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Abstract  

The dual-stream model of auditory processing postulates separate processing streams for 

sound meaning and for sound location. The present review draws on evidence from human 

behavioral and activation studies as well as from lesion studies to argue for a position-linked 

representation of sound objects that is distinct both from the position-independent 

representation within the ventral/What stream and from the explicit sound localization 

processing within the dorsal/Where stream. 

 

Keywords: sound recognition, auditory scene analysis, auditory streaming, sound object 
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Abbreviations 

AA = anterior auditory area 

AEP = auditory evoked potential 

ALA = anterolateral auditory area 

IID = interaural intensity difference 

ITD = interaural time difference 

LA = lateral auditory area 

fMRI = functional magnetic resonance imaging 

EEG = electroencephalography 

MEG = magnetoencephalography 
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1. Introduction 

While crossing the African continent, Dr. David Livingstone described the sound-

dominated jungle at night: “The nights are warmer now ... A new world awakes and comes 

forth, more numerous, if we may judge by the noise it makes ... Lions and hyenas roar around 

us, and sometimes come disagreeably near, though they have never ventured into our midst. 

Strange birds sing their agreeable songs, while others scream and call harshly ... Marvellous 

insect-sounds fall upon the ear ... A little lemur was once seen to leap about from branch to 

branch … it chirruped like a bird” (Livingstone, 1875, p. 153). David Livingstone’s 

description illustrates the importance of the correct perception of sound source and origin not 

only for orientation but, ultimately, for survival in the wild. In the near absence of visual 

information, the identity of an animal and its location have to be determined from sound 

alone. Less dramatic situations illustrate the everyday relevance of combined semantic1 and 

spatial2 information. For example, identifying a ring tone as coming from my pocket helps me 

to identify the phone as my own. Based on experimental research, we know that the 

combination of information about the identity and location of a sound object helps to separate 

sound sources and to identify sound objects more readily, particularly in noisy surroundings 

(Bregman 1990; Yost 1991). The present review addresses a series of seminal studies that 

explored the processing steps leading from low level analysis of spectro-temporal features to 

high level semantic processing of environmental sounds. Both high and low level processing 

steps integrate spatial information derived from binaural cues. We summarize current 

evidence on hierarchical processing in the auditory cortex, primarily describing the dual-

stream model of auditory processing (section 2). We outline neuroimaging evidence for 

1 The term “semantic” sometimes has linguistic connotations, but is here used in a broader, nonlinguistic sense, 
referring to acoustic information or processing that can lead to the identification of sound objects.  
2 The term “spatial” relates here to the positions of sound objects in space. In psychophysical and imaging 
studies spatial aspects are investigated in free-field conditions, using loudspeakers, or by simulating locations by 
means of head-related transfer functions or binaural cues. When referring to a specific study spatial cues denote 
here free-field or head-related transfer function conditions, and binaural cues interaural time or intensity 
differences. 
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distinct neuronal populations that combine semantic and spatial information and may form a 

distinct, position-linked representation of sound objects (section 3). We argue that the 

combination of semantic and spatial information may take place in an early phase of auditory 

processing, as suggested by behavioral and neuroimaging evidence on auditory streaming 

(section 4). Finally, we summarize the evidence for a functional distinction between explicit 

and implicit processing of spatial cues during auditory processing (section 5). 

 

2. The ventral and dorsal auditory streams 

A large body of evidence from human and non-human studies shows that information 

pertaining to the identity and location of a sound object is processed along two separate 

anatomical pathways, ventral and dorsal from the primary auditory cortex. The two 

anatomical pathways and their functional distinctions have been described as the dual-stream3 

model of auditory processing (Rauschecker 1998; Rauschecker and Scott 2009). This seminal 

work provided evidence of a ventral stream for sound recognition from the anterior part of the 

auditory cortex to the inferior frontal cortex and a dorsal stream for auditory spatial 

processing from the posterior part of the auditory cortex to the superior frontal and parietal 

cortices. 

Non-human primate studies that support the dual pathway model include the 

observation of two distinct anatomical connections to the prefrontal cortex from 

electrophysiologically identified auditory areas (Romanski et al. 1999a; Romanski et al. 

1999b; for review Kaas et al. 1999; Rauschecker and Tian 2000; Kaas and Hackett 2000). 

Two streams have also been demonstrated in humans. Imaging studies have localized the 

3 The term “stream” denotes two different concepts. In the context of the dual-stream model, which is derived 
from electrophysiological and anatomical studies in animals, “stream” denotes a processing pathway 
characterized by a specific connection pattern and along which functional specialization proceeds hierarchically 
(e. g. Rauschecker and Scott 2009). In the context of auditory scene analysis, which is investigated by 
psychophysical studies, “stream” denotes the percept of a sound coming from a specific sound source (e. g. 
Bregman 1990; Yost 1991). 
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recognition and identification of sounds to the anterior temporal convexity and their 

localization to the parietal convexity (Anourova et al., 2001; Maeder et al., 2001; Hart et al. 

2004; Ahveninen et al. 2006; De Santis et al. 2007a; 2007b; for review Arnott et al. 2004). 

This dichotomy has been explicitly shown in studies that used identical sounds for 

identification and localization. For example, when listeners discriminate the pitch of band 

noise bursts, the superior temporal and inferior frontal cortices are activated. In contrast, when 

they process the location of the same sounds, the parietal and superior frontal cortices are 

activated (Alain et al. 2001a). The same dichotomy has been demonstrated with meaningful 

sounds. Listening to the same or different animal vocalizations activates the anterior superior 

temporal gyrus and sulcus, including the planum polare and the lateral part of Heschl’s gyrus, 

whereas changes in sound location activate the posterior superior temporal gyrus, including 

the planum temporale (Altmann et al. 2008).  

The selectivity of the ventral stream for the meaning of sounds has been confirmed in 

a series of studies using different categories of environmental sounds as stimuli (e.g., tools, 

animals, man-made objects, living and non-living sound sources, actions, and musical 

instruments; Lewis et al. 2005; Murray et al. 2006; Altmann et al. 2007; Engel et al. 2009; 

Leaver and Rauschecker 2010; Lewis et al. 2011). The processing which leads eventually to 

sound recognition involves two sequential steps, which are hierarchically organized. First, 

spectro-temporal features are processed in early-stage auditory areas (Altmann et al. 2008). 

Then, higher-order areas along the ventral stream encode the semantic aspects of sounds 

(Bergerbest et al. 2004; Doehrmann et al. 2008; Murray et al. 2008; De Lucia et al. 2010; 

Kumar et al. 2007; Griffiths et al. 2007; De Meo et al. 2015).  

Although the ventral stream is the key structure for sound recognition, specific sound 

categories involve additional parts of the frontal cortex. In particular, action-related 

environmental sounds have been shown to activate parts of the motor, premotor and prefrontal 
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cortices that are classically associated with the dorsal stream (Lahav et al. 2007; Lewis et al. 

2005; Pizzamiglio et al. 2005; Gazzola et al. 2006;Hauk et al. 2006; Doehrmann et al. 2008; 

De Lucia et al. 2009 ). Furthermore, evoked muscular potentials induced by transcranial 

magnetic stimulation of the motor cortex are significantly increased when participants listen 

to action-related compared to action-unrelated sounds (Aziz-Zadeh et al. 2004; Bourquin et al. 

2013b). The above findings indicate that brain areas of the dorsal stream are sensitive to the 

semantic category of auditory stimuli when this category involves motor action. 

The functional distinction between the ventral and the dorsal processing stream is 

further highlighted by the distinct processing deficits that result from brain lesions. 

Circumscribed lesions centered on the temporal convexity result in deficits in sound 

recognition, while both sound localization and sound motion perception are preserved; 

conversely, lesions centered on the right parietal convexity are associated with auditory 

spatial deficits but not with sound recognition deficits (Clarke et al. 2000; 2002; Bellmann et 

al. 2001; Adriani et al. 2003a; Thiran and Clarke 2003; Ducommun et al. 2004; Rey et al. 

2007; Spierer et al. 2009). It is important to note that these specific deficits are likely not the 

result of postlesional reorganization. Transient dysfunction induced by repetitive or 

chronometric single-pulse transcranial magnetic stimulation (TMS) does not allow 

participants to compensate through neural reorganization. TMS to posterior parietal cortex in 

healthy individuals disrupts processing of binaural cues (At et al. 2011, see also Lewald et al. 

2004). Thus, a spatial processing deficit, similar to the one observed in patients with brain 

lesions, can be induced by temporally disabling a similar brain region, indicating that the 

observed deficits in patients are likely not influenced by postlesional reorganization. 

Thus, the dual-stream model suggests parallel processing routes in the brain, one for 

semantic information and one for spatial. This model is also illustrated by the conscious 

experience of brain-damaged patients, who can perceive the identity of a sound object but do 
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not know where its source is located, or, conversely, who can indicate perfectly the location 

of an object that they cannot recognize (Clarke et al. 2000; 2002; Adriani et al. 2003b). 

However, auditory experience already indicates that the representation of a sound object in 

space, such as a chirruping lemur leaping from branch to branch, relies on a close interaction 

between semantic and spatial encoding. This interaction is likely to occur at different levels of 

processing, from spectro-temporal to semantic and from binaural to high level auditory spatial 

encoding, as described in the following section.  

 

3. Position-linked and position-independent representations of sound objects 

The dual-stream model implies that semantic representations within the ventral stream 

are position-independent, i.e., not modulated by the spatial attributes of the sound objects. The 

majority of previous activation studies that investigated the neural representations of sound 

identity were not designed to find location-linked object representations (Bergebest et al. 

2004; Murray et al. 2008; Altmann et al. 2007; Doehrmann et al. 2008). However, a position-

linked representation of sound objects was recently identified in an AEP study using 

repetition priming (Bourquin et al. 2013a, Fig. 1). Repetition priming is often used to identify 

neural populations that are sensitive to a specific stimulus characteristic (Grill-Spector et al. 

2006). Thus, the use of a repetition priming paradigm allowed us to identify neural 

populations that encoded sound objects either independently of spatial attributes or as a 

function of their position. Environmental sounds were first presented lateralized to the left or 

the right. Then, the lateralization was either held constant or changed in a second presentation 

of the same object. Two types of repetition effects were observed in this study. A first 

analysis compared the initial vs repeated presentations, independently of whether the 

lateralization of a given sound object was held constant or changed between the initial and 

repeated presentation. This comparison revealed the classical repetition priming suppression 
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(e.g. Murray et al. 2008) independent of lateralization, as postulated in the dual-stream model. 

It involved regions associated with the ventral stream, specifically the right temporo-frontal 

region at 42-63 ms and the left temporo-parietal region at 165-215 ms. A second analysis 

compared repetition priming effects which were yielded by pairs with the same vs different 

lateralization; this analysis revealed time windows and regions, where neuronal populations 

kept track of the constant vs changed position of a given sound object. Position-linked 

repetition effects occurred within the left hemisphere, in the posterior part of the superior and 

middle temporal gyri at 20-39 ms post-stimulus onset and in the left inferior and middle 

frontal gyri at 143-162 ms. These findings were based on the analysis of distributed source 

estimations, giving a rough estimate of the cortical region where the repetition-sensitive 

neural populations are located. These regions may form a network of interconnected areas. 

The posterior parts of the superior and middle temporal gyri are strongly connected with the 

planum temporale (Cammoun et al. 2014). These areas are believed to be part of the dorsal 

stream, as is the homologous region in non-human primates (Romanski et al. 1999a; Tian et 

al. 2001). The position-linked representation in the posterior parts of the inferior and middle 

frontal gyri was more surprising. Its homolog in non-human primates contains neurons with 

non-spatial object selectivity and has been proposed to play a role in non-spatial cognition 

(Cohen et al. 2009). However, anatomical studies have revealed possible inputs from both the 

dorsal and the ventral streams. Tracing studies in non-human primates have described an 

overlap of projections from electrophysiologically identified rostral and caudal belt areas 

(Romanski et al. 1999a). Furthermore, Brodmann areas 44 and 45, which are part of this 

region, have been shown to receive partially overlapping projections from the inferior parietal 

lobule and the superior temporal sulcus (Petrides and Pandya 2009; Frey et al. 2014). Human 

in vivo and post-mortem tracing studies have investigated the connectivity of areas 44 and 45. 

Using diffusion fiber tractography, area 44 has been found to be interconnected with the 
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inferior parietal lobule via the superior longitudinal fasciculus. The adjacent area 45 was 

shown to be interconnected with the anterior part of the superior temporal gyrus via the 

extreme capsule (Frey et al. 2008). Human post-mortem tracing studies have revealed long 

horizontal intrinsic connectivity within the posterior inferior frontal gyrus (Tardif et al. 2007), 

which may contribute to the integration of spatial and non-spatial inputs. Together, these 

findings indicate that a specific region, located in the posterior inferior frontal cortex and in 

the posterior part of the middle temporal gyrus, is likely to integrate both semantic and spatial 

information, as reflected in its reported location-linked object representation (Bourquin et al. 

2013a).  

Current evidence suggests that the interaction between semantic and spatial 

information occurs at different stages of auditory processing. The combined encoding of 

spectro-temporal and binaural information has been demonstrated in several early-stage 

auditory areas. Neurons in the macaque’s auditory caudal belt areas show combined 

selectivity for spectro-temporal cues and spatial positions (Tian et al. 2001). In humans, a 

similar combined selectivity has been found on the supratemporal plane4. The anterior lateral 

area (ALA), a belt area on the antero-lateral part of Heschl’s gyrus (Wallace et al. 2002), can 

process information related to sound identity (Viceic et al. 2006) as well as combination of 

binaural information with spectro-temporal (Budd et al. 2003; Hall et al. 2005) or sound 

identity cues (van der Zwaag et al. 1011). The planum temporale, which comprises posterior 

belt areas, contains neuronal populations that process the identity of sound objects (Da Costa 

et al. 2015); spatial (Deouell et al. 2007) or binaural cues (Krumbholz et al. 2005); or 

combined information about frequency and sound location (Shrem and Deouell 2014). In 

4 In view of the growing body of studies involving the supratemporal plane, there is a need to establish a 
common way of identifying early stage auditory areas. The use of tonotopic mapping for the identification of the 
primary auditory cortex (Saenz and Langer 2013) has revealed robust, mirror-reversed representations on 
Heschl’s gyrus, very likely corresponding to the homologs of AI and R (Da Costa et al. 2011; 2013). The results 
of histological studies offer the possibility of identifying individual areas, in particular because two independent 
groups have identified the same layout (Rivier and Clarke 1997; Wallace et al. 2002). The use of functional 
localizers, especially those that take hierarchical processing into account (Chevillet et al. 2011), is an excellent 
tool. 
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humans, belt areas are strongly interconnected, as shown by diffusion spectrum imaging 

(Cammoun et al. 2014; Fig. 2), and are very likely the starting point of separate processing 

streams for sound recognition, sound localization, and potentially a combination of the two 

(Clarke and Morosan 2013). An early interaction between the processing of frequency and 

binaural cues was suggested by a previous psychophysical study (Tardif et al. 2008), which 

reported that discriminating near-threshold frequency stimuli was improved by task-irrelevant 

changes in binaural cues; the reverse effect, improved discrimination of binaural cues by task-

irrelevant frequency changes, has been observed as well. In summary, the interaction between 

frequency and spatial cues, as it occurs on the supratemporal plane, could represent an 

intermediate step that leads to the location-linked representation of sound objects. 

Second, semantic and spatial information can also be combined at later stages, namely 

in the posterior part of the inferior frontal cortex, which has been shown to hold location-

linked object representations (Bourquin et al. 2013a). The later convergence of spatial and 

semantic representations is supported by the anatomical convergence of the ventral and dorsal 

streams within this regions in humans (Frey et al. 2008) as well as the presence of 

monosynaptic inputs from rostral and caudal belt areas (Romanski et al. 1999a) and from the 

inferior parietal lobule and the superior temporal sulcus (Frey et al. 2014) to the homologous 

primate region. 

 

4. The interaction between semantic and spatial information – evidence from auditory 

scene analysis 

In real-life auditory environments, listeners rarely encounter one sound source only. 

What reaches the ear is a mixture of acoustic cues originating, for example, from a bird 

singing on the far left together with a lemur chirping on the right-hand side. Listeners segment 

these sounds into perceptual constructs linked to a specific source - the sound object. This 
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perceptual organization is referred to as streaming (Carlyon 2004; Bregman 1990). Auditory 

streaming is a basic capacity of the auditory system and is influenced by the acoustic cues of 

the stimulus as well as by higher-level semantic processes (Billig et al. 2013). Whereas 

frequency and timbre are some of the most powerful acoustic cues used for auditory 

streaming (for reviews see e. g. Darwin 1999; Carlyon 2004; Moore and Gockel 2012), spatial 

cues can play an important role in auditory stream segregation as well. In laboratory settings 

spatial cues are provided by the positions of loudspeakers or simulated by either head-related 

transfer functions or binaural time or intensity differences. Knowing from which loudspeaker 

a sound will be coming facilitated the detection of one amidst other sounds (Best et al. 2007). 

Similarly, when simultaneous distractors were presented, the encoding of auditory targets was 

improved by spatial continuity; thus, participants performed better when the target, e.g., 

spoken digits, is presented at the same position than when the spatial position of the target is 

changed (Best et al. 2008; Best et al. 2010). In the above experiments listeners were attentive 

to sound positions. However, binaural cues were shown to facilitate auditory stream 

segregation even in the absence of attention. Thus, binaural cues, as provided by interaural 

time differences (ITDs), facilitated speech perception (Schubert 1956; Schubert and Schultz 

1962; Carhart et al. 1967; Carhart et al. 1968; Carhart et al. 1969b). Moreover, once listeners 

perceive speech, ITDs are used to track it over time (Darwin and Hukin 1999). Spatial cues 

may also influence earlier stages of stream segregation. For example, a difference in the 

location of targets (animal cries or musical instruments; positions simulated by head-related 

transfer functions) and distracters enhances the detection of short (250 ms), but not longer 

(500 ms), sounds (Eramudugolla et al. 2008). Assuming that stream segregation develops over 

time and that short exposure consequently hinders complete segregation, the authors 

interpreted their findings as evidence that spatial cues are effective in enhancing particularly 
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early processes of stream segregation. The evidence described above shows that spatial cues 

facilitate auditory stream segregation when processed both explicitly and implicitly.  

The use of spatial cues in auditory streaming may further depend on the nature of the 

perceived sound object. Specifically, whether a sound has a meaning - a prior semantic 

representation - may influence the use of spatial cues in stream segregation. Meaningful 

stimuli include vowels; environmental sounds such as birds, musical instruments, human 

voices; sounds of a recognizable pitch; and previously heard rhythmic noise busts. Listeners 

detect and identify these meaningful stimuli more easily when they are spatially distinct from 

a distractor stimulus. For example, the perception of spoken words was improved by binaural 

cues (Schubert 1956; Schubert and Schultz 1962; Carhart et al. 1967; Carhart et al. 1968; 

Carhart et al. 1969b; Darwin and Hukin 1999) and that of whispered vowels by spatial 

separation of the loudspeakers (Drennan et al. 2003). Similarly, the discrimination of noise-

burst rhythms, which were masked by additional noise bursts, has been shown to improve 

with the spatial separation of the loudspeakers (Middlebrooks and Onsan 2012). In contrast, 

the effect of spatial cues on the segregation of meaningless, previously unheard sounds is less 

clear. Meaningless sounds can, for example, contain the basic spectro-temporal structure of 

natural sounds but lack strong grouping cues (McDermott et al. 2011). Although these stimuli 

could be streamed based on ITD cues alone, the perceived content of the source has been 

shown to be inaccurate when other segregation cues, such as harmonicity and common onsets 

and offsets, are missing (Schwartz et al. 2012). In the experimental setting of that study, 

subjects were asked to judge whether or not the target, which was presented simultaneously 

with a distracter, and the probe that followed were the same. Performance was better when the 

target and distracter differed in ITD and when the lateralization of the target was cued prior to 

its presentation. These gains were, however, very small compared with the situation when 

multiple distracters were replaced by repetition of the same distracter. Furthermore, ITD cues 
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improved the same-different discrimination only when the target and the distracter had 

minimal spectro-temporal overlap and not when there was more overlap. The small effect of 

ITD cues on the same-different discrimination contrasts with the accurate localization of 

targets and distracters. Taken together, these studies suggest that spatial cues differentially 

contribute to streaming, depending on whether the target is a priori known or unknown. 

Spatial cues appear to play a minor role in the streaming of novel stimuli that do not have pre-

existing semantic representations; they are sufficient for the localization of the stimuli but 

only marginally improve their identification. This weak influence of spatial cues on the 

streaming of meaningless sounds contrasts with their much more prominent role in the 

segregation of sound objects that have a distinct meaning and a prior representation (e. g., 

Darwin and Hukin 1999; Best et al. 2008). This is evidence for an interaction between 

semantic and spatial information in the process of sound stream segregation. Further studies 

are necessary to confirm that the processing of sounds that lack a prior representation is less 

influenced by spatial cues.  

The neural substrate of streaming on the basis of spatial cues is still elusive because 

neuroimaging studies are relatively scarce. As pointed out in fMRI studies streaming 

correlates with activation of the supratemporal plane. This is the case for streaming based 

both on spectral cues (e.g., Micheyl et al. 2007) and on ITD cues (Schadwinkel and Gutschalk 

2010a). The latter study localized streaming of complex harmonic tones by ITD cues to the 

anterolateral part of Heschl’s gyrus and provided evidence for a similar time window and 

brain activation for streaming based on ITD and on differences in fundamental frequencies. 

The supratemporal plane is also involved in spatial, ITD-related streaming of complex 

harmonic tones, and two distinct activation patterns have been described (Schadwinkel and 

Gutschalk 2010b; Schadwinkel and Gutschalk 2011). Transient activity is associated with the 

perception of streams, that is, with the reversal between a one- and two-stream percept; 
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sustained activity in Heschl’s gyrus and in the planum temporale was shown to be 

parametrically modulated by the magnitude of the ITD differences. The authors interpreted 

their finding as evidence of the selective adaptation to the ITD cues underlying streaming. 

This specific involvement of the planum temporale in streaming based on ITD cues is 

consistent with its sensitivity to spatial positions as simulated by ITDs. As shown in one of 

the earlier studies, noise bursts lateralized to right or left hemispace yield stronger activation 

in the contralateral planum temporale than the same sounds presented centrally (Krumbholz et 

al. 2005).  

The time course of sound source segregation and sound localization has been 

investigated with EEG and MEG. The streaming of harmonic tone complexes based on ITD 

has been shown to correlate with enhancement of the P1m at 60-90 ms post-stimulus onset; 

dipole fitting attributed this difference to the anterolateral part of Heschl’s gyrus 

(Schadwinkel and Gotschalk 2010a). Another series of studies investigated the time course of 

sound source segregation and sound localization using the dichotic pitch paradigm. This 

paradigm consists of a narrow frequency band that is lateralized using ITD, while a 

simultaneously presented broadband noise is not lateralized. At 150-200 ms after stimulus 

onset, a negative deflection is observed during the processing of ITD in dichotic pitch 

discrimination (Johnson et al. 2003; Alain et al. 2001b; Alain et al. 2002). The location of the 

dichotic pitch, in left versus right hemispace, modulates the N2 response that occurs 250-350 

ms after stimulus onset (Johnson et al. 2007), and selective attention modulates the neural 

activity at 400-500 ms (Hautus and Johnson 2005). Taken together, these results indicate that 

ITD cues are processed not only after information is passed to the dorsal stream but also 

affect streaming at various earlier stages (at 60-90 ms and at 150-250 ms) that are concurrent 

with the earliest stages of cortical ITD processing (e.g., Spierer et al. 2008; Tardif et al. 2006), 
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and even partially precede the differential processing of pitch vs ITD cues (De Santis et al. 

2007).  

The supratemporal plane has also been shown to contribute to stream segregation in 

complex auditory surroundings. An fMRI study investigated the ability of listeners to localize 

environmental sounds (e.g., a dog barking) in a complex setting simulated head-related 

transfer functions (Zündorf et al. 2013). Participants listened to 5 environmental sounds 

presented at different positions, with four simultaneous distractors. To assess the effort of 

sound localization in a complex auditory scene, the authors compared the active localization 

of a target among distractors to passive exposure to the same stimuli; the resulting activation 

involved the planum temporale, the anterior insula, the supplementary motor area, the left 

inferior frontal gyrus, and the right frontal eye field. To visualize the regions involved in 

separating the sound streams and in extracting the one of interest, the authors compared the 

localization of a target among distractors to sequential presentation of the targets; the resulting 

activation involved a small part of the planum temporale and the precuneus. This study and 

the previous ones highlight the role of the planum temporale and the precuneus in stream 

segregation. It should be noted, however, that several of the studies had acquired imaging data 

only of the supratemporal plane and the immediately adjacent region (Schadwinkel and 

Gutschalk 2010a; Schadwinkel and Gutschalk 2010b; Schadwinkel and Gutschalk 2011); 

hence, an involvement of other regions, such as the intraparietal sulcus, in streaming by 

means of spatial cues cannot be excluded. The intraparietal sulcus has been identified as a key 

structure for streaming, albeit by means of spectral, non-spatial cues (Cusack 2005). Thus, in 

addition to an early combination of spectro-temporal and spatial cues in the supratemporal 

plane, an interaction at later stages of the auditory pathways cannot be excluded. 

In summary, behavioral and electrophysiological findings underscore the importance 

of spatial, including binaural, cues for auditory stream segregation. Moreover, existing 
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evidence points to a possible early combination of spectro-temporal and binaural cues in 

auditory processing.   

 

5. Functional dissociation between explicit and implicit processing of spatial cues – 

evidence from patient studies 

Paradigms investigating the use of explicit processing of spatial cues in the dorsal 

stream require listeners to localize a sound or to discriminate the positions of two successive 

sounds, as demonstrated in pioneering studies using free-field presentations (Makous and 

Middlebrooks 1990; Mills 1958) or in later clinical studies using binaural cues (e. g. Clarke et 

al. 2002). In contrast, implicit processing can be tested by spatial release from masking 

(SRM). This paradigm evaluates the intelligibility of speech, sound detection, or other 

psychoacoustic measures in conditions in which the spatial separation of the target and the 

distracters is modulated. It has been used for speech with spatial information provided in free 

field condition or simulated by head-related impulse responses or by binaural cues (Hawley et 

al. 1999; Hawley et al. 2004; Culling et al. 2004); for music in free field condition (Saupe et 

al. 2010); as well as for environmental sounds using ITD cues (Thiran and Clarke 2003). If 

explicit and implicit processing of spatial cues rely on the same substrate within the dorsal 

stream, both aspects should be similarly affected by brain lesions. However, several patient 

studies have reported differential effects on the explicit and implicit processing of spatial 

cues, suggesting a functional dissociation. 

Patients with lesions centered on the parietal cortex often report striking difficulties in 

their everyday lives. Crossing a street can be a challenge for them. They are unable to track a 

vehicle using only auditory cues, which forces them to compensate by visually checking 

(Thiran and Clarke 2003; Clarke and At 2013). In a group of unknown people, these patients 

are unable to determine where a voice comes from by audition only; instead, they have to look 
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for moving lips. Thus, patients with parietal lesions are impaired in explicit spatial sound 

localization. Despite these difficulties, some patients are able to use implicitly ITD cues for 

auditory stream segregation. This was the case in two patients, one with a lesion of the right 

inferior colliculus (Litovsky et al. 2002) and the other with a large right hemispheric stroke 

(Thiran and Clarke 2003). The latter was examined 10 years after the insult and presented 

with spatial deafness, i.e., a complete inability to localize sounds or to compare their 

positions, either on the basis of binaural cues or in free-field conditions); despite this profound 

deficit, she was able to use binaural cues implicitly for the parsing of auditory scenes, as 

demonstrated in two types of tasks. She displayed SRM similar to healthy listeners. That is, a 

sound that was made unrecognizable by a simultaneous masking sound became intelligible 

with increasing binaural cue difference between the target and the masker. Moreover, she 

displayed auditory hemineglect. That is, in a test of diotic listening (i.e., two words were 

presented simultaneously with different ITDs such that one was lateralized to the right and the 

other to the left), she presented a left-sided extinction, indicating that the two words were 

segregated before one of them was neglected. Both, the SRM and the auditory hemineglect 

observed in that patient indicate that the implicit processing of binaural cues can be preserved 

while their explicit processing is impaired. A similarly preserved implicit use of binaural cues 

in diotic listening in conjunction with impairment of explicit sound localization was found in 

three other patients (Spierer et al. 2007). The patient studies described above illustrate the 

frequent dissociation between impaired explicit and preserved implicit use of binaural cues 

for the parsing of an auditory scene.  

Explicit auditory spatial deficits can vary from mild to very severe. A mild deficit can 

refer to difficulties localizing sounds, while a severe deficit refers to an inability to distinguish 

between sounds coming from the left and the right (spatial deafness). These two extremes 

might reflect two stages of spatial processing: i) the precise computation of spatial 
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coordinates; and ii) the construction of a global auditory spatial representation, as suggested 

by electrophysiological, TMS and lesion studies using ITD cues (Lewald et al., 2002; Magezi 

and Krumbholz, 2010; Spierer et al. 2009). An analysis of the deficit profiles of a large group 

of patients has shown that all degrees of explicit processing deficits can coincide with either 

preserved or impaired implicit use of binaural cues (Duffour-Nikolov et al. 2012). This 

observation could indicate that there are three processing mechanisms: two explicit processing 

mechanisms for binaural cues and a third independent mechanism for the implicit processing 

of binaural cues.  

It is worth mentioning that intact implicit processing together with impaired explicit 

processing was much more frequently observed in the study population than the opposite 

dissociation. Preserved sound localization in conjunction with disturbed implicit use of 

binaural cues was observed in only one patient (Duffour-Nikolov et al. 2012). However, this 

finding might be confounded by the patient selection. For practical reasons, patients with 

sound recognition deficits were not included in that study (to avoid false negatives in the 

spatial release from masking task). This may have led to the exclusion of patients who had, in 

addition to the sound recognition deficit, difficulties in using binaural cues implicitly for 

sound object segregation. It is likely that the two deficits, impaired spatial release from 

masking and impaired sound recognition, coincide in many patients, as both processes rely on 

the posterior superior temporal plane. Consequently, a sound identification deficit could 

frequently be associated with an impairment of sound segregation. This hypothesis is 

supported by a previous report that impairment of the semantic identification of sound objects 

is always associated with impairment of sound object categorization and/or sound object 

segregation based on non-spatial cues, whereas deficits in sound object segregation are not 

always associated with impairments in sound identification (Clarke et al. 1996). Thus, the 

infrequent observation of preserved explicit processing together with disturbed implicit 
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processing of binaural cues does not necessarily mean that this dissociation occurs less 

frequently. 

The patient studies cited above clearly indicate a functional dissociation between the 

explicit and implicit processing of spatial cues. Patients frequently display impaired explicit 

sound localization and preserved implicit use of spatial cues, as shown by spatial release from 

masking or auditory hemineglect. This functional dissociation was already suggested in very 

early research studies with healthy listeners. One study indicated that binaural manipulations 

that do not produce clear lateralization improve speech intelligibility (Licklider, 1948). A 

series of studies then confirmed this finding using the inversion of speech waveforms, a 

manipulation that renders a sound un-localizable while simultaneously preserving the sound 

cues relevant for speech recognition. Interestingly, a speech sound that is masked by noise 

becomes intelligible when inversed (Carhart et al. 1969a; 1969b; Carhart et al., 1967; Carhart 

et al. 1968; Levitt and Rabiner 1967; Schubert 1956; Schubert and Schultz 1962). That is, a 

change in binaural characteristics affects auditory streaming even when the binaural stimulus 

characteristics do not allow the explicit localization of sounds. This finding had already 

indicated that the implicit processing of binaural cues does not depend on explicit processing 

or on a coherent spatial representation and supports the conclusion of a functional distinction 

between explicit and implicit spatial processing.  

 

6. Concluding remarks 

Taken together, the present body of experimental work indicates that auditory objects 

can be processed by distinct neural networks (Fig. 3). Identifying known sounds relies on 

processing within the ventral stream (Lewis et al. 2005; Murray et al. 2006; Altmann et al. 

2007; Engel et al. 2009; Leaver and Rauschecker 2010; Lewis et al. 2011), which carries a 

position-independent representation of sound objects (Bourquin et al. 2013a). Localizing 
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objects engages parts of the dorsal stream within the parieto-frontal cortex (Zündorf et al. 

2013). In addition to the position-independent representation of the meaning in the ventral 

stream and to the spatial representation in the dorsal stream, specific neural populations 

respond to sound objects as a function of their specific position. The current evidence for a 

position-linked representation has been provided by studies that used spatially presented or 

lateralized sound objects as stimuli, by auditory streaming based on ITD or effective location 

cues, and by dissociation profiles in brain-damaged patients.  

Neural populations that keep track of changes in the positions of individual sound 

objects were identified on the left temporo-frontal convexity (Bourquin et al. 2013a); the two 

regions involved, the posterior part of the superior and middle temporal gyri and the left 

posterior inferior frontal cortex are known to be interconnected (Frey et al. 2008), and may 

correspond to the early-stage and higher-order levels of the position-linked representation of 

sound objects. The supratemporal plane has been shown to process binaural cues in the 

context of auditory streaming (Schadwinkel and Gutschalk 2011), potentially as early as 60 

ms after a sound is encountered (Johnson et al. 2007). The posterior inferior frontal cortex, 

which has also been implicated in position-linked sound processing, is within a region known 

to be selective for non-spatial processing (Maeder et al. 2001; Cohen et al. 2009) but receives 

convergent input from the ventral and dorsal streams (Romanski et al. 1999a; Frey et al. 2014; 

Frey et al. 2008). The contribution of the parietal cortex to position-linked representations of 

sound objects cannot currently be excluded, but this nevertheless seems unlikely because 

lesion studies have repeatedly shown that patients with parietal lesions  tend to have sound 

lateralization deficits (Spierer et al. 2009), often with preserved implicit use of binaural cues 

for sound object segregation (Duffour-Nikolov et al. 2012). Activation studies of streaming 

based on binaural cues suggest a possible role of the supratemporal plane in implicit 

processing of spatial cues, but evidence from patient studies is currently not available. 
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Figure 1. Schematic depiction of position-independent and position-linked representations of 
sound objects, as revealed by auditory evoked potentials in a repetition priming paradigm 
(adapted from the graphical abstract in Bourquin et al. (2013a). Top) Experimental 
conditions: Sounds of the same objects presented either with the same lateralization (left) or 
with different lateralization (right); L = left, R = right. Bottom) Position-linked (red) and 
position-independent (yellow) representations and their respective time windows post-
stimulus onset. The former was revealed by differential repetition effects for stimulus pairs 
with the same vs different lateralization, the latter by repetition suppression which occurred 
independently of whether the lateralization of a given sound object was held constant or not. 
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Figure 2. Cortico-cortical connections of the (left side) human auditory belt (ALA, LA) and 
parabelt areas (top panel) and of discrete regions of the middle temporal and supramarginal 
gyri (middle panel; MTG and SMG, respectively) as well as cortico-cortical fibers originating 
in the MTG and SMG regions (bottom panel), as revealed by in vivo DSI tractography. In the 
top and middle panels, cyan regions mark the region of origin of the connections shown; 
brown-to-yellow represents the strength of the connections; the primary auditory cortex 
(PAC) is outlined in yellow. In the bottom panel, red and orange show the connectivity of two 
regions on the supramarginal gyrus and green and yellow the connectivity of two regions on 
the middle temporal gyrus. The cortical representation is a latero-superior view of the 
partially inflated brain; individual areas have been defined by means of coordinates published 
previously (Rivier and Clarke 1997; Wallace et al. 2002). The PAC was considered to be co-
extensive with the medial two-thirds of Heschl’s gyrus, in agreement with previous 7T and 3T 
activation studies, which demonstrated a constant relationship between this part of Heschl’s 
gyrus and the two main mirror-reversed tonotopic maps (Da Costa et al. 2011; Da Costa et al. 
2013). Adapted from Cammoun et al. (2014). 
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Figure 3. Schematic representation of the neural networks involved in auditory processing that 
selectively underlie sound recognition (green) and sound localization (red). Regions 
comprising neural populations for spatial or non-spatial processing in close proximity: yellow. 
A left hemispheric network supporting a position-linked representation of sound objects, 
involving the posterior part of the superior and middle temporal gyrus and the posterior part 
of the inferior frontal cortex: blue (Bourquin et al. 2013b).  
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