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SUMMARY

After primary growth, most dicotyledonous plants undergo secondary growth. Secondary growth involves an

increase in the diameter of shoots and roots through formation of secondary vascular tissue. A hallmark of

secondary growth initiation in shoots of dicotyledonous plants is the initiation of meristematic activity

between primary vascular bundles, i.e. in the interfascicular regions. This results in establishment of a

cylindrical meristem, namely the vascular cambium. Surprisingly, despite its major implications for plant

growth and the accumulation of biomass, the molecular regulation of secondary growth is only poorly

understood. Here, we combine histological, molecular and genetic approaches to characterize interfascicular

cambium initiation in the Arabidopsis thaliana inflorescence shoot. Using genome-wide transcriptional

profiling, we show that stress-related and touch-inducible genes are up-regulated in stem regions where

secondary growth takes place. Furthermore, we show that the products of COI1, MYC2, JAZ7 and the touch-

inducible gene JAZ10, which are components of the JA signalling pathway, are cambium regulators. The

positive effect of JA application on cambium activity confirmed a stimulatory role of JA in secondary growth,

and suggests that JA signalling triggers cell divisions in this particular context.

Keywords: secondary growth, cambium, JAZ10/TIFY9/JAS1, jasmonate, mechanostimulation, lateral

meristem.

INTRODUCTION

Secondary or lateral growth is mediated by the activity of the

vascular cambium. The cambium is an internal meristematic

tissue that functions as a stem cell niche and is organized

in a tube-like domain encompassing the growth axes.

Compared with our understanding of the molecular control

of apical meristem function and despite its essential role in

many aspects of plant growth, the accumulation of biomass

and wood formation, knowledge on molecular regulation

of the vascular cambium is limited. This lack of knowledge

is partly due to the fact that the tissue is not accessible

by genetic approaches in most species, and that its

dynamics have not been well characterized in models such

as Arabidopsis. Although there is ample evidence for sec-

ondary growth in the Arabidopsis shoot, hypocotyl and root

(Dolan et al., 1993; Lev-Yadun, 1994; Busse and Evert, 1999;

Altamura et al., 2001; Chaffey et al., 2002; Little et al., 2002;

Ye et al., 2002; Ko et al., 2004; Melzer et al., 2008; Sibout

et al., 2008), the degree and dynamics of secondary growth

have yet to be explored in detail. Such research is funda-

mental if Arabidopsis is to be established as a model for

analysing the process of secondary growth at the molecular

level and if participating signalling pathways are to be

characterized.

In dicotyledonous plants, including Arabidopsis, initiation

of cambial activity in shoots starts in a predetermined region

of the vascular bundles, the fascicular cambium (FC,

Figure 1). From there, it extends to interfascicular regions,

where differentiated cells regain the ability to divide. In this

way, the interfascicular cambium (IC) is established. This

connects the FC of adjacent vascular bundles, creating a

tube-like domain of meristematic activity. Histological anal-
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yses suggest that, in Arabidopsis, the IC is only established at

the base of the stem and at nodal regions, and that

most elongated internodes lack such a tube-like domain of

meristematic activity (Little et al., 2002). Various origins of

the IC in various parts of the elongated stem have been

reported. In nodes, interfascicular parenchyma cells appear

to serve as cambium precursors, whereas the starch sheath,

which is the innermost layer of the cortex (Figure 1), serves as

the origin of the IC at the stem base (Altamura et al., 2001;

Ye et al., 2002). The genes COV1 and HCA2 were isolated

based on their role in IC regulation (Parker et al., 2003; Guo

et al., 2009). COV1 encodes a putative membrane protein

with unknown function, and HCA2 encodes a Dof transcrip-

tion factor. COV1 and HCA2 are negative and positive

regulators of IC formation, respectively; however, their

up- and downstream factors are still unknown (Parker et al.,

2003; Guo et al., 2009). A further mutant, hca, which is not

allelic to HCA2 and COV1, displays enhanced IC formation,

but its molecular identity is not known (Pineau et al., 2005).

Whether the initiation of cell divisions next to the FC

depends solely on signalling molecules or also on the

generation of tissue tension has been a matter of debate

(Steeve and Sussex, 1989). On the one hand, a large number

of papers have discussed hormonal control of the shoot

cambium in various species (reviewed by Elo et al., 2009),

and polar transport of auxin, in particular, has been identi-

fied as an essential stimulus for (pro)cambium initiation and

activity (Snow, 1935; Little et al., 2002; Scarpella et al., 2006;

Wenzel et al., 2007; Nilsson et al., 2008; Donner et al., 2009).

In addition, cytokinins play an essential role in cambium

formation and activity (Matsumoto-Kitano et al., 2008;

Nieminen et al., 2008; Hejatko et al., 2009), and gibberellins

and ethylene have modulating activities (Björklund et al.,

2007; Love et al., 2009). On the other hand, mechanical

stimuli and constraints have a tremendous impact on

developmental processes, one of which is secondary growth

(Ko et al., 2004; Hamant et al., 2008; Chehab et al., 2009).

Here, we characterize the dynamics of cambium initiation

and activity in interfascicular regions in the elongating

Arabidopsis shoot as an essential step during establishment

of secondary growth in plants. Based on histological anal-

yses and genome-wide transcriptional profiling, we hypoth-

esize that intra-tissue tensions are involved in the regulation

of these processes. By identifying the products of the genes

JAZ10, JAZ7, MYC2 and COI1 and jasmonic acid (JA) itself as

regulators of IC initiation and activity, we have identified a

connection between JA signalling and secondary growth

regulation. Based on these findings, we discuss a putative

signalling cascade connecting mechanostimulation and

meristem activation.

RESULTS

IC formation in Arabidopsis progresses acropetally

Systematic analysis of the dynamics of secondary growth

in the Arabidopsis inflorescence shoot is a prerequisite

for identifying and characterizing participating signalling

pathways. We undertook such an analysis by exploring

the establishment of cambium activity in interfascicular

regions because this is a prominent and easy to follow

marker for secondary growth initiation. By performing

histological analyses, we observed that, along the main

inflorescence stem apically from the rosette, IC activity is

initiated exclusively at the stem base and at the base of

side shoots emerging from the axils of cauline leaves. In

the latter case, IC formation barely extends into the main

shoot (Figure S1). We therefore concentrated our investi-

gations on the base of the main inflorescence stem,

immediately above the uppermost rosette leaf, which, for

simplicity, is denoted as the stem base throughout this

paper. Stems 2, 5, 15 and 30 cm in height were subjected to

histological analysis, and the cellular patterning in inter-

fascicular regions was examined.

A defined and continuous zone, displaying periclinal cell

divisions and connecting the FC of adjacent vascular bun-

dles, was present in interfascicular regions at the very base

of 2 cm stems (Figure 2a). Based on these characteristic cell

divisions, the formation of radial cell files and the production

of secondary vascular tissue (see below), we classified the

cell division zone as the IC, and the IC together with tissues

Epidermis

Cortex

Cortex/starch sheath

Phloem cap

Phloem

Xylem

Interfascicular fibers (IFs)

Fascicular cambium (FC)

Pith parenchyma

Figure 1. Tissue composition within the primary stem.

No IC has been established in the interfascicular region. However, the FC in

vascular bundles has started to produce secondary vascular tissue, which is

visible as radial cell files in the xylem area proximal to the cambium (most

prominent in the left-hand bundle). All other tissues are of primary origin.

Scale bar = 100 lm.
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derived from it as IC-derived tissue (ICD). At the stage when

the stems were 2 cm tall, the ICD consisted of 3 or 4 cells in

radial orientation, located 3–5 cells proximal to the cortex

(Figures 2a and S2). Cells between the ICD and the cortex

were classified as pith parenchyma cells based on their

shape and because they were not organized in radial files

(Figures 2a and S2). At this stage, periclinal cell divisions in

interfascicular regions were identified up to approximately

2.4 mm above the uppermost rosette leaf (Figure 3). In

comparison to the very base of the stem, the ICD was closer

to the cortex in more apical positions and was directly

juxtaposed to it from a position of approximately 0.6 mm

above the rosette (Figures 2b,c and S2). At the very base of

5 cm stems, the ICD had extended laterally to 7 or 8 cells
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Figure 2. Histological analysis of the basal stem segment at various developmental stages.

(a–c) 2 cm stems sectioned immediately above the rosette (a), and 1 mm (b) and 2 mm (c) above the rosette.

(d–f) 5 cm plants analysed immediately above the rosette (d), and at 1.8 mm (e) and 3.7 mm (f) above the rosette. Phloem initiation is indicated by arrows (d).

(g–i) Sections of 15 cm stems from immediately above the rosette (g), and from 2 mm (h) and 5.2 mm (i) above the rosette. Phloem initiation is indicated by

arrows (g).

(j–l) Sections of 30 cm stems taken from immediately above the rosette (j), and from 2.7 mm (k) and 7.1 mm (l) above the rosette.

IFs, interfascicular fibres; ICD, interfascicular cambium-derived tissue (including IC); DPP, distal pith parenchyma. Asterisks indicate primary vascular bundles. Scale

bar = 100 lm; same magnification throughout.
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(Figure 2d). At this stage, we observed clusters of cells,

originating from cell divisions without a common orienta-

tion, distally to the IC. These were classified as differentiat-

ing phloem tissue, as they expressed the phloem-specific

APL:GUS marker (Bonke et al., 2003) (Figures 2d and S3a,b,

arrows). IC initiation had progressed acropetally to 3.5 mm

above the rosette, and, similarly to the 2 cm stems, was

observed closer to the cortex in more apical parts of the

IC-initiating segment (Figures 2e,f, 3 and S2). In 15 cm

stems, IC initiation extended up to 5.1 mm above the

rosette, and islands of phloem tissue could be clearly

identified at the stem base (Figure 2g, arrows). At this stage,

the presence of prominent secondary cell walls proximal

to the ICD along the whole stem segment indicated the

differentiation of pith parenchyma cells into interfascicular

fibres (IFs) (Figures 2g–i and S2). Another change in com-

parison to 5 cm stems was that cell divisions in interfasci-

cular regions were not only observed in pith cells but also in

the starch sheath at the upper margin of the IC-initiating

stem segment (Figures 2i and S2). In 30 cm stems, the

extension of the stem segment with interfascicular cell

divisions had progressed acropetally to 7.1 mm (Figures 2j,k

and 3). At this stage, cell divisions in the starch sheath

were found in a region from approximately 4.5–7.1 mm

(Figure 2l).

Taken together, our analysis shows that there is an

acropetal progression of IC initiation, and that secondary

vascular tissue is produced in interfascicular regions of the

Arabidopsis shoot. However, in contrast to shoot elonga-

tion, which progresses in an almost linear fashion from 2 to

30 cm (Figure S3c), the acropetal progression of IC forma-

tion decelerates (Figures 3 and 5a), showing that there is no

linear correlation between shoot elongation and IC forma-

tion in Arabidopsis. During acropetal progression, the

position of IC initiation is gradually shifted towards the

cortex, and, in later growth stages, takes place in the cortex

itself in the upper region of the IC-initiating stem segment.

Transcriptional profiling links genes involved in mechanical

stress signalling with secondary growth

We sought to elucidate the signalling pathways involved in

IC initiation by identifying genes that were differentially

expressed comparing primary and secondary stem seg-

ments. Analyses of gene expression profiles in various parts

of the elongated Arabidopsis shoot and at various devel-

opmental stages have been performed previously (Oh et al.,

2003; Ko and Han, 2004; Ko et al., 2004; Ehlting et al., 2005).

However, a specific comparison of stem segments with and

without secondary growth, defined on the basis of a detailed

histological analysis, has not yet been reported. We thus

performed genome-wide transcriptional profiling compar-

ing the lowermost 0.5 cm of the stem with a 0.5 cm segment

1.5 cm above the uppermost rosette leaf. Both samples were

taken from the first internode of 15 cm plants (Figure S3d).

In three biological replicates, 74 genes were identified as

preferentially expressed in the ‘internode’ sample and 92

genes as preferentially expressed in the ‘base’ sample (fold

change ‡ 1.8, P £ 0.1; Tables S1 and S2). To confirm the

reliability of these results, we checked the expression of

15 of the identified genes using RT-PCR, and were able

to confirm the relative expression levels in all cases

(Figure S4).

A significant proportion of the 92 genes preferentially

expressed in the stem segment undergoing secondary

growth overlap with gene sets identified in previous studies

as either being up-regulated in mature versus immature

stems (Ko and Han, 2004) or after induction of secondary

growth by repeated removal of inflorescences (Oh et al.,

2003) or by weight adherence (Ko et al., 2004, Table S2). This

shows that our analysis is robust, and suggests that

expression of a large number of previously identified genes

differs not only temporally but also spatially along the stem.

Previous studies have suggested an influence of mechan-

ical stress on secondary growth-related gene expression in

Arabidopsis shoots (Ko et al., 2004). It is therefore tempting

to speculate that up-regulation of genes at the stem base

partially reflects the mechanical stress that cells experience

due to tissue expansion, increasing shoot weight or wind-

induced shoot movement (Hejnowicz, 1980; Ko et al., 2004).

This is supported by the identification of genes such as

TOUCH2, which is inducible by mechanical stimuli (Braam

and Davis, 1990; Ko et al., 2004), or EXPANSIN L1, which is

associated with relaxation of mechanical stresses in cell

walls (Table S2) (Sampedro and Cosgrove, 2005). Interest-

ingly, 32% of genes preferentially expressed at the stem

base are classified as being stress-related according to gene

ontology analyses (http://www.arabidopsis.org/tools/bulk/

go/index.jsp) (Figure 4a). To assess the possibility that

mechanical stimuli influence gene expression at the base

of the stem, we compared our group of genes identified as

preferentially expressed in the base of the stem with the
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Figure 3. Quantitative analysis of the longitudinal and lateral extension of the

IC and the ICD tissue at various developmental stages.
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group of touch-inducible genes identified previously (Lee

et al., 2005), and found that 20% of the genes identified as

preferentially expressed at the stem base are also classified

as being touch-inducible (Table S2), but none of them

belong to the group of touch-repressible genes.

JA signalling positively influences secondary growth

Some of the genes with the greatest difference in expression

between the two stem samples analysed encode JA signal-

ling components, and more than 8% of the identified genes

are related to JA signalling or response (Figure 4b and

Table S2). In view of this over-representation, which sug-

gested a role for JA signalling components in secondary

growth regulation, we analysed JAZ10/JAS1/TIFY9

(At5g13220) and JAZ7/TIFY5B (At2g34600), the two most

differentially expressed JA signalling components in our list

of genes preferentially expressed in the stem base (Fig-

ure 4b and Table S2).

Elucidation of the molecular mechanism of action of

JASMONATE ZIM-DOMAIN (JAZ) genes as repressors of JA

signalling is a recent breakthrough in deciphering the JA

signalling pathway (Chini et al., 2007; Thines et al., 2007;

Yan et al., 2007). JAZ proteins bind directly to the key

transcription factor MYC2, and thereby prevent JA-depen-

dent gene transcription (Chini et al., 2007; Pauwels et al.,

2010). After jasmonate-isoleucine (JA-Ile) binds to COI1, the

JA-Ile receptor that functions as the F-box component of the

SCFCOI1 complex, JAZ proteins undergo proteolytic degra-

dation, allowing expression of MYC2-regulated genes (Chini

et al., 2007; Thines et al., 2007; Chung and Howe, 2009; Yan

et al., 2009). In addition, eight of the 12 JAZ genes, including

JAZ10 and JAZ7, have been shown to be specifically

JA-inducible (Chini et al., 2007; Thines et al., 2007; Yan

et al., 2007). The repression of JA signalling by JAZ proteins

on the one hand and the JA inducibility of JAZ gene

transcription on the other hand ensures the establishment of

fine-tuned JA signalling in the presence of particular stimuli

(Chung et al., 2009). In particular, JAZ10 has previously been

implicated in growth responses related to JA signalling (Yan

et al., 2007).

We identified two lines carrying T-DNA insertions in

JAZ10, and classified jaz10-1 (SAIL_92_D08) as a strong

allele and jaz10-2 (GK-421G12) as a weak allele based on

RT-PCR analyses (Figure S5). For JAZ7, a T-DNA insertion

line was identified (jaz7-1, WiscDsLox7H11) in which the

open reading frame was disrupted, suggesting that gene

function is severely impaired (Figure S5). We did not

observe a phenotypic alteration in the overall growth

dynamics or organ shape in any of the mutants in compar-

ison to wild-type. In contrast, analysis of IC dynamics

showed that acropetal progression is enhanced in jaz10-1,

jaz10-2 and jaz7-1, with a pronounced enhancement in jaz10-

1. Although no difference in the longitudinal IC extension

was found in 2 cm stems, a significant increase in the

longitudinal IC extension in 5 and 15 cm stems was

observed in jaz10-1, and all three mutants showed a

significant increase in the longitudinal IC extension in

30 cm stems (Figure 5a). No alteration was observed for

other parameters in jaz-7-1 and the hypomorphic jaz10-2

mutant (Figure 5b,c). However, lateral ICD extension was

significantly enhanced by 50% in 15 and 30 cm stems in

jaz10-1 (Figure 5b–d), and this was also the case for the total

stem diameter (Figure 5e). To assess the possible role for

the JA signalling pathway in cambium regulation, we

analysed longitudinal extension of IC formation in coi1-1

(Xie et al., 1998) and myc2-3 (SALK_061267, Figure S5), two

mutants that are defective for JA signalling activators, and

Response to stress
Response to abiotic or biotic stimulus
Other cellular processes
Other metabolic processes
Other biological processes
Unknown biological processes
Transport
Transcription
Developmental processes
Signal transduction
Protein metabolism
Cell organisation and biogenesis
Electron transport or energy pathways

31.5
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29.3
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7.6
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1.1

%
(a)

(b)
FC Gene ID Gene description t-i
3.3269 At5g44420 Ethylene and jasmonate-responsive plant defensin PDF1.2
3.1392 At5g13220 JASMONATE-ZIM-DOMAIN PROTEIN 10 (JAZ10), TIFY9, JAS1
2.9873 At2g34600 JASMONATE-ZIM-DOMAIN PROTEIN 7 (JAZ7), TIFY5B
2.8534 At3g04720 PR4 (PATHOGENESIS-RELATED 4)
2.6655 At5g48485 DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1); lipid binding
2.5764 At1g75830 LCR67, PLANT DEFENSIN 1.2 
2.5036 At3g44260 CCR4-NOT transcription complex protein, putative
2.4006 At1g77120 ADH1 (ALCOHOL DEHYDROGENASE 1)
2.2886 At1g70830 MLP28 (MLP-LIKE PROTEIN 28)
2.2510 At1g62480 Vacuolar calcium-binding protein-related
2.2353 At1g76650 Calcium-binding EF hand family protein
2.2257 At4g25470 CBF2
2.1831 At2g06050 OPR3 (OPDA-REDUCTASE 3)
2.1792 At1g70850 MLP34 (MLP-LIKE PROTEIN 34)
2.1763 At4g22212 Encodes a defensin-like (DEFL) family protein
2.1557 At1g30135 JASMONATE-ZIM-DOMAIN PROTEIN 8 (JAZ8), TIFY5a
2.1338 At2g26020 PDF1.2b (plant defensin 1.2b)
2.0327 At1g52040 MBP1 (MYROSINASE-BINDING PROTEIN 1)
2.0124 At3g25780 AOC3 (ALLENE OXIDE CYCLASE 3)
2.0104 At1g05710 Ethylene-responsive protein, putative
1.9887 At1g43160 ERF/AP2 transcription factor
1.9134 At1g15010 Unknown protein
1.9097 At5g13930 CHS (CHALCONE SYNTHASE)
1.8883 At3g03270 Universal stress protein (USP) family protein
1.8850 At4g34410 ERF/AP2 transcription factor
1.8640 At5g37770 TCH2 (TOUCH 2); calcium ion binding
1.8355 At3g61190 BAP1 (BON ASSOCIATION PROTEIN 1)
1.8195 At3g47340 ASN1 (DARK INDUCIBLE 6)
1.8107 At5g61600 ERF104, ERF/AP2 transcription factor

Figure 4. Stress-related genes are over-represented in the group of genes

preferentially expressed at the stem base.

(a) Biological function of genes identified as preferentially expressed at the

stem base. Percentages add up to more than 100 because genes may belong

to more than one functional category.

(b) Stress-related genes preferentially expressed at the stem base. Ticks

indicate whether genes were classified as touch-inducible according to Lee

et al. (2005).
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found a decrease of 25% in comparison to wild-type in both

cases (Figure 5f).

Our observations show that the JA signalling repressors

JAZ10 and JAZ7 function as repressors of secondary

growth. Thus, their dynamics are comparable to those of

AUX/IAA genes, which function as repressors of auxin

signalling but are strongly induced transcriptionally by

auxin itself presumably to avoid hyper-responses (Nakam-

ura et al., 2003; Wang et al., 2005). Furthermore, we identi-

fied COI1 and MYC2, two positive mediators of JA signalling,

as promoting secondary growth. Hence, our observations

are consistent with a positive role of JA signalling in

cambium initiation and activity. To demonstrate that JA is

directly involved in secondary growth regulation, we com-

pared JA- and mock-treated plants with respect to the

lateral ICD extension, and observed a mean 25% increase

upon JA treatment (Figure 6). No effect on the dynamics of

IC initiation was observed (Figure S6), which might be due

to the method of JA application, which preferentially targets

roots and more basal parts of plants (see Experimental

Procedures). Intriguingly, we also noted JA-dependent cell

wall thickening in fibre and xylem tissues, and the formation

of phloem fibres, which were not present in mock-treated

plants (Figure 6), suggesting that general stem stability is

positively influenced by JA application. Thus, our analyses

demonstrate a positive role of the JA signalling pathway in

the regulation of cambium initiation and activity and in stem

stability.

To visualize JA signalling in the stem, we generated lines

carrying a JAZ10:GUS reporter construct. Whole-plant anal-

yses of reporter gene activity showed that the chosen

promoter is active in siliques and flowers and in a variable

pattern in leaves. In addition, we observed GUS activity

along the stele and in the tip of the root (Figure 7a). No

reporter activity was observed in stems except at the base in

a region up to 2–4 mm above the rosette (Figure 7b–e). This

activity was weaker in older plants, and could not be

detected in the stem base of 30 cm plants (Figure 7e). An

analysis of cross-sections from the stem base of 2 and 5 cm

plants showed that the reporter gene activity was predom-

inantly associated with the xylem and interfascicular

regions, including the IFs. No GUS signal was detected in

the cambium itself or in the cortex (Figure 7f).

To investigate to what extent JAZ10 expression is induc-

ible locally, stems were touched over an area of approx-

imately 1 mm using forceps for a period of 1 min, ensuring

that the tissue was not visibly damaged, and harvested after

4 h. This treatment led to induction of reporter gene activity

close to the stimulated area, indicating that JAZ10 can be

induced locally by touching (Figure 7g,h). Two treatment

intensities, one that did not affect the cuticle (Figure 7g) and

one that damaged the cuticle (Figure 7h), led to weaker and

stronger GUS activation, respectively, suggesting that the

strength of mechanostimulation is reflected by JAZ10

expression levels. Quantitative RT-PCR analyses with soil-

grown seedlings confirmed that both mechanostimulation

and JA treatment induce JAZ10 expression, whereas auxin

treatments had no effect (Figure 7i,j). The effect of mechano-

stimulation resulted in a four times higher expression of
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Figure 5. Secondary growth phenotype of JA signalling mutants.

(a,b) Comparison of acropetal progression of IC initiation (a) and lateral ICD

extension at the stem base (b) between wild-type, jaz10-1, jaz10-2 and jaz7-1

mutants.

(c,d) Analysis of cross-sections taken from the base of 30 cm wild-type (c) and

jaz10-1 (d) stems. Lateral extension of the ICD is indicated by brackets. Scale

bar = 200 lm; same magnification in (c) and (d).

(e) Comparison of stem diameter at the base between wild-type, jaz10-1,

jaz10-2 and jaz7-1 mutants.

(f) Analysis of longitudinal IC extension in 25 cm stems of wild-type, coi1-1

and myc2-3 mutants.
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JAZ10 after 2 h which was no longer detectable 4 h after the

treatment (Figure 7i), suggesting that the response is tran-

sient. In summary, these analyses demonstrate that expres-

sion of the cambium regulator JAZ10 is specifically

inducible by mechanostimulation and JA. Furthermore, the

effect of mechanostimulation on JAZ10 expression is dose-

dependent, local and transient.

It is well-established that mechanical forces are commu-

nicated to the cambium by ethylene signalling (Andersson-

Gunneras et al., 2003; Love et al., 2009), and, as for JA

biosynthesis, ethylene biosynthesis is stimulated by

mechanical perturbations (Takahashi and Jaffe, 1984). There-

fore, to determine the impact of mechanical forces on

IC initiation, we analysed plants defective for the touch-

inducible ethylene signalling component ERF104 (SALK_

057720, Bethke et al., 2009), which was identified in our

transcriptional profiling (Figure 4b). Our analysis revealed a

decrease in acropetal IC initiation by approximately 25% in

30 cm plants (Figure 8a), suggesting a positive role for a

second stress-related hormonal pathway in IC initiation.

To determine whether putative mechanical forces at the

stem base could originate from localized cell proliferations,

we visualized histone H4 expression, a marker for cell

division (Krizek, 1999; Barkoulas et al., 2008), by RNA in situ

hybridization. An analysis of 2 cm stems showed that cell

divisions are initiated in the FC before they can be observed

in interfascicular regions (Figure 8b,c), which demonstrates

that the FC becomes active before the IC is initiated. This
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Figure 7. Analysis of JAZ10 expression dynamics.

(a) Whole-plant overview visualizing JAZ10:GUS reporter gene activity. The inset shows a close-up of a root tip.

(b–e) JAZ10:GUS activity at the base of 2 cm (b), 5 cm (c), 15 cm (d) and 30 cm (e) inflorescence stems. Rosette leaves have been removed for clarity. Arrows indicate

the stem base. Scale bar = 2 mm; same magnification in (b–e).

(f) Cross-section from the base of a 2 cm plant. JAZ10:GUS activity is detected in xylem (arrowheads) and interfascicular regions (arrow). Primary bundles are

labelled by asterisks. Scale bar = 100 lm.

(g,h) Local inducibility of JAZ10:GUS activity by mechanical stimulation. Weak (g) and strong (h) stimulation led to different JAZ10:GUS activity levels (see main text

for details). The site of stimulation is marked by arrows. Scale bar = 2 mm; same magnification in (g) and (h).

(i,j) Quantitative RT-PCR results demonstrating the inducibility of JAZ10 (i) and IAA5 (j) by various stimuli. Seedlings were mock-treated, stroked by hand for 30 sec

(‘touch’), sprayed with MeJA (50 lM) or sprayed with IAA (20 lM), and harvested after 2 and 4 h. IAA5 (AT1G15570) expression was used as a positive control for IAA

treatment.
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observation is in line with the possibility that intra-tissue

tensions in interfascicular regions are generated by the

initiation of cell proliferation in the FC.

DISCUSSION

We have performed a histological, molecular and genetic

characterization of the dynamics of IC formation and activity

at the base of the Arabidopsis shoot. IC formation is an

essential process for transition from the primary to the

secondary growth stage in shoot axes of dicotyledonous

plants. In particular, our analysis reveals a role of JA sig-

nalling, a hormonal pathway traditionally associated with

the response to wounding and mechanical perturbations, in

cambium regulation.

IC initiation progresses acropetally in the elongating stem,

starting from the uppermost rosette leaf, but doesn’t exceed

a region of about 1 cm at the stem base (Figure 2). In young

stems, periclinal cell divisions are initiated in parenchyma

cells between primary bundles, and are established in more

and more peripheral positions during acropetal progression

of this initiation and the accompanying formation of IFs.

In later stages, they are also established in the starch

sheath, the innermost layer of the cortex. A gradual

progression of cambial activity from the FC into interfasci-

cular regions has been reported in other species (Steeve and

Sussex, 1989). We could not confirm this for the Arabidopsis

stem; however, it is possible that the progression of cambial

activity in Arabidopsis is too rapid to be resolved by basic

histological means. Our observations are in line with the

possibility that IC initiation is repressed IF cells and that

the reason that IC formation occurs in parenchyma cells in

some stem segments and in the cortex in others is the timing

of this process with respect to IF formation (Figures 1, 2 and

S2). Furthermore, the fact that the IC can be established from

various cell types supports the idea of de novo establish-

ment of cambium identity without the requirement for

predetermination of cells present in interfascicular regions

(Loomis and Torrey, 1964; Sauer et al., 2006; Scarpella et al.,

2006).

The positive effect of mechanical forces on cambial

activity and secondary growth-related gene expression has

been well documented (Brown and Sax, 1962; Ko et al.,

2004). This and other studies (Oh et al., 2003; Ko and Han,

2004; Ko et al., 2004) found that a large proportion of genes

preferentially expressed in secondary stems are related to

stress signalling pathways and/or belong to the group of

touch-inducible genes, which suggests that mechanical

stimuli are involved in the regulation of gene expression in

these stem segments. However, IC initiation decelerates

even though the weight of the growing shoot system

increases (Figures 3 and 5a), indicating that shoot weight

alone is insufficient to induce IC initiation, and that instead

it modulates the dynamics of secondary growth initiation

and cambium activity (Ko et al., 2004). In addition to shoot

weight, intra-tissue forces, generated by general cell expan-

sion or cambium activity, might contribute to tissue dynam-

ics during secondary growth. It is tempting to speculate that,

if central cells expand, peripheral tissues have to react, and

cell expansion and eventually cell division are responses

that may be important for avoiding tissue disruption. One

example of such a process is the initiation of phellogen, a

meristematic tissue that is important for cork expansion and

that is established in the (sub)epidermis of the Arabidopsis

hypocotyl and root (Dolan and Roberts, 1995; Chaffey et al.,

2002). Similarly, IC initiation could be a reaction to the

FC-based tissue formation in primary vascular bundles and,

potentially, produces mechanical stress in interfascicular

regions. This is suggested by analysis of the timing of cell

divisions at the stem base (Figure 8), which showed that

cell divisions in the FC precede those in interfascicular

regions. In this case, part of the initial FC-derived signal is

not molecular but instead is physical in nature. Similarly, FC

activity might be at least partly stimulated by internal tissue

tensions generated by expansion of central parenchyma

and/or the production of xylem (Brown and Sax, 1962;

Hejnowicz, 1980).

The identification of JAZ10, MYC2, COI1, and to a minor

extent JAZ7, as cambium regulators and the positive effect
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of JA application on cambium activity demonstrate that

JA signalling contributes to cambium regulation (Figures 5

and 6). There is strong evidence that mechanostimulation

induces JA production and the expression of JA biosyn-

thesis genes (Chung et al., 2008; Tretner et al., 2008; Glauser

et al., 2009; Koo et al., 2009). This induction is potentially

triggered by cell-wall fragments, structural changes in the

extracellular matrix or tensions in the plasma membrane,

leading to the opening of Ca2+channels (Monshausen and

Gilroy, 2009; Seifert and Blaukopf, 2010). Our results show

that JAZ10 in the inflorescence stem can also be induced in a

local and transient manner by touching (Figure 7). In addi-

tion to its essential role as a systemic signal in plant defence

and wound response (Chung et al., 2008), JA signalling

could play an important role in developmental processes in

which tissue tensions must be released by initiating meri-

stematic activity. Therefore, even though a negative effect of

JA on cell division and in particular longitudinal root growth

has been reported (Pauwels et al., 2008; Zhang and Turner,

2008), a positive effect on secondary growth and stem

stability seems to exist (Figures 5 and 6). Biologically, it

makes sense that, upon mechanical stress, longitudinal

growth is inhibited and lateral growth is promoted in order

to develop a more robust plant body. This response is well

known, and belongs to a wide range of mechanically

induced alterations of morphology designated thigmomor-

phogenesis (Telewski and Jaffe, 1986; Chehab et al., 2009).

Currently, it is not possible to measure intra-tissue tensions,

and therefore direct evidence for such tensions is missing.

Molecular markers are the only tools that might serve as

indicators of the presence of such tensions. Here, we found

expression of the mechano-inducible JAZ10 in interfascicu-

lar regions, which is consistent with tissue tension being

present in this area. In line with this, ethylene signalling,

another stress-related and mechano-inducible hormonal

pathway, stimulates cambium initiation (Figure 8a) (Andersson-

Gunneras et al., 2003; Love et al., 2009).

However, additional factors are essential for cambium

initiation because JA signalling does not lead to meristem

initiation per se. Furthermore, we did not observe the

maximum level of JAZ10 expression in the cambium,

suggesting, if JAZ10 expression reflects tissue tension, that

such tensions are not strongest in the cambium itself. Auxin

is one candidate for such a factor. The expression of at least

one other JAZ gene has been shown not only to be JA- but

also auxin-dependent (Grunewald et al., 2009). However,

we did not observe auxin inducibility for JAZ10, making a

role of auxin upstream of JAZ10 expression unlikely. Given

the JA inducibility of auxin biosynthesis during lateral root

formation (Sun et al., 2009), a role for auxin signalling

downstream of JA signalling is possible. We envisage a

complex interplay between tissue tensions and auxin

biosynthesis or transport during IC initiation. The auxin

concentration may increase more quickly in cells that are

located in close proximity to cells that already have an

enhanced auxin content, due to auxin moving out of these

cells. Thus, the proximity of interfascicular cells to the FC

might be the positional trigger for initiation of IC identity

(Wilson, 1978). However, it is also possible that auxin acts

neither up nor downstream of JA, but in a parallel branch of

the regulatory network.

Taken together, our findings indicate that the IC is initiated

de novo in interfascicular regions by signals that presum-

ably originate from the FC of adjacent vascular bundles, and

therefore represents a secondary meristem. Moreover, we

have shown a positive role for JA signalling in cambium

regulation, and hypothesize that it mediates mechanical

forces present in the stem, a structure that is particularly

exposed to environmentally induced physical stresses. This

finding provides new insights into the mechanisms under-

lying secondary growth, a source of a large proportion of

terrestrial biomass.

EXPERIMENTAL PROCEDURES

Plant material

Arabidopsis thaliana (L.) Heynh. plants of accession Columbia were
used for all experiments unless stated otherwise. Plant lines not
mentioned in the acknowledgements were ordered from the
Nottingham Arabidopsis Stock Centre.

Plant growth and histology

Plants were grown for 3 weeks under short-day conditions (8 h
light, 16 h dark), and then shifted to long-day conditions (16 h light,
8 h dark) to induce flowering. JA treatments were performed by
watering plants with either tap water (mock) or 0.5 mM jasmonic
acid after moving plants to long days. Due to the asymmetric effects
of side shoots on tissue patterning, only plants in which the first
internode was at least 3.5 cm long were analysed. For histological
analyses, stem fragments were fixed in FAA (formalin/acetic acid/
alcohol) and embedded in paraffin. Subsequently, 10 lm sections
were produced using a microtome, deparaffinized, stained with
0.05% toluidine blue (AppliChem, http://www.applichem.com), and
fixed with Entellan (Merck, http://www.merck.com) or Dako Ultr-
amount (Dako, http://www.dako.com) (Figure 6) on microscope
slides. For quantitative analyses, at least five plants were evaluated
for each data point. The standard errors of means were used to
visualize variation. Data were subjected to statistical analysis, using
a two-tailed independent Student’s t test with SPSS 15.0 software
(http://www.spss.com). Significance levels of P < 0.05, P < 0.01 and
P < 0.001 are indicated in the figures by single, double and triple
asterisks, respectively. Phloroglucinol staining and analysis of GUS
reporter activity were performed as described previously (Ruzin,
1999; Scarpella et al., 2004). For analysis of signal distribution in
cross-sections (Figure 7), stained samples were left in 30% sucrose
overnight at 4�C, then embedded in 5% low-melting-point agarose
(Sigma, http://www.sigmaaldrich.com/) and sectioned using a
vibratome (HM430, Microm, www.microm-online.com). The resul-
ting 30 lm sections were observed using DIC optics. Alternatively,
samples were embedded in Technovit 7100 (Kulzer, http://www.
kulzer.com) using the manufacturer’s protocol, and 5 lm sections
were produced with a microtome, fixed with Entellan and observed
using dark-field optics (Figure S3).

JA signalling promotes secondary growth 819

ª 2010 The Authors
Journal compilation ª 2010 Blackwell Publishing Ltd, The Plant Journal, (2010), 63, 811–822



RNA in situ hybridization

RNA in situ hybridizations were performed as previously described
(Greb et al., 2003). For the H4 probe, a fragment amplified from
genomic DNA using primers H4for (5¢-TTCACATCTTTCTCACC-
CAAATCTACT-3¢) and H4rev (5¢- TTTCAACCGAAACTGCTGAAGC-
3¢) was cloned into the pGEM-T vector (Promega, http://www.
promega.com/) and used as a template for transcription from the T7
promoter.

Cloning and transgenic lines

To generate the APL:GUS (pTOM13) construct, a 3 kb fragment
from the APL 5¢ promoter was amplified from genomic DNA by PCR
using the primers APLfor1 (5¢-ACTAGAGCTCAGCTCTTAGTTTG-
CTTCAACAAC-3¢) and APLrev5 (5¢-ACGTCGACTGCTGCAGATCC-
ATGGTAATCGTCTTTGGGGTCGC-3¢), and a 3¢ promoter fragment
was amplified using the primers APLfor5 (5¢-CCATGGATCTGCAG-
CAGTCGACGTGATACAATTTATTAATTTTTATCTATGAGTG-3¢) and
APLrev7 (5¢-ACTAGGTACCGGCAAACTGTCAAATATGAAAATCG-
3¢). Both PCR products were cloned into pGreen0229 (Hellens et al.,
2000) using the KpnI and SacI restriction sites. Finally, the b-glucu-
ronidase (GUS) open reading frame was cloned into NcoI and PstI
restriction sites generated between the 5¢ and 3¢ promoter frag-
ments. For the JAZ10 reporter construct, gene-specific primers
were used to amplify a 2 kb fragment of the promoter region of
At5g13220 on genomic Col-0 DNA (Pfu polymerase). The forward
primer 5¢-GCGAGCAAACCTTACGCAAA-3¢ and the reverse primer
5¢-ATCAAGACAGAGAGATATGGG-3¢ were used with attB exten-
sions. The fragment was then cloned into the Gateway vector
pMDC162 containing a GUS gene (Curtis and Grossniklaus, 2003).
Two independent transgenic lines were generated and displayed
comparable reporter gene activity.

Microarray analysis

Total RNA was isolated from stem basal (B) and internode (I) seg-
ments (Figure S3) based on a standard Trizol-based protocol, and
subsequent purification was carried out using RNA-MiniElute col-
umns (Qiagen, http://www.qiagen.com/). RNA samples were treated
with RNase-free DNase (Qiagen) by column purification according
to the manufacturer’s instructions. RNA quality was tested using
the 260:280 nm ratio and by gel electrophoresis. For each sample,
three independent RNA extractions from pools of 50 plants each
were performed. cDNA production, labelling and hybridization
were performed by the Arizona University Microarray Service as
described at http://www.ag.arizona.edu/microarray/. Three inde-
pendent hybridizations including a dye swap were performed,
ensuring dye balance. Primers for performing RT-PCR validations
were designed based on the oligos spotted on the array (Table S3).
The cDNA template was produced utilizing a RevertAidTM H
Minus First Strand cDNA Synthesis Kit (Fermentas, http://www.
fermentas.com). Raw expression data have been deposited in
NCBI’s Gene Expression Omnibus (Barrett et al., 2009) and are
accessible through GEO Series accession number GSE15446 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15446).

Real-time PCR quantification

RNA extraction and cDNA synthesis were performed as described
above. Real-time quantitative PCR analysis was performed in a final
volume of 15 ll according to the instructions in the SensiMixTM

SYBR & ROX kit instruction manual (Peqlab, http://www.peqlab.
com) utilizing an iQTM5 optical system (Bio-Rad, http://www.
bio-rad.com/). Transformation of fluorescence intensity data into
cDNA levels was performed using a standard curve constructed

with a 10-fold dilution series of a single cDNA sample. The speci-
ficity of the amplification reactions was assessed using post-
amplification dissociation curves. EIF4A1 (At3g13920) was used as
an internal control for quantification of gene expression based on
the comparative threshold (CT) method as described by Perkin-
Elmer Applied Biosystems (http://www.perkinelmer.com). For each
gene, quantitative RT-PCR reactions were performed in triplicate.
Primer sequences are listed in Table S3.
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