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Scalable, accessible and reproducible reference 
genome assembly and evaluation in Galaxy

T
he Earth BioGenome Project aims 
to produce reference genomes for 
all ~1.8 million known eukaryotic 
species over the next decade1–4. 
Achieving this goal will require the 

current pace of reference genome production 
to increase by at least two orders of magni-
tude1. Automation of the assembly process 
with a pipeline that is widely accessible to any 
research group will be required to achieve 
this speed-up. Enabling this goal requires  
sustained effort in three major areas: genome 
assembly optimization and best-practice 
development, computational infrastructure 
provisioning, and dissemination and training.

To optimize the assembly process and 
devise best practices, we combined the exper-
tise of two projects—the Vertebrate Genomes 
Project (VGP) and the European Reference 
Genome Atlas (ERGA). The VGP is a collabora-
tive effort to generate reference genomes for 
all ~70,000 vertebrate species5. In the past 5 
years, the VGP has released hundreds of new 

reference genomes supported by the develop-
ment of automated assembly tools and work-
flows1,5. The ERGA is a pan-European scientific 
initiative to generate reference genomes for all 
~200,000 European eukaryote species, many 
of which are on the International Union for 
Conservation of Nature Red List of species at 
risk of extinction2.

Advancing from the prior VGP work, origi-
nally on the DNAnexus platform (Supplemen-
tary Note, section 1.1), we developed a pipeline 
within the Galaxy ecosystem6 that combines 
Pacific Biosciences (PacBio) high-fidelity 
(HiFi) reads with long-distance informa-
tion from Hi-C maps and/or optical maps to 
generate nearly complete assemblies (Sup-
plementary Note 1.3). The pipeline further 
uses Hi-C or whole-genome sequence data 
from parents to produce chromosomal-level 
or whole-genome-level phased genomes, 
respectively. To streamline the assembly pro-
cess and ensure quality, the pipeline includes 
extensive quality control (QC) functions 

at every step (Supplementary Fig. 1 and  
Supplementary Note, section 2.1). We suggest 
at least 30× PacBio HiFi coverage, and up to 
60× coverage to accurately assemble highly 
repetitive regions, as well as 30× Hi-C coverage 
per haplotype. This is important to ensure a 
uniform read distribution during the random 
Poisson sampling process of whole-genome 
sequencing7.

Galaxy allows users to execute complex 
workflows on thousands of datasets and 
terabytes of data either via a graphical user 
interface or programmatically via application 
programming interface (API) scripts8. Major 
global Galaxy instances in the United States 
(https://usegalaxy.org), the European Union 
(http://usegalaxy.eu) and Australia (https://
usegalaxy.org.au) are freely accessible to 
researchers worldwide and supported by 
public cloud infrastructures so that users are 
not required to install any tools or procure any 
infrastructure. Galaxy can also be installed 
locally to use existing high-performance 
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Fig. 1 | VGP–Galaxy assembly pipeline (version 2.1) consists of 10 workflows 
that can be combined into 8 analysis trajectories depending on the 
combination of input data. A decision on whether to invoke workflow 6 is 
based on the analysis of QC output of workflows 3, 4 or 5 (see Supplementary 

Information for full explanation). Thicker lines connecting workflows 7, 8 and 
9 reflect the fact that these workflows are invoked separately for each phased 
assembly (once for maternal and once for paternal).
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computing (HPC) systems and configured to 
access heterogeneous, geographically dis-
tributed storage and computing resources9.

The resulting VGP–Galaxy assembly pipe-
line is organized into 10 Galaxy workflows 

(Fig. 1; Supplementary Note, section 2.1) to 
account for different combinations of input 
data and stages of the assembly process. We 
systematically evaluated several scaffold-
ing approaches, resulting in best-practice 

workflows using Hi-C and/or Bionano opti-
cal mapping data. We further implemented 
a dedicated mitogenome assembly pipeline 
to validate species identification and pro-
vide mitochondrial reference assemblies10,11.  
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Fig. 2 | Phylogenetic tree and assembly statistics of genomes assembled using 
the VGP–Galaxy assembly pipeline. From the innermost circle to the outermost 
circle: (i) repeat content; (ii) heterozygosity; (iii) heterogamy: individuals with 
two identical sex chromosomes (white) or two different sex chromosomes (blue); 
(iv) assembly size in percentage of the genome size estimated by Genomescope; 
(v) scaffold NG50 in % of estimated genome size; (vi) Merqury completeness of 

both haplotypes; (vii) BUSCO completeness: presence of orthologous genes 
present and complete compared to the set expected in vertebrates; (viii) 
mitogenome assembled and available (black); (ix) genome size in gigabytes, with 
lines at 9, 2, 3, 4, 6 and 8 Gb; (x) number of scaffolds in log scale, with lines at 1  
(10 scaffolds), 2 (100 scaffolds), 3 (1,000 scaffolds) and 4 (10,000 scaffolds).
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We also developed a decontamination workflow 
to remove exogenous sequences (e.g., viral and 
bacterial sequences), as well as mitochondrial 
artifacts that are often present in draft assem-
blies, as required for submission to public 
archives (Supplementary Note, section 2.2.4).

We first tested the automated workflows on 
the assembly of a reference genome of zebra 
finch (Taeniopygia guttata), for which a wide 
variety of genomic sequencing data types 
are available. This led to the development of 
three types of assembly trajectories (Fig. 1 and  
Supplementary Table 1): solo assembly  
(workflows 1, 3, 6 and 9; Fig. 1) using PacBio 
HiFi data for single individuals; Hi-C assembly 
(workflows 1, 4, 8 and 9) obtained by adding 
Hi-C data for phasing and scaffolding the con-
tigs; and trio assembly (workflows 2, 5, 8 and 
9) produced by using Illumina short-read data 
from parents for haplotype phasing (Fig. 1 and 
Supplementary Table 1).

To validate the pipeline, we used 51  
vertebrate datasets for which PacBio HiFi and 
Hi-C data were available. We compared these 
assemblies against 19 previous PacBio con-
tinuous long read–based genomes of similar 
size and complexity to confirm and extend 
the improvements to HiFi technology over 
continuous long-read methods reported pre-
viously12 (Fig. 2, Supplementary Table 5, Sup-
plementary Fig. 6).

Given the improved haplotype resolution 
that resulted from adding Hi-C data, even for 
large (~4.3 Gbp), repeat-rich genomes, we rec-
ommend Hi-C Hifiasm phasing when parental 
data are not available. It is now possible to use 
well-tested kits as long as samples have been 
preserved properly (fresh frozen and without 
DNA and RNA preservatives that protect DNA 
but reduce protein crosslinks). For use with 
difficult-to-obtain samples, we have included 
pipeline options that do not require Hi-C data 
(Fig. 1).

Although all genome assemblies reported 
here are for vertebrates, the above principles 
and our pipeline can be applied to other ani-
mal, plant or fungal genomes by modifying a 
few parameters such as, for example, BUSCO 
clades necessary for accurate QC reporting 
(Supplementary Methods, section 3.3).

Our approach is designed to be useful 
across the full spectrum of user skill levels 
and analysis scenarios. For this purpose, we 
created dedicated tutorials distributed via the 
Galaxy Training Network portal13 that include 
extended versions and that collectively pro-
vide an in-depth overview of the assembly pro-
cess, as well as a streamlined tutorial designed 
to facilitate immediate use of the workflows14.

Our future work will focus on the continu-
ous maintenance of the pipeline to improve 
its efficiency and scalability, automation 
of the curation process, incorporation of 
ultra-long-read data and development of 
effective genome annotation procedures.

To increase the robustness of the pipeline, 
we are developing additional workflows to 
take advantage of Oxford Nanopore Technolo-
gies (ONT) data, and particularly of ultra-long 
(UL) reads (>100 kb). These workflows use 
HiFi/UL hybrid assembly tools such as Verkko15 
and the HiFi+UL version of Hifiasm16, both of 
which we integrated into Galaxy. Each technol-
ogy complements missing information from 
the other, with ONT reads being less accurate 
and HiFi reads being shorter and underper-
forming on certain genomic patterns, leading 
to sequencing bias that could affect specific 
taxa (Supplementary Fig. 14). This integration 
of complementary sequencing technologies 
will make our pipeline even more effective at 
generating complete and accurate reference 
genomes.

Data availability
The workflows, their description and instruc-
tions on how to use them can be found at 
https://galaxyproject.org/projects/vgp/
workflows/. The requisite tools are installed 
on usegalaxy.org and usegalaxy.eu, and are 
in the process of being installed on usegalaxy.
org.au. These genomes were supported by col-
laborators of the VGP and ERGA, and the QC 
analyses reported here to test the VGP Galaxy 
pipeline do not release those that are under 
specific embargo policies for genome-wide 
analyses (e.g., https://genome10k.ucsc.edu/
data-use-policies/). New genome assemblies 
are available in the GenomeArk repository: 
https://www.genomeark.org/. After manual 
curation, the assemblies are submitted to the 
US National Center for Biotechnology Infor-
mation (NCBI) under the BioProject Vertebrate 
Genome Project: https://www.ncbi.nlm.nih.
gov/bioproject/489243 17.
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