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Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemi-
cal mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution,
and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown fam-
ily of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA dam-
age upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs
of this pathway have only been found in closely related Enterobacteriaceae, while a divergent variant of this gene cluster was re-
cently discovered in a marine alphaproteobacterial Pseudovibrio strain. Herein, we sequenced the genome of Frischella perrara
PEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those
found in Enterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic mod-
ule architecture across F. perrara, Enterobacteriaceae, and the Pseudovibrio strain. Comparative metabolomics analyses of F.
perrara and E. coli further reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we
demonstrate that F. perrara, like E. coli, causes DNA damage in eukaryotic cells in vitro in a colibactin pathway-dependent man-
ner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among
bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities im-
portant for diverse symbiotic associations.

Characteristic bacterial communities colonize the digestive
tracts of almost all animals and influence the health and dis-

ease of their hosts (1–4). These communities are typically domi-
nated by specialist bacteria, which are adapted to live in the gut of
their host and have evolved specific functions for symbiotic inter-
actions. The honey bee, Apis mellifera, harbors such a characteris-
tic gut microbiota (5). Its simple composition of only eight bacte-
rial species makes the honey bee gut microbiota an ideal model to
study the ecology and evolution of gut bacteria and to understand
mutualistic, commensal, and parasitic relationships (6). Further-
more, honey bees are important pollinators for agriculture and
almost all terrestrial ecosystems. Thus, it is essential to character-
ize the genomic capabilities of these symbiotic bacteria so as to
better understand their impact on the health of their host.

In the anterior part of the honey bee hindgut, two gammapro-
teobacteria, Gilliamella apicola and Frischella perrara, and one be-
taproteobacterium, Snodgrassella alvi, are the dominant members
of this gut community (7–9). Comparative genomics and func-
tional analyses have recently revealed that S. alvi and G. apicola
harbor complementary metabolic pathways, contain diverse sets
of genes for symbiotic interactions, and exhibit host-specific col-
onization patterns (10, 11). In contrast, only little is known about
F. perrara. This bacterium is less abundant than the other two
species, with fewer bacteria present in the gut of individual bees,
and in some cases, the bacterium is not present at all (5, 9, 12).
Interestingly, all three bacteria have so far only been found asso-
ciated with social bees and form deep-branching phylogenetic lin-
eages exclusive of bacteria sampled from other environments (7, 8,
13), supporting longstanding symbiotic associations with their
host and among each other.

Bacterial symbionts frequently mediate interactions by using

secondary metabolites, such as nonribosomal peptides and
polyketides. These natural small molecules harbor a variety of
activities, serving as mutualistic factors (14), virulence factors
(15), antimicrobials (16), immunomodulators (17), and/or inter-
bacterial exchange factors (e.g., siderophores involved in iron ac-
quisition) (18, 19). The major biosynthetic steps for nonribo-
somal peptides and polyketides are carried out by nonribosomal
peptide synthetases (NRPSs) and polyketide synthases (PKSs), re-
spectively (20). Type I NRPS and PKS biosynthetic systems are
large multidomain enzymes organized in modules, catalyzing the
covalent attachment of both standard and nonstandard amino
acids (in case of NRPSs) or acyl coenzyme A (acyl-CoA) units (in
case of PKSs) to a growing peptide or polyketide chain, respec-
tively. Auxiliary domains/proteins and post-assembly line tailor-
ing proteins can introduce further structural complexity (21). The
modularity in small molecule synthesis by NRPS, PKS, and hybrid
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NRPS-PKS systems underlies their remarkable metabolic ver-
satility.

Little is known about natural products involved in symbioses
with eukaryotic hosts (14, 22–24). In particular, their roles and
distributions among gut communities have mainly remained elu-
sive. Furthermore, natural products of animal-dwelling symbi-
onts often reveal chemical and structural properties distinct from
those of free-living microbes and thus hold promise for novel drug
discovery (24, 25). In Escherichia coli strains and related coliform
Enterobacteriaceae, a hybrid NRPS-PKS biosynthetic gene cluster
was found to be involved in symbiotic interactions in the human
gut (26–29). This hybrid NRPS-PKS pathway produces a family of
largely uncharacterized small molecules termed “colibactin.” The
presence of this gene cluster (clb) in E. coli results in DNA damage
of eukaryotic cells (28) and contributes to inflammation-induced
colorectal cancer in the mammalian gut (30, 31). While a number
of small molecules dependent on the clb pathway have been de-
scribed (32–34), the metabolite or metabolites mediating the
genotoxic activity have remained elusive due to its proposed in-
stability. Furthermore, the role of this genotoxic activity for sym-
bioses in the human gut and in other environments has remained
unclear. Interestingly, a homologous clb genomic island (GI) was
recently identified in an alphaproteobacterial Pseudovibrio strain,
FO-BEG1, isolated from a diseased marine coral (35). However, it
is not known whether this divergent gene cluster has similar geno-
toxic capabilities to the clb island of Enterobacteriaceae.

Here, we sequenced the genome of the honey bee gut symbiont
F. perrara PEB0191, analyzed its gene content for functions in-
volved in symbiosis, and identified a divergent variant of the clb
GI. To determine whether this clb GI homolog has conserved bio-
synthetic capabilities and in vitro genotoxic activity compared to
the pathway described in E. coli, we first analyzed the genomic
integration, genetic organization, and domain architecture of the
divergent clb GI homologs. We then identified common clb-de-
pendent metabolites in E. coli and F. perrara, and determined the
effect of the F. perrara clb pathway on eukaryotic cells. Our results
show that the clb pathway has maintained its biosynthetic capabil-
ities and genotoxic activity over the course of evolution, despite its
presence in symbionts colonizing distinct environments. This
suggests an important role of the clb biosynthetic pathway in di-
verse microbe-host interactions.

MATERIALS AND METHODS
Genome sequencing, assembly, and annotation. The complete genome
sequence of F. perrara PEB0191 was generated from 64,460 quality-fil-
tered single-molecule real-time (SMRT) DNA sequencing reads (Pacific
Biosciences) with an average length of 2.9 kb. A total of 5,411,774 quality-
filtered paired-end Illumina reads were used to verify the assembly and to
identify sequencing errors by read mapping. A detailed description of the
genome sequencing and assembly can be found in the Materials and
Methods in the supplemental material. The final assembly of the F. perrara
PEB0191 genome was submitted to the IMG pipeline (36) for annotation.
tRNA genes were identified with tRNAscan-SE (37).

Comparative genomics and bioinformatics analyses. Orthologs be-
tween analyzed genomes were determined with OrthoMCL (38) as de-
scribed previously (39). We only considered all-against-all BLASTP hits
with protein identities of �50% and an alignment length of �50% of the
length of the query and the hit sequence. Regions with �5 F. perrara-
specific genes were denoted as GIs. The genome circle of Fig. 1A was
visualized with Circos v0.56 (40). Sequence analyses were conducted with
Geneious v6.1 using different bioinformatics tools, including MUSCLE

(41) to generate sequence alignments and PhyML (42) to infer phyloge-
netic trees. The species tree was inferred from the concatenated protein
alignments of the following eight genes: the alanyl-tRNA synthetase gene
(COG0013), uvrC (COG0322), recN (COG0497), the CTP synthase gene
(COG0504), the signal recognition particle GTPase gene (COG0544),
uvrB (COG0556), radA (COG1066), and a membrane GTPase gene
(COG1217). Module analyses and substrate predictions of NRPS and PKS
genes were carried out using a combination of BLASTP (43), antiSMASH
2.0 (44), the PKS/NRPS Analysis website (45), and NRPSpredictor2 (46).
Predictions of amino acid substrate specificity of adenylation domains
and residues in binding pockets were based on the PKS/NRPS Analysis
website (45) and NRPSpredictor2 (46). Homology modeling of relict
AT domains was conducted with the Phyre2 protein fold recognition
server (47).

Bacterial strains, plasmids, and culture conditions. All strains, plas-
mids, and primers used in this study are summarized in Table 1. The clbB
transposon mutant (clbB::Tn) of F. perrara PEB0191 was identified from a
Himar1 transposon library by screening with different primer pairs for
integration into the clb GI. The mutant was verified using PCR and Sanger
sequencing. A detailed description of the transposon mutagenesis can be
found in the Materials and Methods in the supplemental material. If not
otherwise stated, F. perrara PEB0191 and the clbB::Tn mutant were grown
on brain heart infusion (BHI) agar at 37°C under anaerobic conditions.

Organic extractions for metabolomics analysis. E. coli DH10B/
pBAC-PKS, E. coli DH10B/pBAC-control, E. coli Nissle 1917, and E. coli
Nissle 1917 �clb were grown as previously described (34). F. perrara
strains were grown for 1 day on gut microbiota medium (GMM) (48),
harvested, diluted to an optical density at 600 nm (OD600) of 0.01 in 5 ml
GMM, and grown for 16 h at 37°C without shaking in an anaerobic atmo-
sphere. To obtain medium controls, we incubated 5 ml of GMM without
bacteria for 16 h under the same conditions. After the designated growth
points, whole cultures of E. coli and F. perrara were extracted with 6 ml
ethyl acetate (EtOAc) as previously described (34). Five biological repli-
cates were performed for all samples.

Metabolomics data acquisition. All high-resolution mass spectrom-
etry (HRMS) was performed using an electrospray ionization (ESI) source
on an Agilent (Santa Clara, CA) iFunnel 6550 quadrupole time of flight
(Q-TOF) mass spectrometer coupled to an Agilent Infinity 1290 high-
performance liquid chromatography (HPLC) instrument. Metabolites
were analyzed on a Phenomenex Kinetex 1.7-�m C18 100-Å column (100
by 2.10 mm) with a water-acetonitrile (ACN) gradient solvent system
containing 0.1% formic acid (FA). Immediately prior to analysis, each
extracted sample was dissolved in 500 �l MeOH, and 5 �l of a 1:5 dilution
was injected. For F. perrara samples, undiluted injections were also per-
formed to increase identification of the molecular features (MOFs). Col-
lection parameters and MS data acquisitions were conducted as previ-
ously reported (34).

Sample comparisons, data set filtrations, and statistical analysis.
The MS data were processed to extract molecular features using the “com-
mon organic molecules” model in MassHunter qualitative analysis. The
extracted MS data, set at an intensity cutoff of 1.0 raw count abundance,
was statistically analyzed using MassHunter Mass Profiler Professional
(MPP version B.12.01; Agilent Technologies). E. coli samples were ana-
lyzed as previously described (34). To determine the organic extractable
metabolomes of the two F. perrara strains, MOFs present in one out of the
five medium controls were removed. MOFs present in F. perrara PEB0191
but either not found or found at reduced levels in the F. perrara clbB::Tn
mutant were considered clb pathway-dependent metabolites. The final
conservative list was adjusted after manual analysis.

MS2 molecular networking. Tandem mass spectrometry (MS2) was
performed using a targeted auto-MS2 mode as previously described
(34). We selected only for the clb pathway-dependent MOFs present in
the generated preferred unique ion list acquired for each sample. The
MS2 data files were used to build mass spectral networking clusters
using the open source software platform Cytoscape version 3.1.0
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(http://www.cytoscape.org). Clusters were built based on a cosine cut-
off of 0.5, which dictates the connectivity strength between the ion
masses (49).

HeLa cell assays. Cell culturing, bacterial infections, and analysis of
the megalocytosis phenotype were performed as previously described (28,
34). E. coli strains used for HeLa cell assays were grown in lysogeny broth
(LB) for 16 h. F. perrara strains used for HeLa cell assays were grown on
brain heart infusion (BHI) agar for 24 h. �-H2AX phosphorylation levels
in HeLa cells were analyzed 14 h after transient bacterial infection to detect
the activation of a double-strand DNA damage response. To this end, cells
were immunolabeled with an anti-�-H2AX primary antibody (clone
20E3; Cell Signaling) followed by a secondary antibody conjugated to
fluorescein isothiocyanate (FITC) (goat anti-rabbit AB97199; ABCAM)
and analyzed by flow cytometry using a FACSVerse flow cytometer from
BD Bioscience. A detailed description of the protocol can be found in the
Materials and Methods in the supplemental material.

Nucleotide sequence accession number. The complete genome of F.
perrara PEB0191 has been deposited in GenBank under accession no.
CP009056.

RESULTS
Genome sequence of F. perrara and comparative genomics. The
genome of F. perrara PEB0191 consists of a single circular chro-
mosome of �2.7 Mb (Fig. 1A), similar to what has been previously
observed for the genomes of related Gilliamella apicola isolates

from the guts of honey bees and bumble bee species (11). Other
genomic features, such as G�C content, percentage of coding
content, and number of RNA genes, are also similar (Table 2),
reflecting the evolutionary relatedness of F. perrara and G. apicola
and suggesting similar patterns of genomic evolution in these bee
gut symbionts. Synteny analysis between the two completely se-
quenced genomes of F. perrara and G. apicola wkB1 revealed little
conservation of their genomic backbones. Only a weak X-like syn-
teny pattern could be observed (see Fig. S1 in the supplemental
material). This is typical for related genomes and results from
frequent inversions around the origin of replication (50).

F. perrara is a facultative anaerobe (7). Accordingly, its genome
lacks many genes of the tricarboxylic acid (TCA) cycle (Fig. 1B)
and the respiratory chain (see Fig. S2 in the supplemental mate-
rial) but encodes the complete pathways for glycolysis and pentose
phosphate, as well as several phosphotransferase systems (PTSs)
for the uptake of sugars (see Fig. S3 in the supplemental material).
Thus, the main energy source of F. perrara may be anaerobic fer-
mentation of carbohydrates. This resembles the primary metabo-
lism of G. apicola (11), suggesting that these bacteria occupy sim-
ilar nutritional niches in the anterior hindgut of bees.

Ortholog analysis between five genomes of the family Orbaceae
(including three genomes of G. apicola and the genome of Orbus

FIG 1 (A) Comparison of the genome of F. perrara to other Orbaceae genomes. Starting from outside, the first circle shows the scale of the genome representation
of F. perrara in gray and white steps of 100 kb. The second and third circles (green) depict the genes on the plus and minus strands of F. perrara. The fourth circle
depicts all tRNA and rRNA genes in blue and black, respectively. The fifth circle highlights F. perrara-specific genomic islands (GIs) compared to other Orbaceae
genomes: GI region 1 contains a tellurite resistance operon, GI region 2 contains genes encoding mostly hypothetical proteins and the colibactin biosynthetic gene
cluster, GI regions 3 and 4 contain the type I secretion system genes, and GI region 5 contains the type VI secretion system genes. The sixth circle depicts the GC
skew over the chromosome of F. perrara with positive values shown in magenta and negative values in peach. The blue circles represent orthologs identified in
the genomes of G. apicola wkB1, G. apicola wkB11, G. apicola wkB30, and Orbus hercynius CN3. The blue color range denotes protein identity between these
pairwise comparisons, as depicted by the scale in the center of the genome circle. (B) Presence/absence of genes of the TCA cycle (green arrows) and for
fermentation (orange arrows) in the genomes of the two honey bee gut symbionts F. perrara and G. apicola wkB1. Semicircles in magenta and blue indicate
presence of gene functions in the genomes of F. perrara and G. apicola wkB1, respectively. Other gene functions are either absent or could not be identified (empty
semicircles).
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hercynius CN3) revealed 586 genes specific to F. perrara (see Table
S1). A substantial number of these genes are contained in GIs
dispersed over the genome of F. perrara (Fig. 1A). Besides many
hypothetical and phage-related protein-encoding genes, the GIs
of F. perrara contain a tellurite resistance gene cluster, several type
I secretion system genes, and a type VI secretion system locus. The
largest GI region of F. perrara measures �130 kb and contains
only a few genes shared with other sequenced Orbaceae genomes
(GI region 2 in Fig. 1A). This island harbors a biosynthetic gene
cluster of �55 kb, which we identified as a homolog of the clb GI of

coliform Enterobacteriaceae and Pseudovibrio strain FO-BEG1.
With a few exceptions, the gene order within the clb GI is con-
served between F. perrara, the Enterobacteriaceae, and Pseu-
dovibrio FO-BEG1 (Fig. 2). However, the percentages of protein
identity of Clb orthologs are relatively low, ranging from 43% to
81% between F. perrara and E. coli and from 27% to 65% between
F. perrara and Pseudovibrio FO-BEG1. In comparison, clb or-
thologs within Enterobacteriaceae reveal �99% protein identities
(Fig. 2). Genomic regions flanking the clb GI of F. perrara were
distinct from those found in the other bacteria. While transposase

TABLE 1 Strains, plasmids, and primers used in this study

Strain, plasmid, or
primer Description or sequence (target)a Reference or source

Strains
F. perrara

PEB0191 Type strain of F. perrara isolated from hindgut of a honey bee 7
clbB::Tn mutant F. perrara PEB0191 with Himar1 transposon of pBT20 integrated at nucleotide position 6475 of clbB This study

E. coli
DH10B F� mcrA (mcrBC-hsdRMS-mrr) [	80dlacZ�M15] lacX74 deoR recA1 endA1 araD139 �(ara, leu)7697

galU galK rpsL nupG
Invitrogen

Nissle 1917 Wild type Ardeypharm GmbH
Nissle 1917 �clb clb::FRT, complete deletion of clb locus 34
BL21 F� dcm ompT hsdS(rB

� mB
�)gal[malB�] K-12(
S) Invitrogen

�2163 K-12 strain; F� RP4-2-Tc::Mu �dapA::(erm-pir) Emr Kmr 57

Plasmids
pBAC-control pBeloBAC11 without insert 28
pBAC-PKS Genomic fragment of E. coli IHE3034 containing complete clb island cloned into pBeloBAC11 28
pBT20 Ori R6K�, oriT from pRK2, Mariner C9 transposase, minitransposon with Genr::aaC1 58

Primers
prRND1 TATAATGTGTGGAATTGTGAGCGG (transposon of pBT20)
prRND1rev GATGAAGTGGTTCGCATCCTC (transposon of pBT20)
prPE209 GAAAGAGGTTAATGGTAATGATGC (clbB [20–44])
prPE210 CATGACATTTGTGCAATAGATC (clbB [4892–4914])
prPE211 GGTATACAATAGTGAAATGACCG (clbC [3–26])
prPE212 GCCATCTCAATTACAGCCATC (clbD [354–376])
prPE213 GTGTCGCTATCGTAGGTATG (clbI [19–39])
prPE214 GTAACCGCTTATGATGCTTTGC (clbJ [1009–1031])
prPE215 CGTTATCCAGGAGTTCATAGC (clbK [45–66])
prPE216 CTGCATGAAATCCTCGCATTC (clbK [4–17])
prPE217 TTCAGTACCGATTGGGCAAGC (clbN [2197–2218])
prPE245 CCGGGTTATCCATTTGAACAG (clbB [5791–5811])
prPE246 GATAACACTACCCGATTGTATAC (clbB [6530–6552])

a Positions are shown in brackets.

TABLE 2 Genome features of F. perrara PEB0191 and comparison to the genomes of the related gut symbiont G. apicola

Host and organisma Length (bp) G�C content (%) Coding % No. of CDSsb No. of tRNA genes No. of rRNA loci

Honey bee (Apis mellifera)
F. perrara PEB0191 2,692,351 34.1 86.1 2,280 53 4
G. apicola wkB1 3,139,412 33.6 84.1 2,809 51 4

Bumble bee
G. apicola wkB11 (Bombus bimaculatus) 2,260,992 34.4 82.4 1,997 51 4
G. apicola wkB30 (Bombus vagans) 2,320,793 34.6 84.1 2,135 48 4

a Bacteria were isolated from the gut of the different bee species shown.
b CDS, coding sequences.
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and integrase genes are contained adjacent to the clb GIs of the
Enterobacteriaceae and Pseudovibrio FO-BEG1 (Fig. 2), no mobile
genetic elements could be identified in close proximity to the clb
GI of F. perrara, and most flanking genes had no significant hits in
the NCBI nonredundant database.

Conserved biosynthetic assembly line of clb GI homologs.
The presence of a clb homolog in F. perrara prompted us to deter-
mine whether the biosynthetic modules for small molecule pro-
duction are conserved between the clb GIs of F. perrara, E. coli
IHE3034 (as a representative of the Enterobacteriaceae), and Pseu-
dovibrio FO-BEG1. Using a bioinformatics approach, we deter-
mined that all orthologous NRPS and PKS genes harbor the same
domain architecture (Fig. 3). Most residues in the binding pockets
of the adenylation (A) domains of Clb proteins are conserved
between F. perrara, Enterobacteriaceae, and Pseudovibrio FO-
BEG1, and three different bioinformatic tools predicted similar
substrates to be incorporated during small molecule synthesis
(Fig. 3; see Table S2 in the supplemental material). Furthermore,
gene tree analysis shows that ketosynthase (KS) domains of or-
thologous clb genes form monophyletic clades that are distantly
related to each other and belong to a larger group, including KS
domains of other hybrid peptide-polyketide biosynthetic path-
ways (see Fig. S4 in the supplemental material).

A previous analysis of the Clb proteins of E. coli found that
ClbC, CbK, and ClbO each contain a deteriorated cis-acyltrans-
ferase (AT) domain (34). We verified their presence in F. perrara
and Pseudovibrio FO-BEG1 using structural homology modeling
(see Table S3 in the supplemental material). The canonical active
site motifs (GxSxG) (51) are mutated and protein identities are
relatively low supporting that these AT domains are nonfunc-
tional evolutionary relicts (Fig. 3; see Table S3). In sum, bioinfor-
matics predictions suggest the production of related small mole-

cules by the clb gene clusters of F. perrara, E. coli, and Pseudovibrio,
despite high degrees of sequence divergence.

Comparative metabolomics identifies clb pathway-depen-
dent small molecules of F. perrara. Next, we wanted to confirm
the presence of known colibactin molecules. To do this, we com-
pared the organic extractable metabolome of F. perrara to the
metabolomes of E. coli Nissle 1917 and E. coli DH10B harboring
the E. coli IHE3034 island on a bacterial artificial chromosome
(pBAC-PKS), two E. coli strains from which clb pathway-depen-
dent metabolites have previously been identified (34). First, a con-
servative unique list of 433 F. perrara-specific molecular features
(MOFs) was identified in whole-culture ethyl acetate extracts rel-
ative to the control medium background. Comparison with clb
pathway-dependent metabolites of E. coli Nissle 1917 and E. coli
DH10B pBAC-PKS showed that seven out of these 433 organic
extractable MOFs were represented in the E. coli colibactin net-
work (see Fig. S5 in the supplemental material). Four MOFs were
common to all three bacteria. These included metabolites with the
following [M�H]� m/z: 315.2281 (metabolite 1), 343.2593 (me-
tabolite 2), 341.2440 (metabolite 3), and 369.2749 (metabolite 4)
(see Table S4 in the supplemental material). Metabolites 2 to 4
have previously been identified as fatty acyl-D-asparagine cleavage
products of the E. coli colibactin gene clusters (34). However, the
most abundant ion in F. perrara has an ion mass of m/z 315.2281
(see Table S4), which is only observed as a minor product in the
two E. coli strains. ESI-Q-TOF-HRMS analysis, MS2 fragmenta-
tion patterns (see Fig. S6 in the supplemental material), structural
network analysis, and comparison to previously characterized clb
metabolites support the structure of m/z 315.2281 as N-lauryl-D-
Asn (metabolite 1 in Fig. 4).

We next generated a clbB transposon mutant (clbB::Tn) of the
wild-type (wt) strain of F. perrara and confirmed that the seven

FIG 2 Phylogenetic relationship of bacteria harboring variants of the colibactin (clb) genomic island (GI) and comparison of their genetic organizations. Bacteria
containing the clb GI are highlighted in green (Enterobacteriaceae), magenta (Frischella perrara PEB0191), and blue (Pseudovibrio FO-BEG1). For Citrobacter
koseri, Enterobacter aerogenes, and Klebsiella pneumoniae, strains 4225-83, EA1509E, and WGLW1, respectively, were analyzed. The maximum likelihood tree is
based on the concatenated alignments of eight conserved housekeeping genes. Black circles denote branches with bootstraps of �80 (100 replicates). Orthologs
are connected via gray blocks. Percentages of protein identities are depicted and reflected by the shading intensity of each block. Genes without a homolog are
shown in white. The average G�C contents of the Clb GI are 40.4%, 53.7%, and 51.1% for F. perrara PEB0191, E. coli IHE3034, and Pseudovibrio FO-BEG1,
respectively. Genes and gene products are depicted using the following abbreviations: clb, colibactin; IS1351, insertion sequence 1351; MobB, mobilization
protein B; VgrG, valine-glycine repeat protein G; NRPS, nonribosomal peptide synthetase; PKS, polyketide synthase; AT, acyl-transferase; T, thiolation sequence
of acyl/peptidyl-carrier proteins; DH, dehydrogenase; AM, amidase; EP, efflux protein; PE, peptidase; TE, thioesterase; PPT, phosphopantetheinyl-transferase;
SAM, S-adenosylmethionine-binding protein; H, hydrolase.
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shared metabolites are produced in a clb pathway-dependent
manner. Comparative metabolomics between the F. perrara wt
and clbB::Tn strains allotted 159 clb pathway-dependent MOFs
(see Fig. S7 in the supplemental material), including six of the
seven shared ions. The most abundant ion of F. perrara, metabo-
lite 1, was found in both the wt and clbB::Tn mutant strains, al-
though it was drastically reduced in the mutant strain (see Table
S4 in the supplemental material). Residual production of metab-
olite 1 can be attributed to assembly line derailment (hydrolysis)
of its intermediate thioester from ClbN, which remains intact in
this mutant strain. To identify additional F. perrara clb pathway-
dependent metabolites, we inspected all wt MOFs either absent or
drastically reduced in the mutant strain and manually extracted a
conservative unique ion list of 20 putative clb pathway-dependent
metabolites (see Table S5 in the supplemental material). For 15
of these 20 metabolites, we could successfully acquire MS2 frag-
mentation patterns. A network analysis of these data together
with the metabolomics data from the E. coli strains identified
six metabolites that clustered with metabolites 1 to 4 (Fig. 4),
consistent with clb pathway-dependent fatty acyl-D-Asn deriv-
atives. Three of these six represent new metabolites: one shared
with E. coli (metabolite 6) and two specific to F. perrara (metab-

olites 7 and 8). Their MS2 fragmentation data support altered
fatty acyl appendages, C10:0 (m/z 287.1970, metabolite 6), C12:1

(m/z 313.2140, metabolite 7), and C13:0 (m/z 329.2443, metab-
olite 8).

F. perrara causes clb pathway-dependent megalocytosis and
DNA damage in eukaryotic cells. The striking similarities in ge-
netic organization and organic extractable small molecule detec-
tion between the clb GIs of E. coli and F. perrara prompted us to
test whether F. perrara induces similar clb-dependent phenotypes
in eukaryotic cells. Therefore, HeLa cells were exposed transiently
to different concentrations of the F. perrara wt or clbB::Tn mutant
strain. Similar to E. coli containing clb (28, 29), the F. perrara wt
strain induced megalocytosis of HeLa cells in vitro. This occurred
in a dosage-dependent manner: i.e., with a higher multiplicity of
infection (MOI), the phenotype became more pronounced (Fig.
5). However, in contrast to E. coli, F. perrara did not multiply in
the cell culture medium. Therefore, the MOIs necessary to induce
the megalocytosis phenotype were higher for F. perrara than for E.
coli. Megalocytosis was confirmed to be associated with a func-
tional clb pathway, as the F. perrara clbB::Tn mutant strain did not
induce megalocytosis of HeLa cells at any of the tested MOIs (Fig.
5). While HeLa cells were detaching and dying over time when

FIG 3 Domain architecture of the Clb NRPS/PKS proteins of F. perrara PEB0191, E. coli IHE3034, and Pseudovibrio FO-BEG1. Predicted amino acid substrate
specificities of adenylation (A) domains and residues in binding pockets are depicted. Predictions with NRPSpredictor2 confidence scores (46) of �80% are
marked with a question mark. For ClbB and ClbN, the experimentally validated A domain specificities (Ala and Asn, respectively) are depicted (33, 34). For ClbN,
this is consistent with the prediction, but for ClbB, the prediction suggested Val. Sequence motifs (GxSxG) of the active sites of AT domains are depicted. Relict
cis-AT domains of ClbC, ClbK, and ClbO are shown in white and denoted with an asterisk. Protein identities with a sliding window size of 15 bp are shown (red
depicts identity of �30%). Abbreviations of domains are as follows: C, condensation; A, adenylation; T, thiolation sequence of acyl/peptidyl-carrier proteins; KS,
ketosynthase; AT, acyl-transferase; KR, ketoreductase; DH, dehydratase; ER, enoyl-reductase; Cy, condensation/cyclase; Ox, oxidase; E, epimerase.
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exposed to high MOIs of the F. perrara wt, no cytotoxic effect
could be observed when exposed to the same concentration of the
F. perrara clbB::Tn mutant. We also tested whether the megalocy-
tosis phenotype inflicted by the F. perrara wt strain upon HeLa
cells correlated with DNA damage, as has been shown to be the
case for clb-positive E. coli (28). Therefore, we analyzed phosphor-
ylation of the histone H2AX, a sensitive marker for the presence of
DNA double-strand breaks in eukaryotic cells. We observed a shift
toward higher levels of H2AX phosphorylation in HeLa cells after
transient exposure to the F. perrara wt compared to the negative
control. No shift was observed after exposure to the F. perrara
clbB::Tn mutant (Fig. 5). This implies that F. perrara induces la-
tent DNA double-strand breaks in HeLa cells in a clb pathway-
dependent manner.

DISCUSSION

The importance of the clb GI for host health and disease has been
demonstrated for specific E. coli strains. These bacteria typically
colonize the gastrointestinal tract of humans, where the putative
colibactins are hypothesized to exert genotoxic activity on host
cells, resulting in DNA damage linked to tumorigenesis, colorectal
cancer, and gut inflammation (28, 30, 31). Recently, a highly di-
vergent variant of the clb gene cluster was identified in the genome
of the diseased coral-associated organism Pseudovibrio FO-BEG1,
suggesting that this biosynthetic pathway might be more widely
distributed among symbionts than previously assumed (35). In-
deed, our study discovered a divergent homolog of the clb pathway
in F. perrara, a gut symbiont of honey bees. Despite high degrees of
sequence divergence, the clb GIs of F. perrara, E. coli, and Pseu-

FIG 4 Colibactin pathway-dependent metabolites in F. perrara (A) and proposed structures for the fatty acyl-Asn metabolites (B) and their production (C). (A)
MS2 network analysis between F. perrara and E. coli strains. MOFs in square nodes are specific to F. perrara, those in diamonds are shared among F. perrara and
E. coli, and those in oval nodes were detected only in wild-type E. coli strains. (B) Proposed structures for eight metabolites are shown based on network analysis,
MS2 fragmentation patterns, and comparison to previously characterized colibactin metabolites. Data for the major metabolite 1 (m/z 315. 2281) support
N-lauryl-D-Asn, those for metabolites 2 to 5 have previously been reported (32, 34), and those for metabolites 6 to 8 represent new metabolites produced by F.
perrara. (C) Extracted ion chromatogram (EIC) of metabolites 1, 2, 3, and 8, which are produced at a 10:1.2:0.37:0.19 ratio under our experimental conditions.
Metabolites 4 to 7 (not shown) were only produced as very minor constituents and were near baseline at the scale shown.
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dovibrio FO-BEG1 have largely maintained a conserved gene syn-
teny (Fig. 2) and biosynthetic module architecture (Fig. 3). Our
chemical, functional, and bioinformatic analyses support that F.
perrara and E. coli produce a related set of N-acyl-D-Asn metabo-
lites (Fig. 4) and cause similar phenotypes on HeLa cells in vitro,
including megalocytosis and DNA damage (Fig. 5). The conserva-
tion of the biosynthetic and phenotypic characteristics suggests
that the clb pathway mediates similar symbiotic interactions in the
distinct gut communities of ecologically distinct hosts.

The occurrence of this biosynthetic pathway in symbionts
from diverse environments parallels the evolution of the pederin
family of small molecules (24), a group of structurally related
polyketides identified in bacteria associated with diverse eukary-
otic hosts, including beetles, sponges, and lichens. The biosyn-
thetic gene clusters responsible for the production of these mole-
cules appear to spread via horizontal gene transfer (HGT),
facilitating the adoption of functions in distinct symbioses. Sev-
eral lines of evidence corroborate this hypothesis for the clb GI. In
the Enterobacteriaceae and Pseudovibrio FO-BEG1, the island is
flanked by mobile genetic elements, and its distribution is limited
to specific strains (29, 35). Furthermore, the clb GI has only di-
verged by a few mutations within the Enterobacteriaceae (Fig. 2),
indicating more recent acquisition followed by rapid horizontal
dissemination (29). Such characteristic signs of HGT are less evi-
dent for the clb gene cluster of F. perrara. While we found an
elevated G�C content (40.4%) compared to the average G�C
content of the genome (34.1%), no mobile genetic elements are
encoded in close proximity (Fig. 2). However, the clb genes of F.
perrara are located within a larger genomic region (GI 2 in Fig. 1A)
absent from related bacteria. This provides evidence for an ancient

HGT event of the clb GI in F. perrara. Mobile genetic elements may
have been deleted after integration, while the clb gene cluster was
maintained, supporting an important biological role for F. per-
rara. The low sequence similarity between the clb GIs of F. perrara,
the Enterobacteriaceae, and Pseudovibrio further supports ancient
divergence points. Thus, it is intriguing to find that they have
maintained an almost perfect gene synteny and conserved biosyn-
thetic module architecture, indicating strong purifying selection
acting on the Clb assembly line proteins and on the synthesized
small molecules. Interestingly, we found relict cis-AT domains to
be present in several of the trans-AT PKS genes of all three species.
These domains share little sequence similarity with conserved AT
domains present in the clb GIs, reveal signs of accelerated evolu-
tion (Fig. 3), and harbor mutated active site residues (see Table S3
in the supplemental material), signifying loss of AT enzymatic
activity. These relict AT domains are evidence that these Clb
trans-AT PKSs have evolved from ancestral cis-AT PKSs; which is
in contrast to the previous observation that other trans-AT PKSs
have evolved independently from cis-AT PKSs via horizontal
transfer of KS domains (25).

Our HeLa cell experiments showed that F. perrara, like E. coli,
produces unknown molecules with genotoxic activity and induces
megalocytosis in eukaryotic cells (Fig. 5). The conserved architec-
ture of the biosynthetic assembly line (Fig. 3) indicates that the clb
pathways of F. perrara, the Enterobacteriaceae, and Pseudovibrio
FO-BEG1 encode related secondary metabolites. This is corrobo-
rated by the finding that the specificity-conferring residues in the
amino acid binding pockets of the adenylation domains are
mostly conserved between the three species (Fig. 3). Furthermore,
our comparative metabolomic analysis of F. perrara and E. coli

FIG 5 F. perrara PEB0191 causes megalocytosis (A and B) and activates a DNA damage response in HeLa cells in vitro (C). (A) Megalocytosis of HeLa cells was
analyzed 48 h post-transient infection. HeLa cells were stained with Giemsa as previously described (34). Transient infections with bacteria were carried out for
4 h. Scale bars, 100 �m. (B) Quantification of megalocytosis activity was based on protein content per well using methylene blue staining 48 h postinfection,
followed by methylene blue extraction and OD660 measurements as described previously (34). For each condition, three independent wells were quantified. The
mean � standard deviation is shown, and P values of two-tailed t tests are indicated: **, P � 0.01; *, P � 0.05. (C) HeLa cells were infected for 4 h at an MOI of
200 for E. coli and 5,000 for F. perrara. �-H2AX was quantified by flow cytometry after 14 h of incubation. clb�, pBAC-PKS; clb�, pBAC-control; wt, wild type.
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identified a number of common or related clb pathway-dependent
fatty acyl-D-Asn metabolites. These small molecules represent
peptidase ClbP cleavage products of “precolibactin” precursors
(32, 33). One intermediate precolibactin precursor was character-
ized from E. coli and determined to be an authentic ClbP native
substrate (34). However, the structures of advanced precolibac-
tins have not yet been reported. The detection of cleavage prod-
ucts, albeit at various distributions between F. perrara and E. coli,
demonstrates that this so-called prodrug activation mechanism
(52) is conserved among clb pathways. The difference in metabo-
lite production most plausibly originates from divergent acyl-CoA
substrate specificities among ClbN homologs (33). The fragmen-
tation patterns and low molecular weights of the 15 MS2 frag-
mented clb pathway-dependent molecules from F. perrara did not
support the detection of mature precolibactins, although few
high-molecular-weight molecules were detected. Most molecules
from F. perrara were either identified as accumulated fatty acyl-D-
Asn derivatives (Fig. 4) or were below the detection limits for MS2

fragmentation.
An open question concerns the role of the clb GI for bacterial

colonization in the gut. Do the similar in vitro phenotypes caused
by F. perrara and E. coli (Fig. 5) indicate similar functions of the
Clb GI in vivo? For E. coli, it has been shown that the clb GI inflicts
DNA damage and chromosome instability in the gut of mice,
thereby contributing to inflammation-induced colorectal cancer
and senescence-induced tumor growth (30, 31, 53). By contribut-
ing to a chronic inflammatory state in the intestine, the clb GI was
hypothesized to facilitate long-term persistence of these Entero-
bacteriaceae. The bacterial growth inhibitory activities of acyl-D-
Asn metabolites (34) could also participate in persistence via bac-
terial competition for niche resources. How would this relate to a
potential functional role of the clb GI in the bee gut? F. perrara has
so far only been detected in honey bees, where it appears to colo-
nize (together with G. apicola and S. alvi) the anterior part of the
hindgut (9). The clb GI of F. perrara might cause phenotypes in the
bee gut similar to those caused by E. coli in the human gut— e.g.,
contributing to niche establishment, persistence, and/or interbac-
terial competition. Future studies will be necessary to determine
whether the in vitro genotoxic activity of F. perrara is directed
against host cells in the gut. The fact that F. perrara mediates DNA
damage on human cells in vitro suggests that the genotoxic activity
is not host specific. Further, a cuticle layer is separating the epi-
thelial cells in the honey bee hindgut from the bacteria in the
lumen. This poses the question as to whether the genotoxic activ-
ity of the clb pathway could even be mediated to the host cells. In
vivo functional studies on the role of the clb GI in the honey bee gut
will be necessary to address these questions. Bees are important
pollinators, which suffer from a wide range of environmental dis-
turbances, including pathogens and pesticides (54, 55). Thus, it is
important to understand to what extent the DNA-damaging ac-
tivity of the clb GI affects honey bee health. Community analysis
showed that relative levels of F. perrara in the gut can vary between
individual bees (5, 12). However, no bee pathology has been asso-
ciated with F. perrara thus far, nor should future efforts to func-
tionally characterize the F. perrara clb GI in vivo be exclusively
associated with potential pathogenic attributes. The clb GI of E.
coli is present not only in pathogenic strains (28). E. coli Nissle
1917 is a probiotic bacterium used for the treatment of ulcerative
colitis (56), and its beneficial effect on the host was shown to be
dependent on the presence of the clb GI (26). Understanding the

role of the clb biosynthetic pathway in the bee microbiota could
also point toward the ecological functions of this GI in more com-
plex communities, such as those present in the human gut or
inhabiting corals. Therefore, future studies will focus on the bac-
terial role of the clb GI in regulating symbiosis, its distribution
across different microbiomes, and the molecular mechanisms
governing host phenotypic responses.
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