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Abstract The SLC2 family of glucose and polyol
transporters comprises 13 members, the glucose trans-
porters (GLUT) 1-12 and the H*-myo-inositol cotrans-
porter (HMIT). These proteins all contain 12
transmembrane domains with both the amino and car-
boxy-terminal ends located on the cytoplasmic side of the
plasma membrane and a N-linked oligosaccharide side-
chain located either on the first or fifth extracellular loop.
Based on sequence comparison, the GLUT isoforms can
be grouped into three classes: class I comprises GLUT1-
4; class II, GLUTS®, 8, 10, and 12 and class III, GLUTS, 7,
9, 11 and HMIT. Despite their sequence similarity and the
presence of class-specific signature sequences, these
transporters carry various hexoses and HMIT is a H'/
myo-inositol co-transporter. Furthermore, the substrate
transported by some isoforms has not yet been identified.
Tissue- and cell-specific expression of the well-charac-
terized GLUT isoforms underlies their specific role in the
control of whole-body glucose homeostasis. Numerous
studies with transgenic or knockout mice indeed support
an important role for these transporters in the control of
glucose utilization, glucose storage and glucose sensing.
Much remains to be learned about the transport functions
of the recently discovered isoforms (GLUT6-13 and
HMIT) and their physiological role in the metabolism of
glucose, myo-inositol and perhaps other substrates.
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Introduction

Facilitated diffusion of glucose and related hexoses across
biological membranes is catalysed by members of the
SLC2 family, referred to as glucose transporters or
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GLUTs. These transporters function as simple carriers
and the movement of hexose across the plasma membrane
proceeds in the direction imposed by its electrochemical
gradient. A common structural feature of the SLC2 family
member is the presence of 12 transmembrane domains
(TM) with both the amino and carboxy-terminal ends
present on the cytosolic side and a unique N-linked
oligosaccharide side-chain present either in the first or the
fourth extracellular loop. Signature sequences conserved
between the different members of the SLC2 family are
present at distinct locations in the primary structure
(Fig. 2). The presence of these sequences, however, does
not predict the substrate specificity of these transporters.
Glucose transporters are expressed in every cell of the
body, as might be anticipated from the key role of glucose
in providing metabolic energy and building blocks for the
synthesis of biomolecules. The specific physiological role
of the isoforms expressed in tissues involved in the
control of glucose homeostasis, i.e. muscle, adipose
tissue, liver, pancreatic f-cells and brain, has been
studied in greatest detail. Indeed, in these tissues glucose
transporters play important roles in the control of glucose
utilization, glucose production and glucose sensing and
their dysregulated expression may underlie pathogenetic
mechanisms leading to development of diabetes mellitus,
but also other specific monogenic diseases (see below).
Facilitated diffusion of glucose across plasma mem-
branes has been studied for several decades [43]. The
recognition that human erythrocytes have a high density
of glucose transporters allowed the initial biochemical
purification of this transporter and the preparation of
specific antibodies. These were then used for initial
cloning of a human glucose transporter by screening an
expression library prepared from a human hepatoma cell
line (HepG2) [53]. This glucose transporter, GLUT1, was
then used for subsequent cloning, by low-stringency
screening, of GLUT2-5. More recently, novel glucose
transporter-related proteins have been identified by
screening gene databases for sequences similar to con-
sensus sequences derived from GLUT1-5. These novel
molecules are now known as GLUT6-12 and HMIT.
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Fig. 1 Radial tree showing multiple alignment of all members of
the extended glucose transporter (GLUT) family and constructed
using the clustalW program from the EMBL European Bioinfor-
matics Institute (http://www.ebi.ac.uk/clustalw/). The three sub-
classes of the family are clearly distinguishable (class 1: GLUT1-4;
class 2: GLUTS, 7,9 and 11; class 3: GLUT®6, 8, 10, 12 and the H*/
myo-inositol transporter HMIT)

Figure 1 shows a dendrogram of the glucose transporter
family and the global arrangement of the molecules in the
plasma membrane. Structurally, these molecules can be
divided in three classes: GLUT1-4 (class 1); GLUTS, 7,9
and 11 (class 2) and GLUT®6, 8, 10, 12 and HMIT (class
3). GLUTI-4 are the initially characterized glucose
transporters. GLUTS is a fructose transporter and the
function of the other transporter-like molecule from class
2 is not yet firmly established. The class-2 proteins lack
the tryptophan equivalent to W388 of GLUTI. Among
the class-3 family, the function of GLUT8 and 10 as
glucose transporters has been established clearly, and
HMIT is an H*/myo-inositol symporter. The function of
GLUT6 and 12 is not yet defined. One particular
structural characteristic of the class-3 molecules is the
short extracellular loop between TM1 and -2 and a longer
loop between TM10 and -11 that contains the unique N-
glycosylation site.

GLUT1

Glut 1 was the first transporter to be characterized by
molecular cloning, and its cDNA was isolated from an
expression library using antibodies against the humans
erythrocyte glucose transporter [53]. Although cloned
from a hepatoma cDNA library, GLUT1 is not expressed
in normal hepatocytes. It is, however, induced during
oncogenic transformation of most cell types and its
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expression correlates with the increase in glucose metab-
olism observed in tumour cells [20]. GLUT1 is found in
almost every tissue with different levels of expression in
different cell types. The expression level usually corre-
lates with the rate of cellular glucose metabolism. It is
also expressed highly in blood-tissue barriers, in partic-
ular in the endothelial cells forming the blood-brain
barrier [45].

The topological arrangement of GLUTI1 within the
plasma membrane has been confirmed using several
experimental approaches. Recently, two models have
been proposed for the tertiary structure of GLUT1. The
first is based on data obtained from cysteine scanning
mutagenesis of five of the a-helices of GLUT1 together
with information from site-directed mutagenesis [52]. The
second is based primarily on the proposed helical bundle
arrangement of the Lac permease and has been refined
using energy minimization algorithm [79]. These two
models describe a key role for helix 7 in the formation of
a water-filled channel which may form the path for
glucose across the plasma membrane.

The transport of glucose may be described as an
alternating conformer model in which the transporter has
mutually exclusive binding sites located on the extracel-
lular (import site) and on the intracellular face (export
site) of the transporter. Binding of glucose to one site
induces the transporter to switch to the opposite confor-
mation, a process that is accompanied by a movement of
the substrate across the plasma membrane. In human
erythrocytes, GLUT1 is thought to be present as homod-
imers or homotetramers, with the conversion between
both oligomeric forms being dependent on the redox state
[27, 28]. GLUTT1 transports glucose with a Ky, of ~3 mM.
Other transported substrates are galactose, mannose and
glucosamine [75].

Glucose transport by GLUTI is sensitive to several
inhibitors that also block transport by other isoforms.
Many of them are competitive inhibitors of sugar binding,
either to the extracellular or the cytosolic sugar binding
sites. Cytochalasin B binds to the inner surface of GLUT1
[4] and inhibits its glucose transport activity with an ICs
of 0.44 uM. Binding of cytochalasin B is to a site which
contains tryptophan 388 and 412 (see Fig. 2). Also acting
on the same intracellular site is the diterpene toxin
forskolin. Forskolin has been used as a photoaffinity label
with some specificity for the glucose transporter and its
affinity is increased in the 3-iodo4-azidophenethylamido-
7-O-succinyldeacetyl (IAPS) derivative. An iodinated
derivative of forskolin (7-aminoalkylcarbamate) with a
very high affinity (ICso 200 nM) has also been described
[51].

Glucose transport activity of GLUT1 is inhibited by
HgCl, (ICsop 3.5 uM), phloretin (ICsy 49 uM) phlorizin
(ICs0 355 uM) [37] and 4,6-O-ethylidene-D-glucose (ICs
12 mM), which binds to the external glucose binding site
where glutamine 161 appears to be critical for inhibitor
binding [54]

Several heterozygous mutations resulting in GLUT]1
haploinsufficiency have been identified. These cause
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Fig. 2 Schematic model of the
structure of classes 1 and 2
(upper panel) and class 3 (lower
panel) members of the GLUT
family. The signature sequences
of the GLUT family are high-
lighted. The tryptophan residues
388 and 412 (numbering of
GLUT1) are part of the cyto-
chalasin B binding site. The
major differences between
classes 1 and 2 and class 3 are
the position of the large extra-
cellular loop containing the N-
glycosylation site(s), the pro-
line-containing motif between
transmembrane domains (TM)
TM6 and TM7, and the pres-
ence of a dileucine motif in the
amino-terminal tail of class-3
transporters (except for
GLUT10)

NH,
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hypoglycorrachia, a condition characterized by seizures,
developmental delay, acquired microcephaly, and hypo-
tonia, and which is due to a decrease rate of glucose
transport from the blood into cerebrospinal fluid [42, 67].

GLUT2

GLUT?2 cDNA was cloned by low-stringency screening of
rat [72] and human [21] liver cDNA libraries with a
GLUT1 cDNA probe. GLUT2 is a low-affinity trans-
porter for glucose (Ky ~17 mM) [34], galactose (K
~92 mM), mannose (K, ~125 mM) and fructose (K,
~76 mM), but a high-affinity transporter for glucosamine
(~0.8 mM) [75]. The capacity for transporting fructose,
shared also by GLUTS and GLUTS, could be explained
by the absence of the QLS motif from helix 7 (residues
279-281 of mouse GLUT1). Indeed, mutation of these
amino acids in GLUT3 confers fructose transport capa-
bility on this transporter [66]. Absence of this motif could
also be responsible of the surprisingly high affinity of
GLUT?2 for glucosamine.

GLUT2 binds cytochalasin B with a fivefold lower
affinity (ICso 1.9 uM) than GLUT1 [34] and the exofacial
reagent 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-
bis(b-mannose-4-yloxy)-2-propylamine ~ (ATB-BMPA)
with the same affinity as GLUTI or GLUT4 (ICs,
0.3 mM). GLUT?2 is also inhibited by phloretin and
phlorizin.

GLUT2 is present in the basolateral membrane of
intestine and kidney absorptive epithelial cells [73]. In
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these cells it participates with the apically located, Na*-
dependent glucose transporters SGLT1 (SLC5A1) and
SGLT2 (SLC5A2) [76] in the transepithelial transport of
glucose (Fig. 3). In hepatocytes, GLUT2 is present in the
sinuosidal membrane where it is involved in both glucose
uptake and glucose release into the blood. GLUT2 is
present at high levels in the plasma membrane of
pancreatic f-cells where it catalyses the first step in
glucose-stimulated insulin secretion, a glucose metabo-
lism-dependent signalling mechanism where phosphory-
lation of glucose by glucokinase represents the rate-
controlling step (Fig. 3) [25, 48]. Functional studies have
also demonstrated the requirement for GLUT2 in other
glucose-sensing units, in particular those in the hepato-
portal vein [12], the hypothalamus and brain stem. These
glucose-sensing units are involved in the control of
counter-regulation, food intake and stimulation of glucose
uptake by peripheral tissues [11].

Mice in which the GLUT2 gene has been inactivated
display early diabetes due to impaired glucose-stimulated
insulin secretion and abnormal postnatal pancreatic islet
development [23]. The early death of the animals is due to
the suppression of glucose-stimulated insulin secretion.
Reexpression of GLUT2 by viral transduction of isolated
islets restores normal insulin secretion and transgenic
reexpression of GLUT2 in the pancreatic SB-cells of
GLUT2-null mice also restores the normal stimulation by
glucose of insulin secretion and allows mouse survival
and breeding [25]. These mice with the rescued S-cell
phenotype, however, show suppressed function of the
hepatoportal glucose sensors that control peripheral



A Glucose

GLUT2

Glucose
Glucokinase
Glucose-6-phosphate

@
©@©

«--

Insulin
secretion

K,+» Channel -
AT¥ Ca** Channel

e
K-O'
Cc 4,  Neuron Astrocyte
&
* mcT2]  MCT1
QD GLUTE | acrate Lactate GLuri
LDH1 LDHS5
Pyruvate £ hJ
Y
: ¢
H+/
Glucose Glucose inositol

GLUT2

Fig.3 A Glucose transporter and glucose sensing. Pancreatic -
cells secrete insulin in response to elevations in the blood glucose
concentration. The signalling pathway controlling insulin secretion
is based on glucose metabolism and the production of factors
coupling metabolism to depolarization of the plasma membrane.
This is followed by opening of Ca** channels and the rise in
intracellular Ca*™ leads to exocytosis of the insulin granule. The
rate-controlling step in this signalling pathway is the phosphory-
lation of glucose by glucokinase. Glucose uptake is catalysed by
GLUT?2, which allows rapid equilibration of glucose between the
extracellular medium and the cell’s cytoplasm. Suppression of
GLUT2 by gene targeting prevents normal access of glucose to
glucokinase and thus impairs glucose-stimulated insulin secretion.
Physiological studies in GLUT2™~ mice led to the identification of
GLUT2-dependent, extrapancreatic glucose sensors controlling
glucose utilization in peripheral tissues, counter-regulation and
food intake (see text). B Glucose uptake in insulin-sensitive tissues.
In muscle and fat, glucose uptake is stimulated by insulin. This
mechanism involves activation of insulin receptor signalling
cascades to stimulate translocation of GLUT4-containing vesicles
from an intracellular site towards, and fusion with, the plasma
membrane. An increased number of GLUT4 at the cell surface
increases the rate of glucose uptake, a rate-limiting step in glucose
metabolism in these tissues. Following termination of insulin
signalling, GLUT4 is re-internalized through clathrin-coated pits
and becomes available for a subsequent round of insulin-triggered
cell surface exposure. C Brain and blood-brain barrier transporters.
Transport of glucose into the brain requires, first, translocation
through the endothelial cells forming the blood-brain barrier.
GLUT1 is the major isoform present in both the luminal and
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abluminal plasma membranes of these cells. Glucose enters
astrocytes through GLUTI1. In astrocytes, glucose is catabolized
to lactate, which may be delivered to neurons through the
monocarboxylate transporters MCT1 and MCT?2. In neurons, lactate
is converted to pyruvate (via lactate dehydrogenase LDH) that
enters the tricarboxylic acid (TCA) cycle to generate ATP. Glucose
can also be taken up by neurons through GLUT3. A subset of
neurons also express GLUT8. Whereas GLUT3 is present mostly
on the plasma membrane, GLUTS is mostly intracellular and its cell
surface expression probably depends on a translocation mechanism
not yet elucidated. GLUT?2 is expressed in the brain but its precise
localization is under investigation. HMIT is present at relatively
high level in both astrocytes and neurons. It is involved in H-
dependent myo-inositol uptake in both cell types. D Transepithelial
hexose absorption and reabsorption. In the intestine, transepithelial
glucose transport is initiated by glucose and galactose concentrative
transport through the Na*-dependent glucose transporter SGLTI
and fructose by facilitated diffusion through GLUTS. These
hexoses can all exit the basolateral membrane through GLUT2.
This requires glucose phosphorylation (via hexokinase HK), entry
of glucose-6-phosphate (Gluc-6P) into the endoplasmic reticulum
via the Gluc-6P transporter-1 (G6PT1), followed by hydrolysis by
glucose-6-phosphatase (G6Pase) and release into the extracellular
space by a membrane-traffic-based mechanism. A similar mech-
anism also operates in hepatocytes for glucose release. In the
kidney proximal tubule, where ~80% of the glucose is reabsorbed,
transepithelial transport is initiated at the apical membrane by
SGLT2 and GLUT?2 is the basolateral glucose transporter. In the
proximal straight tubule, the remaining glucose is reabsorbed using
the apical SGLT1 and GLUT! in the basolateral membrane
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glucose utilization, and of the central sensors that control
glucagon secretion and food intake. Interestingly, glucose
production rate by the liver and isolated hepatocytes is not
impaired in the absence of GLUT2 although glucose
uptake is suppressed. This indicates the presence of a
transport mechanism for glucose output independent of
facilitated diffusion across the plasma membrane and
probably relying on membrane traffic-based mechanisms.
[24, 31]. Similarly, transepithelial glucose transport in the
intestine is unimpaired in the absence of GLUT2 and may
also rely on a membrane traffic pathway [70].

In human, inactivating mutations of the GLUT2 gene
underlie the Fanconi-Bickel syndrome [63]. This is a rare,
autosomal recessive disorder of carbohydrate metabolism
characterized by hepatorenal glycogen accumulation,
tubular nephropathy, glucose and galactose intolerance
and fasting hypoglycaemia. As in GLUT2-null mice,
intestinal uptake of glucose still proceeds normally and
glucose output from the liver can also be stimulated by
glucagon or adrenaline, indicating the presence of alter-
native mechanisms for glucose transport, also probably
relying on membrane traffic mechanisms.

GLUT3

GLUT3 was cloned from a human fetal muscle cDNA
library [40]. GLUTS3 transports glucose with high affinity
[Knm 1.4 mM for 2-deoxy-D-glucose (2-DOG)], and also
galactose, mannose, maltose, xylose or dehydroascorbic
acid. GLUT3 is inhibited by cytochalasin B with a K; of
0.4 uM and by phloretin and phlorizin [56].

GLUT3 mRNA expression is almost ubiquitous in
humans, although the protein distribution is restricted to
brain and testis, where it is present in spermatozoa [26],
and also to human skeletal muscle, predominantly in the
triads of slow-twitch fibres [69]. In mouse and rat,
GLUT3 mRNA is detected only in the brain [40].
Immunohistochemical and in situ hybridization analyses
have shown GLUT3 to be present in neurons, mainly at
the plasma membrane (Fig. 3) although a fraction of the
transporter has been found in intracellular vesicles distinct
from synaptic vesicles [71]. GLUT3 is also present in the
a-granules of human platelets, from whence it is translo-
cated to the cell surface in response to thrombin
stimulation, a phenomenon that may reflect the platelet’s
increased energy requirements upon activation [29]. In
cultured L6 muscle cells GLUT3 cell surface expression
is increased by insulin or insulin growth factor-1 [7].

GLUT4

GLUT4 was cloned from human [22] rat [8, 14] and
mouse tissues [36]. GLUT4 has a K, for glucose transport
of ~5 mM. In addition, GLUT4 can also transport
dehydroascorbic acid and glucosamine (K; ~3.9 mM).
Transport is inhibited by cytochalasin B (ICsy 0.1-
0.2 uM). Glucose transport activity of GLUT4 is inhibited

by phloretin (ICso 10 uM) and phlorizin (ICsy 140 uM)
[38]. Recently, the protease inhibitor indinavir has been
shown to inhibit GLUT4 (IC5y 50 uM) non-competitively
in adipocytes. GLUT4 is the major glucose transporter of
brown and white adipose tissue and of skeletal and
cardiac muscle. The direct inhibition of GLUT4 transport
activity by protease inhibitors may contribute to the
insulin resistance observed in patients suffering from
acquired immune deficiency syndrome (AIDS) and being
treated with indinavir [55].

GLUT4 has two internalization sequences, a dileucine
repeat present in the C-terminal tail and a FxxY motif in
the amino-terminal end. These motifs are responsible for
GLUT#4 association with an intracellular tubulo-vesicular
compartment in basal low plasma insulin conditions [3].
Binding of insulin to its cell surface receptor leads to a
rapid translocation of GLUT4 to the cell surface, resulting
in an increase in cellular glucose transport activity
(Fig. 3). GLUT4 translocation to the plasma membrane
can also be stimulated by exercise. This involves a
signalling pathway different from that activated by
insulin. This pathway may be regulated by the AMP-
activated protein kinase (AMPK). The kinetics of GLUT4
cell surface translocation and endocytosis has been
extensively studied using the photoaffinity label *H-
ATB-BMPA [30]. This has been applied to the study of
GLUT4 recycling in adipocytes and muscles of animals
and humans following insulin signalling and exercise
training. The ability of insulin to stimulate glucose uptake
relies on a complex signalling cascade [62] that is still not
understood completely. A defect in the ability of insulin
to regulate this metabolic event is one of the key
physiological dysfunctions of type-2 diabetes. A de-
creased expression of GLUT4 may also cause insulin
resistance. However, in type-2 diabetes decreased expres-
sion of GLUTH4 is observed only in adipose tissue and not
in muscle, although the latter is responsible for ~90% of
glucose utilization in the post-prandial state and is thus a
major site of insulin resistance.

Mice have been generated with general or tissue-
specific inactivation of the GLUT4 gene. Mice heterozy-
gous for a GLUT4-null allele exhibit reduced GLUT4
expression in adipose tissue and skeletal muscle. These
mice have increased serum glucose and insulin levels,
reduced muscle glucose uptake, hypertension and heart
and liver morphological alterations similar to those in
humans with type-2 diabetes [68]. Mice with homozygous
GLUT4 gene inactivation are very abnormal with short
size, enlarged hearts and shorter life-spans. Although
normoglycaemic under fasted and fed conditions, they
exhibit hyperinsulinaemia in the fed state and impaired
insulin tolerance [39].

Tissue-specific disruption of the GLUT4 in muscle
results in profound reductions in basal glucose transport
and the near absence of stimulation by insulin or
contraction. Such mice show severe insulin resistance
and glucose intolerance from an early age [78]. Disrup-
tion of GLUT4 in adipose tissue results in markedly
impaired insulin-stimulated glucose uptake in adipocytes



and, surprisingly, to insulin resistance in muscle and liver.
This may be due to altered secretion by adipocytes of
factors that could regulate insulin sensitivity in these
other tissues [2]. Selective deletion of GLUT4 from the
heart induces modest cardiac hypertrophy associated with
increased myocyte size. Basal and isoprotenerol-stimu-
lated isovolumic contractile performance is unaffected

[1].

GLUTS

GLUTS was isolated from human intestinal epithelial cell
[41] and from rat [60] and rabbit [50] jejunum cDNA
libraries. When expressed in oocytes, human GLUTS5
does not exhibit glucose transport activity [10] but is a
fructose transporter (K, ~6 mM) and is not inhibited by
cytochalasin B, phloretin or phlorizin [47]. In addition to
its ability to transport fructose, the rat clone also
transports glucose to a lesser extent. Only the glucose
transport activity mediated by this isoform is inhibited by
cytochalasin B [60].

GLUTS is expressed primarily in the jejunal region of
the small intestine. Its mRNA is also detected at low
levels in human kidney, skeletal muscle, and adipocytes.
In brain it has been found in microglial cells and in the
human blood-brain barrier [46]. GLUTS plays an impor-
tant role in fructose absorption by the intestine (Fig. 3).
GLUTS is located mostly in the apical membrane of
epithelial cells but has also been reported to be present on
the lateral membrane in human intestinal epithelial cells

[9].

GLUT6

The human GLUT6 cDNA (formerly designated GLUT9)
was cloned by PCR and rapid amplification of cDNA
ends (RACE)-PCR [17] on the basis of sequence infor-
mation obtained from murine expressed sequence tags
(ESTs) and a human genomic sequence. Human GLUT6
mRNA is expressed predominantly in the brain, spleen
and peripheral leucocytes but expression of the protein
has not yet been demonstrated. When reconstituted in
liposomes, GLUT6 transport activity is found only in the
presence of 5 mM but not 1 mM substrate and exhibits a
low cytochalasin B binding affinity. However, when
GLUT6, mutated for its N-terminal dileucine internaliza-
tion motif, is expressed in Xenopus oocytes, it is
expressed at the cell surface but no transport activity for
glucose is detected over a wide range of concentrations,
nor for fructose, galactose, mannose (M. Ibberson, M.
Uldry, B. Thorens, unpublished observations). When
transfected in primary adipocytes, GLUT6 is retained in
an intracellular compartment. Co-transfecting the cells
with a dynamin mutant leads to cell-surface expression of
the transporter, indicating a possible recycling of the
protein through the plasma membrane. However no

485

stimulus inducing translocation of GLUT6 protein to the
plasma membrane has yet been identified.

GLUT7

GLUT7 was identified in a genome homology search
[35]. This gene has not been characterized yet but could
be a fructose transporter since it is mostly similar to
GLUTS.

GLUT8

GLUTS (formerly GLUTX1) was the first isoform of the
extended SLC2 family to be identified by database
mining and functional expression. Sequences for human,
rat and mouse GLUTS8 have been identified and cloned by
this strategy [18, 32].

When expressed in Xenopus oocytes or in mammalian
cells, GLUTS is entirely retained in intracellular com-
partment. Plasma membrane expression can however be
induced by mutating the N-terminal dileucine internal-
ization motif. Measurement of transport activity in
oocytes, reveals a relatively high affinity for glucose
with a K, of ~2 mM. Fructose and galactose compete
with this activity and cytochalasin B inhibits GLUTS.
Similar results are obtained when GLUTS8 expressed in
Cos cells is reconstituted in liposomes.

GLUT8 mRNA is expressed at high level in the testis,
at a lower level in the cerebellum, adrenal gland, liver,
spleen, brown adipose tissue and lung. In situ hybridiza-
tion and immunofluorescence detection studies show
GLUTS to be expressed in differentiating spermatocytes
of the type-1 stage in the testis, but to be undetectable in
mature spermatozoa [33]. Another study, however, has
reported GLUTS8 immunoreactivity in the head of mouse
and human mature spermatozoa, in the acrosomal region
[65]. The basis for these differences is not known but may
be related to the different antibodies used. The data of
[33] are however in agreement with the in situ hybrid-
ization data. In the brain, the protein is found in
hippocampal excitatory and inhibitory neurons [13, 33],
in dentate gyrus neurons, amygdala and primary olfactory
cortex, hypothalamic nuclei and the nucleus of the tractus
solitarius. High GLUTS8 levels are detected in the
supraoptico-hypohyseal tract and immunogold microsco-
py has shown expression in synaptic vesicles of nerve
endings present in the supraoptic nucleus and in the
vasopressin-containing secretory granules of the posterior
pituitary neurons [33].

GLUTS is also present in blastocyst, and translocates
from an intracellular compartment to the cell surface in
response to insulin [13]. GLUTS may play a crucial role
in glucose metabolism of blastocysts since its suppression
by antisense oligonucleotides leads to an increased rate of
apoptosis [59].
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Human GLUTY9 cDNA was isolated by PCR amplification
on the basis of sequence information from ESTs and from
its genomic sequence. To date, no data have been
published on the sugar transport activity of the protein.
Its highest degree of similarity is with GLUTS, suggesting
that it may be a fructose transporter. GLUT9 mRNA is
detected almost exclusively in the kidney and liver and at
low levels in the small intestine, placenta, lung and
leucocytes [58].

GLUT10

Human and mouse GLUT10 ¢cDNAs were isolated by 3’-
and 5'-RACE-PCR, with sequence information from ESTs
and from genomic sequence [16, 49]. The deduced amino
acid sequence presents all sugar transporter signatures but,
surprisingly, with the exception of a PESPR motif just
after helix 6 that is conserved for all the GLUT isoforms.
When expressed in Xenopus oocytes, human GLUT10
exhibits 2-DOG transport with very high affinity (K,
~0.3 mM). Galactose and glucose compete with 2-DOG
uptake and transport is inhibited by phloretin. Absence of
the PESPR motif is therefore not critical for the function-
ality of this transporter and may explain its high affinity
for 2-DOG compared with the other GLUTs.

GLUT10 mRNA is detected in the human heart, lung,
brain, liver, skeletal muscle, pancreas, placenta and
kidney. RT-PCR analysis has also shown GLUTI10
mRNA in fetal brain and liver. The subcellular localisa-
tion has not yet been studied but may be influenced by the
presence of an internalisation motif YSRI at the C-
terminal extremity of the transporter. Interestingly the
chromosome localization of GLUT10 is in a loci associ-
ated with type-2 diabetes and is thus a possible candidate
for a susceptibility gene involved in this disease [16].

GLUT11

The human GLUT11 cDNA was first isolated by PCR on
the basis of sequence information obtained from ESTs
and from a genomic sequence [19]. Other groups have
identified three different, alternative spliced forms of this
gene. This is due to the existence of three different first
exons (GLUT11-a, -b and -c) coding for three different N-
terminal extremities of 7, 14 and 10 amino acids
respectively [64, 77]. Interestingly, exon 1-c encodes a
dileucine motif that may influence the subcellular local-
isation of GLUTI11-c. When GLUTI11 transiently ex-
pressed in HEK293 cells is reconstituted in liposomes,
glucose transport activity is detected and GLUT11 may
have low affinity for this substrate. This activity is
inhibited by fructose and GLUT11 exhibits low affinity
for cytochalasin B [19]. This property has been verified
for the splice variants GLUT11-a and -b.

RT-PCR analysis has shown the longer spliced form
GLUT11-b to be expressed selectively in the liver, brain,
lung and trachea, whereas the shorter GLUT11-a is found
in most tissues except the liver. Northern blot analysis,
which represents cumulated expression of the three
spliced forms, has shown GLUTI1l mRNA to be
expressed in various tissues, most abundantly in skeletal
muscle and heart, at an intermediate level in the brain,
small intestine, lung and peripheral blood leukocytes and
at low levels in the liver, kidney and placenta. The
presence of the protein has been confirmed in heart and
skeletal muscle with the help of a C-terminal antibody
that recognizes all spliced forms of GLUT11. Immuno-
fluorescence microscopy has revealed plasma membrane
expression GLUT11-a when over-expressed in HEK293T
cells. In those cells, GLUT11 is a glycoprotein of 42 kDa
that can be converted to a 38-kDa polypeptide by peptide
N-glycosidase F (PNGase F) digestion [77]. Because of its
specific expression in muscle, the protein might partic-
ipate in the regulation of the glucose homeostasis.

GLUT12

GLUT12 cDNA was cloned from a human embryonic
cDNA library and detected in breast cancer cells [61]. The
substrate specificity of the protein is unknown. Specific
expression has been found in the heart, skeletal muscle,
brown adipose tissue, prostate and in the pregnant and
lactating rat mammary gland [44].

HMIT

Rat and human HMIT (SLC2A13) cDNAs were cloned by
screening spleen and frontal cortex cDNA libraries from
both species [74]. Its deduced amino acid sequence presents
all motifs important for glucose transport activity. Func-
tional expression of HMIT in Xenopus oocytes and in
mammalian cells has shown maximal plasma membrane
expression after mutation of two internalization motifs and
one endoplasmic reticulum (ER) retention signal. Transport
activity is specific for myo-insositol and is activated
strongly by decreasing the extracellular pH, which increases
Vinax Without changing the K, (~100 uM). Related inositol
stereoisomers compete with myo-inositol transport, which is
also inhibited by phloretin, phlorizin and cytochalasin B.
No glucose transport can be detected. Electrophysiological
and cellular acidification measurements have shown that
HMIT is a H"-coupled myo-inositol symporter.

The HMIT transcript is expressed predominantly in the
brain, with high expression found in hippocampus,
hypothalamus, cerebellum and brainstem. A low level
of expression has been detected in the white, brown and
epididymal adipose tissues and in the kidney. Presence of
HMIT protein has been confirmed in the rat brain as a
glycoprotein of 75-90 kDa that can be converted to
67 kDa upon enzymatic deglycosylation. HMIT is found
in both neurons and glial cells, where it is expressed



partly at the plasma membrane in vivo, suggesting the
possible involvement of a unknown stimulus triggering
HMIT translocation to the cell surface. Predominant
central expression of HMIT suggests that it has a key role
in the control of myo-inositol metabolism in the brain. In
the brain, myo-inositol is a major osmolyte and also
serves as the precursor for phosphatidylinositol, the major
inositol-containing phospholipid. Phosphatidylinositol
and inositol polyphosphates are key regulators of various
processes taking place at synapse and growth cones, in
particular vesicle endo- and exocytosis, polymerisation of
microfilaments, regulation of ion channels and signal
transduction by Gqg-coupled receptors [15].

GLUTs in the CNS and blood brain barrier

Glucose is the preferred energy substrate of the brain. Due
to its expression in the endothelial cells forming the blood
brain barrier, GLUT]1 is essential for glucose delivery to the
brain. Given the fact that the abluminal surface of brain
capillaries is covered by specialized astrocytic end-feet that
also express GLUTI, the astrocytes probably constitute a
major site of glucose uptake. In astrocytes, glucose is
catabolized by glycolysis to lactate, which may be delivered
to neurons through a glial-specific monocarboxylate trans-
porter (MCT1) and a neuron-specific one (MCT2). In
neurons, lactate is converted to pyruvate, which enters the
tricarboxylic acid cycle to generate ATP. Glucose can also
be taken up directly by neurons, which express the GLUT3
isoform [57]. GLUT2 is also expressed in the brain in
specific regions such as the hypothalamus and the brain
stem where it may participate in the mechanisms of glucose
sensing involved in the control of glucose homeostasis.

The role of GLUTS in some specific neurons remains
unclear. It is localized to intracellular vesicles and may
possibly move to the cell surface upon as yet unidentified
stimuli [33]. Finally, HMIT is expressed in astrocytes and
in neurons. In astrocytes, HMIT is both intracellular and
at the plasma membrane, whereas its subcellular local-
ization in neurons is under investigation [74].

Pharmaceutical relevance

Elevation of blood glucose is the main symptom of types-
1 or -2 diabetes. The GLUT isoforms that transport
glucose represent therefore a potential therapeutic target
for normalizing glycaemia. A compound that increases
the Viax of GLUT1 would increase whole-body glucose
utilization. Given the fact that this isoform is almost
ubiquitous, such activation could, however, also lead to
severe hypoglycaemia. Another possible site of action for
limiting the blood glucose level would be inhibition of
glucose absorption in the intestine or reabsorption in the
kidney. In the intestine, this could be possible by blocking
both GLUT2 and the alternative membrane-traffic-based
pathway of basolateral glucose release. In the kidney,
GLUT?2 deficiency results in glucose excretion in the
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urine, which decreases glycaemia [23]. Inhibition of
GLUT?2 specifically in the kidney could thus treat
hyperglycaemia. However, SGLT2 seems to be a more
interesting target in the kidney for this purpose since its
expression is more limited.

Type-2 diabetes is characterized by the loss of insulin
sensitivity that leads to a decrease in GLUT4 transloca-
tion to the plasma membrane in response to a high blood
glucose. To compensate the resulting reduced flux of
glucose into muscle or adipocytes, it would be useful to
find a pharmacological compound that increases the V.«
of GLUTH4 for glucose, or stimulate its translocation to the
cell surface.

An impaired brain inositol metabolism has been linked
to psychiatric diseases, in particular bipolar disorders.
Indeed, current treatments of these mood disorders relies on
the use of lithium salts, valproic acid and carbamazepine,
drugs whose action may interfere with inositol metabolism.
It is well established that one mechanism of action of Li* is
the inhibition of inositol monophosphate phosphatase and
polyphosphoinositide 1-phosphate phosphatase [6], which
blocks recycling of inositol phosphate and reduces the
availability of inositol for subsequent cycles of intracellular
signal transduction. Inhibition of HMIT could also lead to
such beneficial effects for bipolar disorders by decreasing
the intracellular inositol concentration.

Some members of the GLUT family (GLUTI, 2 and 4)
can transport glucosamine, which is important in the
biosynthesis of glycoproteins and, in particular, glycos-
aminoglycan synthesis in cartilage [75]. In association
with collagen fibres, these molecules are responsible for
the resilience of the cartilage to deformation. Destruction
of joint cartilage occurs in osteoarthritis, and several
studies have shown that glucosamine is beneficial for this
disease. Given the fact that GLUTI is expressed in
chondrocytes, the cells that synthesize cartilage, glucos-
amine’s favourable effects for osteoarthritis are probably
mediated by transport across GLUTI into these cells.
Furthermore, glucosamine absorption seems to be medi-
ated in part by GLUT?2. This provides an example of the
use of GLUT isoforms to deliver therapeutic molecules to
their site of action.
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