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A B S T R A C T   

Introduction: Over the past few years, the deep learning community has developed and validated a plethora of 
tools for lesion detection and segmentation in Multiple Sclerosis (MS). However, there is an important gap be
tween validating models technically and clinically. To this end, a six-step framework necessary for the devel
opment, validation, and integration of quantitative tools in the clinic was recently proposed under the name of 
the Quantitative Neuroradiology Initiative (QNI). 

Aims: Investigate to what extent automatic tools in MS fulfill the QNI framework necessary to integrate 
automated detection and segmentation into the clinical neuroradiology workflow. 

Methods: Adopting the systematic Cochrane literature review methodology, we screened and summarised 
published scientific articles that perform automatic MS lesions detection and segmentation. We categorised the 
retrieved studies based on their degree of fulfillment of QNI’s six-steps, which include a tool’s technical 
assessment, clinical validation, and integration. 

Results: We found 156 studies; 146/156 (94%) fullfilled the first QNI step, 155/156 (99%) the second, 8/156 
(5%) the third, 3/156 (2%) the fourth, 5/156 (3%) the fifth and only one the sixth. 

Conclusions: To date, little has been done to evaluate the clinical performance and the integration in the 
clinical workflow of available methods for MS lesion detection/segmentation. In addition, the socio-economic 
effects and the impact on patients’ management of such tools remain almost unexplored.   

1. Introduction 

Multiple sclerosis (MS) is an inflammatory demyelinating disease of 
the central nervous system, which affects almost 3 million people 
worldwide (Walton et al., 2020). MS is the most prevalent neurological 
disease among young adults, and it is associated with a progressive 

increase in disability, which can significantly affect an individual’s 
quality of life as well as impose a substantial economic burden on pa
tients, their families and the entire society (Feinstein, 2004). MS mostly 
exhibits focal inflammatory and degenerative lesions, but also diffused 
brain and spinal cord damage, which ultimately results in permanent 
brain volume loss (Reich et al., 2018). Hence, assessing the impact of 
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neuroinflammation and neurodegeneration in patients through the 
identification of adequate imaging biomarkers is fundamental. 

MS diagnosis requires the demonstration of dissemination in space (i. 
e., specific regions of the brain and spinal cord must be affected by areas 
of focal inflammation/damage, which are named plaques or lesions) and 
time (i.e., assessment of the increase in lesions’ number and volume over 
time). The information provided by Magnetic Resonance Imaging (MRI) 
can address both requirements and, therefore, it is essential for MS 
diagnosis (Thompson et al., 2018). Fig. 1 shows the appearance of MS 
lesions in brain MRI. 

The process of MS lesion detection and segmentation is usually 
performed manually by trained neuroradiologists and it is a time- 
consuming task and prone to errors (Egger et al., 2017). As a conse
quence, the development of automatic tools to support this procedure is 
urgently needed. 

To date, several automated approaches have been proposed to sup
port this key task, leading to a plethora of tools (reviewed in Llado et al., 
2012; García-Lorenzo et al., 2012; Alrabai et al., 2022; Zeng et al., 2020; 
Ma et al., 2022; Diaz-Hurtado et al., 2022; Commowick et al., 2023) that 
are more or less mature towards clinical application and use. In the last 
15 years, many international challenges, organised in the context of the 
Medical Image Computing and Computer Assisted Intervention (MIC
CAI) conference (Styner et al., 2008; Commowick et al., 2018; Kuijf 
et al., 2019; Commowick et al., 2021) and the International Symposium 
on Biomedical Imaging (ISBI) (Carass et al., 2017), provided benchmark 
datasets to promote a fair evaluation. In addition, the Shifts Challenge 
(Malinin et al., 2022) focused on the estimation of robustness and un
certainty of such methods. 

To facilitate the adoption of automated image analysis tools in the 
practice of clinical neuroradiology, Goodkin et al. (2019) proposed a 
framework based on a sequence of six steps named Quantitative 
Neuroradiology Initiative (QNI). The six steps can be summarised in 
providing:  

1. the target clinical area and biomarkers;  
2. the structure of the automated method;  
3. a quantitative report;  
4. a technical and clinical validation;  
5. details about the integration into the clinical workflow;  
6. an in-use evaluation. 

Although these requirements were originally applied to the radio
logical assessment of dementia, the framework was adopted later on to 
conduct systematic reviews on commercial volumetric MRI reporting 
tools in dementia (Pemberton et al., 2021) and MS (Mendelsohn et al., 
2022). While in the present work we aim to present the state of the art of 
scientific literature, the mentioned reviews strictly focused on studies 
related to commercial devices. 

Table 1 describes the requirements to fulfill the six QNI steps. The 

first and second steps include the identification of the target clinical 
area, the associated imaging biomarkers (lesional in the case of MS), the 
automated model’s structure, and reference datasets. A third phase 
consists of filing a visually informative quantitative report, to be inte
grated into the radiology report. The fourth step relates to the technical 
and pre-use clinical validation, which encapsulates a “credibility” and 
“accuracy” study. The former concept suggests a data quality check and 
a review of the technical performance of the method. The latter term 
refers to a blinded rating of a limited number of cases and an assessment 
of the clinical reporting process: radiologists’ accuracy and reporting 
efficiency should be examined, with and without the automated tool, in 
the closest possible environment to the usual radiology setting. The fifth 
step is the integration of tools into the clinical workflow, from data 
format compatibility to data protection and the joint visualisation of 
Digital Imaging and Communications in Medicine (DICOM) series and 
model output. The final phase describes an in-use pipeline evaluation for 
what concerns patient management and the socio-economic impact of 
the tool. Key concepts are the smoothness of the tool’s integration into a 
hospital’s radiology department, speed of diagnosis, cost in resources, 
productivity, general perception, and mid-term economic impact. 

With these criteria, the proposed review analyses to what extent 
current literature of reporting automatic tools for detection and seg
mentation of MS lesions follows the QNI steps and, thus, considers the 
integration into the clinical routine. 

2. Material and methods 

In this review, we adopt the methodology described in the “Cochrane 
Handbook for Systematic Review of Interventions” (Lefebvre et al., 
2022) to collect published articles till June 2023. To broaden and 
differentiate the screening pool, we targeted two databases, respectively 
medicine- and engineering-oriented: PubMed (https://pubmed.ncbi. 
nlm.nih.gov/) and IEEE (https://ieeexplore.ieee.org/Xplore/home.jsp 
). We adapted Cochrane’s threefold subdivision of screening keywords 

Fig. 1. MS lesions in brain MRI axial (a) and sagittal (b) view. The figure comes from a dataset described in Lesjak et al. (2016).  

Table 1 
Description of QNI steps.   

QNI 
step 

Requirements  

1st area of clinical need and corresponding imaging biomarkers 
(lesional for MS)  

2nd structure of automatic method, benchmark dataset for training/ 
testing  

3rd quantitative (radiology) report with clinically and visually 
meaningful information  

4th technical and clinical validation (quality check, with and without 
tool reporting assessment)  

5th integration into the clinical workflow (data format compatibility and 
protection, input–output viewer)  

6th in-use evaluation (patient management, socio-economic impact)  
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to our case, from “population, intervention and study design” to “pop
ulation, task, and design of the tool”. While population refers to clini
cally confirmed MS patients, task and design describe what we expect as 
the automatic model’s first output and general characteristics. 

By searching within both databases using Cochrane’s threefold 
subdivision of keywords, 770 studies were extracted (123 from IEEE and 
647 from PubMed). Please note the word including a * is a “wild-card”, 
covering suffixes from a word stem, such as “automat*” stands for 
“automated” and “automatic”:  

1. “multiple sclerosis”;  
2. “segment*” OR “detect*”;  
3. “machine learning” OR “deep learning” OR “automat*” OR “digital 

tool”. 

The above criteria were applied to all metadata, including title, ab
stract, and keywords. 

2.1. Study inclusion criteria 

Screened articles were included in the review when they met all the 
following inclusion criteria:  

1. original research published after 2011 in academic peer-reviewed 
journals or conferences in the English language;  

2. studies targeting fully automatic detection or segmentation of white 
matter non-enhanced (without contrast agents) lesions, as either a 
primary or a secondary objective;  

3. studies targeting brain MRI modalities;  
4. studies targeting clinical MS population alone or mixed with patients 

with a clinically isolated syndrome (CIS, a first symptomatic episode 
of potential MS);  

5. studies performing either technical, clinical, or in-use validation. 

As a consequence, papers including a wider population than MS (in 
separate datasets), performing longitudinal or cross sectional evalua
tions, presenting a different primary goal or other lesion types (Rosa 
et al., 2022), have been reported in this review only if they also met the 
mentioned conditions. For each QNI framework’s step, the methodology 
of reviewed articles was discussed and evaluated as compliant or not 
compliant. It must be noted that failure to comply with some steps to
wards clinical use of those methods does not imply any superficiality in 
the methodology applied. It indicates, instead, that an article focuses 
primarily on other objectives. 

In our work we distinguish among technical, clinical and in-use 
assessment as follows:  

• Technical validation: comparing results to manual segmentation 
and/or state-of-the-art segmentation software, and data quality 
checks.  

• Clinical validation: refers to any evaluation of the tool’s impact on 
clinical management, diagnostics, and reliability with respect to the 
reference annotated “ground truth”.  

• In-use evaluation: includes any study measuring how easily the tool 
can be integrated into reporting workflow, benefits for patients, 
general perception, and socio-economic effects of the tool. 

Merging results from the two databases, 22 records were excluded as 
duplicates leading to 748 studies to further review. Upon examination of 
the pool of abstracts, 562 occurrences were not retrieved as not 
compliant with the inclusion criteria. After carefully reviewing the full 
texts from the remaining 208 studies, 52 articles were further excluded 
due to their objective, population (e.g., dementia), input type (e.g., 
synthetic data), language, availability and method (only fully automatic 
methods were considered). The PRISMA flow diagram (Page et al., 
2021) describing the procedure to select 156 studies to include in the 

review is reported in Fig. 2. 
The search strategy was peer-reviewed by S.S., an experienced in

formation specialist within our team. All data used in the review are 
available and can be accessed through PubMed and IEEE databases. 

3. Results 

Following the described methodology, 156 studies were identified 
(see the list of abbreviations in Table 2 and first columns of Tables 3–5), 
which met all the inclusion criteria (Fig. 2). 

3.1. Target population 

In ten articles, MS patients were mixed with subjects presenting CIS 
(Salem et al., 2020; Jannat et al., 2021; Salem et al., 2019; Valencia 
et al., 2022; Salem et al., 2017; Dwyer et al., 2019; Sitter et al., 2017; 
Cabezas et al., 2016), or neuromyelitis optica spectrum disorders and 
cerebral small vessel disease (Zhang et al., 2022), or mild cognitive 
impairment, Alzheimer’s disease, Parkinson’s disease and fronto
temporal dementia (Cavedo et al., 2022). The remaining studies tar
geted at least one dataset with only MS patients (see second columns of 
Tables 3–5). 

3.2. Magnetic resonance imaging 

Fluid attenuated inversion recovery (FLAIR) was the most common 
MRI contrast used as input for the proposed automatic methods. It was 
used alone or in combination with a T1-weighted (T1-w) image, a T2- 
weighted (T2-w), a proton density weighted (PD-w) image, or with 
contrast enhancement (see third columns of Tables 3–5). In six cases, the 
only input provided to the network were either T2-w images (Abhale 
et al., 2022; Yildirim and Dandil, 2021a), MPRAGE (Magnetisation- 
prepared rapid gradient echo) (Galimzianova et al., 2015; Spies et al., 
2013), MP2RAGE (Magnetisation-prepared 2 rapid gradient echo) 
(Fartaria et al., 2019) or MR fingerprinting EPI (Echo-planar imaging) 
(Hermann et al., 2021). Less common contrasts, such as diffusion basis 
spectrum imaging (Ye et al., 2020), DIR (Fartaria et al., 2015; Schläger 
et al., 2022; Bouman et al., 2023) and PSIR (Bouman et al., 2023) were 

Fig. 2. PRISMA flowchart applied during the screening process. The terms 
“objective”, “population”, “input type”, “language” refer to the inclusion 
criteria of Section 2.1. The term “access” refers to an exclusion due to the 
impossibility to access the full text of a paper. The term “method” refers to “not 
fully automatic methods”. 
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also adopted. 

3.3. Datasets 

The methods developed by 92 studies were (at least partially) based 
on datasets from international challenges: MICCAI 2008 (Styner et al., 
2008), MICCAI 2016 (MS-SEG) (Commowick et al., 2018), MS-SEG2 
(Commowick et al., 2021) and ISBI 2015 (Carass et al., 2017). Earlier 
works focused on relatively small cohorts due to the limited sample size 
provided in the challenges, such as 5 and 20 patients, respectively, in the 
training set of ISBI 2015 in Vang et al. (2020) and of MICCAI 2008 in 
Joshi and Sharma (2022). 

A single case (Tripoliti et al., 2019) did not provide any reference 
dataset. The authors proposed the architecture of a tool for the estima
tion of MS progression, announcing a future proof of concept study with 
30 patients for its validation. Since the target area was clearly deter
mined, the first QNI step was considered satisfied. 

The remaining 83 studies were based on data from large clinical 
trials, University hospitals or publicly available sources (see second 
columns of Tables 3–5). 

3.4. Automatic detection and segmentation 

Many different automatic methods were developed for lesion 
detection and segmentation. Other studies used automatic methods, 
such as k-nearest neighbour (Fartaria et al., 2015; Todea et al., 2023; 
Steenwijk et al., 2013), Support Vector Machines (SVMs) (Abdullah 
et al., 2012; Opbroek et al., 2014; Elsebely et al., 2021; Roy et al., 2013; 
Hosseinipanah et al., 2019; Khotanlou and Afrasiabi, 2012; Kuwazuru 
et al., 2011), Markov random fields (Schmidt et al., 2011; Harmouche 
et al., 2014; Galimzianova et al., 2017; Subbanna et al., 2015), random 

forest (Geremia et al., 2011; Elliott et al., 2013; Dwyer et al., 2019), or 
ad hoc intensity-based algorithms (Tran et al., 2022; Cavedo et al., 2022; 
Brune et al., 2020; Tomas-Fernandez and Warfield, 2015; Freire and 
Ferrari, 2016; Mechrez et al., 2016; Meier et al., 2017; Jain et al., 2015; 
Sweeney et al., 2014; Egger et al., 2016; Cabezas et al., 2014; Valcarcel 
et al., 2020; Ong et al., 2012). 

The high-level category of deep neural networks was predominant, 
where convolutional neural networks (CNNs) as U-Nets were most 
represented (see fourth column of Tables 3–5). Basaran et al. (2022) 
adopted nnU-Net (Isensee et al., 2021), a method that automatically 
configures pre-processing steps, architecture, training and 
post-processing to better adapt to dataset properties and available 
hardware. 

In Tripoliti et al. (2019) no details were disclosed about their auto
matic method and, as mentioned in Section 3.3, the reference dataset 
was not described. As a consequence, this conference paper did not 
fulfill the second QNI step. 

Longitudinal methods (i.e., assessing changes in lesions’ number and 
volume across two or more time points) adopt different approaches 
compared to cross-sectional methods (i.e., those using images acquired 
at a single time point). In fact, the evaluation of follow-up scans presents 
challenges, such as the one related to image registration—if patient 
positioning is not consistent—, and the one concerning the required pre- 
processing steps to account for variations in image acquisition between 
scans. Moreover, new lesions in follow-up scans are usually small and 
there is currently no threshold defining a significant lesion enlargement. 
To overcome these challenges, different approaches have been proposed 
to date such as the one proposed by Salem et al. (2022)—using a cascade 
of two FCNN’s to refine possible misclassifications—or the one sug
gested by Sepahvand et al. (2020), where an attention mechanism based 
on image subtraction between two timepoints was applied to help a U- 
Net differentiating between anatomical and artifactual change. 

3.5. Data quality check and pre-processing 

Data quality check, if mentioned, consisted of the removal of null 
slices (Ghosal et al., 2020; Kumar et al., 2019; Alijamaat et al., 2021; 
Rondinella et al., 2023), control of the scanning protocol and a thorough 
visual inspection (Schmidt et al., 2019). In Cavedo et al. (2022), before 
computing MRI analysis, a quality check of MRI parameters is performed 
to verify that the parameters align with those recommended. An image 
quality assessment was also explored in Valencia et al. (2022), through 
the median absolute error and the structural similarity index. Other 
metrics, such as lesion conspicuity, SNR (signal to noise ratio), contrast 
to noise ratio, and variance of the Laplacian were selected in Arnold 
et al. (2022). Narayana et al. (2018) used the automated pipeline vali
dated in Narayana et al. (2013) to check headers and the SNR of DICOM 
images. 

A more careful approach was developed in Rakic et al. (2021), 
dealing with T1-w and FLAIR modalities of 159 MS patients from mul
tiple centers and scanners. In order to preserve robustness and minimize 
data bias, the authors followed a carefully designed protocol: the strat
ification of training, validation, and test set was obtained in a way to 
equally represent all data characteristics, such as screening site, scanner 
model, magnetic field strength, scan quality, slice thickness. 

In Todea et al. (2023), two experts performed an image quality 
assessment (SNR, artifacts, contrast, good registration between time 
points) and a longitudinal analysis was evaluated on the whole dataset 
and on images with the same quality score. The same concept was 
applied to images obtained with a 1.5T and 3T scanner. On the other 
hand, in Combès et al. (2021), data with lower quality were intention
ally not excluded from the study to mimic a real-world scenario. 

Most studies include the following data pre-processing steps: bias 
field inhomogeneities correction, intensity normalization, skull strip
ping, denoising, resampling, and co-registration in the case of multiple 
input modalities. 

Table 2 
List of abbreviations.  

Abbreviation Meaning 

FLAIR fluid attenuated inversion recovery 
MPRAGE magnetisation-prepared rapid gradient echo 
MP2RAGE magnetisation-prepared 2 rapid gradient echo 
PD-w proton density weighted 
T1-w T1-weighted 
T2-w T2-weighted 
DIR double inversion recovery 
PSIR phase-sensitive inversion recovery 
DP diffusion perfusion 
MNI Montreal neurological institute 
CLAHE contrast limited adaptive histogram equalization 
GM gray matter 
WM white matter 
CSF cerebro spinal fluid 
EPI echo-planar imaging 
CNN convolutional neural network 
FOV field of view 
SVM support vector machine 
FCNN fully connected neural network 
(A) VD (absolute) volume difference 
DSC dice score 
(L) TPR (lesion) true positive rate 
(L) FPR (lesion) false positive rate 
b.c. bias field correction 
reg. registration 
PPV positive predicted value 
TNR true negative rate 
FNR false negative rate 
IoU intersection over union 
AUC area under the curve 
NPV negative predicted value 
SI similarity index 
(p) AUC partial area under the curve 
HC healthy controls 
HD Hausdorff distance 
SD surface distance  
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Table 3 
Studies’ information containing details on datasets, inputs, and architecture of the automatic algorithm, pre-processing steps, and evaluation metrics (part 1).   

Data Inputs Method Pre-processing Evaluation metrics QNI steps 
fulfilled  

(Yildirim and 
Dandil, 2021b) 

MICCAI 2008, 
ISBI 2015 

FLAIR Mask R-CNN / DSC, AVD, lesion-wise 
TPR and FPR 

1st, 2nd  

(Ghosal et al., 
2020) 

MICCAI 2016 T1-w, MPRAGE, FLAIR,  
T1-w gadolinium and 

T2/DP contrast 
enhanced 

U-Net denoising, intensity 
correction and skull- 

stripping 

DSC accuracy, 
sensitivity, specificity 

1st, 2nd  

(Kats et al., 2019) ISBI 2015 T1-w, T2-w,  
PD-w and FLAIR 

U-Net / DSC, precision, recall 1st, 2nd  

(Kumar et al., 
2019) 

MICCAI 2016 T1-w, MPRAGE, FLAIR,  
T1-w gadolinium- 

enhanced and T2/DP 
contrast enhanced 

combination of Dense- and 
U-Net 

remove null slices, z-score 
normalisation 

DSC sensitivity, 
specificity, accuracy 

1st, 2nd  

(Vang et al., 
2020) 

ISBI 2015 FLAIR Mask R-CNN skull stripping, b.c., z-score 
normalisation 

DSC, precision, LTPR, 
LFPR, sensitivity 

1st, 2nd  

(Joshi and 
Sharma, 2022) 

MICCAI 2008 and 
30 extra MS 

T1-w, T2-w and FLAIR CNN and graph 
convolutional networks 

skull stripping, b.c. DSC 1st, 2nd  

(Kolarik et al., 
2021) 

MICCAI 2016 FLAIR VGG-16 encoder, residual 
U-Net decoder 

normalisation DSC and recall 1st, 2nd  

(Zhang et al., 
2019) 

ISBI 2015 and 15 
extra simulated 

MS 

T1-w MPRAGE, FLAIR 2D fully convolutional 
densely connected 

network 

ISBI: b.c., skull and dura 
stripping, 2nd b.c. and MNI 

reg.;  
extra: reg. to T1-w, skull 

stripping, b.c. 

DSC, precision, recall, 
LFPR, LTPR, VD 

1st, 2nd  

(Kamraoui et al., 
2021) 

ISBI 2015, 
MICCAI 2016, 

extra 43 subjects 

T1-w and FLAIR U-Net ISBI: b.c., skull and dura 
stripping, b.c., MNI reg;  

MICCAI: denoising, reg. on 
FLAIR, skull stripping, b.c., 

MNI reg.;  
extra: denoising, MNI reg., 

skull stripping, b.c., 
denoising, normalisation 

DSC, precision, recall, 
LTPR, LFPR 

1st, 2nd  

(Chen et al., 
2021) 

ISBI 2015, extra 
157 MS 

FLAIR local attention feature and 
graph attention clustering 

ISBI: skull stripping, reg. and 
normalisation; extra: b.c., 
normalisation, resampling 

DSC, TPR, LTPR, LFPR, 
absolute VD 

1st, 2nd  

(Billot et al., 
2021) 

MICCAI 2016, 
ISBI 2015 

T1-w and FLAIR U-Net ISBI: skull stripping DSC and brain ROI 1st, 2nd  

(Alijamaat et al., 
2021) 

MICCAI 2016 MPRAGE, FLAIR, T1w 
gadolinium, PD-w 

CNN with wavelet pooling remove null slices, 0–1 
normalisation 

accuracy, TPR, DSC 1st, 2nd  

(Basaran et al., 
2022) 

MSSEG-2 FLAIR nnU-Net skull stripping, b.c., baseline 
and follow-up reg. 

F1, DSC, volume of FP 1st, 2nd  

(Hashemi et al., 
2018) 

MICCAI 2016, 
ISBI 2015 

MPRAGE, FLAIR, T1 
contrast enhanced, PD- 

w, T2;  
MPRAGE, FLAIR, PD-w, 

T2 

U-Net, FC Dense-Net reg. DSC, recall, F2, Jaccard 
index, LTPR, LFPR, VD 

1st, 2nd  

(Roura et al., 
2015) 

MICCAI 2008, 
extra 14 MS 

T1-w and FLAIR Statistical Parametric 
Mapping 

skull stripping, denoising, b. 
c., MNI reg. 

DSC, TPR, PPV 1st, 2nd  

(Essa et al., 2020) MICCAI 2008 T2-w and FLAIR R-CNN MNI reg., skull stripping, b.c. TPR, PPV, DSC, VD 1st, 2nd  
(Zhang et al., 

2021) 
ISBI 2015, extra 

176 MS 
T1-w, FLAIR, T2-w, 

anatomical coordinates 
encoder-decoder 

backbone, anatomical 
convolutional   

modules, region-based 
loss modules 

MNI reg. DSC, precision, 
sensitivity, F1, LTPR, 

LFPR, Lesion F1 

1st, 2nd  

(Sadeghibakhi 
et al., 2022) 

ISBI 2015 T1-w and FLAIR ResNet skull stripping, 
normalisation, MNI reg., 

CLAHE 

DSC, LTPR, LFPR, 
absolute VD 

1st, 2nd  

(Brosch et al., 
2016) 

MICCAI 2008, 
ISBI 2015, extra 

195 subjects 

T1-w, T2-w, PD-w, 
FLAIR or T1-w, T2-w, 

PD-w 

CNN with shortcuts skull stripping, 0–1 
normalisation, reg. 

DSC, VD, LTPR, LFPR 1st, 2nd  

(Ackaouy et al., 
2020) 

MICCAI 2016 T1-w and FLAIR CNN denoising, skull stripping, b. 
c. 

DSC and F1 1st, 2nd  

(Ashtari et al., 
2022) 

MSSEG-2 FLAIR U-Net zero regions removal, z-score 
normalisation, resampling 

DSC, HD, sensitivity, 
PPV,  

F1, number and volume 
of predicted lesions 

1st, 2nd  

(Fenneteau et al., 
2021) 

ISBI 2015 FLAIR U-Net z-score normalisation DSC, sensitivity, 
precision 

1st, 2nd  

(Sarica and 
Seker, 2022) 

MSSEG-2 FLAIR U-Net skull stripping, b.c., 
normalisation, baseline and 

follow-up fusion 

DSC, F1, n. and volume of 
predictions, PPV, 

sensitivity,  
specificity, mean SD 

1st, 2nd  

(continued on next page) 
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Table 3 (continued )  

Data Inputs Method Pre-processing Evaluation metrics QNI steps 
fulfilled  

(Aslani et al., 
2019) 

ISBI 2015, extra 
37 MS 

T1-w, T2-w, FLAIR ResNet skull stripping, MNI reg., 
normalisation 

DSC, LTPR, LFPR, avg 
symmetric SD, HD, PPV, 

VD 

1st, 2nd  

(Valverde et al., 
2017) 

MICCAI 2008 T1-w, T2-w, FLAIR CNN co-reg. VD, TPR, FPR 1st, 2nd  

(Filho, 2017) MICCAI 2016, 
extra 17 subjects 

T1-w and FLAIR iterative contrast 
enhancement and logistic 

classification 

MNI reg., WM-GM 
segmentation, b.c., denoising 

sensitivity, specificity, 
DSC, volume similarity 

1st, 2nd  

(Guizard et al., 
2015) 

MICCAI 2008, 
extra 108 MS 

T1-w, T2-w, FLAIR rotation-invariant multi- 
contrast non-local mean 

segmentation 

denoising, normalisation, 
MNI reg., skull stripping 

DSC, TPR LTPR, PPV, 
LPPV, VD, FPR, 
symmetric SD 

1st, 2nd  

(Abdullah et al., 
2012) 

MICCAI 2008, 
extra 10 MS and 
synthetic data 

T1-w, T2-w and FLAIR SVM with textural 
features, position features,  

co-registered intensities, 
tissues priors and 

neighbouring blocks 
features 

MNI reg., normalisation DSC, detected lesion 
load, TPR, PPV 

1st, 2nd  

(Geremia et al., 
2011) 

MICCAI 2008 T1-w, T2-w and FLAIR discriminative random 
decision forest 

sub-sampling and cropping, 
b.c., normalisation,  

MNI reg., segmentation of 
WM, GM, CSF 

TNR, TPR, FPR, PPV, 
volume overlap, VD, 

symmetric SD 

1st, 2nd  

(Joshi and 
Sharma, 2021) 

50 MS T1-w, T2-w and FLAIR graph convolutional 
network and cnn 

autoencoder 

b.c. DSC, precision and loss 1st, 2nd  

(Sepahvand et al., 
2020) 

multi-centric 886 
MS 

T1-w, T2-w, PD-w and 
FLAIR 

U-Net skull stripping, b.c., 
normalisation, MNI reg. 

AUC, specificity and 
sensitivity 

1st, 2nd  

(Papadopoulos 
et al., 2022) 

30 MS FLAIR U-Net cropping window on label 
mask, 0–1 normalisation 

accuracy, IoU, DSC, 
precision, recall 

1st, 2nd  

(Nair et al., 2019) multi-centric 
1064 MS 

T2-w, T1-w, PD-w, 
FLAIR 

CNN skull stripping, b.c., MNI reg. ROC with TPR/FPR at 
voxel and lesion level 

1st, 2nd  

(Rosa et al., 
2020) 

54 MS MP2RAGE and FLAIR U-Net co-reg. DSC, absolute VD, TPR, 
LTPR,  

FPR, LFPR, WML and CL 
detection rate 

1st, 2nd  

(Gabr et al., 
2019) 

multi-centric 
1008 MS 

T1-w, T2-w, PD-w and 
FLAIR 

U-Net denoising, skull stripping, b. 
c., normalisation 

DSC, TPR, FPR, 
classification based on 

volume 

1st, 2nd  

(Hermann et al., 
2021) 

bi-centric 35 MS MR fingerprinting EPI U-Net denoising, distortion 
correction 

DSC and lesion detection 
rate 

1st, 2nd  

(Rakic et al., 
2021) 

multi-centric 159 
MS 

T1-w and FLAIR U-Net with attention gate 
layers 

MNI reg., skull stripping, z- 
score normalisation 

lesion/voxel-wise DSC, 
confusion matrix, lesion 

load 

1st, 2nd  

(Krüger et al., 
2021) 

multi-centric 
1809 MS 

T1-w and FLAIR CNN strong artifacts exclusion, 
reg. on FLAIR 

detection (1 voxel 
overlap), sensitivity, F1 
lesion-wise, DSC voxel- 

wise 

1st, 2nd  

(Krishnan et al., 
2021) 

multi-centric 
1574 MS 

T1-w and FLAIR or T1- 
w post-contrast and 

FLAIR 

2.5D U-Net b.c., MNI reg., skull stripping PPV, sensitivity, absolute 
VD 

1st, 2nd  

(Elliott et al., 
2013) 

multi-centric 255 
MS 

T1-w, T2-w and FLAIR Bayesian and random- 
forest based lesion-level 

classifier 

skull stripping, b.c., 
normalisation 

sensitivity, false 
detection rate 

1st, 2nd  

(Cabezas et al., 
2014) 

multi-centric 45 
MS 

T1-w, PD-w, T2-w, 
FLAIR, prob. maps of 

CSF, GM, WM,   
an outlier map, 800 

region-based 
comparison meta- 

features 

Gentleboost classifier skull stripping, b.c., 
denoising, normalisation, 

reg. 

DSC 1st, 2nd  

(Sajja et al., 
2006) 

23 MS T2-w and FLAIR Parzen estimator with 
Gaussian kernel 

removal of lesions close to 
the brain surface, FP/FN 

minimisation 

similarity index, % of 
correct, over- and under- 

estimation 

1st, 2nd  

(Sweeney et al., 
2013) 

bi-centric 208 MS T1-w, T2-w, PD-w and 
FLAIR 

logistic regression with 
gaussian kernel 

MNI reg., b.c., skull 
stripping, intensity 

thresholding,  
normalisation, multi- 
resolution smoothed 

volumes 

FPR, sensitivity and DSC 1st, 2nd  

(Steenwijk et al., 
2013) 

20 MS T1-w and FLAIR k-nearest neighbour skull stripping, MNI reg., b.c. DSC, sensitivity 1st, 2nd  

(Schmidt et al., 
2011) 

52 MS T1-w and FLAIR adaptive maximum a 
posteriori estimations and 

Markov random field 

b.c., MNI reg., classification 
of CSF, WM, GM 

DSC, correlation and 
regression of lesion 

volume 

1st, 2nd  

(Todea et al., 
2023) 

multi-centric 206 
MS 

MPRAGE and FLAIR at 
2 timepoints 

k-nearest neighbour b.c., normalisation, reg. sensitivity, specificity, 
accuracy, F1, PPV, NPV 

1st, 2nd  

(continued on next page) 
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3.6. Quantitative reports 

The results presented in 148 studies did not provide radiologists with 
a summary report. Combès et al. (2021), Brune et al. (2020), Tripoliti 
et al. (2019), Thakur et al. (2022) and Van Hecke et al. (2021) explicitly 
explored the use of the developed tool to assist radiologists in generating 
a quantitative report, providing information such as the number, the 
volume and the location of lesions. Two examples are reported in Fig. 3. 

In Cavedo et al. (2022), the authors presented a report with detection 
scores and the overlay of predictions on original images, while Yildirim 
and Dandil, 2021a generated a similar documentation in a web-based 
user interface tested by two radiologists. 

In Bilello et al. (2013), the generated report contained new (or 
enlarging) and resolved (or improving) lesions detected, their specific 
location and the cerebral hemisphere involved. 

3.7. Technical validation 

The commonly explored technical evaluation metrics were those 
required to participate in the international contests (Maier-Hein et al., 
2022): 

1. Overlap-based metrics, such as Dice score coefficient (DSC), sensi
tivity (recall), specificity, precision, accuracy, lesion-wise true posi
tive rate (TPR) and false positive rate (FPR), the absolute volume 
difference between ground truth and predicted segmentation;  

2. Surface-based metrics, such as the average symmetric surface 
distance. 

The lesion annotation through consensus was improved in the latest 
challenges: the available ground truth (GT) masks are more reliable in 
terms of inter-observer variability, providing higher quality GT to train 
and evaluate the models. An exhaustive list of adopted metrics is re
ported in the sixth columns of Tables 3–5. 

The latest reviews (Diaz-Hurtado et al., 2022; Commowick et al., 
2023) report satisfactory and already close to human rater performances 
for many detection/segmentation automatic methods. However, as also 
mentioned in Commowick et al. (2023), there are currently little data 
related to the integration and use of those methods in clinical routine, 
especially in relation to the quantification of the uncertainty of their 
predictions in clinical practice. 

3.8. Clinical validation 

Combès et al. (2021) proposed a pre-use validation of their tool 
involving clinicians. The authors assessed the impact of the segmenta
tion tool on experts’ performances as follows: three experts were asked 
to annotate a point near each lesion’s center (for 48 patients) with and 
without the help of the automatic tool (referred to as phases one and 
two). The number of marked lesions and time spent during the pro
cedure were recorded in both cases. All experts were exhorted to 

conduct this experiment in situations similar to clinical practice. In 
particular, they were explicitly instructed to spend a reading time 
comparable to that of clinical routine. A few days prior to the first phase, 
each expert followed a short training session to get acquainted with the 
tool. 

This experiment was evaluated through several metrics and 
compared between the two phases, such as the number of detected le
sions (by each rater and overall), the average patient-wise number of 
lesions detected by experts (compared between phases using a paired t- 
test), or the pooled inter-expert standard deviation associated to the 
number of detected lesions. 

In addition, the impact on routine clinical practice was assessed on 
six patients, with and without the tool (the two phases were two weeks 
apart): the experts measured the time needed from loading and reading 
MRI in hospital Picture Archiving and Communication Systems (PACS) 
to generating a radiology report. Patients were categorized in the report 
as showing “no activity”, “1 lesion” or “>1 lesion” with respect to 
baseline. Time spent to perform radiological readings for each of the 
three experts and each of the two settings were summarized, and the 
mean times elapsed in the two settings were tested for equality using a 
paired t-test. 

A post-experiment interview was conducted to ask experts whether 
they were satisfied with the tool’s level of information and performance. 

In Van Hecke et al. (2021), lesion segmentations were compared 
with the assessment of two raters, one experienced radiologist and one 
assistant neurologist. The experiment consisted of marking and counting 
MS lesions on images from 10 patients. The two raters independently 
assessed all images, which were shuffled and presented first as original 
scans, then with automatic lesion annotations. The reporting time was 
recorded, and the agreement between the counts reported by the two 
raters with and without the tool was analysed. Moreover, a similar 
procedure was followed to test if the help of automatic reports might 
change radiological findings when assessing follow-up scans. 

In Bilello et al. (2013), two neuroradiologists generated a clinical 
report without assistance from the CAD software. Independently, the 
same scans were assessed by another neuroradiologist using only the 
software output. In both cases, new, enlarging, resolved and improving 
detected lesions were compared, as well as the specified lesion location. 
The duration of the software-assisted pipeline was also recorded for each 
scan, not including the image processing time. 

Yildirim and Dandil, 2021a reported having their pipeline tested by 
two radiologists and evaluated as an auxiliary tool for diagnosis and 
decision support in terms of ease of use, practicality, working speed, and 
automatic detection. Since no details on the modality of these tests were 
disclosed in the article, the fourth QNI step can not be considered 
fulfilled. 

Similarly, Hindsholm et al. (2021) only presented a qualitative 
assessment of output masks by radiologists. Hence, their clinical vali
dation does not comply with the QNI framework. 

Technologists involved by Thakur et al. (2022) reported the time for 
manual intervention to execute the tool and the time to assess and 

Table 3 (continued )  

Data Inputs Method Pre-processing Evaluation metrics QNI steps 
fulfilled  

(Gessert et al., 
2020) 

bi-centric 122 MS FLAIR LST toolbox vs U-Net and 
two path CNNs   

with attention-guided 
interaction modules 

z-score normalisation LTPR, LFPR, DSC 1st, 2nd  

(Hitziger et al., 
2022) 

MSSEG-2 FLAIR U-Net MNI reg., crop FOV to area 
around brain, z-score 

normalisation 

F1, recall, precision, DSC 1st, 2nd  

(Mengin et al., 
2022) 

MSSEG-2, extra 
17 MS 

FLAIR U-Net z-score normalisation DSC, sensitivity, PPV, F1 1st, 2nd  

(Krüger et al., 
2020) 

multi-centric 
1791 MS 

FLAIR U-Net / LTPR, LFPR, DSC lesion- 
wise 

1st, 2nd   

F. Spagnolo et al.                                                                                                                                                                                                                               



NeuroImage: Clinical 39 (2023) 103491

8

Table 4 
Studies’ information containing details on datasets, inputs, and architecture of the automatic algorithm, pre-processing steps, and evaluation metrics (part 2).   

Data Inputs Method Pre-processing Evaluation metrics QNI steps 
fulfilled  

(Schmidt et al., 
2019) 

bi-centric 60 MS FLAIR analysis of FLAIR 
intensities distribution 

tissue classification, b.c. 
and co-reg. 

DSC, FPR, TPR 1st, 2nd  

(Combès et al., 
2021) 

multi-centric 54 MS T1-w, T2-w, FLAIR FCNN orientation in RAS 
coordinates, skull 

stripping, baseline and 
follow-up reg.,  

cropping, b.c., intensity 
histogram linear rescaling 
and Nyul standardisation 

n. of lesions and annotation 
and reporting time  

with and without tool, inter- 
rater variability 

1st, 2nd, 
3rd, 4th  

(Jannat et al., 2021) 30 MS and 100 
controls 

T1-w, T2-w and 
FLAIR 

CNN / precision, recall, F1 1st, 2nd  

(Salem et al., 2020) 60 MS T1-w, T2-w, PD-w 
and FLAIR 

FCNN skull stripping, b.c., Nyul 
standardisation 

TPF, FPF, DSC 1st, 2nd  

(Zhang et al., 2022) multi-centric 507 
MS 

FLAIR 2D U-Net normalisation and 
resampling 

DSC, sensitivity, precision 1st, 2nd  

(Rachmadi et al., 
2019) 

bi-centric 40 MS FLAIR irregularity maps 
generation 

brain and CSF mask 
extraction, co-reg. and b.c. 

DSC, PPV, spec, TPR, non- 
parametric Spearman’s 
correlation coefficient 

1st, 2nd  

(Chen et al., 2021) ISBI 2015 FLAIR, MPRAGE, 
T2-w, PD-w 

U-Net b.c., z-score normalisation DSC, PPV, TPR, LFPR, LTPR 1st, 2nd  

(Mehta et al., 2021) multi-centric 1073 
MS 

T1-w, T2-w, PD-w 
and FLAIR 

Bayesian U-Net and 
another U-Net  

AUC with TPR and FDR 1st, 2nd  

(Opbroek et al., 
2014) 

multi-centric 70 MS T1-w, T2-w and 
FLAIR 

reduced SVM on 33 
features 

Nyul standardisation relative AVD, average 
symmetric SD, TPR, FPR 

1st, 2nd  

(de Oliveira et al., 
2022) 

ISBI 2015, MICCAI 
2016 

FLAIR U-Net anisotropic diffusion filter, 
normalisation, skull 

stripping, b.c. 

DSC, accuracy, precision, 
sensitivity, specificity 

1st, 2nd  

(Yamamoto et al., 
2022) 

28 MS FLAIR CNN denoising absolute VD, PPV, TPR, DSC, 
HD, F1 

1st, 2nd  

(McKinley et al., 
2019) 

multi-centric 139 
MS 

T1-w, T2-w and 
FLAIR 

FCNN skull stripping, co-reg. DSC 1st, 2nd  

(Zhang et al., 
2021b) 

multi-centric 200 
MS 

T1-w, T2-w and 
FLAIR 

U-Net normalisation DSC, LTPR, LPPV, lesion- 
wise F1 

1st, 2nd  

(Abolvardi et al., 
2019) 

ISBI 2015 FLAIR U-Net reg. DSC 1st, 2nd  

(Fenneteau et al., 
2021a) 

ISBI 2015, extra 30 
MS 

FLAIR MPU-net skull stripping, z-score 
normalisation 

DSC 1st, 2nd  

(de Oliveira et al., 
2020) 

ISBI 2015, extra 5 
MS 

T1-w and FLAIR CNN skull stripping, b.c. volume of lesions 1st, 2nd  

(Yildirim and 
Dandil, 2021a) 

38 MS T2-w mask R-CNN with 
ResNet101 as backbone 

/ DSC, volume overlap error, 
LTPR, LFPR 

1st, 2nd  

(Tran et al., 2022) 30 MS T1-w and FLAIR intensity-based b.c. WM hyperintensities volume 
agreement, DSC, FPR, TPR, 

F1 score 

1st, 2nd, 
3rd  

(Cavedo et al., 
2022) 

130 images multi- 
centric, different 

populations 

FLAIR intensity-based / WM hyperintensities 
volume, DSC, relative VD, 

absolute volume error 

1st, 2nd, 
3rd  

(Brune et al., 2020) 56 MS MPRAGE and FLAIR intensity-based / lesion count of tool vs 
neuroradiologists, single and 

multiple timepoints 

1st, 2nd, 
3rd  

(Jain et al., 2017) 22 MS T1-w and FLAIR maximum a posteriori 
model on image 

intensities of both time 
points 

b.c., normalisation DSC, F1, LTPR, LFPR, AVD 1st, 2nd  

(Van Hecke et al., 
2021) 

batches of 10 and 
25 MS,   

plus 87 subjects 
with CIS and MS 

T1-w and FLAIR U-Net with attention 
gate layers 

MNI reg., skull stripping, 
z-score normalisation 

with vs without tool 
performances, surveys on 

patient’s perspective 

1st, 2nd, 
3rd, 4th, 
5th, 6th  

(Sousa et al., 2021) ISBI 2015, MICCAI 
2016, 33 MS 

bicentric 

T1-w, FLAIR CNN skull stripping, b.c. DSC, PPV, AVD 1st, 2nd  

(Elsebely et al., 
2021) 

MICCAI 2008 FLAIR ensemble of SVMs and 
decision tree 

contrast-brightness 
correction 

DSC, accuracy, n. of TP/FP/ 
FN, sensitivity, PPV 

1st, 2nd  

(Bhanumurthy and 
Anne, 2016) 

MICCAI 2016 FLAIR modified histon based 
fast fuzzy C-means 

normalisation FPR, FNR, specificity, 
sensitivity, accuracy 

1st, 2nd  

(Ghodhbani et al., 
2022) 

MICCAI 2008, ISBI 
2015 

T1-w, T2-w and 
FLAIR 

U-Net / DSC 1st, 2nd  

(Roy et al., 2013) MICCAI 2008 T1-w, T2-w and 
FLAIR 

SVM MNI reg., skull stripping, 
z-score normalisation  

1st, 2nd  

(Chen et al., 2020) MICCAI 2016, ISBI 
2015 

PD-w, T1-w, T2-w 
and FLAIR 

network with attention 
and graph convolution 

features 

/ DSC, PPV, LFPR, LTPR, VD 1st, 2nd  

(continued on next page) 
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Table 4 (continued )  

Data Inputs Method Pre-processing Evaluation metrics QNI steps 
fulfilled  

(Tomas-Fernandez 
and Warfield, 
2015) 

synthetic and 
MICCAI 2008 

FLAIR intensity-based using 
reference healthy 

population 

b.c., denoising PPV, LTPR, LFPR 1st, 2nd  

(Ghribi et al., 2017) MICCAI 2008, ISBI 
2015 and 70 MS 

and HC 

FLAIR gaussian mixture model b.c., skull stripping, 
denoising, z-score 

normalisation 

DSC, PPV, LTPR, LFPR, SD, 
VD 

1st, 2nd  

(Salem et al., 2019) 65 MS/CIS, 
synthetic and ISBI 

2015 

T1-w and FLAIR FCNN b.c. mean square error, 
structural similarity index, 
DSC, sensitivity, precision 

1st, 2nd  

(Hashemi et al., 
2018) 

MICCAI 2016, ISBI 
2015 

MPRAGE, PD-w, 
FLAIR, T2-w 

U-Net vs FC DenseNet / DSC, F2, sensitivity, 
precision, Jaccard index, 

PPV, LTPR, LFPR, VD 

1st, 2nd  

(Hou et al., 2019) ISBI 2015 FLAIR, t1-w, T2-w, 
PD-w 

cross attention densely- 
connected network 

/ DSC, Jaccard index, PPV, 
TPR, LFPR, LTPR, VD, SD 

1st, 2nd  

(Rondinella et al., 
2023) 

ISBI 2015 FLAIR U-Net with attention 
mechanism 

skull stripping, 
normalisation and black 

images removal 

DSC, sensitivity, specificity, 
extra fraction, IoU, PPV, 

NPV 

1st, 2nd  

(Weiss et al., 2013) MICCAI 2008 FLAIR dictionary learning with 
sparsity constraint 

skull stripping, 
normalisation 

DSC, TPR, PPV 1st, 2nd  

(Homayoun and 
Ebrahimpour- 
Komleh, 2017) 

MICCAI 2008 FLAIR artificial neural network skull stripping, b.c., 
denoising, normalisation 

sensitivity, specificity, FPR, 
FNR, SI 

1st, 2nd  

(Andresen et al., 
2022) 

MS-SEG2 FLAIR CNN skull stripping, 0–1 
normalisation 

F1, sensitivity, PPV 
(detection); DSC, SD, HD 

(segmentation) 

1st, 2nd  

(Valencia et al., 
2022) 

MS-SEG2 and 136 
CIS 

FLAIR and synthetic 
T1-w 

FCNN MNI reg., skull stripping, 
0–1 normalisation 

sensitivity, FDR, precision 1st, 2nd  

(Salem et al., 2022) MS-SEG2 FLAIR U-Net skull stripping, Nyul 
normalisation, b.c. 

F1, PPV, sensitivity, DSC 1st, 2nd  

(Freire and Ferrari, 
2016) 

ISBI 2015 FLAIR intensity-based denoising, b.c. DSC, TPR, FPR, AVD 1st, 2nd  

(Sarica et al., 2022) ISBI 2015, MICCAI 
2016 

T1-w, T2-w and 
FLAIR 

residual U-Net skull stripping, 
normalisation and zero 

padding (ISBI),  
denoising, skull stripping, 

b.c., normalisation 
(MICCAI) 

DSC, PPV, LTPR, LFPR, AVD 1st, 2nd  

(Shahab et al., 
2021) 

ISBI 2015 T1-w, T2-w and 
FLAIR 

CNN denoising, b.c., skull 
stripping, normalisation 

DSC, Jaccard index, PPV, 
TPR, LFPR, LTPR, AVD 

1st, 2nd  

(Jog et al., 2015) MICCAI 2008 and 
in-house 49 MS 

T1-w, FLAIR, T2-w 
(MPRAGE for in- 

house) 

decision trees MNI reg., skull stripping, 
normalisation, b.c. 

TPR, PPV, lesion volume 1st, 2nd  

(Knight et al., 2018) 96 MS multicentric, 
MICCAI 2016, ISBI 

2015 

FLAIR voxel-wise logistic 
regression 

MNI reg., b.c., 
normalisation 

SI, precision and recall 1st, 2nd  

(Valcarcel et al., 
2018) 

98 MS and ISBI 
2015 

combinations of 
MPRAGE, PD-w, 

FLAIR, T2-w 

local-level logistic 
regression 

MNI reg., b.c., skull 
stripping, z-score 

normalisation 

DSC, pAUC 1st, 2nd  

(Gao et al., 2014) MICCAI 2008 T1-w, T2-w and 
FLAIR 

energy minimisation 
and non-local means 

algorithm 

b.c., reg. DSC, specificity, FNR, VD 1st, 2nd  

(Krishnan et al., 
2023) 

ISBI 2015, MICCAI 
2016 and 

multicentric   
double blinded 

trial 798  + 714  +
416 MS 

T1-w, T2-w and 
FLAIR 

U-Net MNI reg., b.c., skull 
stripping 

PPV, TPR, DSC on lesion 
volume (segmentation),  

LPPV, LTPR, LFPR on lesion 
count (detection), also AVD 

on ISBI   

(Mechrez et al., 
2016) 

MICCAI 2008 and 
38 MS 

T1-w and FLAIR intensity-based b.c., skull stripping VD, SSD, TPR, FPR 1st, 2nd  

(Bouzidi et al., 
2020) 

30 MS T1-w, T2-w and 
FLAIR 

otsu threshold and 
connected components 

filters 

b.c., denoising DSC, sensitivity, precision 1st, 2nd  

(Bijar et al., 2012) 20 MS FLAIR genetic algorithm and 
localised weighted 

filters 

/ similarity criteria, overlap 
fraction, extra fraction 

1st, 2nd  

(Narayana et al., 
2018) 

multi-center, 
double-blinded, 

and   
randomized phase 
III clinical trial 

1008 MS 

T1-w, T2-w, PD-w 
and FLAIR 

CNN skull stripping, b.c., 
normalisation 

DSC 1st, 2nd  

(Tripoliti et al., 
2019) 

/  / / / 3rd, 5th  

(continued on next page) 
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generate a report for a single patient. However, they used these findings 
to compare two versions of the same software instead of evaluating 
advantages with respect to a manual assessment. For this reason this 
article did not fulfill the fourth QNI step. 

3.9. Integration into clinical workflow 

In Bilello et al. (2013), the DICOM series of all the paired examina
tions were available in PACS to be exported and used as inputs to the 
automated method. Similarly, in Tripoliti et al. (2019) the user can 
retrieve imaging data either from the PACS or the local disk of the 
computer where the automatic software is installed. 

In Combès et al. (2021), once stored in the local clinical PACS, MR 
images were pseudonymized and securely transferred into a processing 
hosting (certified health data hosting provider), and new lesions were 
automatically segmented. Then, the processed images and correspond
ing segmentation maps were transferred back to PACS, which could be 
visualized in a dedicated web MRI viewer (using DICOM format). 

Van Hecke et al. (2021) developed a platform including a web portal 
for healthcare professionals, volumetric brain reports, and the integra
tion with hospitals’ PACS and electronic medical record systems. 

In Thakur et al. (2022), the automated software was integrated and 
routinely used in clinical practice since April 2012. The images were 
stored in PACS and converted from DICOM to NIfTI (Neuroimaging 
informatics technology initiative) for processing. The authors 
mentioned their method needs MRI scans to be acquired at the same 
institution. 

The integration of the tool into the clinical workflow was only 
partially investigated in Yildirim and Dandil, 2021a, including data 
compatibility and the visualisation of segmented lesions overlayed with 
the input image. Yet, the integration of their web-based system with a 
hospital electronic information system, such as PACS, was not consid
ered. Thus, the fifth QNI step was not satisfied. 

3.10. In-use validation 

Van Hecke et al. (2021) presented and tested a care management 
system, including a patient mobile phone application (available on 
Android and iOS) and a website. A first patient’s perspective survey was 
conducted to understand patients’ attitude towards the app, different 
possible features, and their level of interest in using such application. A 
second survey collected information such as patients’ propensity to view 
MRI images on their own, or if they would be interested in knowing 
whether there were any changes in follow-ups (such as new lesions or 
brain volume loss). 

3.11. QNI steps fulfillment 

Based on the findings presented in 156 studies, 146 comply with the 
first QNI step, while 155 fulfill the second. The third step is considered 
by eight works, three studies fully investigate the fourth and five the 
fifth. Only a single article explores the last QNI step. An overview of the 
fulfillment of QNI steps in the screened literature is presented in the road 
map of Fig. 4a. A similar road map can be generated from data related to 
10 commercial devices screened by Mendelsohn et al. (2022), reported 
in Fig. 4b. A summary of the fulfilled steps is reported in the last columns 

of Tables 3–5. 

4. Discussion 

The present systematic review exposes a considerable gap between 
methods’ development and the introduction of those methods into 
clinical practice. There are many possible cause for this gap. 

A first explanation could be the difficulty to implement clinical trials: 
complying with clinical regulations and addressing ethical issues might 
result in an undesirable delay of the investigation. Participants’ insuf
ficient knowledge about trial methods and the complexity of study 
protocols might also jeopardise patients’ recruitment process. The lack 
of trained medical personnel could represent a problem, when designing 
a clinical trial and even in the case of an internal clinical validation. All 
the above reasons are not specific to MS, meaning they could apply to 
many other neurological and non-neurological disorders. 

Clinical integration presents, as well, some significant hurdles. To be 
applied in clinical practice, lesion segmentation methods should not 
only be integrated in the clinical workflow (i.e., be integrated in clinical 
PACS systems; be readily applicable to MR data that have not been 
preprocessed and sometimes acquired in different scanners, or with 
different image quality despite a consistent acquisition protocol, etc.) 
but also provide means to evaluate their outcome’s uncertainty and 
errors. Ad-hoc integration designs need to be developed considering the 
current clinical neuroradiological workflow as well as evaluating the 
reliability of those methods in a clinical routine setting, and the related 
clinicians’ trust in using them as clinical decision support tools. To help 
cover these aspects, an automatic tool could be conceived within a 
quality management framework for medical devices. The handling of 
possible failures, risk monitoring and data storage would also be 
addressed by following such guidelines. Data storage, management and 
sharing systems, such as KHEOPS (https://kheops.online/) or Flywheel 
(https://flywheel.io/), could be a way to deal with PACS and anonymise 
imaging data acquired at hospitals. Moreover, the use of a docker to 
execute software in an isolated and reproducible environment could 
help towards clinical integration. As to the real advantage of using 
automated methods in clinical routine, these should be carefully eval
uated on site by providing means to assess errors and eventually also 
correct them for future evaluations, as for example could be done with 
uncertainty estimations/explainable AI and user-friendly interactive 
interfaces. 

Along with this, the trade off between the economic costs of a clinical 
implementation and MS incidence may play an important role. In this 
sense, addressing medium to long-term effects (last QNI step) of the tool 
would be helpful. Studies should provide documentation such as:  

1. periodical reports on how easily the tool could be integrated and 
feedback from users  

2. the speed of diagnosis and failure rate, compared to pre-use cases  
3. the amount of required resources, productivity, patient perception, 

and economic impact. 

On the other hand, if a tool is not clinically adopted, its efficacy and 
perception could be part of the reasons. An extremely wide range of 
solutions with respect to the methods characteristics, inputs, and pro
cessing steps is already available and discussed in reviews, such as 

Table 4 (continued )  

Data Inputs Method Pre-processing Evaluation metrics QNI steps 
fulfilled  

(Abhale et al., 2022) 1000 MS from 
phase 3 

multicentric trial 

T2-w FCNN / DSC 1st, 2nd  

(Zangeneh and 
Yazdi, 2016) 

20 MS FLAIR gaussian mixture model 
and genetic algorithm 

skull stripping accuracy, number of FP, TP, 
FN, TN 

1st, 2nd   
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Table 5 
Studies’ information containing details on datasets, inputs, and architecture of the automatic algorithm, pre-processing steps, and evaluation metrics (part 3).   

Data Inputs Method Pre-processing Evaluation metrics QNI steps 
fulfilled  

(Karpate et al., 
2015) 

16 MS and 20 HC MPRAGE, T2-w, 
FLAIR 

Least squares 
probabilistic 
classification 

b.c., denoising precision, recall 1st, 2nd  

(Mei et al., 2017) 10 MS FLAIR, T1-w (also 
with gadolinium) 

self-organising maps 
(nerual network) 

/ topographic and 
quantisation errors 

1st, 2nd  

(Zhang et al., 
2018) 

69 MS T1-w and FLAIR generative adversarial 
network 

b.c. on T1-w DSC, recall, precision, F1 1st, 2nd  

(Dachraoui et al., 
2020) 

30 MS T1-w (also 
gadolinium), T2-w 

and FLAIR 

Fuzzy C-Means 
clustering and geodesic 

models 

skull stripping, 
denoising, contrast 

adjustment 

number of TP, TN and 
precision 

1st, 2nd  

(Deshpande et al., 
2015) 

14 MS MPRAGE, PD-w, 
FLAIR 

adaptive dictionary 
learning 

b.c., skull stripping PPV, sensitivity 1st, 2nd  

(Harmouche et al., 
2014) 

100 MS multicentric T1-w, T2-w, PD-w, 
FLAIR (for half 

datasets) 

Markov random fields b.c., skull stripping, 
normalisation 

DSC, sensitivity, PPR 
(ratio) 

1st, 2nd  

(Nass et al., 2022) 30 MS T1-w (also contrast 
enhanced), T2-w, 

FLAIR 

Fuzzy C-Means contrast adjustment DSC 1st, 2nd  

(Zhang et al., 
2022) 

135 MS FLAIR 2D U-Net normalisation DSC, sensitivity, precision 1st, 2nd  

(Ye et al., 2020) 38 MS diffusion basis 
spectrum imaging, 

T1-w and T2-w 

FCNN normalisation number of predictions, 
AUC, sensitivity, 

specificity, F1 

1st, 2nd  

(Thakur et al., 
2022) 

200 MS per month for 
10yrs 

FLAIR intensity subtraction 
between timepoints 

b.c., skull stripping, 
resampling and reg. 

number of clinical cases 
assessed with CAD, time 

per patient 

1st, 2nd, 
3rd, 5th  

(Fartaria et al., 
2019) 

25 MS bicentric 7T MP2RAGE partial volume 
estimation and 

topological constraints 

skull stripping % of detected lesions, FPR, 
AVD, F1 

1st, 2nd  

(Hosseinipanah 
et al., 2019) 

>80 MS FLAIR ensemble of SVMs normalisation DSC, JI, sensitivity, 
specificity, PPV 

1st, 2nd  

(Meier et al., 
2017) 

29 MS  + 13 MS and 15 
HC 

T1-w, T2-w and 
FLAIR 

intensity-based with 2 
thresholds for supra- 
and infra-tentorial 

b.c., skull stripping, 
tissue segmentation, 

normalisation 

sensitivity, specificity, 
DSC, Jaccard index, PPV, 

HD, TPR 

1st, 2nd  

(Jain et al., 2015) 30 MS T1-w and FLAIR intensity-based skull stripping on T1-w DSC, AVD, total lesion VD, 
precision, sensitivity 

1st, 2nd  

(Bonanno et al., 
2021) 

20 MS FLAIR Watershed-Clustering 
algorithm 

denoising accuracy, sesnitivity, 
specificity, AUC 

1st, 2nd  

(Huang et al., 
2022) 

20 MS FLAIR V-Net b.c., skull stripping, 
tissue segmentation 

DSC, HD, AVD, TPR, F1 1st, 2nd  

(Narayana et al., 
2019) 

multicentric, double 
blinded, randomized 

trial 1008 MS 

T1-w, T2-w, PD-w 
and FLAIR in 
combinations 

U-Net skull stripping, b.c., 
normalisation, denoising 

DSC, FPR, TPR 1st, 2nd  

(Arnold et al., 
2022) 

33 MS bicentric T1-w, T2-w, FLAIR local-level logistic 
regression 

b.c., normalisation DSC, TPR, FDR 1st, 2nd  

(Krüger et al., 
2021) 

1809 MS multicentric FLAIR or T1-w and 
FLAIR 

CNN strong artifacts removal sensitivity, PPV, F1, DSC 1st, 2nd  

(Fartaria et al., 
2018) 

39 MS FLAIR and MPRAGE outlier rejection and 
region growing vs fuzzy 

clustering 

skull stripping, b.c. detection rate, FPR, DSC, 
lesion volume 

1st, 2nd  

(Karimian and 
Jafari, 2015) 

25 MS bicentric T1-w, T2-w, FLAIR Gaussian mixture model skull stripping, 
normalisation 

DSC, accuracy, specificity, 
sensitivity 

1st, 2nd  

(Sweeney et al., 
2014) 

98 MS T1-w, T2-w, FLAIR intensity-based MNI reg., skull stripping, 
b.c., normalisation 

DSC, AUC, computational 
time 

1st, 2nd  

(Fartaria et al., 
2015) 

39 MS FLAIR, DIR, 
MPRAGE, MP2RAGE 

k-nearest neighbour reg. to MP2RAGE, skull 
stripping, b.c., 
normalisation 

detection rate, sensitivity, 
specificity, accuracy, DSC 

1st, 2nd  

(Rosa et al., 2021) 44 MS and 12 HC MPRAGE to generate 
synthetic MP2RAGE 

generative adversarial 
network 

skull stripping, z-score 
normalisation 

detection rate (WML and 
cortical), DSC, AVD 

1st, 2nd  

(Rovira et al., 
2021) 

100 MS PD-w, T2-w, 
MPRAGE, FLAIR 

CNN skull stripping, b.c., 
normalisation 

number of new/enlarging 
lesions, per patient mean 

new/enlarging lesions 

1st, 2nd  

(Egger et al., 
2016) 

50 MS FLAIR intensity-based / DSC, AVD, lesion count 1st, 2nd  

(Cabezas et al., 
2014) 

45 MS FLAIR intensity-based atlas reg., skull stripping, 
b.c., denoising 

TPF, FPF, DSC at voxel and 
lesion level 

1st, 2nd  

(Salem et al., 
2017) 

60 MS/CIS T1-w, T2-w, PD-w, 
FLAIR 

image subtraction and 
logistic regression 

b.c., skull stripping, Nyul 
normalisation 

TPF, FPF, DSC 1st, 2nd  

(Khotanlou and 
Afrasiabi, 2012) 

15 MS T1-w, T2-w and 
FLAIR 

SVM denoising, 
morphological 

operations to exclude 
non-brain area 

SI, overlap fraction, extra- 
fraction 

1st, 2nd  

(continued on next page) 
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Table 5 (continued )  

Data Inputs Method Pre-processing Evaluation metrics QNI steps 
fulfilled  

(Valcarcel et al., 
2018a) 

40 MS T1-w, T2-w, FLAIR local level logistic 
regression 

skull stripping, b.c., 
normalisation 

DSC, pAUC, root mean 
square, detection and 

outline errors 

1st, 2nd  

(Valcarcel et al., 
2020) 

94 MS and 40 MS T1-w, T2-w, FLAIR intensity-based MNI reg., skull stripping, 
normalisation 

lesion volume bias, 
absolute volume error 

1st, 2nd  

(Dwyer et al., 
2019) 

multicentric 100 
subjects, 192 MS/CIS, 
15 MS, 125 MS and 76 

HC 

FLAIR random forest classifier b.c., normalisation agreement with 
conventional T2-w lesion 

volume 

1st, 2nd  

(Battaglini et al., 
2014) 

multicentric, 
randomized, double- 

blind, placebo- 
controlled   

Phase II clinical trial 
103 MS (randomly 

select 19 MS) 

T1-w, T2-w, PD-w subtraction images 
between timepoints 

skull stripping, 
normalisation 

SI, lesion count 1st, 2nd  

(Le et al., 2019) 47 MS multicentric FLAIR and T2-w 
combination   
(also T1-w 

depending on 
algorithm) 

comparison of three 
algorithms 

b.c., skull stripping lesion VD, DSC, sensitivity, 
symmetric SD 

1st, 2nd  

(Zhong et al., 
2014) 

26 MS FLAIR high spatial frequency 
suppression 

b.c., skull stripping, CSF 
sulcus and ventricle 

segmentation 

SI, lesion volume 1st, 2nd  

(Galimzianova 
et al., 2017) 

30 MS FLAIR Markov random fields skull stripping, b.c. DSC, total lesion load 1st, 2nd  

(Schläger et al., 
2022) 

74 MS multicentric T1-w and FLAIR to 
generate synthetic 

DIR 

generative adversarial 
network 

b.c., normalisation new lesions count (location 
based), disease activity 

assessment 

1st, 2nd  

(Subbanna et al., 
2015) 

1195 MS T1-w, T2-w, PD-w, 
FLAIR 

two levels of Markov 
Random Fields 

b.c., skull stripping, 
normalisation 

sensitivity, PPV 1st, 2nd  

(Galimzianova 
et al., 2015) 

30 MS T1-w, T2-w and 
FLAIR 

stratified mixture 
models 

b.c. DSC, Jeffrey’s divergence 1st, 2nd  

(Spies et al., 2013) 10 MS MPRAGE tissue segmentation, 
stereotactic   

normalisation and 
voxelwise stat analysis 

/ DSC 1st, 2nd  

(Ganiler et al., 
2014) 

20 MS T2-w, PD-w 
combinations 

image subtraction b.c., skull stripping, 
normalisation, WM 

masking 

sensitivity, FDR, DSC 1st, 2nd  

(Nguyen et al., 
2018) 

30 MS FLAIR subtraction image b.c., skull stripping, 
normalisation 

sesnitivity, specificity, 
human review time 

1st, 2nd  

(Ong et al., 2012) MICCAI 2008, 38 MS T1-w, FLAIR intensity-based skull stripping, b.c. lesion load, SI, Jaccard 
index, FPF, TPF 

1st, 2nd  

(Cerasa et al., 
2011) 

11 MS FLAIR cellular neural network skull stripping DSC, total lesion load 1st, 2nd  

(Kuwazuru et al., 
2011) 

3 MS T1-w, T2-w, FLAIR SVM and artificial 
neural network 

enhancement by 
subtraction of 
background 

accuracy, SI, sensitivity, 
number of FP 

1st, 2nd  

(Bilello et al., 
2013) 

88 MS FLAIR image subtraction skull stripping, b.c. with and without CAD: 
lesion count and location, 

PPV, NPV,  
sensitivity, specificity, 

efficiency, AUC, lesion- 
wise   

sensitivity, FPR and PPV, 
time spent, clinical 

reporting 

1st, 2nd, 
3rd, 4th, 

5th  

(Hindsholm et al., 
2021) 

93 MS FLAIR 2D CNN normalisation, cropping 
or zero padding 

DSC, recall, F1, precision, 
qualitative assessment of 

output lesion masks 

1st, 2nd  

(Roy et al., 2015) 10 MS MPRAGE and FLAIR patch based with 
temporal information 

from timepoints 

normalisation DSC, LTPR, LFPR, AVD 1st, 2nd  

(Bouman et al., 
2023) 

198 MS DIR or PSIR 
generated   

artificially from T1- 
w, T2-w, PD-w or 

FLAIR 

U-Net-like MNI reg., skull stripping, 
b.c. 

lesions count, precision 1st, 2nd  

(Sitter et al., 2017) 69 MS  + 1 CIS 2D FLAIR and 3D T1- 
w 

multiple models 
comparison 

MNI reg., b.c. SI, volumes of FP and FN 1st, 2nd  

(Cabezas et al., 
2016) 

36 MS/CIS FLAIR image subtraction skull stripping, b.c., 
normalisation 

DSC, FPR, TPR 1st, 2nd   
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Fig. 3. Report example published in Van Hecke et al. (2021) (a) and Brune et al. (2020) (b).  
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(Llado et al., 2012; García-Lorenzo et al., 2012; Alrabai et al., 2022; 
Zeng et al., 2020; Ma et al., 2022; Diaz-Hurtado et al., 2022; Commo
wick et al., 2023). What is actually lacking is a validation that demon
strates the advantages of automatic methods with respect to the 
standard procedure. 

Furthermore, many of the reviewed studies have been performed on 
data from international challenges, which were to some extent curated 
and, thus, did not reflect current “real-world” clinical scenarios. Feed
back from radiologists and neurologists on clinical data could help 
methods explore and mitigate  potential implementation biases 
(Vokinger et al., 2021; Varoquaux and Cheplygina, 2022). At the same 
time, this could change the way the tool is perceived in the clinical 
environment. 

An additional reason may be that latest methods struggle to adapt to 
the heterogeneity of data acquired in clinical settings. Some recent 
works attempted at addressing the challenge of the use of images 

acquired with different contrast mechanisms and in scanners produced 
by different vendors and with different field strengths (Cerri et al., 2021; 
Billot et al., 2021). The issue represented by the different spatial reso
lution of clinical images, leading to variable partial volume effect during 
resampling, still requires ad hoc solutions and additional validation with 
on-site data. Also, an ad hoc integration of a method into a single 
institutional PACS may not generalise well in the case of a multicentric 
study. 

Another possible motivation for the existing gap between develop
ment and clinical integration of methods could be the lack of national 
and international initiatives to promote their translation into clinical 
practice. In the current situation there is still a pronounced imbalance in 
favour of challenges supporting technical evaluations. Similar initiatives 
related to clinical validation and integration would certainly represent a 
boost in the implementation of solutions for MS lesion segmentation. 
Research focused on the integration of those methods into the clinical 

Fig. 4. Rate of compliance with the 6 QNI steps in reviewed studies (a) and commercial devices (b).  
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workflow as well as on the evaluation of their performance in a clinical 
routine setting might substantially help promoting their adoption and 
use by both neuroradiologists and neurologists. 

Moreover, reducing the gap between the methods’ development and 
clinical translation might be highly beneficial also to improve the 
robustness and minimise the implementation bias of software solutions 
for MS lesion detection/segmentation. Ultimately, also patients would 
benefit from a more efficient and trustworthy process supporting disease 
diagnosis and monitoring of treatment effects. 

5. Conclusions 

We systematically reviewed automatic MS lesion detection and 
segmentation tools to assess their maturity towards clinical integration. 
Using the six steps of the QNI framework, we examined these quanti
tative tools’ development, validation, and integration level in the clin
ical workflow. In this review, we  focused on the required development 
towards clinical application of MS lesion segmentation methods, and 
showed that—to date—there is no consistent evidence of tools’ inte
gration into the clinical workflow. Our work demonstrates, therefore, 
that there is an important gap that needs to be filled by future research in 
this field. In addition, the socio-economic effects and the impact on 
patients’ management of those tools have yet to be studied. 
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