Table of Contents
eAppendix 1. Data analysis overview and analytic notes for some of individual studies 3
eAppendix 2. Acronyms or abbreviations for studies included in the current report and their key references linked to the Web references 8
eAppendix 3. Acknowledgements and funding for collaborating cohorts 10
eTable 1. Number of Participants, Events, and Follow-up Time by Study Cohort 14
eTable 3. Baseline Characteristics by BMI Category - Demographics 18
eTable 4. Baseline Characteristics by BMI Category - Cardiovascular Disease and Chronic Kidney Disease Risk Factors 23
eTable 5. Baseline Characteristics by BMI Category - Kidney Measures 26
eFigure 1. Relationships of BMI with Waist Circumference (A and B) and Waist-Height Ratio (C and D), in Women (A and C) and Men (B and D) 29
eFigure 2. Hazard Ratios at 35 vs. $25 \mathrm{~kg} / \mathrm{m}^{2}$ in Individual General Population Cohorts, by Median Baseline Year 30
eFigure 3. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A), ESKD as the Sole Outcome (B), Competing Risk of Death (C), and Adjusting for Potential Mediators (D) for BMI in General Population Cohorts 31
eFigure 4. BMI Interactions by Age (A), Black Race (B), Hypertension (C), and Albuminuria (D) with GFR decline in General Population Cohorts 32
eFigure 5. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A), ESKD as the Sole Outcome (B), Competing Risk of Death (C), and Adjusting for Potential Mediators (D) for BMI in High CVD Risk Cohorts33
eFigure 6. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A), ESKD as the Sole Outcome (B), Competing Risk of Death (C), and Adjusting for Potential Mediators (D) for BMI in CKD Cohorts 34
eFigure 7. Association of Waist Circumference (A and C) and Waist-Height Ratio (B and D) with GFR Decline in High CVD Risk (A and B) and CKD (C and D) Cohorts 35
eFigure 8. Association of Adiposity Measures with All-Cause Mortality in General Population Cohorts 36
eFigure 9. Interaction of eGFR on BMI and Association with All-Cause Mortality in General Population Cohorts 37
eFigure 10. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A) and Adjusting for Potential Mediators (B) for BMI and All-Cause Mortality in General Population Cohorts 38
eFigure 11. Association of Adiposity Measures with All-Cause Mortality in High Cardiovascular Risk Cohorts 39
eFigure 12. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A) and Adjusting for Potential Mediators (B) for BMI and All-Cause Mortality in High Cardiovascular Risk Cohorts 40
eFigure 13. Association of Adiposity Measures with All-Cause Mortality in CKD Cohorts 41

eFigure 14. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A) and Adjusting for Potential Mediators (B) for BMI and All-Cause Mortality in CKD Cohorts .. 42

References .. 43

eAppendix 1. Data analysis overview and analytic notes for some of individual studies

Overview:

As previously described, ${ }^{1}$ the collaborating cohorts were asked to compile a dataset with approximately 40 variables (key exposures [serum creatinine to estimate GFR and albuminuria], covariates [e.g., age, sex, race/ethnicity, diabetes], and outcomes [laboratory tests and hypertension]). To be consistent across cohorts, the CKD-PC Data Coordinating Center sent definitions for those variables to participating cohorts. We instructed studies not to impute any variables.

For 48 of the 63 cohorts in this specific study, the Data Coordination Center at Johns Hopkins University conducted the analysis; the remainder ran the standard code written in STATA by the Data Coordinating Center and shared the output with the Data Coordinating Center. The standard code was designed to automatically save all estimates and variance-covariance matrices needed for the meta-analysis. Then, the Data Coordinating Center meta-analyzed the estimates across cohorts using STATA.

As detailed in our previous reports, ${ }^{23}$ each cohort was instructed to standardize their serum creatinine and report its method when available. The reported creatinine standardization allows grouping studies into studies that reported using a standard IDMS traceable method or conducted some serum creatinine standardization to IDMS traceable methods (ARIC, AusDiab, Beaver Dam CKD, CanPREDDICT, CARE FOR HOMe, ESTHER, GCKD, Geisinger, Gonryo, Gubbio, HUNT, Maccabi, MASTERPLAN, MMKD, NephroTest, NHANES, Okinawa 83 \& 93 , PREVEND, Rancho Bernardo, RCAV, REGARDS, RSIII, SEED, SRR-CKD, Takahata, Tromso) and studies where the creatinine standardization was not done (AASK, ADVANCE, Aichi, BC CKD, Beijing, CCF, ChinaNS, CHS, CKD-JAC, CRIB, Framingham, IPHS, KHS, MDRD, MESA, MRC, NZDCS, Ohasama, Pima, RENAAL, Sunnybrook, ULSAM, ZODIAC). For those cohorts without standardization, the creatinine levels were reduced by 5%, the calibration factor used to adjust non-standardized MDRD Study samples to IDMS. ${ }^{24}$. We did not adjust creatinine levels in those studies with unknown standardization status (JMS, KP Hawaii, Mt Sinai, NIPPON DATA80, NIPPON DATA90, PSP-CKD, SMART, Taiwan MJ, and TLGS).

We calculated eGFR using the CKD-EPI equation: eGFR $_{\text {CKD-EPI }}=141 \times$ (minimum of standardized serum creatinine $[\mathrm{mg} / \mathrm{dL}] / \kappa$ or 1$)^{\alpha} \times(\text { maximum of standardized serum creatinine }[\mathrm{mg} / \mathrm{dL}] / \kappa \text { or } 1)^{-1.209} \times 0.993^{\text {age }} \times(1.018$ if female $) \times$ (1.159 if black), where κ is 0.7 if female and 0.9 if male and α is -0.329 if female and -0.411 if male. ${ }^{5}$ The selection of knots for eGFR and ACR was based on clinical thresholds. ${ }^{6}$

Notes for individual studies:

1. General population cohorts

Aichi: This cohort had no ACR measures. We used protein measures from dipstick tests to quantify albuminuria. This cohort does not have data on waist circumference.

ARIC: This cohort had no ACR measures at baseline. 16% of the creatinine measures were more than 5 years apart.
AusDiab: 67% of the creatinine measures were more than 5 years apart.
Beaver Dam CKD: This cohort had no ACR measures. We used protein measures from dipstick tests to quantify albuminuria. 14% of the creatinine measures were more than 5 years apart.

CHS: This cohort had no ACR measures at the baseline visit.
CIRCS: This cohort does not have data on waist circumference or ACR measures. We used protein measures from dipstick tests to quantify albuminuria.

ESTHER: This cohort does not have data on waist circumference or ACR measures. We used protein measures from dipstick tests to quantify albuminuria. Follow up visit was about 8.4 years after baseline.

Framingham: 45% of the creatinine measures were more than 5 years apart.

Geisinger: This cohort does not have data on waist circumference.
HUNT: Follow up visit was 11.2 years after baseline.
IPHS: This cohort does not have data on waist circumference.
JMS: This cohort had no ACR measures. We used protein measures from dipstick tests to quantify albuminuria.
Maccabi: This cohort does not have data on waist circumference.

MESA: Participants free from previous cardiovascular disease at baseline.
MRC: This cohort had no ACR measures. We used protein measures from dipstick tests to quantify albuminuria.
Mt Sinai BioMe: This cohort does not have data on waist circumference. Data for the outcome of death was not available.

NHANES: This cohort does not have data on waist circumference. Data for the outcome of ESKD was not available.
NIPPON DATA80: This cohort had no ACR measures or data on waist circumference.
NIPPON DATA90: This cohort had no ACR measures or data on waist circumference.

Ohasama: This cohort had no ACR measures. We used protein measures from dipstick tests to quantify albuminuria. 21% of the visits are more than 5 years apart.

Okinawa 83: This cohort does not have data on smoking or waist circumference. Antihypertensive medication use was not available. 4,614 subjects from the Okinawa 83 cohort were measured for creatinine again in 93 and these constitute the eGFR decline outcome.

Okinawa 93: This cohort does not have data on smoking or waist circumference. Antihypertensive medication use was not available.

PREVEND: 29% of the visits are more than 5 years apart.
Rancho Bernardo: 12% of the visits are more than 5 years apart.
RCAV: This cohort does not have data on waist circumference or smoking.
REGARDS: Follow up visit is 9.4 years from baseline.
SEED: This cohort does not have data on waist circumference and has no ACR measures.

Takahata: This cohort does not have data on waist circumference. Creatinine was not measured again after baseline. Data for the outcome of ESKD was not available.

TLGS: This cohort had no ACR measures. We used protein measures from dipstick tests to quantify albuminuria. 15% of the visits were more than 5 years apart.

Tromso: All of the creatinine measures were more than 5 years apart.
ULSAM: This cohort does not have data on waist circumference, smoking, or ACR measures. Data on use of antihypertensive medications was not available. Follow up was 21 years after baseline.

2. High-risk cohorts

ADVANCE: This study is an intervention study which includes participants with diabetes only.
KP Hawaii: This cohort does not have data on smoking or waist circumference. Data on use of antihypertensive medications was not available.

NZDCS: This cohort does not have data on waist circumference.

Pima: History of cardiovascular disease was not available. 38% of the visits are more than 5 years apart.
ZODIAC: This cohort does not have data on waist circumference. 14% of visits were more than 5 years apart.
3. CKD cohorts

AASK: This cohort does not have data on waist circumference. Urine protein-to-creatinine ratio was converted to urine albumin-to-creatinine ratio by dividing by 2.655 for men and 1.7566 for women.

BC CKD: This cohort does not have data on waist circumference.
CanPREDDICT: This cohort does not have data on smoking or waist circumference.
CARE FOR HOMe: ACR was not measured at baseline for this cohort.
CCF: This cohort does not have data on waist circumference. History of cardiovascular disease was defined as history of either coronary artery disease or coronary heart failure.

Gonryo: This cohort does not have data on waist circumference, smoking, or ACR measures. We used protein measures from dipstick tests to quantify albuminuria.

MDRD: This cohort does not have data on waist circumference. Urine protein-to-creatinine ratio was converted to urine albumin-to-creatinine ratio by dividing by 2.655 for men and 1.7566 for women. Anti-hypertensive medication use was not available.

MMKD: This cohort does not have data on waist circumference. Urine protein-to-creatinine ratio was converted to urine albumin-to-creatinine ratio by dividing by 2.655 for men and 1.7566 for women.

Nefrona: Patients free from previous cardiovascular disease.
NephroTest; This cohort does not have data on waist circumference.
PSP-CKD: This cohort does not have data on waist circumference. Urine protein-to-creatinine ratio was converted to urine albumin-to-creatinine ratio by dividing by 2.655 for men and 1.7566 for women.

RENAAL: This cohort does not have data on waist circumference. History of cardiovascular disease was not available.

SRR-CKD: This cohort does not have data on smoking
Sunnybrook: This cohort includes patients seen in the nephrology clinics at Sunnybrook Hospital in Toronto, Ontario, Canada with CKD stage 3-5 or proteinuric CKD stage 1-2. Urine protein-to-creatinine ratio was converted to urine albumin-to-creatinine ratio by dividing by 2.655 for men and 1.7566 for women.

ESKD ascertainment by study:

Study	Ascertainment type
AASK	Active
ADVANCE	Active
Aichi	n/a
ARIC	Linkage to registry, Codes
AusDiab	n/a
BC CKD	Active
Beaver Dam CKD	n/a
Beijing	n/a
CanPREDDICT	Active
CARE FOR HOMe	n/a
CCF	Linkage to registry
ChinaNS	n/a
CHS	Linkage to registry
CIRCS	n/a
CKD-JAC	Active
COBRA	n/a
CRIB	Active (with chart validation)
ESTHER	n/a
Framingham	n/a
GCKD	Active (with confirmation)
Geisinger	Linkage to registry
Gonryo	Active
Gubbio	n/a
HUNT	Active, Linkage to registry
IPHS	n/a
JHS	n/a
JMS	n/a
KHS	Codes
KP Hawaii	Active
Maccabi	Active
MASTERPLAN	Active
MDRD	Active, Linkage to registry
MESA	n/a
MMKD	Active
MRC Older People	n/a
Mt Sinai BioMe	Codes
Nefrona	Active
NephroTest	Linkage to registry
NHANES	n/a
NIPPON DATA80	n/a
NIPPON DATA90	n/a
NZDCS	Linkage to registry, ICD codes
Ohasama	n/a
Okinawa 83/93	Linkage to registry
Pima	Active, Linkage to registry
PREVEND	n/a
PSP-CKD	Active
Rancho Bernardo	n/a
RCAV	Linkage to registry
REGARDS	Linkage to registry
RENAAL	Active (with adjudication)
RSIII	n/a

SEED	n / a
SMART	Active (with chart validation)
SRR-CKD	Active, Linkage to registry
Sunnybrook	Linkage to registry
Taiwan MJ	n / a
Takahata	n / a
TLGS	n / a
Tromso	n / a
ULSAM	n / a
ZODIAC	n / a

eAppendix 2. Acronyms or abbreviations for studies included in the current report and their key references linked to the Web references

AASK:	African American Study of Kidney Disease and Hypertension ${ }^{7}$
ADVANCE:	The Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial ${ }^{8}$
Aichi:	Aichi Workers' Cohort Study ${ }^{9}$
ARIC:	Atherosclerosis Risk in Communities Study ${ }^{10}$
AusDiab:	Australian Diabetes, Obesity, and Lifestyle Study ${ }^{11}$
BC CKD:	British Columbia CKD Study ${ }^{12}$
Beaver Dam CKD:	Beaver Dam CKD Study ${ }^{13}$
Beijing:	Beijing Cohort Study ${ }^{14}$
CanPREDDICT:	Canadian Study of Prediction of Death, Dialysis and Interim Cardiovascular Events ${ }^{15}$
CARE FOR HOMe:	The Cardiovascular and Renal Outcome in CKD 2-4 Patients-The Fourth Homburg evaluation
CCF:	Cleveland Clinic CKD Registry Study ${ }^{16}$
ChinaNS:	The China National Survey of Chronic Kidney Disease
CHS:	Cardiovascular Health Study ${ }^{17}$
CIRCS:	Circulatory Risk in Communities Study ${ }^{18}$
CKD-JAC:	Chronic Kidney Disease Japan Cohort
COBRA:	COBRA Study ${ }^{19}$
CRIB:	Chronic Renal Impairment in Birmingham ${ }^{20}$
ESTHER:	Epidemiologische Studie zu Chancen der Verhütung, Früherkennung und optimierten THerapie chronischer ERkrankungen in der älteren Bevölkerung [GERMAN] ${ }^{21}$
Framingham:	Framingham Heart Study ${ }^{22}$
GCKD:	German Chronic Kidney Disease Study ${ }^{23}$
Geisinger:	Geisinger Health System ${ }^{24}$
Gonryo:	Gonryo Study
Gubbio:	Gubbio Study ${ }^{25}$
HUNT:	Nord Trøndelag Health Study ${ }^{26}$
IPHS:	Ibaraki Prefectural Health Study ${ }^{27}$
JHS:	Jackson Heart Study
JMS:	Jichi Medical School cohort
KHS:	Korean Heart Study
KP Hawaii:	Kaiser Permanente Hawaii Cohort ${ }^{28}$
Maccabi:	Maccabi Health System ${ }^{29}$
MASTERPLAN:	Multifactorial Approach and Superior Treatment Efficacy in Renal Patients with the Aid of a Nurse Practitioner ${ }^{30}$
MDRD:	Modification of Diet in Renal Disease Study ${ }^{31}$
MESA:	Multi-Ethnic Study of Atherosclerosis ${ }^{32}$
MMKD:	Mild to Moderate Kidney Disease Study ${ }^{33}$
MRC Older People:	MRC Study of assessment of older people ${ }^{34}$
Mt Sinai BioMe:	Mount Sinai BioMe Biobank Platform ${ }^{35}$
Nefrona:	Nefrona Study ${ }^{36}$
NephroTest:	NephroTest Study ${ }^{37}$
NHANES:	US National Health and Nutrition Examination Survey, using both NHANES III and the continuous NHANES from 1999-201038
NIPPON DATA80:	National Integrated Project for Prospective Observation of Non-communicable Disease and its Trends in the Aged 1980
NIPPON DATA90:	National Integrated Project for Prospective Observation of Non-communicable Disease and its Trends in the Aged 1990
NZDCS:	New Zealand Diabetes Cohort Study ${ }^{39}$
Ohasama:	Ohasama Study ${ }^{40}$

Okinawa 83:	Okinawa 83 Cohort ${ }^{41}$
Okinawa 93:	Okinawa 93 Cohort ${ }^{42}$
Pima:	Pima Indian Study ${ }^{43}$
PREVEND:	Prevention of Renal and Vascular End-stage Disease Study ${ }^{44}$
PSP-CKD:	Primary-Secondary Care Partnership to Prevent Adverse Outcomes in Chronic Kidney
	Disease
Rancho Bernardo:	Rancho Bernardo Study ${ }^{45}$
RCAV:	Racial and Cardiovascular Risk Anomalies in CKD Cohort ${ }^{46}$
REGARDS:	Reasons for Geographic And Racial Differences in Stroke Study ${ }^{47}$
RENAAL:	Reduction of Endpoints in Non-insulin Dependent Diabetes Mellitus with
	the Angiotensin II Antagonist Losartan ${ }^{48}$
RSIII:	Rotterdam Study Third Cohort
SEED:	Singapore Epidemiology of Eye Diseases ${ }^{50}$
SMART:	Second Manifestations of ARTerial Disease Study
SRR-CKD:	Swedish Renal Registry CKD Cohort ${ }^{51}$
Sunnybrook:	Sunnybrook Cohort ${ }^{52}$
Taiwan MJ:	Taiwan MJ Cohort Study ${ }^{53}$
Takahata:	Takahata Study
TLGS:	Tehran Lipid and Glucose Study ${ }^{55}$
Tromso:	Tromso Study
ULSAM:	Uppsala Longitudinal Study of Adult Men
ZODIAC:	Zwolle Outpatient Diabetes project Integrating Available Care ${ }^{57}$

eAppendix 3. Acknowledgements and funding for collaborating cohorts

Study	List of sponsors
AASK	AASK was supported by grants to each clinical center and the coordinating center from the National Institute of Diabetes and Digestive and Kidney Diseases. In addition, AASK was supported by the Office of Research in Minority Health (now the National Center on Minority Health and Health Disparities, NCMHD) and the following institutional grants from the National Institutes of Health: M01 RR-00080, M01 RR-00071, M0100032, P20RR11145, M01 RR00827, M01 RR00052, 2P20 RR11104, RR029887, and DK 2818-02. King Pharmaceuticals provided monetary support and antihypertensive medications to each clinical center. Pfizer Inc, AstraZeneca Pharmaceuticals, Glaxo Smith Kline, Forest Laboratories, Pharmacia and Upjohn also donated antihypertensive medications.
ADVANCE	National Health and Medical Research Council (NHMRC)of Australia program grants 358395 and 571281 and project grant 211086
Aichi	$\begin{aligned} & \text { KAKENHI (09470112, 13470087, 17390185, 18590594, 20590641, 20790438, 22390133, } \\ & \text { 26293153) } \end{aligned}$
ARIC	The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, under Contract nos. (HHSN268201700001I, HHSN268201700003I, HHSN268201700005I, HHSN268201700004I, HHSN2682017000021). The authors thank the staff and participants of the ARIC study for their important contributions.
AusDiab	The Baker IDI Heart and Diabetes Institute, Melbourne, Australia, their sponsors, and the National Health and Medical Research Council of Australia (NHMRC grant 233200), Amgen Australia, Kidney Health Australia and The Royal Prince Alfred Hospital, Sydney, Australia.
BC CKD	BC Provincial Renal Agency, an Agency of the Provincial Health Services Authority in collaboration with University of British Columbia.
Beaver Dam CKD	2U10EY006594
Beijing	The research for this study was supported by the Program for New Century Excellent Talents in University (BMU2009131) from the Ministry of Education of the People's Republic of China, and the grants for the Early Detection and Prevention of Noncommunicable Chronic Diseases from the International Society of Nephrology Research Committee.
CanPREDDI	
CARE FOR HOMe	Supported by the Else Kröner-Fresenius Stiftung
CCF	Supported by an unrestricted educational grant from Amgen to the Department of Nephrology and Hypertension.
ChinaNS	
CHS	This research was supported by contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, and grants U01HL080295 and U01HL1301 14 from the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org.
CIRCS	
CKD-JAC	

COBRA	
CRIB	British Renal Society Project Grant Award British Heart Foundation Project Grant Award.
ESTHER	Ministry of Research, Science and the Arts Baden-Württemberg (Stuttgart, Germany), Federal Ministry of Education and Research (Berlin, Germany), Federal Ministry of Family Affairs, Senior Citizens, Women and Youth (Berlin, Germany), European Commission FP7 framework programme of DG-Research (CHANCES Project). Measurement of urinary albumin was funded by Dade-Behring, Marburg, Germany.
Framingham	NHLBI Framingham Heart Study (N01-HC-25195).
GCKD	The GCKD study is supported by grants from the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; www.bmbf.de), FKZ 01ER 0804, 01ER 0818, 01ER 0819, 01ER 0820 und 01ER 0821 and the Foundation for Preventive Medicine of the KfH (Kuratorium für Heimdialyse und Nierentransplantation e.V. - Stiftung Präventivmedizin; www.kfh-stiftung-praeventivmedizin.de) and corporate partners (for a list see www.gckd.org). The GCKD investigators gratefully acknowledge the expert support of all members of study staff, the dedicated contribution of all collaborating nephrologists (for a list of contributors and the 169 study sites, see www.gckd.org) and the support of patients participating in the study.
Geisinger	Geisinger Clinic
Gonryo	
Gubbio	Municipal and Health Authorities of Gubbio, Italy; Center of Gubbio Epidemiological Studies, Gubbio, Italy; University of Salerno, Salerno, Italy.
HUNT	Faculty of Medicine, Norwegian University of Science and Technology; The Norwegian Institute of Public Health; Nord-Trøndelag County Council; and Central Norway Regional Health Authority
IPHS	
JHS	The Jackson Heart Study (JHS) is supported and conducted in collaboration with Jackson State University (HHSN268201300049C and HHSN268201300050C), Tougaloo College (HHSN268201300048C), and the University of Mississippi Medical Center (HHSN268201300046C and HHSN268201300047C) contracts from the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute for Minority Health and Health Disparities (NIMHD). The authors also wish to thank the staffs and participants of the JHS.
JMS	
KHS	
KP Hawaii	
Maccabi	
MASTERPLAN	The MASTERPLAN study is a clinical trial with trial registration ISRCTN registry: 73187232. Sources of funding: The MASTERPLAN Study was supported by grants from the Dutch Kidney Foundation (Nierstichting Nederland, number PV 01), and the Netherlands Heart Foundation (Nederlandse Hartstichting, number 2003 B261). Unrestricted grants were provided by Amgen, Genzyme, Pfizer and Sanofi-Aventis.
MDRD	NIDDK UO1 DK35073 and K23 DK67303, K23 DK02904
MESA	This research was supported by contracts HHSN268201500003I, N01-HC-95159, N01-HC95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165,

	N01-HC-95166, N01-HC-95167, N01-HC-95168 and N01-HC-95169 from the National Heart, Lung, and Blood Institute and by grants UL1-TR-0000-40 and UL1-TR-001079 from NCRR. The authors thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.
MMKD	The MMKD study was funded by the Austrian Heart Fund and by the Innsbruck Medical University.
MRC Older People	UK Medical Research Council, Department of Health for England, Wales and the Scottish Office and Kidney Research UK
Mt Sinai BioMe	The Nefrona study was funded by research grants from Abvie, and Instituto de Salud Carlos III (PII3/01565, PI16/01354, RD16/0009/00111 (Co-funded by European Regional Development Fund "A way to make Europe").
Nefrona	The NephroTest CKD cohort study is supported by grants from: Inserm GIS-IReSP AO 8113LS TGIR; French Ministry of Health AOM 09114 and AOM 10245; Inserm AO 8022LS; Agence de la Biomédecine R0 8156LL, AURA, and Roche 2009-152-447G. The Nephrotest initiative was also sponsored by unrestricted grants from F.Hoffman-La Roche Ltd. The authors thank the collaborators and the staff of the NephroTest Study: François Vrtovsnik, Eric Daugas, Martin Flamant, Emmanuelle Vidal-Petiot (Bichat Hospital); Christian Jacquot, Alexandre Karras, Eric Thervet, Christian d'Auzac, P. Houillier, M. Courbebaisse, D. Eladari et G. Maruani (European Georges Pompidou Hospital); Jean- Jacques Boffa, Pierre Ronco, H. Fessi, Eric Rondeau, Emmanuel Letavernier, Jean Philippe Haymann, P. Urena-Torres (Tenon Hospital)
NephroTest	

$\left.\begin{array}{|l|l|}\hline \text { RCAV } & \begin{array}{l}\text { This study was supported by grant R01DK096920 from NIH-NIDDK and is the result of } \\ \text { work supported with resources and the use of facilities at the Memphis VA Medical Center } \\ \text { and the Long Beach VA Medical Center. Support for VA/CMS data is provided by the } \\ \text { Department of Veterans Affairs, Veterans Health Administration, Office of Research and } \\ \text { Development, Health Services Research and Development, VA Information Resource } \\ \text { Center (project numbers SDR 02-237 and 98-004). }\end{array} \\ \hline \text { REGARDS } & \begin{array}{l}\text { This research project is supported by a cooperative agreement U01 NS041588 from the } \\ \text { National Institute of Neurological Disorders and Stroke, National Institutes of Health, } \\ \text { Department of Health and Human Service. The content is solely the responsibility of the } \\ \text { authors and does not necessarily represent the official views of the National Institute of } \\ \text { Neurological Disorders and Stroke or the National Institutes of Health. Representatives of } \\ \text { the funding agency have been involved in the review of the manuscript but not directly } \\ \text { involved in the collection, management, analysis or interpretation of the data. The authors } \\ \text { thank the other investigators, the staff, and the participants of the REGARDS study for their } \\ \text { valuable contributions. A full list of participating REGARDS investigators and institutions } \\ \text { can be found at http://www.regardsstudy.org } \\ \text { Additional funding was provided by an investigator-initiated grant-in-aid from Amgen and } \\ \text { an investigator-initiated National Heart, Lung, and Blood Institute (NHLBI) grant R01 }\end{array} \\ \hline \text { HL080477. Representatives from Amgen or NHLBI did not have any role in the design and } \\ \text { conduct of the study, the collection, management, analysis, and interpretation of the data, or } \\ \text { the preparation or approval of the manuscript. }\end{array}\right\}$
eTable 1. Number of Participants, Events, and Follow-up Time by Study Cohort

Study	Baseline Year(s)	N*	Follow-up time for death (y)	Followup time to ESKD (y)	Follow-up time for GFR decline \dagger (y)	Death	ESKD Events	GFR decline \dagger events
General Population								
Aichi	2002-2003	4802	8 (2)			81		<50
ARIC	1987-1990	15488	22 (7)	22 (7)	14 (9)	6304	418	2344
AusDiab	1999-2000	10957	13 (2)		10 (3)	1362		62
Beaver Dam CKD	1988-1995	4787	14 (5)		5 (0)	2052		75
Beijing	2004	1505	6 (1)			83		<50
ChinaNS	1994-2008	44514	6 (2)			797		
CHS	1992-1993	4574	12 (6)	12 (6)	4 (0)	3939	65	106
CIRCS	1986-1993	11425	19 (4)		13 (6)	1413		509
COBRA	2004-2005	1163	7 (3)			256		<50
ESTHER	2000-2002	9746	11 (2)		8 (0)	1538		484
Framingham	1979-1986	2947	10 (2)		8 (3)	300		114
Geisinger	1996-2017	390614	9 (5)	7 (5)	7 (5)	48573	3346	27935
Gubbio	1988-1992	1676	17 (3)			233		<50
HUNT	1995-1997	63852	13 (2)	13 (2)	11 (1)	7090	98	833
IPHS	1993-2004	93397	18 (5)		10 (4)	25922		537
JHS	2000-2004	3463	10 (2)		8 (1)	296		108
JMS	1992-1995	4905	12 (2)			287		
KHS	1996-2004	350556	13 (3)	13 (3)	3 (2)	13330	1184	942
Maccabi	2006-2012	656640	6 (2)	6 (2)	6 (2)	33636	2325	12180
MESA	2000-2002	6710	8 (2)		5 (1)	501		142
MRC	1995-1999	11965	7 (4)			7916		
Mt Sinai BioMe	2003-2014	23112	4 (3)	4 (3)	4 (3)		821	1544
NHANES	1988-1994	58477	10 (7)			7581		
$\begin{array}{\|l\|} \hline \text { NIPPON } \\ \text { DATA80 } \end{array}$	1980	8847	24 (8)			3203		
$\begin{array}{\|l\|} \hline \text { NIPPON } \\ \text { DATA90 } \end{array}$	1990	7219	18 (5)			1651		
Ohasama	1990-2010	1595	13 (6)			326		<50
Okinawa 83	1983	8927		17 (1)	10 (0)		94	754
Okinawa 93	1993	89368		7 (0)			160	
PREVEND	1997-1998	7865	11 (3)		10 (3)	768	<50	97
Rancho Bernardo	1992-1997	1735	13 (6)		8 (3)	758		66
RCAV	2004-2012	3018133	7 (2)	6 (2)	6 (2)	583387	9103	195158
REGARDS	2003-2007	28469	11 (3)	8 (2)	9 (1)	6586	428	2085
RSIII	2006-2008	3384	8 (2)			243		<50
SEED	2004-2012	6424	5 (2)			221	<50	
Taiwan MJ	1994-2008	473863	9 (4)		5 (3)	17577		354
Takahata	2004-2006	2272	9 (1)			180		<50
TLGS	1995-2006	10212	11 (3)		11 (3)	706		158
Tromso	1994-2008	7762	16 (4)		11 (3)	2390	<50	226
ULSAM	1970-1973	1210	35 (6)		21 (0)	843	<50	61
Subtotal		5459014	8 (3)	7 (2)	6 (3)	782329	18042	246874
High CVD Risk Cohorts								
ADVANCE	2001-2003	11038	9 (3)	9 (3)	5 (1)	2242	81	1284
KP Hawaii	2000-2006	29480	2 (1)	2 (1)	2 (1)	1288	289	1450
NZDCS	1999-2006	27725	9 (3)	9 (3)	2 (1)	7910	942	179
Pima	1982-2007	4015	12 (7)	12 (7)	12 (7)	1060	306	273
SMART	1996-2014	10485	7 (4)	7 (4)		1338	66	

ZODIAC	1998-2002	1674	10 (4)		8 (3)	808		158
Subtotal		84417	6 (3)	6 (3)	3 (2)	14646	1684	3344
CKD Cohorts								
AASK	1995-1998	1087	8 (3)	7 (3)	6 (4)	211	298	525
BC CKD	2003-2012	7646	7 (3)	4 (3)	4 (3)	2909	2673	3221
CanPREDDICT	2008	1643	3 (1)	3 (2)	3 (1)	381	381	619
CARE FOR HOMe	2008-2015	462	4 (2)			63	<50	<50
CCF	2005-2009	36018	2 (1)	2 (1)	2 (1)	5455	995	1669
CKD-JAC	2007-2009	2478	4 (2)	4 (2)	3 (1)	73	502	1075
CRIB	1996-1998	369	6 (3)	4 (3)	3 (1)	141	184	137
GCKD	2009-2012	5050	2 (0)	2 (0)	2 (0)	157	71	238
Gonryo	2006-2008	3352	4 (2)	4 (2)	4 (2)	126	336	453
MASTERPLAN	2004-2006	671	5 (1)	4 (1)	4 (1)	118	148	192
MDRD	1989-1991	1771	16 (6)	9 (7)	2 (1)	819	1136	272
MMKD	1997-1998	198		4 (2)		<50	74	<50
Nefrona	2009-2011	1751	4 (1)	2 (0)	2 (0)	103	130	96
NephroTest	2000-2013	1891	6 (3)	5 (3)	4 (2)	364	448	234
PSP-CKD	2010-2013	20429	4 (2)	4 (2)	2 (1)	4707	204	271
RENAAL	1996-1998	1468	3 (1)	3 (1)	2 (1)	304	330	852
SRR-CKD	2005-2012	2463	3 (2)	3 (2)	2 (1)	690	669	285
Sunnybrook	2000	2860	3 (2)	3 (2)	2 (2)	695	340	460
Subtotal		91607	4 (2)	3 (2)	2 (1)	17316	8919	10599
Total		5635038	8 (3)	7 (2)	6 (3)	814291	28645	260817

CKD: chronic kidney disease; CVD: cardiovascular disease; eGFR: estimated glomerular filtration rate;
ESKD: end-stage kidney disease
Cohorts with <50 events for an outcome were not included in analyses for that outcome.
*Total N reflects the number of participants at risk for death in all cohorts except in MESA it represents number of participants at risk for death or GFR decline and in Mt Sinai it represents the number of participants at risk for ESKD or GFR decline.
\dagger GFR decline defined as eGFR decline $\geq 40 \%$, initiation of kidney replacement therapy or eGFR <10 $\mathrm{mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$.
eTable 2. Summary Baseline Characteristics by BMI Category

General Population Cohorts					
	18.5--to <25	25 to <30	30 to <35	≥ 35	Total
n	1837795	1958101	1055261	607857	5459014
Age, years	51 (15)	57 (14)	57 (13)	55 (13)	55 (14)
Female	705942 (38\%)	415334 (21\%)	199411 (19\%)	150168 (25\%)	1470855 (27\%)
Black	137038 (7\%)	201712 (10\%)	141229 (13\%)	87869 (14\%)	567848 (10\%)
Asian	757467 (41\%)	314566 (16\%)	36442 (3\%)	4330 (1\%)	1112805 (20\%)
Current smoking	200241 (11\%)	116930 (6\%)	35394 (3\%)	22490 (4\%)	375055 (7\%)
Systolic blood pressure (mmHg)	124 (18)	131 (18)	134 (17)	136 (17)	130 (18)
Cholesterol (mmol/L)	4.89 (1.02)	4.98 (1.07)	4.97 (1.11)	4.91 (1.09)	4.95 (1.07)
Diabetes	142016 (8\%)	320314 (16\%)	280521 (27\%)	229211 (38\%)	972062 (18\%)
History of CVD	168230 (9\%)	277506 (14\%)	175473 (17\%)	106849 (18\%)	728058 (13\%)
eGFR ($\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m} 2)$	89 (18)	85 (17)	85 (17)	87 (18)	86 (17)
ACR $>30 \mathrm{mg} / \mathrm{g}$	41588 (6\%)	34388 (9\%)	17873 (16\%)	13772 (24\%)	107621 (8\%)
Waist Circumference (cm)	75 (12)	87 (12)	99 (12)	113 (14)	80 (14)
Waist Height Ratio	0.46 (0.13)	0.53 (0.15)	0.60 (0.07)	0.69 (0.08)	0.49 (0.14)
High CVD Risk Cohorts					
n	19049	29495	19559	16314	84417
Age, years	63 (14)	62 (13)	59 (12)	53 (12)	60 (13)
Female	9553 (50\%)	12021 (41\%)	9076 (46\%)	9436 (58\%)	40086 (47\%)
Black	21 (0\%)	41 (0\%)	25 (0\%)	20 (0\%)	107 (0\%)
Asian	2708 (14\%)	2524 (9\%)	576 (3\%)	136 (1\%)	5944 (7\%)
Current smoking	2529 (13\%)	3508 (12\%)	2083 (11\%)	1714 (11\%)	9834 (12\%)
Systolic blood pressure (mmHg)	135 (21)	138 (20)	138 (20)	137 (20)	137 (20)
Cholesterol ($\mathrm{mmol} / \mathrm{L}$)	5.10 (1.22)	5.12 (1.22)	5.17 (1.22)	5.15 (1.18)	5.13 (1.21)
Diabetes	11297 (59\%)	20248 (69\%)	14919 (76\%)	12730 (78\%)	59194 (70\%)
History of CVD	4959 (26\%)	8147 (28\%)	4455 (23\%)	2747 (17\%)	20308 (24\%)
eGFR ($\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m} 2$)	77 (22)	77 (21)	79 (22)	85 (23)	79 (22)
CKD Cohorts					
n	26502	33654	19061	12390	91607
Age, years	69 (13)	70 (11)	69 (11)	66 (11)	69 (12)
Female	14131 (53\%)	14662 (44\%)	9183 (48\%)	7661 (62\%)	45637 (50\%)
Black	1335 (5\%)	2125 (6\%)	1517 (8\%)	1400 (11\%)	6377 (7\%)
Asian	4877 (18\%)	2520 (7\%)	619 (3\%)	166 (1\%)	8182 (9\%)
Current smoking	2811 (11\%)	2833 (8\%)	1588 (8\%)	965 (8\%)	8197 (9\%)
Systolic blood pressure (mmHg)	132 (20)	134 (19)	135 (19)	136 (19)	134 (19)
Cholesterol (mmol/L)	4.85 (1.19)	4.77 (1.25)	4.75 (1.19)	4.75 (1.23)	4.78 (1.22)
Diabetes	5604 (21\%)	9316 (28\%)	7008 (37\%)	5990 (48\%)	27918 (30\%)
History of CVD	6160 (23\%)	9041 (27\%)	5285 (28\%)	3368 (27\%)	23854 (26\%)
eGFR ($\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m} 2$)	47 (18)	46 (15)	46 (14)	46 (14)	46 (16)
ACR $>30 \mathrm{mg} / \mathrm{g}$	8483 (58\%)	11314 (62\%)	6650 (62\%)	4229 (60\%)	30676 (61\%)

Waist Circumference (cm)	$83(8)$	$98(8)$	$109(9)$	$122(11)$	$98(14)$
Waist Height Ratio	$0.50(0.05)$	$0.58(0.05)$	$0.65(0.05)$	$0.73(0.06)$	$0.59(0.08)$

eTable 3. Baseline Characteristics by BMI Category - Demographics

	N				Age				Female				Black				Asian				Current Smoking			
	$\begin{aligned} & 18.5- \\ & <25 \end{aligned}$	25-<30	30-<35	≥ 35	$\underset{-<25}{18.5}$				$\begin{aligned} & 18.5- \\ & <25 \end{aligned}$	25-<30	30-	≥ 35	$\begin{aligned} & 18.5- \\ & <25 \end{aligned}$	25-<30	30-<3	≥ 35	$\begin{aligned} & 18.5- \\ & <25 \end{aligned}$	25-<30	30-<35	≥ 35	18.5-<25	25-<30	$\begin{aligned} & 30- \\ & <35 \end{aligned}$	≥ 35
General Population																								
Aichi	3698	1043	55	6	$\begin{aligned} & 49 \\ & (7) \end{aligned}$	$\begin{aligned} & 50 \\ & (7) \end{aligned}$	$\begin{aligned} & 48 \\ & (7) \end{aligned}$	$\begin{aligned} & 44 \\ & (4) \end{aligned}$	$\begin{aligned} & 832 \\ & (22 \%) \end{aligned}$	$\begin{aligned} & 119 \\ & (11 \%) \end{aligned}$	$\begin{array}{\|l} 7 \\ (13 \%) \end{array}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 3698 \\ & (100 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 1043 \\ (100 \%) \end{array}$	$\begin{array}{\|l\|} \hline 55 \\ (100 \% \\) \end{array}$	$\begin{aligned} & 6 \\ & (100 \% \\ &)^{6} \end{aligned}$	1039 (29\%)	$\begin{aligned} & 326 \\ & (32 \%) \end{aligned}$	$\left\lvert\, \begin{aligned} & 21 \\ & (40 \%) \end{aligned}\right.$	$\left[\begin{array}{l} 0 \\ (0 \%) \end{array}\right.$
ARIC	5042	6163	2875	1408	$\begin{aligned} & 55 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \\ & (6) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 3132 \\ (62 \%) \\ \hline \end{array}$	$\begin{aligned} & 2725 \\ & (44 \%) \end{aligned}$	$\begin{aligned} & 1569 \\ & (55 \%) \end{aligned}$	$\begin{aligned} & 1070 \\ & (76 \%) \end{aligned}$	$\begin{aligned} & 864 \\ & (17 \%) \end{aligned}$	$\begin{array}{\|l\|l} \hline 1549 \\ (25 \%) \end{array}$	$\begin{array}{\|l} 1007 \\ (35 \%) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 662 \\ (47 \%) \end{array}$	$\begin{aligned} & 17 \\ & (0 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12 \\ & (0 \%) \\ & \hline \end{aligned}$	2 (0\%)	1 (0\%)	1655 (33\%)	$\begin{aligned} & 1500 \\ & (24 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 616 \\ (21 \%) \end{array}$	$\begin{array}{\|l\|} \hline 222 \\ (16 \%) \\ \hline \end{array}$
AusDiab	4051	4436	1737	733	$\begin{aligned} & 50 \\ & 50 \\ & (15) \end{aligned}$	$\begin{aligned} & 54 \\ & (14 \\ & l^{24} \end{aligned}$	$\begin{array}{ll} 54 & 5 \\ (13 & \\ x_{1} & \\) \end{array}$	$\begin{aligned} & 51 \\ & (13 \\ & (13) \\ & \hline \end{aligned}$	$\begin{aligned} & 2584 \\ & (64 \%) \end{aligned}$	$\begin{aligned} & 1974 \\ & (44 \%) \end{aligned}$	$\begin{aligned} & 907 \\ & (52 \%) \end{aligned}$	$\begin{aligned} & 523 \\ & (71 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	687 (17\%)	$\begin{aligned} & 647 \\ & (15 \%) \end{aligned}$	$\left.\begin{aligned} & 265 \\ & (16 \%) \end{aligned} \right\rvert\,$	9
$\begin{aligned} & \hline \text { Beaver Dam } \\ & \text { CKD } \end{aligned}$	1340	1984	1002	461	$\begin{aligned} & 63 \\ & (12) \end{aligned}$	$\begin{aligned} & 63 \\ & (11 \\ & 9 \end{aligned}$	$\begin{aligned} & 62 \\ & \\ & (11 \\ & x_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & (10 \\ & x^{6} \end{aligned}$	$\begin{aligned} & 924 \\ & (69 \%) \end{aligned}$	$\begin{aligned} & 943 \\ & (48 \%) \end{aligned}$	$\begin{aligned} & 496 \\ & (50 \%) \end{aligned}$	$\begin{aligned} & \begin{array}{l} 304 \\ (66 \%) \end{array} \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	1 (0\%)	7 (1\%)	4 (0\%)	0 (0\%)	1 (0\%)	359 (27\%)	$\begin{aligned} & 376 \\ & (19 \%) \end{aligned}$	$\begin{aligned} & 141 \\ & (14 \%) \end{aligned}$	$\begin{aligned} & 63 \\ & (14 \%) \end{aligned}$
Beijing	715	651	131	8	$\begin{aligned} & \begin{array}{l} 60 \\ (10) \end{array} \end{aligned}$	$\begin{aligned} & 60 \\ & 10 \\ & 10 \end{aligned}$	$\begin{gathered} 62 \\ (9) \end{gathered}$	$\begin{aligned} & 55 \\ & (8) \end{aligned}$	$\begin{aligned} & 367 \\ & (51 \%) \end{aligned}$	$\begin{aligned} & 310 \\ & (48 \%) \end{aligned}$	$\begin{aligned} & 74 \\ & (56 \%) \end{aligned}$	$\begin{aligned} & 6 \\ & (75 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 715 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 651 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 131 \\ & (100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & (100 \% \\ &) \end{aligned}$	175 (24\%)	$\begin{aligned} & 148 \\ & (23 \%) \end{aligned}$	$\begin{aligned} & 26 \\ & (20 \%) \end{aligned}$	2
ChinaNS	28071	13874	2285	284	$\begin{aligned} & 46 \\ & (15) \end{aligned}$	$\begin{aligned} & 50 \\ & (13 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 50 \\ (14 \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & (15 \\ & { }_{2} \end{aligned}$	$\begin{aligned} & 16244 \\ & (58 \%) \end{aligned}$	$\begin{aligned} & 7549 \\ & (54 \%) \end{aligned}$	$\begin{aligned} & 1341 \\ & (59 \%) \end{aligned}$	$\begin{aligned} & 195 \\ & (69 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 28071 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 13874 \\ & (100 \%) \end{aligned}$	$\begin{array}{\|l\|} 2285 \\ (100 \% \\ \hline \end{array}$	$\begin{aligned} & 284 \\ & (100 \% \\ &) \end{aligned}$	6525 (23\%)	$\begin{aligned} & 3486 \\ & (25 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 548 \\ (24 \%) \end{array}$	$\begin{aligned} & 54 \\ & (19 \%) \end{aligned}$
CHS	1659	1939	707	269	$\begin{array}{\|l} \hline 76 \\ (6) \\ \hline \end{array}$	$\begin{aligned} & 75 \\ & 75 \\ & (5) \end{aligned}$	$\begin{aligned} & 74 \\ & 74 \\ & (5) \end{aligned}$	$\begin{array}{\|l\|} \hline 73 \\ (4) \\ \hline \end{array}$	$\begin{aligned} & 980 \\ & (59 \%) \end{aligned}$	$\begin{aligned} & 997 \\ & (51 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 446 \\ & (63 \%) \end{aligned}$	$\begin{aligned} & 214 \\ & (80 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 192 \\ & (12 \%) \end{aligned}$	$\begin{aligned} & 327 \\ & (17 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 169 \\ (24 \%) \end{array}$	$\begin{aligned} & 103 \\ & (38 \%) \\ & \hline \end{aligned}$	1 (0\%)	2 (0\%)	0 (0\%)	0 (0\%)	213 (13\%)	$\begin{aligned} & 152 \\ & (8 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 52 \\ (7 \%) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 13 \\ (5 \%) \\ \hline \end{array}$
CIRCS	8176	2901	326	22	$\begin{aligned} & 54 \\ & (9) \end{aligned}$	$\begin{aligned} & 55 \\ & (8) \end{aligned}$	$\begin{aligned} & 55 \\ & (9) \end{aligned}$	$\begin{aligned} & 55 \\ & (9) \end{aligned}$	$\begin{aligned} & 4890 \\ & (60 \%) \end{aligned}$	$\begin{aligned} & 1798 \\ & (62 \%) \end{aligned}$	$\begin{aligned} & 244 \\ & (75 \%) \end{aligned}$	$\begin{aligned} & 20 \\ & (91 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 8176 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 2901 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 326 \\ & (100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & (100 \% \\ &)^{2} \end{aligned}$	2259 (28\%)	$\begin{aligned} & 637 \\ & (22 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 58 \\ (18 \%) \end{array}$	4
COBRA	440	429	191	103	$\begin{aligned} & 56 \\ & (12) \end{aligned}$	$\begin{aligned} & 53 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 \\ & (9) \end{aligned}$	$\begin{aligned} & 49 \\ & (9) \end{aligned}$	$\begin{aligned} & 223 \\ & (51 \%) \end{aligned}$	$\begin{aligned} & 263 \\ & (61 \%) \end{aligned}$	$\begin{aligned} & 145 \\ & (76 \%) \end{aligned}$	$\begin{aligned} & 91 \\ & (88 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{array}{\|l\|} \hline 440 \\ (100 \%) \end{array}$	$\begin{aligned} & 429 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 191 \\ & 100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 103 \\ & (100 \% \\ &) \end{aligned}$	164 (37\%)	$\begin{aligned} & 141 \\ & (33 \%) \end{aligned}$	$\begin{aligned} & 49 \\ & (26 \%) \end{aligned}$	27
ESTHER	2635	4603	1927	581	$\begin{aligned} & 62 \\ & (7) \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \\ & (7) \\ & \hline \end{aligned}$	$\begin{aligned} & 62 \\ & 62 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \\ & (7) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1676 \\ (64 \%) \\ \hline \end{array}$	$\begin{aligned} & 2261 \\ & (49 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 1050 \\ (54 \%) \end{array}$	$\begin{aligned} & \begin{array}{l} 366 \\ (63 \%) \end{array} \\ & \hline \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	567 (22\%)	$\begin{aligned} & \hline 642 \\ & (14 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 242 \\ (13 \%) \end{array}$	$\begin{array}{\|l\|} \hline 67 \\ (12 \%) \\ \hline \end{array}$
Framingham	880	1248	571	248	$\begin{aligned} & 59 \\ & (10) \end{aligned}$	$\begin{aligned} & 59 \\ & (10 \\ & { }^{29} \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & (9) \end{aligned}$	$\begin{aligned} & 57 \\ & (9) \end{aligned}$	$\begin{aligned} & 612 \\ & (70 \%) \end{aligned}$	$\begin{aligned} & 560 \\ & (45 \%) \end{aligned}$	$\begin{aligned} & 251 \\ & (44 \%) \end{aligned}$	$\begin{aligned} & 143 \\ & (58 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	150 (17\%)	$\begin{aligned} & 169 \\ & (14 \%) \end{aligned}$	$\begin{aligned} & 91 \\ & (16 \%) \end{aligned}$	$\begin{aligned} & 33 \\ & (13 \%) \end{aligned}$
Geisinger	92279	119063	89851	89421	$\begin{aligned} & \left.\hline \begin{array}{l} 44 \\ (19) \end{array}\right) \end{aligned}$	$\begin{aligned} & 50 \\ & (18 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 48 \\ (16 \\)^{\prime} \\ \hline \end{array}$	$\begin{aligned} & 61056 \\ & (66 \%) \end{aligned}$	$\begin{aligned} & 59591 \\ & (50 \%) \end{aligned}$	$\begin{aligned} & 44869 \\ & (50 \%) \end{aligned}$	$\begin{aligned} & 55243 \\ & (62 \%) \end{aligned}$	$\begin{aligned} & 2156 \\ & (2 \%) \end{aligned}$	$\begin{aligned} & 2835 \\ & (2 \%) \end{aligned}$	$\begin{aligned} & 2430 \\ & (3 \%) \end{aligned}$	$\begin{aligned} & 2707 \\ & (3 \%) \end{aligned}$	$\begin{aligned} & 1228 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 829 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 284 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 108 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 24931 \\ & (27 \%) \end{aligned}$	$\begin{aligned} & 26301 \\ & (22 \%) \end{aligned}$	$\begin{aligned} & 18040 \\ & (20 \%) \end{aligned}$	$\begin{aligned} & 16934 \\ & (19 \%) \end{aligned}$
Gubbio	404	796	380	96	$\begin{aligned} & 54 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \\ & \hline(6) \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 55 \\ & (6) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 249 \\ (62 \%) \\ \hline \end{array}$	$\begin{aligned} & 392 \\ & (49 \%) \end{aligned}$	$\begin{aligned} & 212 \\ & (56 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 73 \\ & (76 \%) \\ & \hline \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	158 (39\%)	$\begin{array}{\|l\|} \hline 253 \\ (32 \%) \end{array}$	$\begin{array}{\|l\|} \hline 87 \\ (23 \%) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 23 \\ (24 \%) \end{array}$
HUNT	25632	27599	8446	2175	$\begin{aligned} & 46 \\ & (17) \end{aligned}$	$\begin{aligned} & 52 \\ & \begin{array}{l} 52 \\ 16 \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} 55 & 5 \\ & 16 \\ \hline & \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 54 \\ 16 \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 14939 \\ & (58 \%) \end{aligned}$	$\begin{aligned} & 12501 \\ & (45 \%) \end{aligned}$	$\begin{aligned} & 4713 \\ & (56 \%) \end{aligned}$	$\begin{aligned} & 1598 \\ & (73 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	8859 (35\%)	$\begin{aligned} & 7240 \\ & (26 \%) \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 1932 \\ (23 \%) \end{array} \right\rvert\,$	$\begin{aligned} & 455 \\ & (21 \%) \end{aligned}$
IPHS	64358	26305	2543	191	$\begin{aligned} & \hline 59 \\ & (11) \end{aligned}$	$\begin{aligned} & 60 \\ & (10 \\ &)^{20} \end{aligned}$	$\begin{array}{l\|l} 59 & 5 \\ (10 & \\ x^{2} & \\ \hline \end{array}$	$\begin{aligned} & 57 \\ & (10 \\ & { }^{5} \end{aligned}$	$\begin{aligned} & 41774 \\ & (65 \%) \end{aligned}$	$\begin{aligned} & 17651 \\ & (67 \%) \end{aligned}$	$\begin{aligned} & 1999 \\ & (79 \%) \end{aligned}$	$\begin{aligned} & 168 \\ & (88 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 64358 \\ & (100 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 26305 \\ (100 \%) \end{array}$	$\begin{aligned} & 2543 \\ & (100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 191 \\ (100 \% \\) \end{array}, ~ \end{aligned}$	$\begin{aligned} & 13224 \\ & (21 \%) \end{aligned}$	$\begin{aligned} & 4405 \\ & (17 \%) \end{aligned}$	$\begin{aligned} & 388 \\ & (15 \%) \end{aligned}$	$\begin{aligned} & 23 \\ & (12 \%) \end{aligned}$

JHS	489	1074	922	978	50 5 (14)	$\begin{array}{\|l\|} \hline 51 \\ (12 \\) \end{array}$	$\begin{aligned} & 51 \\ & (11 \end{aligned}$	$\begin{aligned} & 49 \\ & (11 \\ & (12 \end{aligned}$	$\begin{aligned} & 256 \\ & (52 \%) \end{aligned}$	$\begin{aligned} & \hline 555 \\ & (52 \%) \end{aligned}$	$\begin{aligned} & 572 \\ & (62 \%) \end{aligned}$	$\begin{aligned} & \hline 746 \\ & (76 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 489 \\ (100 \%) \end{array}$	$\begin{aligned} & 1074 \\ & (100 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 922 \\ (100 \%) \end{array}$	$\begin{aligned} & 978 \\ & (100 \% \\ &) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	111 (23\%)	$\begin{aligned} & 156 \\ & (15 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 113 \\ (12 \%) \end{array}$	$\begin{aligned} & 108 \\ & (11 \%) \end{aligned}$
JMS	3741	1060	100	4	54 56 (11)	56 $(10$ $)$	$\begin{aligned} & 55 \\ & (10 \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \\ & (11 \\ &) \end{aligned}$	$\begin{aligned} & 2339 \\ & (63 \%) \end{aligned}$	$\begin{aligned} & 704 \\ & (66 \%) \end{aligned}$	$\begin{aligned} & 73 \\ & (73 \%) \end{aligned}$	$\begin{aligned} & 3 \\ & (75 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 3741 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 1060 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 100 \\ & (100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & (100 \% \\ &) \end{aligned}$	850 (23\%)	$\begin{aligned} & 206 \\ & (19 \%) \end{aligned}$	$\begin{aligned} & 17 \\ & (17 \%) \end{aligned}$	$\begin{aligned} & 0 \\ & (0 \%) \end{aligned}$
KHS	233940	108088	8020	508	$\begin{array}{\|l\|l} \hline 46 \\ (10) & 4 \\ \hline \end{array}$	47 $(10$ $)$ 51	$\begin{aligned} & 46 \\ & (10 \\ &) \end{aligned}$	$\begin{aligned} & 46 \\ & (11 \\ &) \end{aligned}$	$\begin{aligned} & 94399 \\ & (40 \%) \end{aligned}$	$\begin{aligned} & 32373 \\ & (30 \%) \end{aligned}$	$\begin{aligned} & 3385 \\ & (42 \%) \end{aligned}$	$\begin{aligned} & 280 \\ & (55 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 233940 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 108088 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 8020 \\ & (100 \% \end{aligned}$	$\begin{aligned} & 508 \\ & (100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 57190 \\ & (31 \%) \end{aligned}$	$\begin{aligned} & 27396 \\ & (32 \%) \end{aligned}$	$\begin{aligned} & \hline 1926 \\ & (30 \%) \end{aligned}$	$\begin{aligned} & 88 \\ & (21 \%) \end{aligned}$
Maccabi	231926	240646	123905	60163	$\begin{array}{l\|l} 44 & 5 \\ (16) \end{array}$	51 $(16$ $)$	$\begin{aligned} & 52 \\ & (15 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 \\ & (15 \end{aligned}$	$\begin{aligned} & 151710 \\ & (65 \%) \end{aligned}$	$\begin{aligned} & 115532 \\ & (48 \%) \end{aligned}$	$\begin{aligned} & 65412 \\ & (53 \%) \end{aligned}$	$\begin{aligned} & 39016 \\ & (65 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	4793 (2\%)	$\begin{aligned} & 5153 \\ & (2 \%) \end{aligned}$	$\begin{aligned} & 2520 \\ & (2 \%) \end{aligned}$	$\begin{aligned} & 1135 \\ & (2 \%) \end{aligned}$
MESA	1882	2653	1418	757	$\left.\begin{array}{l\|l} \hline 63 & 6 \\ (11) & \\ (\end{array}\right)$	63 $(10$ $)$	$\begin{aligned} & 62 \\ & (10 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & (9) \end{aligned}$	$\begin{aligned} & 1047 \\ & (56 \%) \end{aligned}$	$\begin{aligned} & 1212 \\ & (46 \%) \end{aligned}$	$\begin{aligned} & 726 \\ & (51 \%) \end{aligned}$	$\begin{aligned} & 553 \\ & (73 \%) \end{aligned}$	$\begin{aligned} & 317 \\ & (17 \%) \end{aligned}$	$\begin{aligned} & 694 \\ & (26 \%) \end{aligned}$	$\begin{array}{\|l} 503 \\ (35 \%) \end{array}$	$\begin{aligned} & 347 \\ & (46 \%) \end{aligned}$	$\begin{aligned} & 491 \\ & (26 \%) \end{aligned}$	$\begin{aligned} & 246 \\ & (9 \%) \end{aligned}$	$\begin{aligned} & 32 \\ & (2 \%) \end{aligned}$	2 (0\%)	276 (15\%)	$\begin{aligned} & 418 \\ & (16 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 216 \\ (15 \%) \end{array}$	$\begin{aligned} & 92 \\ & (12 \%) \end{aligned}$
MRC	4891	5045	1621	408	$\begin{array}{l\|l} \hline 82 \\ (5) & 8 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 81 \\ (4) \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & (4) \end{aligned}$	$\begin{aligned} & 80 \\ & (4) \end{aligned}$	$\begin{aligned} & 3017 \\ & (62 \%) \end{aligned}$	$\begin{aligned} & 2823 \\ & (56 \%) \end{aligned}$	$\begin{aligned} & 1051 \\ & (65 \%) \end{aligned}$	$\begin{aligned} & \hline 324 \\ & (79 \%) \\ & \hline \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	671 (14\%)	$\begin{array}{\|l\|} \hline 491 \\ (10 \%) \end{array}$	$\begin{array}{\|l\|l} \hline 143 \\ (9 \%) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 28 \\ (7 \%) \\ \hline \end{array}$
Mt Sinai BioMe	6973	7524	4591	4024	$\begin{array}{l\|l} \hline 49 & 5 \\ (17) & \\) \end{array}$	53 $(15$ $)$	$\begin{aligned} & 53 \\ & (14 \end{aligned}$	$\begin{aligned} & 50 \\ & (14 \\ &) \end{aligned}$	$\begin{aligned} & 4144 \\ & (59 \%) \end{aligned}$	$\begin{aligned} & 3950 \\ & (52 \%) \end{aligned}$	$\begin{aligned} & 2847 \\ & (62 \%) \end{aligned}$	$\begin{aligned} & 2946 \\ & (73 \%) \end{aligned}$	$\begin{array}{\|l\|l} 1378 \\ (20 \%) \end{array}$	$\begin{aligned} & 1794 \\ & (24 \%) \end{aligned}$	$\begin{aligned} & 1352 \\ & (29 \%) \end{aligned}$	$\begin{aligned} & 1572 \\ & (39 \%) \end{aligned}$	$\begin{aligned} & 330 \\ & (5 \%) \end{aligned}$	$\begin{aligned} & 168 \\ & (2 \%) \end{aligned}$	$\begin{aligned} & 40 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 19 \\ & (0 \%) \end{aligned}$	910 (14\%)	$\begin{aligned} & 1067 \\ & (15 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 721 \\ (17 \%) \end{array}$	$\begin{aligned} & 603 \\ & (16 \%) \end{aligned}$
NHANES	20023	19980	10915	7559	$\begin{array}{\|l\|l} \hline 42 \\ (21) & 4 \\ \hline \end{array}$	49 	$\begin{aligned} & 49 \\ & (18 \\ &) \end{aligned}$	$\begin{aligned} & 46 \\ & (17 \\ &) \\ & \hline \end{aligned}$	$\begin{aligned} & 10494 \\ & (52 \%) \end{aligned}$	$\begin{aligned} & 8991 \\ & (45 \%) \end{aligned}$	$\begin{aligned} & 5744 \\ & (53 \%) \end{aligned}$	$\begin{aligned} & 4955 \\ & (66 \%) \end{aligned}$	$\begin{aligned} & 4171 \\ & (21 \%) \end{aligned}$	$\begin{aligned} & 3973 \\ & (20 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 2613 \\ (24 \%) \end{array}$	$\begin{aligned} & 2435 \\ & (32 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	3868 (22\%)	$\begin{aligned} & 3182 \\ & (17 \%) \end{aligned}$	$\begin{aligned} & \hline 1651 \\ & (16 \%) \end{aligned}$	$\begin{aligned} & 1074 \\ & (15 \%) \end{aligned}$
$\begin{aligned} & \text { NIPPON } \\ & \text { DATA80 } \end{aligned}$	6841	1810	181	15	50 (13) 50 	50 $(12$ $)$	$\begin{array}{\|l} \hline 53 \\ 12 \\ \hline \end{array}$	$\begin{aligned} & 43 \\ & (8) \end{aligned}$	$\begin{aligned} & 3734 \\ & (55 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 1048 \\ (58 \%) \end{array}$	$\begin{aligned} & 146 \\ & (81 \%) \end{aligned}$	$\begin{aligned} & 14 \\ & (93 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 6841 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 1810 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 181 \\ & (100 \% \\ & \hline \end{aligned}$		2298 (34\%)	$\begin{aligned} & 518 \\ & (29 \%) \end{aligned}$	$\begin{aligned} & 25 \\ & (14 \%) \end{aligned}$	$\begin{aligned} & 1 \\ & (7 \%) \end{aligned}$
$\begin{aligned} & \hline \text { NIPPON } \\ & \text { DATA90 } \end{aligned}$	5379	1653	168	19	52 5 (14) 	54 $(13$ $)$	$\begin{array}{\|l} 53 \\ (13 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & 52 \\ & (11 \\ & (11 \\ &) \end{aligned}$	$\begin{aligned} & 3126 \\ & (58 \%) \end{aligned}$	$\begin{aligned} & 939 \\ & (57 \%) \end{aligned}$	$\begin{aligned} & 116 \\ & (69 \%) \end{aligned}$	$\begin{aligned} & \hline 13 \\ & (68 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{array}{\|l\|} \hline 5379 \\ (100 \%) \end{array}$	$\begin{array}{\|l\|} \hline 1653 \\ (100 \%) \end{array}$	$\begin{aligned} & 168 \\ & (100 \% \end{aligned}$	$\begin{aligned} & 19 \\ & (100 \% \end{aligned}$	1520 (28\%)	$\begin{aligned} & 476 \\ & (29 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 40 \\ (24 \%) \end{array}$	$\begin{aligned} & 4 \\ & (21 \%) \end{aligned}$
Ohasama	1105	445	37	8	$\begin{aligned} & 64 \\ & (10) \end{aligned}$	63 (9)	$\begin{array}{\|l\|} \hline 61 \\ 10 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & 61 \\ & 12 \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 643 \\ (58 \%) \end{array}$	$\begin{array}{\|l\|} \hline 277 \\ (62 \%) \end{array}$	$\begin{aligned} & 28 \\ & (76 \%) \end{aligned}$	$\begin{aligned} & \hline 5 \\ & (63 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 1105 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 445 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 37 \\ & (100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & (100 \% \\ & \hline \end{aligned}$	193 (18\%)	$\begin{array}{\|l\|} \hline 53 \\ (12 \%) \end{array}$	$\begin{aligned} & 1 \\ & (3 \%) \end{aligned}$	$\begin{aligned} & 2 \\ & (25 \%) \end{aligned}$
Okinawa 83	5824	2655	411	37	51 52 (16)	$\begin{array}{\|l\|} \hline 52 \\ (13 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 52 \\ (14 \\ \hline \end{array}$	$\begin{aligned} & 51 \\ & (15 \\ &) \\ & \hline \end{aligned}$	$\begin{aligned} & 3449 \\ & (59 \%) \end{aligned}$	$\begin{aligned} & 1565 \\ & (59 \%) \end{aligned}$	$\begin{aligned} & 285 \\ & (69 \%) \end{aligned}$	$\begin{aligned} & 30 \\ & (81 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 5824 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 2655 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 411 \\ & (100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 37 \\ & (100 \% \\ & \hline \end{aligned}$	0 (0\%)	0 (0\%)	$\begin{aligned} & 0 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 0 \\ & (0 \%) \end{aligned}$
Okinawa 93	55560	29433	3987	388	54 56 (16) 	56 $(13$ 	$\begin{array}{\|l} \hline 54 \\ (13 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & (13 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 32111 \\ & (58 \%) \end{aligned}$	$\begin{aligned} & 16160 \\ & (55 \%) \end{aligned}$	$\begin{aligned} & 2513 \\ & (63 \%) \end{aligned}$	$\begin{aligned} & 264 \\ & (68 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 55560 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 29433 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 3987 \\ & (100 \% \end{aligned}$	$\begin{aligned} & 388 \\ & (100 \% \end{aligned}$				
PREVEND	3398	3231	961	275	$\begin{array}{l\|l} \hline 46 & 5 \\ (12) & 5 \\ \hline \end{array}$	53 $(13$ $)$	$\begin{aligned} & 54 \\ & (12 \\ &) \end{aligned}$	$\begin{aligned} & 53 \\ & (12 \\ &) \end{aligned}$	$\begin{aligned} & 1900 \\ & (56 \%) \end{aligned}$	$\begin{aligned} & 1360 \\ & (42 \%) \end{aligned}$	$\begin{aligned} & 481 \\ & (50 \%) \end{aligned}$	$\begin{aligned} & 195 \\ & (71 \%) \end{aligned}$	$\begin{aligned} & 25 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 28 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 14 \\ & (1 \%) \end{aligned}$	9 (3\%)	$\begin{aligned} & 69 \\ & (2 \%) \end{aligned}$	$\begin{aligned} & 65 \\ & (2 \%) \end{aligned}$	$\begin{aligned} & 25 \\ & (3 \%) \end{aligned}$	2 (1\%)	1359 (40\%)	$\begin{aligned} & 951 \\ & (29 \%) \end{aligned}$	$\begin{aligned} & 264 \\ & (27 \%) \end{aligned}$	$\begin{aligned} & 72 \\ & (26 \%) \end{aligned}$
Rancho Bernardo	881	656	150	48	72 (12) 71 	71 $(11$ $)$	$\begin{array}{\|l} 69 \\ (11 \\) \\ \hline \end{array}$	$\begin{aligned} & 67 \\ & (10 \\ &) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 618 \\ & (70 \%) \end{aligned}$	$\begin{aligned} & 323 \\ & (49 \%) \end{aligned}$	$\begin{aligned} & 82 \\ & (55 \%) \end{aligned}$	$\begin{aligned} & 29 \\ & (60 \%) \end{aligned}$	1 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	5 (1\%)	3 (0\%)	0 (0\%)	0 (0\%)	68 (8\%)	$\begin{aligned} & 36 \\ & (6 \%) \end{aligned}$	$\begin{aligned} & 12 \\ & (8 \%) \end{aligned}$	$\begin{aligned} & 5 \\ & (10 \%) \end{aligned}$
RCAV	659151	1173855	756831	428296	$\begin{array}{\|l\|l} \hline 61 & 6 \\ (15) & 6 \\) \end{array}$	61 $(14$ $)$	$\begin{array}{\|l} \hline 59 \\ (13 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 57 \\ (11 \\) \\ \hline \end{array}$	$\begin{aligned} & 49457 \\ & (8 \%) \end{aligned}$	$\begin{aligned} & 57809 \\ & (5 \%) \end{aligned}$	$\begin{aligned} & 42946 \\ & (6 \%) \end{aligned}$	$\begin{aligned} & 35369 \\ & (8 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 125403 \\ (19 \%) \end{array}$	$\begin{aligned} & 185489 \\ & (16 \%) \end{aligned}$	$\begin{aligned} & 129220 \\ & (17 \%) \end{aligned}$	$\begin{aligned} & 76338 \\ & (18 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)				
REGARDS	6801	10644	6380	4644	$\begin{array}{l\|l} \hline 67 \\ (10) \end{array}$	$\begin{aligned} & 66 \\ & (9) \end{aligned}$	$\begin{gathered} 65 \\ (9) \end{gathered}$	$\begin{gathered} 62 \\ (8) \end{gathered}$	$\begin{aligned} & 3784 \\ & (56 \%) \end{aligned}$	$\begin{aligned} & 4961 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & 3534 \\ & (55 \%) \end{aligned}$	$\begin{aligned} & 3252 \\ & (70 \%) \end{aligned}$	$\begin{aligned} & 2031 \\ & (30 \%) \end{aligned}$	$\begin{aligned} & 3926 \\ & (37 \%) \end{aligned}$	$\begin{aligned} & 2989 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & 2711 \\ & (58 \%) \\ & \hline \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	1317 (19\%)	$\begin{aligned} & 1427 \\ & (13 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 784 \\ (12 \%) \end{array}$	$\begin{aligned} & 516 \\ & (11 \%) \end{aligned}$

RSIII	981	1555	607	241	$\begin{array}{l\|l} 56 \\ (7) & 5 \\ \hline \end{array}$	$\left.\begin{array}{\|l\|l} \hline 57 \\ (6) \end{array}\right)$	$\begin{array}{\|l} 58 \\ (7) \\ \hline \end{array}$	$\begin{aligned} & 57 \\ & (7) \end{aligned}$	$\begin{array}{\|l} \hline 636 \\ (65 \%) \\ \hline \end{array}$	$\begin{aligned} & \hline 783 \\ & (50 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 334 \\ (55 \%) \\ \hline \end{array}$	$\begin{aligned} & \hline 158 \\ & (66 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 11 \\ (1 \%) \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & (1 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l} 10 \\ (2 \%) \end{array}$	6 (2\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	308 (31\%)	$\begin{array}{\|l} \hline 405 \\ (26 \%) \end{array}$	$\begin{array}{\|l\|} \hline 138 \\ (23 \%) \end{array}$	$\begin{array}{\|l\|} \hline 56 \\ (23 \%) \\ \hline \end{array}$
SEED	3364	2248	628	184	$\begin{array}{\|l\|l} \hline 59 \\ (10) & 5 \\ \hline \end{array}$	58 5 (9) $($ 	$\begin{array}{\|l} \hline 57 \\ (10 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & (9) \end{aligned}$	$\begin{aligned} & 1553 \\ & (46 \%) \end{aligned}$	$\begin{aligned} & 1025 \\ & (46 \%) \end{aligned}$	$\begin{aligned} & \hline 392 \\ & (62 \%) \end{aligned}$	$\begin{aligned} & 138 \\ & (75 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 3364 \\ & (100 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 2248 \\ (100 \%) \end{array}$	628 (100\%		1009 (30\%)	$\begin{aligned} & 628 \\ & (28 \%) \end{aligned}$	$\begin{aligned} & 137 \\ & (22 \%) \end{aligned}$	$\begin{aligned} & 31 \\ & (17 \%) \end{aligned}$
Taiwan MJ	333042	120874	17370	2577	$\begin{array}{l\|l} \hline 40 & 4 \\ (14) & \\) \end{array}$	$\begin{array}{l\|l} \hline 46 \\ (14 & 4 \\) & (\\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 45 \\ (14 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 40 \\ 10 \\ 14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 180363 \\ (54 \%) \end{array}$	$\begin{aligned} & 48243 \\ & (40 \%) \end{aligned}$	$\begin{aligned} & 8386 \\ & (48 \%) \end{aligned}$	$\begin{aligned} & \hline 1308 \\ & (51 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{array}{\|} 333042 \\ (100 \%) \end{array}$	$\begin{aligned} & 120874 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 17370 \\ & (100 \% \\ &) \end{aligned}$	$\begin{aligned} & 2577 \\ & (100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 59935 \\ & (22 \%) \end{aligned}$	$\begin{aligned} & 26089 \\ & (28 \%) \end{aligned}$	$\left\|\begin{array}{l} 3686 \\ (27 \%) \end{array}\right\|$	$\begin{array}{\|l\|} \hline 596 \\ (29 \%) \end{array}$
Takahata	1524	661	83	4	63 (10) 6	64 (9)	$\begin{array}{\|l} \hline 62 \\ (11 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 58 \\ (18 \\) \\ \hline \end{array}$	$\begin{aligned} & 846 \\ & (56 \%) \end{aligned}$	$\begin{aligned} & 355 \\ & (54 \%) \end{aligned}$	$\begin{aligned} & 63 \\ & (76 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \\ (100 \%) \end{array}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 1524 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 661 \\ & (100 \%) \end{aligned}$	83		284 (19\%)	$\begin{aligned} & 96 \\ & (15 \%) \end{aligned}$	$\begin{aligned} & 9 \\ & (11 \%) \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & (0 \%) \end{aligned}\right.$
TLGS	3770	4138	1812	492	37 (16) 	44 46 $(15$ (1) $)$	$\begin{array}{\|l\|} \hline 46 \\ 13 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 47 \\ (13 \\) \\ \hline \end{array}$	$\begin{aligned} & 1874 \\ & (50 \%) \end{aligned}$	$\begin{aligned} & 2208 \\ & (53 \%) \end{aligned}$	$\begin{aligned} & 1240 \\ & (68 \%) \end{aligned}$	$\begin{aligned} & 396 \\ & (80 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	648 (17\%)	$\begin{aligned} & 626 \\ & (15 \%) \end{aligned}$	$\begin{aligned} & 202 \\ & (11 \%) \end{aligned}$	$\left\lvert\, \begin{aligned} & 41 \\ & (8 \%) \end{aligned}\right.$
Tromso	3365	3288	917	192	$\begin{array}{\|l\|l} \hline 58 \\ (11) & 6 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & (9) \end{aligned}$	$\begin{array}{\|c} \hline 61 \\ (9) \\ \hline \end{array}$	$\begin{aligned} & \hline 62 \\ & (9) \\ & \hline \end{aligned}$	$\begin{aligned} & 2090 \\ & (62 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 1616 \\ & (49 \%) \end{aligned}$	$\begin{aligned} & \hline 591 \\ & (64 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 138 \\ & (72 \%) \\ & \hline \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	1357 (40\%)	$\begin{aligned} & 933 \\ & (28 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 211 \\ (23 \%) \end{array}$	$\begin{array}{\|l\|} \hline 26 \\ (14 \%) \\ \hline \end{array}$
ULSAM	659	496	48	7	$\begin{array}{ll} \hline 50 \\ (1) & 5 \\ \hline \end{array}$	50 (1)	50 (1)	50 (0)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	311 (47\%)	$\begin{array}{\|l\|} \hline 200 \\ (40 \%) \end{array}$	$\begin{aligned} & 22 \\ & (46 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ (29 \%) \\ \hline \end{array}$
Subtotal	1837795	1958101	1055261	607857	51 57 (15) 	$\begin{array}{l\|l} \hline 57 & 5 \\ (14 & (\\) & \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 57 \\ (13 \\) \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & (13 \\ &) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 705942 \\ \mathbf{(3 8 \%}) \end{array}$	$\begin{array}{\|l\|} \hline 415334 \\ (21 \%) \end{array}$	$\begin{aligned} & 199411 \\ & (19 \%) \end{aligned}$	$\begin{aligned} & 150168 \\ & (25 \%) \end{aligned}$	$\begin{aligned} & 137038 \\ & (7 \%) \end{aligned}$	$\begin{aligned} & 201712 \\ & (10 \%) \end{aligned}$	$\begin{aligned} & 141229 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & 87869 \\ & (14 \%) \end{aligned}$	$\begin{aligned} & \mathbf{7 5 7 4 6 7} \\ & \mathbf{(4 1 \%)} \end{aligned}$	$\begin{aligned} & \mathbf{3 1 4 5 6 6} \\ & \mathbf{(1 6 \%)} \end{aligned}$	$\begin{aligned} & 36442 \\ & (3 \%) \end{aligned}$	$\begin{aligned} & \mathbf{4 3 3 0} \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 200241 \\ & (11 \%) \end{aligned}$	$\begin{aligned} & 116930 \\ & (6 \%) \end{aligned}$	$\begin{aligned} & 35394 \\ & (3 \%) \end{aligned}$	$\begin{aligned} & 22490 \\ & (4 \%) \end{aligned}$

High CVD Risk Cohorts

ADVANCE	2987	4538	2404	1109	$\begin{aligned} & 66 \\ & 6 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 67 \\ (6) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 66 \\ (6) \\ \hline \end{array}$	$\begin{array}{\|l} 65 \\ (6) \\ \hline \end{array}$	$\begin{aligned} & 1269 \\ & (42 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 1729 \\ (38 \%) \end{array}$	$\begin{aligned} & \hline 1074 \\ & (45 \%) \end{aligned}$	$\begin{aligned} & \hline 615 \\ & (55 \%) \end{aligned}$	4 (0\%)	$\begin{array}{\|l\|l} \hline 17 \\ (0 \%) \end{array}$	$\begin{array}{\|l\|l} \hline 11 \\ (0 \%) \end{array}$	5 (0\%)	$\begin{array}{\|l} 2069 \\ (69 \%) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1763 \\ (39 \%) \end{array}$	$\begin{array}{\|l\|} \hline 317 \\ (13 \%) \end{array}$	$\begin{array}{\|l\|l} \hline 40 \\ (4 \%) \\ \hline \end{array}$	464 (16\%)	$\begin{array}{\|l\|} \hline 681 \\ (15 \%) \end{array}$	$\begin{array}{\|l} \hline 324 \\ (14 \%) \end{array}$	$\begin{aligned} & 191 \\ & (17 \%) \end{aligned}$
KP Hawaii	6933	9336	6645	6566	$\begin{aligned} & 66 \\ & (15) \end{aligned}$	$\begin{aligned} & 62 \\ & (14 \\ &)^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 58 \\ & (13 \\ & (13 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & (13 \\ & (13) \end{aligned}$	$\begin{aligned} & 4150 \\ & (60 \%) \end{aligned}$	$\begin{aligned} & 4326 \\ & (46 \%) \end{aligned}$	$\begin{aligned} & \hline 3083 \\ & (46 \%) \end{aligned}$	$\begin{aligned} & 3484 \\ & (53 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)				
NZDCS	4600	9139	7437	6549	$\begin{aligned} & 65 \\ & (17) \end{aligned}$	$\begin{aligned} & 64 \\ & (14 \\ &) \end{aligned}$	$\begin{aligned} & 61 \\ & (13 \\ & (3) \end{aligned}$	$\begin{aligned} & 55 \\ & (13 \\ & (13 \\ &) \end{aligned}$	$\begin{aligned} & 2260 \\ & (49 \%) \end{aligned}$	$\begin{aligned} & 3840 \\ & (42 \%) \end{aligned}$	$\begin{aligned} & \hline 3494 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & 4007 \\ & (61 \%) \end{aligned}$	$\begin{aligned} & 17 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 24 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 14 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 15 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 639 \\ & (14 \%) \end{aligned}$	$\begin{aligned} & 761 \\ & (8 \%) \end{aligned}$	$\begin{aligned} & 259 \\ & (3 \%) \end{aligned}$	$\begin{aligned} & 96 \\ & (1 \%) \end{aligned}$	669 (15\%)	$\begin{aligned} & 1203 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & \hline 1060 \\ & (14 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 1132 \\ (17 \%) \end{array}$
Pima	550	1029	1070	1366	$\begin{aligned} & 32 \\ & (17) \end{aligned}$	$\begin{aligned} & \hline 36 \\ & (16 \\ &)^{2} \end{aligned}$	$\begin{aligned} & 34 \\ & (14 \\ &) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 31 \\ (12 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 292 \\ & (53 \%) \end{aligned}$	$\begin{aligned} & \hline 549 \\ & (53 \%) \end{aligned}$	$\begin{aligned} & \hline 602 \\ & (56 \%) \end{aligned}$	$\begin{aligned} & \hline 913 \\ & (67 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	114 (29\%)	$\begin{aligned} & 209 \\ & (28 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 211 \\ (30 \%) \end{array}$	$\begin{aligned} & 219 \\ & (26 \%) \end{aligned}$
SMART	3663	4742	1556	524	$\begin{aligned} & 57 \\ & (14) \end{aligned}$	$\begin{aligned} & 59 \\ & (11 \\ &) \end{aligned}$	$\begin{aligned} & 57 \\ & (11 \\ &) \end{aligned}$	$\begin{array}{\|l} 53 \\ (12 \\ 12 \\ \hline \end{array}$	$\begin{aligned} & 1432 \\ & (39 \%) \end{aligned}$	$\begin{aligned} & 1230 \\ & (26 \%) \end{aligned}$	$\begin{aligned} & 541 \\ & (35 \%) \end{aligned}$	$\begin{aligned} & 265 \\ & (51 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	1211 (33\%)	$\begin{aligned} & 1272 \\ & (27 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 411 \\ (27 \%) \end{array}$	$\begin{aligned} & 146 \\ & (28 \%) \end{aligned}$
ZODIAC	316	711	447	200	$\begin{aligned} & 71 \\ & (12) \end{aligned}$	$\begin{array}{\|l} \hline 67 \\ (12 \\) \\ \hline \end{array}$	$\begin{aligned} & 66 \\ & (11 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 64 \\ & (12 \\ & \mathbf{n}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & 347 \\ & (49 \%) \end{aligned}$	$\begin{aligned} & 282 \\ & (63 \%) \end{aligned}$	$\begin{aligned} & 152 \\ & (76 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	71 (23\%)	$\begin{aligned} & 143 \\ & (20 \%) \end{aligned}$	$\begin{aligned} & 77 \\ & (17 \%) \end{aligned}$	$\begin{aligned} & 26 \\ & (13 \%) \end{aligned}$
Subtotal	19049	29495	19559	16314	$\begin{aligned} & 63 \\ & (14) \end{aligned}$	$\begin{aligned} & \hline \mathbf{6 2} \\ & (13 \\ &) \end{aligned}$	$\begin{aligned} & \mathbf{5 9} \\ & (12 \\ &) \end{aligned}$	$\begin{array}{\|l} 53 \\ (12 \\) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 9553 \\ \mathbf{(5 0 \%}) \end{array}$	$\begin{aligned} & 12021 \\ & (41 \%) \end{aligned}$	$\begin{aligned} & \hline 9076 \\ & (46 \%) \end{aligned}$	$\begin{aligned} & \hline 9436 \\ & (58 \%) \end{aligned}$	$\begin{aligned} & 21 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & \hline \mathbf{4 1} \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 25 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & \mathbf{2 0} \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 2708 \\ & (14 \%) \end{aligned}$	$\begin{aligned} & 2524 \\ & (9 \%) \end{aligned}$	$\begin{aligned} & \mathbf{5 7 6} \\ & (3 \%) \end{aligned}$	$\begin{aligned} & 136 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 2529 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & \mathbf{3 5 0 8} \\ & \mathbf{(1 2 \%)} \end{aligned}$	$\begin{aligned} & 2083 \\ & (11 \% \\ &) \end{aligned}$	$\begin{aligned} & 1714 \\ & (11 \% \\ &) \end{aligned}$

CKD Cohorts

AASK	215	362	265	245	$\begin{aligned} & 56 \\ & (11) \end{aligned}$	55 $(11$ $)$	55 10 10	$\begin{aligned} & 52 \\ & (11 \\ &) \end{aligned}$	$\begin{aligned} & 87 \\ & (40 \%) \end{aligned}$	$\begin{aligned} & 117 \\ & (32 \%) \end{aligned}$	$\begin{aligned} & 95 \\ & (36 \%) \end{aligned}$	$\begin{aligned} & 123 \\ & (50 \%) \end{aligned}$	$\left\|\begin{array}{l} 215 \\ (100 \%) \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 362 \\ & (100 \%) \end{aligned}\right.$	265 (100\%)	245 (100\%	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	100 (47\%)	$\begin{aligned} & 99 \\ & (27 \%) \end{aligned}$	$\begin{array}{\|l} 73 \\ (28 \%) \end{array}$	$\begin{aligned} & 46 \\ & (19 \%) \end{aligned}$

BC CKD	2182	2796	1605	1063	$\begin{aligned} & 68 \\ & (16) \end{aligned}$	$\begin{aligned} & \hline 69 \\ & 13 \\ &) \end{aligned}$	$\begin{aligned} & 68 \\ & (12 \end{aligned}$	$\begin{aligned} & 65 \\ & (11 \\ & (1) \end{aligned}$	$\begin{aligned} & 1020 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & 1115 \\ & (40 \%) \end{aligned}$	$\begin{aligned} & 686 \\ & (43 \%) \end{aligned}$	$\begin{aligned} & \hline 588 \\ & (55 \%) \end{aligned}$	$\begin{aligned} & 12 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 15 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 13 \\ & (1 \%) \end{aligned}$	5 (0\%)	$\begin{aligned} & 709 \\ & (32 \%) \end{aligned}$	$\begin{aligned} & \hline 634 \\ & (23 \%) \end{aligned}$	$\begin{aligned} & 252 \\ & (16 \%) \end{aligned}$	$\begin{aligned} & 81 \\ & (8 \%) \end{aligned}$	117 (12\%)	$\begin{aligned} & 157 \\ & (12 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 94 \\ (12 \%) \end{array}$	$\begin{aligned} & 52 \\ & (10 \%) \end{aligned}$
CanPREDDICT	344	569	390	340	$\begin{aligned} & 67 \\ & (15) \end{aligned}$	$\begin{aligned} & 71 \\ & (12 \\ &) \end{aligned}$	$\begin{aligned} & 69 \\ & (12 \end{aligned}$	$\begin{aligned} & 66 \\ & (11 \end{aligned}$	$\begin{aligned} & 147 \\ & (43 \%) \end{aligned}$	$\begin{aligned} & 156 \\ & (27 \%) \end{aligned}$	$\begin{aligned} & 137 \\ & (35 \%) \end{aligned}$	$\begin{aligned} & 157 \\ & (46 \%) \end{aligned}$	3 (1\%)	$\begin{aligned} & 12 \\ & (2 \%) \end{aligned}$	$\begin{aligned} & 11 \\ & (3 \%) \end{aligned}$	1 (0\%)	$\begin{aligned} & 17 \\ & (5 \%) \end{aligned}$	$\begin{aligned} & 10 \\ & (2 \%) \end{aligned}$	5 (1\%)	2 (1\%)				
CARE FOR HOMe	68	164	161	69	$\begin{aligned} & 63 \\ & (15) \end{aligned}$	$\begin{aligned} & \hline 66 \\ & (12 \\ &) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 67 \\ (12 \\ \hline \end{array}$	$\begin{aligned} & 62 \\ & (11 \\ &) \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & \hline 59 \\ & (36 \%) \end{aligned}$	$\begin{aligned} & 65 \\ & (40 \%) \end{aligned}$	$\begin{aligned} & 32 \\ & (46 \%) \end{aligned}$	1 (1\%)	0 (0\%)	1 (1\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	6 (9\%)	$\begin{aligned} & \hline 19 \\ & (12 \%) \end{aligned}$	$\begin{aligned} & 14 \\ & (9 \%) \end{aligned}$	$\begin{aligned} & 8 \\ & (12 \%) \end{aligned}$
CCF	8858	13366	7971	5823	$\begin{aligned} & 75 \\ & (13) \end{aligned}$	$\begin{array}{\|l} \hline 73 \\ (11 \\) \\ \hline \end{array}$	$\begin{aligned} & 71 \\ & (11 \\ & \hline \end{aligned}$	$\begin{aligned} & 67 \\ & (11 \\ &) \end{aligned}$	$\begin{aligned} & 5221 \\ & (59 \%) \end{aligned}$	$\begin{aligned} & 6284 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & 4109 \\ & (52 \%) \end{aligned}$	$\begin{aligned} & 3822 \\ & (66 \%) \end{aligned}$	$\begin{aligned} & 879 \\ & (10 \%) \end{aligned}$	$\begin{aligned} & 1388 \\ & (10 \%) \end{aligned}$	$\begin{aligned} & 1021 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & 1003 \\ & (17 \%) \end{aligned}$	$\begin{aligned} & 74 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & \hline 54 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 14 \\ & (0 \%) \end{aligned}$	8 (0\%)	799 (9\%)	$\begin{aligned} & 954 \\ & (7 \%) \end{aligned}$	$\begin{aligned} & 569 \\ & (7 \%) \end{aligned}$	$\begin{aligned} & 401 \\ & (7 \%) \end{aligned}$
CKD-JAC	1643	685	131	19	$\begin{aligned} & 61 \\ & (11) \end{aligned}$	$\begin{aligned} & 61 \\ & (11 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & 56 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & (12 \\ &) \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & (37 \%) \end{aligned}$	$\begin{aligned} & 211 \\ & (31 \%) \end{aligned}$	$\begin{aligned} & 45 \\ & (34 \%) \end{aligned}$	$\begin{aligned} & 9 \\ & (47 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{aligned} & 1643 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 685 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 131 \\ & (100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \\ & (100 \% \\ & \hline \end{aligned}$	224 (16\%)	$\begin{aligned} & 104 \\ & (18 \%) \end{aligned}$	$\begin{aligned} & 25 \\ & (22 \%) \end{aligned}$	$\begin{aligned} & 4 \\ & (27 \%) \end{aligned}$
CRIB	134	159	54	22	$\begin{aligned} & 61 \\ & (16) \end{aligned}$	$\begin{aligned} & \hline 63 \\ & (13 \\ & 13 \end{aligned}$	$\begin{aligned} & 61 \\ & (12 \\ & 12 \end{aligned}$	$\begin{aligned} & 56 \\ & (11 \\ &) \end{aligned}$	$\begin{aligned} & 57 \\ & (43 \%) \end{aligned}$	$\begin{aligned} & \hline 46 \\ & (29 \%) \end{aligned}$	$\begin{aligned} & 14 \\ & (26 \%) \end{aligned}$	$\begin{aligned} & 11 \\ & (50 \%) \end{aligned}$	6 (4\%)	8 (5\%)	4 (7\%)	$\begin{aligned} & 4 \\ & (18 \%) \end{aligned}$	6 (4\%)	$\begin{aligned} & \hline 13 \\ & (8 \%) \end{aligned}$	3 (6\%)	2 (9\%)	24 (18\%)	$\begin{aligned} & 17 \\ & (11 \%) \end{aligned}$	$\begin{aligned} & 5 \\ & (9 \%) \end{aligned}$	$\begin{aligned} & 0 \\ & (0 \%) \end{aligned}$
GCKD	1015	1876	1252	907	$\begin{aligned} & 55 \\ & (14) \end{aligned}$	$\begin{aligned} & 62 \\ & (11 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 62 \\ 111 \\ \hline \end{array}$	$\begin{aligned} & 62 \\ & (10 \\ &) \\ & \hline \end{aligned}$	$\begin{aligned} & 518 \\ & (51 \%) \end{aligned}$	$\begin{aligned} & 607 \\ & (32 \%) \end{aligned}$	$\begin{aligned} & 460 \\ & (37 \%) \end{aligned}$	$\begin{aligned} & 418 \\ & (46 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	241 (24\%)	$\begin{array}{\|l} 266 \\ (14 \%) \end{array}$	$\begin{aligned} & 184 \\ & (15 \%) \end{aligned}$	$\begin{aligned} & 112 \\ & (12 \%) \end{aligned}$
Gonryo	2236	931	153	32	$\begin{aligned} & 62 \\ & (15) \end{aligned}$	$\begin{aligned} & 63 \\ & (13 \\ &) \end{aligned}$	$\begin{aligned} & 57 \\ & (15 \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ (16 \\) \\ \hline \end{array}$	$\begin{aligned} & 1055 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & \hline 412 \\ & (44 \%) \end{aligned}$	$\begin{aligned} & \hline 82 \\ & (54 \%) \end{aligned}$	$\begin{aligned} & 25 \\ & (78 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	$\begin{array}{\|l\|} \hline 2236 \\ (100 \%) \end{array}$	$\begin{array}{\|l\|} \hline 931 \\ (100 \%) \end{array}$	$\begin{aligned} & 153 \\ & (100 \% \end{aligned}$	$\begin{aligned} & 32 \\ & (100 \% \\ & \hline \end{aligned}$				
MASTERPLA N	203	314	112	42	$\begin{aligned} & \mathrm{57} \\ & (14) \end{aligned}$	$\begin{aligned} & 62 \\ & (11 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 111 \\ & \hline \end{aligned}$	$\begin{aligned} & 59 \\ & (11 \\ &) \end{aligned}$	$\begin{aligned} & 75 \\ & (37 \%) \end{aligned}$	$\begin{aligned} & 71 \\ & (23 \%) \end{aligned}$	$\begin{aligned} & 33 \\ & (29 \%) \end{aligned}$	$\begin{aligned} & 25 \\ & (60 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	65 (33\%)	$\begin{aligned} & 50 \\ & (16 \%) \end{aligned}$	$\begin{aligned} & 18 \\ & (16 \%) \end{aligned}$	$\begin{aligned} & 6 \\ & (15 \%) \end{aligned}$
MDRD	614	711	329	117	$\begin{aligned} & 47 \\ & (14) \end{aligned}$	$\begin{aligned} & \hline 53 \\ & (12 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & (12 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & (12 \\ &) \end{aligned}$	$\begin{aligned} & 301 \\ & (49 \%) \end{aligned}$	$\begin{aligned} & 223 \\ & (31 \%) \end{aligned}$	$\begin{aligned} & 108 \\ & (33 \%) \end{aligned}$	$\begin{aligned} & \hline 61 \\ & (52 \%) \end{aligned}$	$\begin{aligned} & \hline \left.\begin{array}{l} 54 \\ (9 \%) \end{array} \right\rvert\, \end{aligned}$	$\begin{aligned} & 84 \\ & (12 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 52 \\ (16 \%) \end{array}$	$\begin{aligned} & 34 \\ & (29 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	85 (14\%)	$\begin{aligned} & 82 \\ & (12 \%) \end{aligned}$	$\begin{aligned} & 28 \\ & (9 \%) \end{aligned}$	$\begin{aligned} & 15 \\ & (13 \%) \end{aligned}$
MMKD	107	72	14	5	$\begin{aligned} & 44 \\ & (13) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 51 \\ (10 \\) \\ \hline \end{array}$	$\begin{array}{\|l} 54 \\ (11 \\ \hline \end{array}$	$\begin{aligned} & 52 \\ & (6) \end{aligned}$	$\begin{aligned} & 50 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & 11 \\ & (15 \%) \end{aligned}$	$\begin{aligned} & 4 \\ & (29 \%) \end{aligned}$	$\begin{aligned} & 2 \\ & (40 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	29 (27\%)	$\begin{aligned} & 11 \\ & (15 \%) \end{aligned}$	$\begin{aligned} & 1 \\ & (7 \%) \end{aligned}$	$\begin{aligned} & 1 \\ & (20 \%) \end{aligned}$
Nefrona	358	726	465	202	$\begin{array}{\|l\|} \hline 53 \\ (14) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 61 \\ (11 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 62 \\ (10 \\ \hline \end{array}$	$\begin{aligned} & 62 \\ & (10 \\ &) \\ & \hline \end{aligned}$	$\begin{aligned} & 162 \\ & (45 \%) \end{aligned}$	$\begin{aligned} & 214 \\ & (29 \%) \end{aligned}$	$\begin{aligned} & 164 \\ & (35 \%) \end{aligned}$	$\begin{aligned} & 115 \\ & (57 \%) \end{aligned}$	1 (0\%)	0 (0\%)	2 (0\%)	1 (0\%)	3 (1\%)	0 (0\%)	0 (0\%)	0 (0\%)	98 (27\%)	$\begin{aligned} & 136 \\ & (19 \%) \end{aligned}$	$\begin{aligned} & 75 \\ & (16 \%) \end{aligned}$	$\begin{aligned} & 35 \\ & (17 \%) \end{aligned}$
NephroTest	751	722	302	116	$\begin{aligned} & 55 \\ & (16) \end{aligned}$	$\begin{aligned} & \hline 61 \\ & (14 \\ &) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 62 \\ (13 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & (12 \\ &) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 293 \\ (39 \%) \end{array}$	$\begin{aligned} & 174 \\ & (24 \%) \end{aligned}$	$\begin{aligned} & 97 \\ & (32 \%) \end{aligned}$	$\begin{aligned} & 46 \\ & (40 \%) \end{aligned}$	$\begin{aligned} & 94 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & 105 \\ & (15 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 32 \\ (11 \%) \end{array}$	$\begin{aligned} & 13 \\ & (11 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	126 (17\%)	$\begin{aligned} & 84 \\ & (12 \%) \end{aligned}$	$\begin{aligned} & 40 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & 12 \\ & (10 \%) \end{aligned}$
PSP-CKD	5731	7636	4492	2570	$\begin{array}{\|l\|} \hline 78 \\ (11) \end{array}$	$\begin{array}{\|l} \hline 75 \\ 10 \\ 10 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 72 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 69 \\ & (10 \\ &) \\ & \hline \end{aligned}$	$\begin{aligned} & 3655 \\ & (64 \%) \end{aligned}$	$\begin{aligned} & 4153 \\ & (54 \%) \end{aligned}$	$\begin{aligned} & 2600 \\ & (58 \%) \end{aligned}$	$\begin{aligned} & 1809 \\ & (70 \%) \end{aligned}$	$\begin{aligned} & 43 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 80 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 56 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 28 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 62 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 105 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 45 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 16 \\ & (1 \%) \end{aligned}$	711 (19\%)	$\begin{aligned} & 690 \\ & (14 \%) \end{aligned}$	$\begin{aligned} & 360 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & 208 \\ & (12 \%) \end{aligned}$
RENAAL	333	530	329	276	$\begin{array}{\|l\|} \hline 60 \\ (8) \\ \hline \end{array}$	$\begin{aligned} & 61 \\ & (7) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 61 \\ (7) \\ \hline \end{array}$	$\begin{aligned} & 57 \\ & (8) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 103 \\ (31 \%) \\ \hline \end{array}$	$\begin{aligned} & \hline 158 \\ & (30 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 125 \\ & (38 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 155 \\ & (56 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 27 \\ (8 \%) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 71 \\ (13 \%) \end{array}$	$\begin{array}{\|l\|} \hline 60 \\ (18 \%) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 66 \\ (24 \%) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 127 \\ (38 \%) \\ \hline \end{array}$	$\begin{aligned} & \hline 88 \\ & (17 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ (5 \%) \\ \hline \end{array}$	6 (2\%)	96 (29\%)	$\begin{array}{\|l\|} \hline 79 \\ (15 \%) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 51 \\ (16 \%) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 37 \\ (13 \%) \\ \hline \end{array}$
SRR-CKD	802	965	464	232	$\begin{array}{\|l} \hline 67 \\ (17) \end{array}$	$\begin{aligned} & 69 \\ & (14 \\ &) \\ & \hline \end{aligned}$	$\begin{aligned} & 68 \\ & (14 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & (12 \\ &) \end{aligned}$	$\begin{aligned} & 304 \\ & (38 \%) \end{aligned}$	$\begin{aligned} & 251 \\ & (26 \%) \end{aligned}$	$\begin{aligned} & 141 \\ & (30 \%) \end{aligned}$	$\begin{aligned} & 104 \\ & (45 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)				

Sunnybrook	908	1070	572	310	$\begin{array}{\|l} \hline 63 \\ (20) \end{array}$	$\begin{aligned} & 65 \\ & (16 \\ & y^{6} \end{aligned}$	$\mathfrak{l} \left\lvert\, \begin{aligned} & 64 \\ & 15 \end{aligned}\right.$	$\begin{aligned} & \left.\begin{array}{l} 59 \\ (15 \\) \end{array}\right) \end{aligned}$	$\begin{aligned} & 451 \\ & (50 \%) \end{aligned}$	$\begin{aligned} & 400 \\ & (37 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 218 \\ (38 \%) \end{array}$	$\begin{aligned} & 159 \\ & (51 \%) \end{aligned}$	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	90 (10\%)	$\begin{array}{\|l} \hline 85 \\ (8 \%) \end{array}$	$\begin{aligned} & 51 \\ & (9 \%) \end{aligned}$	$\begin{aligned} & 28 \\ & (9 \%) \end{aligned}$
Subtotal	26502	33654	19061	12390	$\begin{aligned} & 69 \\ & (13) \end{aligned}$	$\begin{aligned} & \mathbf{7 0} \\ & \mathbf{1 1 1} \\ & y^{2} \end{aligned}$	$\begin{aligned} & 69 \\ & \mathbf{1 1 1} \\ &) \end{aligned}$	$\begin{aligned} & \mathbf{6 6} \\ & (11 \\ & { }^{2} \end{aligned}$	$\begin{aligned} & 14131 \\ & (53 \%) \end{aligned}$	$\begin{aligned} & 14662 \\ & (\mathbf{4 4 \%}) \end{aligned}$	$\begin{aligned} & 9183 \\ & (48 \%) \end{aligned}$	$\begin{aligned} & 7661 \\ & (62 \%) \end{aligned}$	$\begin{aligned} & \mathbf{1 3 3 5} \\ & (\mathbf{5 \%}) \end{aligned}$	$\begin{aligned} & 2125 \\ & (6 \%) \end{aligned}$	$\begin{aligned} & 1517 \\ & (8 \%) \end{aligned}$	$\begin{aligned} & 1400 \\ & (11 \%) \end{aligned}$	$\begin{aligned} & 4877 \\ & (18 \%) \end{aligned}$	$\begin{aligned} & 2520 \\ & (7 \%) \end{aligned}$	$\begin{aligned} & \mathbf{6 1 9} \\ & (3 \%) \end{aligned}$	$\begin{aligned} & 166 \\ & (1 \%) \end{aligned}$	$\begin{aligned} & 2811 \\ & (11 \%) \end{aligned}$	$\begin{aligned} & 2833 \\ & (8 \%) \end{aligned}$	$\begin{aligned} & 1588 \\ & (8 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 965 \\ (8 \%) \end{array}$
Total	1883346	2021250	1093881	636561	151	$\begin{aligned} & 57 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 57 \\ & (13 \\ & 9 \end{aligned}$	$\begin{aligned} & 55 \\ & (13 \\ &) \end{aligned}$	$\begin{aligned} & 729626 \\ & (39 \%) \end{aligned}$	$\begin{aligned} & 442017 \\ & (22 \%) \end{aligned}$	$\begin{aligned} & 7217670 \\ & (20 \%) \end{aligned}$	$\begin{aligned} & 167265 \\ & (26 \%) \end{aligned}$	$\begin{aligned} & 138394 \\ & (7 \%) \end{aligned}$	203878	$\begin{aligned} & 142771 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & 89289 \\ & (14 \%) \end{aligned}$	$\begin{aligned} & 765052 \\ & (41 \%) \end{aligned}$	$\begin{aligned} & 2319610 \\ & (16 \%) \end{aligned}$	$\begin{aligned} & 37637 \\ & (\mathbf{3 \%}) \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{4 6 3 2} \\ (1 \%) \end{array}$	$\begin{aligned} & 205581 \\ & (11 \%) \end{aligned}$	$\begin{aligned} & 123271 \\ & (6 \%) \end{aligned}$	$\begin{aligned} & 39065 \\ & (4 \%) \end{aligned}$	$\begin{aligned} & 25169 \\ & (4 \%) \end{aligned}$

eTable 4. Baseline Characteristics by BMI Category - Cardiovascular Disease and Chronic Kidney Disease Risk Factors

	SBP				Diabetes				History of CVD			
	18.5-<25	25-<30	30-<35	≥ 35	18.5-<25	25-<30	30-<35	≥ 35	18.5-<25	25-<30	30-<35	≥ 35
General Population												
Aichi	125 (15)	132 (15)	139 (15)	136 (18)	295 (8\%)	121 (12\%)	10 (18\%)	3 (50\%)	34 (1\%)	9 (1\%)	1 (2\%)	0 (0\%)
ARIC	116 (19)	121 (18)	125 (18)	130 (19)	246 (5\%)	640 (10\%)	545 (19\%)	400 (28\%)	457 (9\%)	756 (12\%)	429 (15\%)	273 (19\%)
AusDiab	124 (18)	132 (18)	135 (18)	136 (18)	175 (4\%)	333 (8\%)	249 (14\%)	161 (22\%)	251 (6\%)	423 (10\%)	182 (11\%)	64 (9\%)
Beaver Dam CKD	128 (21)	132 (20)	136 (20)	139 (19)	57 (4\%)	139 (7\%)	108 (11\%)	89 (19\%)	130 (10\%)	214 (11\%)	104 (10\%)	42 (9\%)
Beijing	123 (18)	127 (18)	131 (19)	144 (24)	179 (26\%)	200 (32\%)	36 (29\%)	3 (38\%)	113 (16\%)	131 (20\%)	31 (24\%)	3 (38\%)
ChinaNS	123 (19)	134 (20)	142 (21)	140 (22)	1644 (6\%)	1487 (11\%)	318 (14\%)	49 (17\%)	589 (2\%)	458 (4\%)	107 (5\%)	12 (5\%)
CHS	135 (22)	136 (21)	138 (20)	142 (22)	162 (10\%)	290 (15\%)	181 (26\%)	91 (34\%)	447 (27\%)	500 (26\%)	193 (27\%)	79 (29\%)
CIRCS	130 (18)	136 (18)	140 (18)	139 (18)	202 (2\%)	114 (4\%)	15 (5\%)	2 (9\%)	97 (1\%)	42 (1\%)	9 (3\%)	1 (5\%)
COBRA	154 (24)	153 (24)	148 (24)	140 (22)	79 (18\%)	93 (22\%)	35 (18\%)	22 (21\%)	75 (17\%)	76 (18\%)	34 (18\%)	17 (17\%)
ESTHER	134 (19)	140 (19)	145 (19)	148 (21)	278 (11\%)	843 (18\%)	539 (28\%)	216 (37\%)	357 (14\%)	800 (17\%)	439 (23\%)	137 (24\%)
Framingham	124 (19)	129 (19)	132 (17)	132 (18)	27 (3\%)	78 (6\%)	73 (13\%)	55 (22\%)	69 (8\%)	138 (11\%)	75 (13\%)	32 (13\%)
Geisinger	119 (18)	126 (18)	129 (18)	131 (18)	3988 (4\%)	9635 (8\%)	11225 (12\%)	$\begin{aligned} & 16884 \\ & (19 \%) \end{aligned}$	5221 (6\%)	8166 (7\%)	6128 (7\%)	5639 (6\%)
Gubbio	125 (18)	130 (18)	134 (18)	138 (17)	8 (2\%)	35 (4\%)	36 (9\%)	11 (11\%)	14 (3\%)	43 (5\%)	27 (7\%)	14 (15\%)
HUNT	131 (20)	140 (21)	146 (22)	147 (23)	436 (2\%)	876 (3\%)	546 (6\%)	239 (11\%)	1395 (5\%)	2442 (9\%)	938 (11\%)	209 (10\%)
IPHS	132 (18)	138 (17)	142 (17)	144 (18)	1661 (3\%)	890 (3\%)	110 (4\%)	13 (7\%)	2686 (4\%)	1457 (6\%)	187 (7\%)	9 (5\%)
JHS	124 (18)	125 (17)	126 (16)	127 (16)	29 (6\%)	131 (12\%)	185 (20\%)	269 (28\%)	33 (7\%)	84 (8\%)	83 (9\%)	82 (8\%)
JMS	125 (19)	133 (18)	137 (20)	139 (15)	2073 (55\%)	595 (56\%)	58 (58\%)	1 (25\%)	32 (1\%)	13 (1\%)	5 (5\%)	0 (0\%)
KHS	119 (17)	127 (18)	133 (19)	139 (20)	12778 (5\%)	9228 (9\%)	1017 (13\%)	99 (19\%)	3525 (2\%)	2003 (2\%)	181 (2\%)	17 (3\%)
Maccabi	117 (16)	126 (17)	131 (18)	134 (19)	11178 (5\%)	29439 (12\%)	23811 (19\%)	$\begin{aligned} & 15485 \\ & (26 \%) \end{aligned}$	18305 (8\%)	$\begin{aligned} & 31782 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & 17986 \\ & (15 \%) \end{aligned}$	8242 (14\%)
MESA	122 (22)	127 (21)	129 (21)	132 (21)	131 (7\%)	301 (11\%)	246 (17\%)	173 (23\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
MRC	148 (23)	149 (22)	151 (22)	153 (22)	295 (6\%)	406 (8\%)	186 (11\%)	60 (15\%)	842 (17\%)	868 (17\%)	267 (17\%)	76 (19\%)
Mt Sinai BioMe	120 (19)	127 (19)	130 (19)	132 (20)	826 (12\%)	1302 (17\%)	1083 (24\%)	1154 (29\%)	556 (8\%)	771 (10\%)	584 (13\%)	533 (13\%)
NHANES	119 (19)	125 (19)	126 (18)	127 (18)	1070 (5\%)	2300 (12\%)	1901 (17\%)	1880 (25\%)	1287 (7\%)	1871 (10\%)	1137 (11\%)	831 (12\%)
$\begin{array}{\|l} \hline \text { NIPPON } \\ \text { DATA80 } \\ \hline \end{array}$	135 (21)	142 (21)	147 (23)	143 (21)	182 (3\%)	77 (4\%)	12 (7\%)	0 (0\%)	188 (3\%)	43 (2\%)	5 (3\%)	0 (0\%)

$\begin{array}{\|l\|} \hline \text { NIPPON } \\ \text { DATA90 } \\ \hline \end{array}$	134 (21)	141 (19)	148 (22)	157 (22)	263 (5\%)	96 (6\%)	11 (7\%)	0 (0\%)	226 (4\%)	84 (5\%)	8 (5\%)	1 (5\%)
Ohasama	129 (18)	133 (16)	129 (14)	143 (22)	134 (12\%)	60 (13\%)	2 (5\%)	3 (38\%)	61 (6\%)	32 (7\%)	1 (3\%)	1 (13\%)
Okinawa 83	129 (20)	137 (20)	145 (21)	151 (21)	69 (3\%)	47 (5\%)	16 (13\%)	1 (9\%)				
Okinawa 93	125 (17)	131 (17)	135 (17)	138 (17)	1326 (3\%)	1216 (6\%)	281 (10\%)	49 (17\%)				
PREVEND	121 (17)	133 (20)	139 (20)	139 (20)	171 (5\%)	251 (8\%)	107 (11\%)	30 (11\%)	102 (3\%)	233 (7\%)	61 (6\%)	21 (8\%)
Rancho Bernardo	136 (24)	136 (21)	136 (18)	140 (20)	94 (11\%)	101 (15\%)	30 (20\%)	19 (40\%)	131 (15\%)	98 (15\%)	16 (11\%)	6 (13\%)
RCAV	130 (19)	133 (17)	135 (17)	137 (17)	$\begin{aligned} & 88755 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & 245887 \\ & (21 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 232922 \\ (31 \%) \end{array}$	$\begin{array}{\|l\|} \hline 189250 \\ (44 \%) \end{array}$	$\begin{aligned} & 120182 \\ & (18 \%) \end{aligned}$	$\begin{array}{\|l} \hline 215009 \\ (18 \%) \end{array}$	$\begin{aligned} & 143343 \\ & (19 \%) \end{aligned}$	$\begin{aligned} & 89158 \\ & (21 \%) \end{aligned}$
REGARDS	124 (17)	127 (16)	129 (16)	132 (16)	636 (9\%)	1833 (17\%)	1743 (27\%)	1809 (39\%)	1499 (22\%)	2528 (24\%)	1511 (24\%)	1094 (24\%)
RSIII	127 (19)	134 (18)	137 (19)	139 (18)	52 (5\%)	177 (11\%)	130 (21\%)	96 (40\%)	53 (5\%)	113 (7\%)	79 (13\%)	25 (10\%)
SEED	136 (21)	139 (20)	142 (21)	141 (19)	730 (22\%)	752 (33\%)	266 (42\%)	91 (49\%)	304 (9\%)	258 (11\%)	69 (11\%)	24 (13\%)
Taiwan MJ	118 (18)	129 (20)	134 (21)	137 (20)	11352 (3\%)	9713 (8\%)	2181 (13\%)	383 (15\%)	8638 (3\%)	5543 (5\%)	1077 (6\%)	158 (6\%)
Takahata	133 (16)	138 (15)	141 (13)	161 (21)	147 (10\%)	99 (15\%)	10 (12\%)	0 (0\%)	66 (4\%)	27 (4\%)	2 (2\%)	0 (0\%)
TLGS	113 (16)	121 (19)	125 (20)	131 (19)	172 (5\%)	366 (9\%)	216 (12\%)	78 (16\%)	113 (3\%)	222 (5\%)	91 (5\%)	35 (7\%)
Tromso	138 (21)	146 (22)	152 (23)	160 (22)	69 (2\%)	131 (4\%)	77 (8\%)	41 (21\%)	152 (5\%)	264 (8\%)	83 (9\%)	14 (7\%)
ULSAM	129 (16)	134 (17)	141 (17)	144 (27)	15 (2\%)	13 (3\%)	1 (2\%)	1 (14\%)	0 (0\%)	5 (1\%)	0 (0\%)	0 (0\%)
Subtotal	124 (18)	131 (18)	134 (17)	136 (17)	$\begin{aligned} & \hline 142016 \\ & (8 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} 320314 \\ (16 \%) \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 280521 \\ (27 \%) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 229211 \\ \mathbf{(3 8 \%}) \end{array}$	168230 (9\%)	$\begin{array}{\|l\|} \hline 277506 \\ (14 \%) \end{array}$	$\begin{aligned} & \hline 175473 \\ & (17 \%) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 106849 \\ (18 \%) \end{array}$
High CVD Risk Cohorts												
ADVANCE	141 (22)	145 (21)	148 (21)	147 (21)	$\begin{aligned} & \hline 2987 \\ & (100 \%) \end{aligned}$	4538 (100\%)	2404 (100\%)	$\begin{aligned} & \hline 1109 \\ & (100 \%) \end{aligned}$	667 (22\%)	1213 (27\%)	636 (26\%)	286 (26\%)
KP Hawaii	132 (21)	133 (20)	134 (19)	136 (20)	2778 (40\%)	4685 (50\%)	3855 (58\%)	4279 (65\%)	1384 (20\%)	1754 (19\%)	1192 (18\%)	1110 (17\%)
NZDCS	135 (20)	138 (19)	139 (19)	140 (19)	$\begin{array}{\|l\|} \hline 4600 \\ (100 \%) \end{array}$	9139 (100\%)	7437 (100\%)	$\begin{array}{\|l} \hline 6549 \\ (100 \%) \end{array}$	880 (19\%)	2004 (22\%)	1529 (21\%)	1053 (16\%)
Pima	116 (18)	120 (19)	120 (18)	119 (16)	127 (23\%)	325 (32\%)	301 (28\%)	373 (27\%)				
SMART	139 (22)	142 (21)	144 (21)	144 (21)	489 (13\%)	850 (18\%)	475 (31\%)	220 (42\%)	1892 (52\%)	2953 (62\%)	937 (60\%)	231 (44\%)
ZODIAC	148 (25)	152 (25)	152 (23)	154 (24)	316 (100\%)	711 (100\%)	447 (100\%)	200 (100\%)	136 (43\%)	223 (31\%)	161 (36\%)	67 (34\%)
Subtotal	135 (21)	138 (20)	138 (20)	137 (20)	$\begin{aligned} & 11297 \\ & (59 \%) \end{aligned}$	20248 (69\%)	14919 (76\%)	$\begin{aligned} & 12730 \\ & (78 \%) \end{aligned}$	4959 (26\%)	8147 (28\%)	4455 (23\%)	2747 (17\%)
CKD Cohorts												
AASK	150 (24)	150 (23)	149 (24)	153 (24)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	126 (59\%)	185 (51\%)	141 (53\%)	93 (38\%)
BC CKD	136 (23)	137 (23)	138 (23)	136 (24)	831 (38\%)	1329 (48\%)	932 (58\%)	730 (69\%)	520 (24\%)	779 (28\%)	488 (30\%)	342 (32\%)

CanPREDDICT	132 (20)	132 (19)	134 (19)	136 (21)	106 (31\%)	261 (46\%)	225 (58\%)	246 (72\%)	111 (32\%)	240 (42\%)	143 (37\%)	137 (40\%)
CARE FOR HOMe	145 (25)	152 (24)	151 (22)	158 (25)	11 (16\%)	47 (29\%)	72 (45\%)	41 (59\%)	18 (26\%)	51 (31\%)	48 (30\%)	24 (35\%)
CCF	129 (21)	130 (19)	132 (19)	133 (20)	1227 (14\%)	2751 (21\%)	2311 (29\%)	2462 (42\%)	2259 (26\%)	3778 (28\%)	2220 (28\%)	1486 (26\%)
CKD-JAC	131 (18)	136 (19)	134 (19)	144 (18)	455 (28\%)	292 (43\%)	56 (43\%)	12 (63\%)	158 (10\%)	94 (14\%)	13 (10\%)	1 (5\%)
CRIB	150 (22)	154 (21)	150 (25)	147 (22)	16 (12\%)	20 (13\%)	22 (41\%)	6 (27\%)	53 (40\%)	82 (52\%)	23 (43\%)	10 (45\%)
GCKD	136 (20)	141 (20)	141 (21)	139 (20)	163 (16\%)	528 (28\%)	554 (44\%)	560 (62\%)	225 (22\%)	578 (31\%)	495 (40\%)	404 (45\%)
Gonryo	131 (16)	134 (15)	134 (15)	136 (17)	681 (30\%)	311 (33\%)	59 (39\%)	14 (44\%)	394 (18\%)	154 (17\%)	21 (14\%)	4 (13\%)
MASTERPLAN	135 (20)	141 (20)	141 (24)	144 (24)	30 (15\%)	75 (24\%)	41 (37\%)	17 (40\%)	45 (22\%)	105 (34\%)	43 (39\%)	12 (29\%)
MDRD	130 (19)	133 (18)	136 (18)	134 (18)	21 (3\%)	40 (6\%)	25 (8\%)	16 (14\%)	40 (7\%)	95 (13\%)	40 (12\%)	15 (13\%)
MMKD	139 (23)	137 (18)	133 (21)	151 (26)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)	8 (7\%)	13 (18\%)	1 (7\%)	0 (0\%)
Nefrona	140 (22)	145 (21)	146 (20)	149 (23)	73 (45\%)	206 (51\%)	175 (61\%)	89 (72\%)				
NephroTest	133 (21)	138 (20)	140 (19)	139 (21)	117 (16\%)	240 (33\%)	148 (49\%)	73 (63\%)	99 (13\%)	161 (22\%)	82 (27\%)	37 (32\%)
PSP-CKD	132 (16)	133 (15)	134 (15)	135 (15)	1010 (18\%)	1837 (24\%)	1493 (33\%)	1113 (43\%)	1765 (31\%)	2279 (30\%)	1313 (29\%)	699 (27\%)
RENAAL	151 (21)	153 (20)	154 (18)	153 (18)	333 (100\%)	530 (100\%)	329 (100\%)	276 (100\%)				
SRR-CKD	139 (23)	141 (23)	142 (23)	143 (21)	197 (25\%)	336 (35\%)	245 (53\%)	144 (62\%)	234 (29\%)	314 (33\%)	151 (33\%)	75 (32\%)
Sunnybrook	131 (22)	136 (21)	136 (20)	136 (21)	333 (37\%)	513 (48\%)	321 (56\%)	191 (62\%)	105 (12\%)	133 (12\%)	63 (11\%)	29 (9\%)
Subtotal	132 (20)	134 (19)	135 (19)	136 (19)	5604 (21\%)	9316 (28\%)	7008 (37\%)	5990 (48\%)	6160 (23\%)	9041 (27\%)	5285 (28\%)	3368 (27\%)
Total	124 (18)	131 (18)	134 (17)	136 (18)	$\begin{aligned} & 158917 \\ & (8 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 349878 \\ (17 \%) \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{3 0 2 4 4 8} \\ \mathbf{(2 8 \%)} \end{array}$	$\begin{array}{\|l\|} \hline 247931 \\ (39 \%) \end{array}$	$\begin{aligned} & 179349 \\ & (10 \%) \end{aligned}$	$\begin{array}{\|l} 294694 \\ (15 \%) \end{array}$	$\begin{aligned} & 185213 \\ & (17 \%) \end{aligned}$	$\begin{array}{\|l\|} \hline 112964 \\ (18 \%) \end{array}$

eTable 5. Baseline Characteristics by BMI Category - Kidney Measures

	mean (SD) eGFR ml/min/1.73m ${ }^{2}$				N (\%) ACR $>30 \mathrm{mg} / \mathrm{g}$				N (\%) missing ACR			
	18.5-<25	25-<30	30-<35	≥ 35	18.5-<25	25-<30	$30-<35$	≥ 35	18.5-<25	25-<30	30-<35	≥ 35
General Population												
Aichi	100 (13)	98 (13)	99 (13)	97 (15)	62 (2\%)	32 (3\%)	7 (14\%)	1 (17\%)	198 (5\%)	49 (5\%)	5 (9\%)	0 (0\%)
ARIC	103 (14)	101 (16)	102 (17)	106 (18)					5042 (100\%)	6163 (100\%)	$\begin{aligned} & 2875 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & \hline 1408 \\ & (100 \%) \end{aligned}$
AusDiab	88 (16)	84 (16)	84 (16)	87 (17)	217 (5\%)	261 (6\%)	159 (9\%)	79 (11\%)	7 (0\%)	11 (0\%)	11 (1\%)	4 (1\%)
Beaver Dam CKD	81 (19)	79 (17)	78 (18)	79 (19)	45 (3\%)	72 (4\%)	48 (5\%)	31 (7\%)	9 (1\%)	6 (0\%)	2 (0\%)	2 (0\%)
Beijing	84 (14)	82 (15)	79 (14)	84 (14)	39 (5\%)	43 (7\%)	5 (4\%)	1 (13\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
ChinaNS	102 (18)	98 (17)	97 (17)	100 (19)	3015 (11\%)	1724 (12\%)	410 (18\%)	57 (20\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
CHS	70 (17)	71 (16)	71 (17)	71 (19)					1659 (100\%)	1939 (100\%)	707 (100\%)	269 (100\%)
CIRCS	89 (15)	87 (15)	87 (16)	84 (22)	198 (2\%)	126 (4\%)	17 (5\%)	4 (18\%)	27 (0\%)	10 (0\%)	0 (0\%)	0 (0\%)
COBRA	93 (22)	97 (19)	101 (19)	106 (17)	78 (18\%)	64 (15\%)	26 (14\%)	12 (12\%)	2 (0\%)	0 (0\%)	0 (0\%)	1 (1\%)
ESTHER	87 (20)	87 (20)	87 (20)	87 (22)	246 (9\%)	502 (11\%)	279 (15\%)	123 (21\%)	10 (0\%)	20 (0\%)	8 (0\%)	2 (0\%)
Framingham	89 (17)	88 (19)	88 (22)	90 (18)	112 (13\%)	134 (11\%)	73 (13\%)	36 (15\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
Geisinger	99 (23)	92 (22)	91 (22)	94 (22)	977 (34\%)	1760 (30\%)	2070 (31\%)	3326 (35\%)	89414 (97\%)	$\begin{array}{\|l\|} \hline 113116 \\ (95 \%) \\ \hline \end{array}$	$\begin{aligned} & 83244 \\ & (93 \%) \end{aligned}$	$\begin{aligned} & 79797 \\ & (89 \%) \end{aligned}$
Gubbio	84 (11)	85 (12)	85 (11)	83 (13)	13 (3\%)	27 (3\%)	17 (4\%)	13 (14\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
HUNT	102 (18)	96 (19)	92 (20)	93 (20)	260 (11\%)	502 (12\%)	293 (14\%)	122 (17\%)	23250 (91\%)	23253 (84\%)	6385 (76\%)	1447 (67\%)
IPHS	87 (14)	84 (14)	84 (15)	87 (16)	1189 (2\%)	849 (3\%)	150 (6\%)	15 (8\%)	734 (1\%)	302 (1\%)	38 (1\%)	5 (3\%)
JHS	100 (22)	97 (20)	98 (21)	99 (22)	20 (6\%)	60 (8\%)	71 (11\%)	107 (17\%)	157 (32\%)	330 (31\%)	280 (30\%)	339 (35\%)
JMS	98 (15)	96 (15)	97 (14)	97 (19)	59 (2\%)	44 (4\%)	3 (3\%)		27 (1\%)	6 (1\%)	2 (2\%)	0 (0\%)
KHS	87 (14)	84 (14)	85 (15)	86 (16)	$\begin{aligned} & 18479 \\ & (12 \%) \end{aligned}$	7283 (11\%)	568 (11\%)	60 (18\%)	85775 (37\%)	39193 (36\%)	2744 (34\%)	170 (33\%)
Maccabi	97 (21)	89 (21)	88 (21)	90 (22)	2246 (15\%)	5453 (17\%)	4881 (22\%)	3436 (27\%)	217225 (94\%)	$\begin{array}{\|l\|} \hline \begin{array}{l} 209388 \\ (87 \%) \end{array} \\ \hline \end{array}$	$\begin{aligned} & \hline 101904 \\ & (82 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 47512 \\ & (79 \%) \\ & \hline \end{aligned}$
MESA	83 (16)	83 (16)	83 (17)	86 (18)	140 (7\%)	227 (9\%)	164 (12\%)	109 (14\%)	6 (0\%)	8 (0\%)	10 (1\%)	5 (1\%)
MRC	58 (15)	57 (15)	56 (14)	53 (14)	346 (8\%)	350 (7\%)	120 (8\%)	25 (7\%)	282 (6\%)	255 (5\%)	81 (5\%)	27 (7\%)
Mt Sinai BioMe	87 (26)	83 (25)	82 (25)	87 (27)	310 (50\%)	420 (45\%)	328 (44\%)	346 (48\%)	6354 (91\%)	6598 (88\%)	3845 (84\%)	3297 (82\%)
NHANES	102 (25)	95 (25)	95 (25)	98 (26)	1932 (10\%)	2088 (11\%)	1404 (13\%)	1206 (16\%)	450 (2\%)	411 (2\%)	157 (1\%)	142 (2\%)
$\begin{aligned} & \text { NIPPON } \\ & \text { DATA80 } \\ & \hline \end{aligned}$	84 (17)	82 (17)	79 (18)	90 (20)					6841 (100\%)	1810 (100\%)	181 (100\%)	15 (100\%)

$\begin{array}{\|l} \hline \text { NIPPON } \\ \text { DATA90 } \end{array}$	95 (17)	91 (16)	91 (17)	94 (15)					5379 (100\%)	1653 (100\%)	168 (100\%)	19 (100\%)
Ohasama	95 (12)	94 (13)	94 (16)	99 (10)	53 (5\%)	34 (8\%)	3 (8\%)		15 (1\%)	7 (2\%)	0 (0\%)	0 (0\%)
Okinawa 83	76 (17)	74 (15)	73 (15)	78 (19)	1073 (18\%)	630 (24\%)	145 (35\%)	16 (43\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
Okinawa 93	78 (17)	75 (16)	77 (17)	80 (17)	1642 (3\%)	1357 (5\%)	336 (8\%)	53 (14\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
PREVEND	100 (15)	93 (16)	93 (16)	96 (17)	260 (8\%)	397 (12\%)	152 (16\%)	59 (21\%)	13 (0\%)	10 (0\%)	7 (1\%)	0 (0\%)
Rancho Bernardo	65 (16)	65 (15)	66 (15)	69 (16)	134 (15\%)	91 (14\%)	15 (10\%)	9 (19\%)	10 (1\%)	1 (0\%)	0 (0\%)	0 (0\%)
RCAV	86 (17)	83 (15)	83 (15)	85 (16)	1543 (23\%)	4036 (22\%)	3981 (23\%)	3306 (26\%)	652497 (99\%)	$\begin{aligned} & 1155417 \\ & (98 \%) \end{aligned}$	$\begin{aligned} & 739740 \\ & (98 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 415567 \\ & (97 \%) \end{aligned}$
REGARDS	84 (19)	84 (20)	85 (20)	88 (23)	845 (13\%)	1337 (13\%)	995 (16\%)	915 (21\%)	266 (4\%)	392 (4\%)	250 (4\%)	201 (4\%)
RSIII	87 (13)	86 (14)	86 (14)	86 (16)	42 (5\%)	69 (5\%)	45 (8\%)	25 (11\%)	60 (6\%)	80 (5\%)	31 (5\%)	15 (6\%)
SEED	87 (18)	84 (19)	84 (20)	87 (21)					3364 (100\%)	2248 (100\%)	628 (100\%)	184 (100\%)
Taiwan MJ	90 (18)	84 (17)	85 (18)	90 (20)	5214 (2\%)	3759 (3\%)	927 (5\%)	227 (9\%)	15940 (5\%)	2656 (2\%)	484 (3\%)	105 (4\%)
Takahata	98 (12)	96 (12)	96 (16)	96 (30)	191 (13\%)	120 (18\%)	28 (34\%)	3 (75\%)	5 (0\%)	2 (0\%)	0 (0\%)	0 (0\%)
TLGS	81 (15)	74 (14)	72 (14)	72 (14)	66 (2\%)	71 (2\%)	40 (3\%)	14 (4\%)	1019 (27\%)	1032 (25\%)	440 (24\%)	116 (24\%)
Tromso	95 (13)	92 (13)	91 (13)	90 (15)	142 (5\%)	195 (7\%)	64 (8\%)	26 (16\%)	561 (17\%)	360 (11\%)	112 (12\%)	29 (15\%)
ULSAM	99 (10)	97 (10)	96 (12)	104 (6)					659 (100\%)	496 (100\%)	48 (100\%)	7 (100\%)
Subtotal	89 (18)	85 (17)	85 (17)	87 (18)	41588 (6\%)	34388 (9\%)	17873 (16\%)	13772 (24\%)	1113893 (61\%)	$\begin{array}{\|l} \hline 1564974 \\ (80 \%) \\ \hline \end{array}$	$\begin{aligned} & \hline 943759 \\ & (89 \%) \end{aligned}$	$\begin{aligned} & 550501 \\ & (91 \%) \end{aligned}$
High CVD Risk Cohorts												
ADVANCE	79 (18)	78 (17)	76 (17)	77 (17)	940 (33\%)	1301 (30\%)	663 (29\%)	321 (31\%)	107 (4\%)	184 (4\%)	139 (6\%)	71 (6\%)
KP Hawaii	73 (23)	75 (23)	79 (23)	83 (25)	1660 (33\%)	2330 (34\%)	1890 (38\%)	2106 (44\%)	1893 (27\%)	2469 (26\%)	1654 (25\%)	1746 (27\%)
NZDCS	75 (24)	74 (22)	76 (22)	81 (23)	242 (6\%)	495 (6\%)	586 (9\%)	618 (11\%)	655 (14\%)	1189 (13\%)	852 (11\%)	673 (10\%)
Pima	121 (21)	116 (22)	119 (19)	123 (15)	110 (20\%)	271 (26\%)	214 (20\%)	245 (18\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
SMART	79 (19)	77 (18)	79 (19)	83 (20)	368 (31\%)	527 (33\%)	223 (36\%)	95 (40\%)	2482 (68\%)	3128 (66\%)	934 (60\%)	285 (54\%)
ZODIAC	66 (17)	69 (17)	67 (17)	70 (17)	27 (9\%)	62 (9\%)	27 (6\%)	18 (9\%)	11 (3\%)	21 (3\%)	12 (3\%)	4 (2\%)
Subtotal	77 (22)	77 (21)	79 (22)	85 (23)	3347 (24\%)	4986 (22\%)	3603 (23\%)	3403 (25\%)	5148 (27\%)	6991 (24\%)	3591 (18\%)	2779 (17\%)
CKD Cohorts												
AASK	45 (15)	46 (14)	46 (14)	46 (15)	112 (52\%)	184 (51\%)	143 (54\%)	153 (63\%)	0 (0\%)	4 (1\%)	0 (0\%)	1 (0\%)
BC CKD	32 (16)	33 (15)	34 (16)	36 (17)	1173 (69\%)	1383 (67\%)	772 (65\%)	511 (66\%)	482 (22\%)	719 (26\%)	426 (27\%)	286 (27\%)
CanPREDDICT	25 (10)	26 (10)	26 (10)	26 (10)	124 (66\%)	216 (72\%)	146 (75\%)	134 (73\%)	157 (46\%)	270 (47\%)	195 (50\%)	156 (46\%)

CARE FOR HOMe	47 (20)	48 (18)	48 (19)	50 (16)	37 (54\%)	75 (46\%)	84 (52\%)	39 (57\%)	0 (0\%)	0 (0\%)	1 (1\%)	0 (0\%)
CCF	47 (12)	48 (11)	48 (11)	47 (12)	2321 (74\%)	3679 (75\%)	2265 (72\%)	1670 (67\%)	5718 (65\%)	8437 (63\%)	4828 (61\%)	3331 (57\%)
CKD-JAC	37 (17)	38 (18)	39 (17)	45 (15)	172 (11\%)	59 (10\%)	16 (14\%)		134 (8\%)	72 (11\%)	15 (11\%)	2 (11\%)
CRIB	21 (11)	23 (11)	24 (11)	23 (11)	114 (87\%)	129 (82\%)	44 (83\%)	17 (85\%)	3 (2\%)	1 (1\%)	1 (2\%)	2 (9\%)
GCKD	53 (21)	49 (17)	48 (17)	48 (17)	646 (64\%)	1083 (59\%)	648 (53\%)	475 (53\%)	11 (1\%)	25 (1\%)	20 (2\%)	15 (2\%)
Gonryo	74 (33)	76 (30)	78 (34)	88 (36)	739 (83\%)	271 (82\%)	56 (84\%)	11 (92\%)	1346 (60\%)	600 (64\%)	86 (56\%)	20 (63\%)
MASTERPLAN	38 (15)	37 (15)	34 (14)	31 (12)	141 (74\%)	204 (69\%)	81 (74\%)	31 (76\%)	13 (6\%)	20 (6\%)	3 (3\%)	1 (2\%)
MDRD	39 (23)	41 (20)	42 (20)	43 (20)					614 (100\%)	711 (100\%)	329 (100\%)	117 (100\%)
MMKD	49 (33)	45 (26)	47 (24)	31 (19)	99 (93\%)	66 (92\%)	12 (86\%)	5 (100\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
Nefrona	30 (15)	32 (14)	33 (14)	31 (13)	140 (68\%)	261 (65\%)	185 (65\%)	92 (70\%)	151 (42\%)	326 (45\%)	181 (39\%)	70 (35\%)
NephroTest	48 (24)	43 (21)	40 (19)	43 (21)	485 (65\%)	468 (66\%)	222 (74\%)	85 (73\%)	7 (1\%)	11 (2\%)	3 (1\%)	0 (0\%)
PSP-CKD	50 (13)	51 (13)	52 (12)	53 (13)	1807 (66\%)	2702 (69\%)	1692 (70\%)	906 (67\%)	3008 (52\%)	3728 (49\%)	2058 (46\%)	1210 (47\%)
RENAAL	38 (13)	39 (13)	39 (12)	39 (12)	333 (100\%)	530 (100\%)	329 (100\%)	276 (100\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
SRR-CKD	23 (11)	24 (11)	24 (10)	25 (10)	605 (75\%)	746 (77\%)	384 (83\%)	187 (81\%)	0 (0\%)	0 (0\%)	0 (0\%)	0 (0\%)
Sunnybrook	52 (33)	49 (28)	53 (28)	57 (32)	414 (74\%)	477 (71\%)	265 (72\%)	158 (73\%)	347 (38\%)	401 (37\%)	205 (36\%)	95 (31\%)
Subtotal	47 (18)	46 (15)	46 (14)	46 (14)	8483 (58\%)	$\begin{aligned} & 11314 \\ & (62 \%) \\ & \hline \end{aligned}$	6650 (62\%)	4229 (60\%)	11991 (45\%)	15325 (46\%)	8351 (44\%)	5306 (43\%)
Total	89 (18)	84 (17)	84 (17)	86 (18)	53418 (7\%)	$\begin{aligned} & 50688 \\ & (\mathbf{1 2 \%}) \end{aligned}$	28126 (20\%)	21404 (27\%)	1131032 (60\%)	$\begin{array}{\|l\|} \hline 1587290 \\ (79 \%) \end{array}$	$\begin{array}{\|l\|} \hline 955701 \\ (87 \%) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 558586 \\ (88 \%) \end{array}$

eFigure 1. Relationships of BMI with Waist Circumference (A and B) and Waist-Height Ratio (C and D), in Women (A and C) and Men (B and D)

eFigure 2. Hazard Ratios at 35 vs. 25 kg/m² in Individual General Population Cohorts, by Median Baseline Year

This figure plots the adjusted hazard ratio for each general population cohort study on the y-axis and the baseline year of the study on the x-axis. The green line corresponds to the meta-regression line of the log hazard ratios against the median baseline year of each cohort. The size of each bubble is inversely proportional to the variance of the effect estimate within each study cohort.
eFigure 3. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A), ESKD as the Sole Outcome (B), Competing Risk of Death (C), and Adjusting for Potential Mediators (D) for BMI in General Population Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body-mass index, modeled using linear splines with knots at $20,25,30$, and $35 \mathrm{~kg} / \mathrm{m}^{2}$, with solid circles indicating points in which there are significant differences in risk from the reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$. Panel D is additionally adjustment for SBP, eGFR, diabetes, total cholesterol, and history of CVD beyond the demographic characteristics of age, sex, and race.
eFigure 4. BMI Interactions by Age (A), Black Race (B), Hypertension (C), and Albuminuria (D) with GFR decline in General Population Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body-mass index, modeled using linear splines with knots at 20 , 25,30 , and $35 \mathrm{~kg} / \mathrm{m}^{2}$, with a reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$ in each subgroup.
eFigure 5. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A), ESKD as the Sole Outcome (B), Competing Risk of Death (C), and Adjusting for Potential Mediators (D) for BMI in High CVD Risk Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body-mass index, modeled using linear splines with knots at $20,25,30$, and $35 \mathrm{~kg} / \mathrm{m}^{2}$, with solid circles indicating points in which there are significant differences in risk from the reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$. Panel D is additionally adjustment for SBP , eGFR, diabetes, total cholesterol, and history of CVD beyond the demographic characteristics of age, sex, and race.
eFigure 6. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A), ESKD as the Sole Outcome (B), Competing Risk of Death (C), and Adjusting for Potential Mediators (D) for BMI in CKD Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body-mass index, modeled using linear splines with knots at $20,25,30$, and $35 \mathrm{~kg} / \mathrm{m}^{2}$, with solid circles indicating points in which there are significant differences in risk from the reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$. Panel D is additionally adjustment for SBP, eGFR, diabetes, total cholesterol, and history of CVD beyond the demographic characteristics of age, sex, and race.
eFigure 7. Association of Waist Circumference (A and C) and Waist-Height Ratio (B and D) with GFR Decline in High CVD Risk (A and B) and CKD (C and D) Cohorts

Panels demonstrate the meta-analyzed hazard ratio and 95% confidence interval related to waist circumference or waist-height ratio, modeled using linear splines with knots at $82 \mathrm{~cm} / 68 \mathrm{~cm}, 92 \mathrm{~cm} / 78 \mathrm{~cm}, 102 \mathrm{~cm} / 88 \mathrm{~cm}, 112 \mathrm{~cm} / 108 \mathrm{~cm}$ in men and women, respectively, for waist circumference and $0.44,0.5,0.56,0.62$ for waist-height ratio, with solid circles indicating points in which there are significant differences in risk from the reference point at 92 cm in men $/ 78 \mathrm{~cm}$ in women for waist circumference and .5 for waist-height ratio.
eFigure 8. Association of Adiposity Measures with All-Cause Mortality in General Population Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body mass index, waist circumference, or waist-height ratio with solid circles indicating points in which there are significant differences in risk from the reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$ for body mass index, 92 cm in men $/ 78 \mathrm{~cm}$ in women for waist circumference, and .5 for waist-height ratio.
eFigure 9. Interaction of eGFR on BMI and Association with All-Cause Mortality in General Population Cohorts

Panel demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body-mass index, modeled using linear splines with knots at $20,25,30$, and $35 \mathrm{~kg} / \mathrm{m}^{2}$, with a reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$ in each subgroup.
eFigure 10. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A) and Adjusting for Potential Mediators (B) for BMI and All-Cause Mortality in General Population Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body-mass index, modeled using linear splines with knots at $20,25,30$, and $35 \mathrm{~kg} / \mathrm{m}^{2}$, with solid circles indicating points in which there are significant differences in risk from the reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$. Panel B is additionally adjustment for SBP, eGFR, diabetes, total cholesterol, and history of CVD beyond the demographic characteristics of age, sex, and race
eFigure 11. Association of Adiposity Measures with All-Cause Mortality in High Cardiovascular Risk Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body mass index, waist circumference, or waist-height ratio with solid circles indicating points in which there are significant differences in risk from the reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$ for body mass index, 92 cm in men $/ 78 \mathrm{~cm}$ in women for waist circumference, and .5 for waist-height ratio.
eFigure 12. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A) and Adjusting for Potential Mediators (B) for BMI and All-Cause Mortality in High Cardiovascular Risk Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body-mass index, modeled using linear splines with knots at $20,25,30$, and $35 \mathrm{~kg} / \mathrm{m}^{2}$, with solid circles indicating points in which there are significant differences in risk from the reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$. Panel B is additionally adjustment for SBP, eGFR, diabetes, total cholesterol, and history of CVD beyond the demographic characteristics of age, sex, and race.
eFigure 13. Association of Adiposity Measures with All-Cause Mortality in CKD Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body mass index, waist circumference, or waist-height ratio with solid circles indicating points in which there are significant differences in risk from the reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$ for body mass index, 92 cm in men/78 cm in women for waist circumference, and .5 for waist-height ratio.
eFigure 14. Sensitivity Analyses Excluding the First 3 Years of Follow-up (A) and Adjusting for Potential Mediators (B) for BMI and All-Cause Mortality in CKD Cohorts

Panels demonstrates the meta-analyzed hazard ratio and 95% confidence interval related to body-mass index, modeled using linear splines with knots at $20,25,30$, and $35 \mathrm{~kg} / \mathrm{m}^{2}$, with solid circles indicating points in which there are significant differences in risk from the reference point at $25 \mathrm{~kg} / \mathrm{m}^{2}$. Panel B is additionally adjustment for SBP, eGFR, diabetes, total cholesterol, and history of CVD beyond the demographic characteristics of age, sex, and race.

References

1. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375(9731):2073-81.
2. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012;307(18):1941-51.
3. Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al. Age and Association of Kidney Measures With Mortality and End-stage Renal Disease. JAMA 2012;308(22):2349-60.
4. Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, et al. Expressing the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate with Standardized Serum Creatinine Values. Clin Chem 2007;53(4):766-72.
5. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150(9):604-12.
6. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International Supplements 2013;3(1):1-150.
7. Wright JT, Jr., Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA 2002;288(19):2421-31.
8. Patel A, MacMahon S, Chalmers J, Neal B, Woodward M, Billot L, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 2007;370(9590):829-40.
9. Mitsuhashi H, Yatsuya H, Matsushita K, Zhang H, Otsuka R, Muramatsu T, et al. Uric acid and left ventricular hypertrophy in Japanese men. Circ J 2009;73(4):667-72.
10. Matsushita K, Selvin E, Bash LD, Franceschini N, Astor BC, Coresh J. Change in estimated GFR associates with coronary heart disease and mortality. J Am Soc Nephrol 2009;20(12):2617-24.
11. White SL, Polkinghorne KR, Atkins RC, Chadban SJ. Comparison of the Prevalence and Mortality Risk of CKD in Australia Using the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) Study GFR Estimating Equations: The AusDiab (Australian Diabetes, Obesity and Lifestyle) Study. Am J Kidney Dis 2010;55((4)):660-70.
12. Levin A, Djurdjev O, Beaulieu M, Er L. Variability and risk factors for kidney disease progression and death following attainment of stage 4 CKD in a referred cohort. Am J Kidney Dis 2008;52(4):66171.
13. Shankar A, Klein R, Klein BE. The association among smoking, heavy drinking, and chronic kidney disease. Am J Epidemiol 2006;164(3):263-71.
14. Zhang L, Zuo L, Xu G, Wang F, Wang M, Wang S, et al. Community-based screening for chronic kidney disease among populations older than 40 years in Beijing. Nephrol Dial Transplant 2007;22(4):1093-99.
15. Levin A, Rigatto C, Brendan B, Madore F, Muirhead N, Holmes D, et al. Cohort profile: Canadian study of prediction of death, dialysis and interim cardiovascular events (CanPREDDICT). BMC Nephrol 2013;14:121.
16. Schold JD, Navaneethan SD, Jolly SE, Poggio ED, Arrigain S, Saupe W, et al. Implications of the CKDEPI GFR estimation equation in clinical practice. Clin J Am Soc Nephrol 2011;6(3):497-504.
17. Shlipak MG, Katz R, Kestenbaum B, Fried LF, Newman AB, Siscovick DS, et al. Rate of kidney function decline in older adults: a comparison using creatinine and cystatin C. Am J Nephrol 2009;30(3):171-8.
18. Shimizu Y, Maeda K, Imano H, Ohira T, Kitamura A, Kiyama M, et al. Chronic kidney disease and drinking status in relation to risks of stroke and its subtypes: the Circulatory Risk in Communities Study (CIRCS). Stroke 2011;42(9):2531-7.
19. Jafar TH, Qadri Z, Hashmi S. Prevalence of microalbuminuria and associated electrocardiographic abnormalities in an Indo-Asian population. Nephrol Dial Transplant 2009;24(7):2111-16.
20. Landray MJ, Thambyrajah J, McGlynn FJ, Jones HJ, Baigent C, Kendall MJ, et al. Epidemiological evaluation of known and suspected cardiovascular risk factors in chronic renal impairment. Am J Kidney Dis 2001;38(3):537-46.
21. Zhang QL, Koenig W, Raum E, Stegmaier C, Brenner H, Rothenbacher D. Epidemiology of chronic kidney disease: results from a population of older adults in Germany. Prev Med 2009;48(2):1227.
22. Parikh NI, Hwang S-J, Larson MG, Levy D, Fox CS. Chronic Kidney Disease as a Predictor of Cardiovascular Disease (from the Framingham Heart Study). Am J Cardiol 2008;102(1):47-53.
23. Titze S, Schmid M, Kottgen A, Busch M, Floege J, Wanner C, et al. Disease burden and risk profile in referred patients with moderate chronic kidney disease: composition of the German Chronic Kidney Disease (GCKD) cohort. Nephrol Dial Transplant 2015;30(3):441-51.
24. Perkins RM, Bucaloiu ID, Kirchner HL, Ashouian N, Hartle JE, Yahya T. GFR decline and mortality risk among patients with chronic kidney disease. Clin J Am Soc Nephrol 2011;6(8):1879-86.
25. Cirillo M, Lanti MP, Menotti A, Laurenzi M, Mancini M, Zanchetti A, et al. Definition of kidney dysfunction as a cardiovascular risk factor: use of urinary albumin excretion and estimated glomerular filtration rate. Arch Intern Med 2008;168(6):617-24.
26. Hallan SI, Coresh J, Astor BC, Asberg A, Powe NR, Romundstad S, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol 2006;17(8):2275-84.
27. Noda H, Iso H, Irie F, Sairenchi T, Ohtaka E, Doi M, et al. Low-density lipoprotein cholesterol concentrations and death due to intraparenchymal hemorrhage: the Ibaraki Prefectural Health Study. Circulation 2009;119(16):2136-45.
28. Lee BJ, Forbes K. The role of specialists in managing the health of populations with chronic illness: the example of chronic kidney disease. BMJ 2009;339:b2395.
29. Shalev V, Chodick G, Goren I, Silber H, Kokia E, Heymann AD. The use of an automated patient registry to manage and monitor cardiovascular conditions and related outcomes in a large health organization. Int J Cardiol 2011;152(3):345-9.
30. van Zuilen AD, Bots ML, Dulger A, van der Tweel I, van Buren M, Ten Dam MA, et al. Multifactorial intervention with nurse practitioners does not change cardiovascular outcomes in patients with chronic kidney disease. Kidney Int 2012;82:710-17.
31. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med 1994;330(13):877-84.
32. Bui AL, Katz R, Kestenbaum B, de Boer IH, Fried LF, Polak JF, et al. Cystatin C and carotid intimamedia thickness in asymptomatic adults: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Kidney Dis 2009;53(3):389-98.
33. Kronenberg F, Kuen E, Ritz E, Junker R, Konig P, Kraatz G, et al. Lipoprotein(a) serum concentrations and apolipoprotein(a) phenotypes in mild and moderate renal failure. J Am Soc Nephrol 2000;11(1):105-15.
34. Roderick PJ, Atkins RJ, Smeeth L, Mylne A, Nitsch DD, Hubbard RB, et al. CKD and mortality risk in older people: a community-based population study in the United Kingdom. Am J Kidney Dis 2009;53(6):950-60.
35. Tayo BO, Teil M, Tong L, Qin H, Khitrov G, Zhang W, et al. Genetic background of patients from a university medical center in Manhattan: implications for personalized medicine. PLoS ONE 2011;6(5):e19166.
36. Junyent M, Martinez M, Borras M, Bertriu A, Coll B, Craver L, et al. [Usefulness of imaging techniques and novel biomarkers in the prediction of cardiovascular risk in patients with chronic kidney disease in Spain: the NEFRONA project]. Nefrologia 2010;30(1):119-26.
37. Moranne O, Froissart M, Rossert J, Gauci C, Boffa JJ, Haymann JP, et al. Timing of onset of CKDrelated metabolic complications. J Am Soc Nephrol 2009;20(1):164-71.
38. National Health and Nutrition Examination Survey. January 19. https://wwwn.cdc.gov/nchs/nhanes/Default.aspx.
39. Elley CR, Kenealy T, Robinson E, Drury PL. Glycated haemoglobin and cardiovascular outcomes in people with Type 2 diabetes: a large prospective cohort study. Diabet Med 2008;25(11):1295301.
40. Nakayama M, Metoki H, Terawaki H, Ohkubo T, Kikuya M, Sato T, et al. Kidney dysfunction as a risk factor for first symptomatic stroke events in a general Japanese population--the Ohasama study. Nephrol Dial Transplant 2007;22(7):1910-5.
41. Iseki K, Ikemiya Y, Iseki C, Takishita S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int 2003;63(4):1468-74.
42. Iseki K, Kohagura K, Sakima A, Iseki C, Kinjo K, Ikemiya Y, et al. Changes in the demographics and prevalence of chronic kidney disease in Okinawa, Japan (1993 to 2003). Hypertens Res 2007;30(1):55-62.
43. Pavkov ME, Knowler WC, Hanson RL, Bennett PH, Nelson RG. Predictive power of sequential measures of albuminuria for progression to ESRD or death in Pima Indians with type 2 diabetes. Am J Kidney Dis 2008;51(5):759-66.
44. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002;106(14):1777-82.
45. Jassal SK, Kritz-Silverstein D, Barrett-Connor E. A Prospective Study of Albuminuria and Cognitive Function in Older Adults: The Rancho Bernardo Study. Am J Epidemiol 2010;171(3):277-86.
46. Kovesdy CP, Norris KC, Boulware LE, Lu JL, Ma JZ, Streja E, et al. Association of Race With Mortality and Cardiovascular Events in a Large Cohort of US Veterans. Circulation 2015;132(16):1538-48.
47. Howard VJ, Cushman M, Pulley L, Gomez CR, Go RC, Prineas RJ, et al. The reasons for geographic and racial differences in stroke study: objectives and design. Neuroepidemiology 2005;25(3):135-43.
48. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345(12):861-9.
49. Ikram MA, Brusselle GGO, Murad SD, van Duijn CM, Franco OH, Goedegebure A, et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol 2017;32(9):807-50.
50. Sabanayagam C, Teo BW, Tai ES, Jafar TH, Wong TY. Ethnic differences in the association between blood pressure components and chronic kidney disease in middle aged and older Asian adults. BMC Nephrol 2013;14:86.
51. Lundstrom UH, Gasparini A, Bellocco R, Qureshi AR, Carrero JJ, Evans M. Low renal replacement therapy incidence among slowly progressing elderly chronic kidney disease patients referred to nephrology care: an observational study. BMC Nephrol 2017;18(1):59.
52. Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011;305(15):1553-9.
53. Wen CP, Cheng TY, Tsai MK, Chang YC, Chan HT, Tsai SP, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462293 adults in Taiwan. Lancet 2008;371(9631):2173-82.
54. Konta T, Hao Z, Abiko H, Ishikawa M, Takahashi T, Ikeda A, et al. Prevalence and risk factor analysis of microalbuminuria in Japanese general population: the Takahata study. Kidney Int 2006;70(4):751-6.
55. Hosseinpanah F, Barzin M, Golkashani HA, Nassiri AA, Sheikholeslami F, Azizi F. Association between moderate renal insufficiency and cardiovascular events in a general population: Tehran lipid and glucose study. BMC Nephrol 2012;13:59.
56. Nerpin E, Ingelsson E, Riserus U, Sundstrom J, Larsson A, Jobs E, et al. The combined contribution of albuminuria and glomerular filtration rate to the prediction of cardiovascular mortality in elderly men. Nephrol Dial Transplant 2011;26(9):2820-7.
57. Bilo HJ, Logtenberg SJ, Joosten H, Groenier KH, Ubink-Veltmaat LJ, Kleefstra N. Modification of diet in renal disease and Cockcroft-Gault formulas do not predict mortality (ZODIAC-6). Diabet Med 2009;26(5):478-82.
