6 is described as a immune immunity modulator. When binding the TAM receptors, it 

downregulates dendritic cells cytokine production induced by Toll-like receptor (TLR) 

activation, through the TLR suppressors SOCS1 and SOCS3(23). Alciato et al. have found 

that TNF-alpha, IL-6 and IL-1 expression in monocytes/macrophages was inhibited by 

Gas6 with a pathway involving PI3K/Akt/GSK3beta and repression of NF-κB(25). 

Phosphatidylserines, phospholipids normally confined to the inner leaflet of the cell 

membrane, are expressed in the outer portion of the lipid bilayer during apoptosis. They 

are recognized by Gas6 gamma-carboxyglutamic acid residues. TAM receptors present on 

macrophages bind their ligand, leading to phagocytosis of the apoptotic cell and inducing 

furthermore an anti-inflammatory state in macrophages(35). 

Gas6 could thus have a protective role in sepsis, functioning as a counter regulator of the 

“cytokine storm”. However, as previously stated, only a minor part of fatal outcomes is 

linked to this phenomena, the majority of them being linked to the immunosuppressive 

state that occurs in sepsis. This later is due to direct effectors cells apoptosis, mainly 

lymphocyte cells, induced notably by cytokines, but also to the anti-inflammatory 

programme in macrophage following apoptotic cells phagocytosis(7). The 

immunomodulatory effect of Gas6 could then be double-edged: it decreased pro-

inflammatory cytokine production and thus participates in immunosuppression. 

An other fact that enhances complexity when trying to understand the role of Gas6 during 

sepsis is that it acts as an activation amplifier on endothelium. It induces pro-inflammatory 

cytokine secretion by endothelial cells. Furthermore, Gas6 promotes expression of 

leukocytes adhesion molecules, such as VCAM and ICAM by endothelial cells.   

Thus, Gas6 has opposite effect on inflammation, reducing and augmenting macrophages 

and endothelium participation, respectively. The higher Gas6 level in dead patients could 

be interpreted as a result of an higher inflammatory state, in an attempt to regulates it, or 

as a mediator of endothelial activation, immunoparalysis and sepsis pathophysiology. 

 The soluble receptor sAxl is also more elevated in non-survivors than in survivor.  

As demonstrated by Ekman et al., sAxl is present in human plasma and can bind Gas6, 

possibly inhibiting its effects(34). However, according to our results, it correlates positively 

with Gas6 and is more elevated in non-survivors than in survivors. As it is the free portion 
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of Gas6 that seems biologically active, the question is if the circulating Gas6 that is 

measured has a physiological effect. Whatever, even if inactive when bound to sAxl, 

circulating Gas6 concentration might be the reflect of its effects on local cells were it is 

secreted. 

 In conclusion, our results demonstrate that Gas6 plasma level at admission in 

patients with severe sepsis or septic shock were higher in non-survivors than in survivors 

and this remains constant during ICU stay. Gas6 was a better mortality predictor than the 

other tested markers in patients with septic shock and might be a useful tool to predict 

mortality in those patients. Thus, Gas6 hold promise as an early sepsis marker. However, 

its precise pathophysiological role in sepsis remains to be elucidated. Our observation 

should be further investigated in large prospective clinical trials. 
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Figures and tables 
 

Figure 1. Gas6 actions on pathophysiological events linked to sepsis. 

 

Figure 2. Gas6 levels in survivors and non-survivors at admission.  

 

Figure 3. Gas6 levels evolution during ICU stay. 

 

Figure 4. Gas6 ROC curve for patients with septic shock. 

 

Figure 5. Kaplan-Meier curve in patients with septic shock. 

 

Table 1. Characteristics of study population. 

 

Table 2. a) Correlations between Gas6 and different markers and scores. 

 b) Roc curve area of the different markers measured. 
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Figure legends 
 

Figure 1: Acting through the TAM receptor family, Gas6 promotes interaction between 

endothelium and leukocytes by inducing  expression of adhesion molecules such as 

VCAM-1 and ICAM-1 (1) and induces endothelial cells cytokine secretion, notably IL-1beta 

and IL-6(2). Gas6 interacts with phosphatydilserine expressed on apoptotic cells and 

induces phagocytosis by monocytes/macrophages(3). Finally, it downregulates pro-

inflammatory production such as TNF-alpha, IL-6 and IL-1 in monocytes/macrophages(4). 

 

Figure 2: Gas6 plasma levels at admission in survivors and non-survivors (in % of normal 

plasma). **p=0.0027. 

 

Figure 3: Gas6 levels evolution during ICU stay based on a linear mixed model. Round 

and cross represent the measures in deceased person and survivors, respectively.  

 

Figure 4: ROC curve of Gas6 level at admission in patients with septic shock. 

 

Figure 5: Survival curves of patients with septic shock (n=67), stratified by Gas6 

measurement at admission. ***p=0.0009 

 

Figure 6: sAxl plasma levels at admission in survivors and non-survivors (in ng/mL). *p= 

0.01 
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