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Abstract: For a standardized stationary Gaussian sequence, the joint version of the almost sure central limit theorem
related to maximum, minimum and the partial sum is considered when the covariance function satisfies some weak

dependence conditions.
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Let (X,) be a standardized stationary Gaussian sequence with marginal distribution function ®&(x).

Suppose that the covariance function () = Cov(X,, X,.,) satisfies

[:1a29"' (1)

where ¢ > 0 and L(+) is a positive, slowly varying function at infinity. Moreover, suppose that there exist
numerical sequences (u,),(v,) and 0 < 7; << o fori = 1,2, such that

n(l —o(w,)) —> ¢ nd(v,) —> 1, (2)
as n— oo, Define M, = max{X,, *» X,}, S, = X; + -+ X, ands, = (Var(S,))"%. [ 1] obtained the al-
most sure central limit theorem (ASCLT) for the maximum of weakly dependent sequence. The joint ver-

sion of ASCLT on the random vector (M, , S,) is proved in [2], 1. e.

N

S LM, <y S e < yh = e D) a. s,

n

lim 1

N—- log N &
if (1) holds. In this paper, we are interested in the ASCLT of random vector (M, , m,, S,) if (1) holds,
where m, = min{X,, -+, X,}. The main result is;

Theorem 1 Let (X,) be a standardized stationary Gaussian sequence and its covariance function satis-

fies (1). Suppose that (2) holds for numerical sequences (u,) and (v,). Then for any 2 € R, we have

S,

—(r;+7,)
— <zy=¢e T T P(2) a. s.

n

N
. 1 1
lim N e M <

Furthermore, for all x,y,2 € R,
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N
. 1 1 S,
lgl? @\7; ?I {7 a,y — bn < m, < Mn < a,x + bn ’ T < R
=exp(—e "HP(2) a. s.
where
a, = (2log m)~ " b, = (2logn)"?* — (2log n) " (loglog n + log 4x) /2
Before proving the main result, we need some lemmas. For convenience, denote &/, = {v, < m,., <

M., <u,} fork<<n,dd, = o, = {v, <<m, <M, <u,) and ¢, = {S, /0, < z} and let the positive absolute
constant © change from line to line.

Lemma 1 Under the conditions of Theorem 1, for1 <{k < nand z € R, there exists some y >0, such
that

E | I{,¢,}—1{,.,% }|< @<i+£>

n’  n
Proof Notice that
E | {,€}) — I{h..C} |
<| P{tp,} —[DCu,) — @Co) ™" |+]| Plt, ) — [Du,) — (o) ]" |+
| [oCu,) —oCw) ] —[@Cu,) — &(v,) ]" |
=A, + A, + A,
Note that n(1 — ®(u,)) —> 7, and n® (v,) —> 7, as n — oo imply (see [3]),

2 2
u, Cu, v, C, , ,
: )f\«—' : )N—' u’ ~ 2log n v2 ~ 2log n

eXp(* 2 n exp(* 2

Since limr () = liml,(t)/t“ = 0, there exists number § such that 0 <Zsupr(z) =6 < 1. For 0 < a <1, there

oo

n

=1

exist numbers 8§, and n, . such that 0 <<sup»(¢) =8 <<«/(2—a) < 1. By Normal Comparison Lemma (cf.

z;:zl

Lemma 11. 1.2 of [3]), we get
n—1

A+ A, <G D r(exp (—

=1

o G L W’
<o Fonl- )+ 5 Kl )

t=ny+1

1 +wi(t))

<©[<1ogn>“s+L<n><1ogn>l'ﬁlJ

) 2
g a2

nl\r? n

where w = min{| w, |, | v, | }. Fora =1, we get

L) (logn) ™"

n1+o

n—1 2
At = 005 KD 2

<o

t=1

Note 2/(1 4+ 8,) +a—2 > 0 and L(n) < Cn® for arbitrarye > 0. For some « > 0 and y > 0, we have A, +

A, << OG/n”. Further, A; <k/nfollows from 2" * — 2" < k/nfor 0 <2< 1. Hence we get the desired result.
Lemma 2 Under the conditions of Theorem 1, for any € R and some ¥ > 0, as £ < n we have

| Cov(I{t, €}, I{t,€, )]

Tl LY R k20 L (n+ 2k)
O_nr + L) i + L(k)l’rrzklia/zL(n)l"/znlf"’/z} 0<<a<<l
rl kY
<B(k. n) = @_p+<7> ] a>1
Sl LD R R (LGt 2k) — LG+ 1))} 71
T LG e L LG ‘




% 34 WENG Zhi-chao, et al; Almost Sure Central Limit Theorems of Extremes and the Partial Sum of Gaussian Sequences 23

n—1

Where L(n) = l+22r(t)

Proof By Normal Comparison Lemma (see [3]), we have

‘ Cov(I{t, €} 1{c4,,C,} )‘:| Pty €ty €,) — Plod, €3 Plct,., €} |

" o s S, - o 2
<@{’32f“>exp(w)+2w(x~ 2 )P o (14 con(x,. &) [
. S B W 22
j:EHCov<X]a g)exp 2<1+Cov(Xj, %)) +
— 'Zz
COV(%’ f,l,l)e"p 1+cov(%, ;) }

<B(k, n)
The last inequality follows from Lemma 2 of [2]. Thus, the desired bound is obtained.

Lemma 3 Under the conditions of Theorem 1, for all z € R, we have

limP{v, <m, <M, <u,, S <zl=e T P(2)

n—>oco O

Proof ILet (X, ) be the associated random sequence of (X,) and Y, denote a random variable, which

has the same distribution as S, /s, » but is independent of (X, ). Then

\P{v,, =M,y <2 Plo, < m < M < ) PLY, < =)

Oy

- w + 27
2(1+ Cov(X.. 5))

On

t=1 O

g@[nir(l)exp< s (z‘)) 2L0V< )exp

|

By using the similar arguments provided in Lemma 3 of [2], we have

Sn

n

< z|= limP{v, <m, <M, <u, (2

N>

limP{vy, <m, <M, <u,,

n—>co

According to Theorem 1. 8.2 in [ 3], if (2) holds, we have
limP{v” < 7)1”X < M”” < u”} — ¢ (r)+1y)

n—>co

The proof is complete.
Proof of Theorem 1 By Lemma 3, we will show that Lemma 3.1 in [ 4] holds for (&), where & =

I{v, <<m, <M, <u, S,/o, < z}. Notice that

N
Var( > 2 6)= 2 Ivargo+2 Y Lcovia. e =3+, (3)

n=1 I<<k<<n=_N

Since | &, |<<C1, we obtain that 3, < 2 l} < oo, Thus, we only need to estimate 3, in (3). For k< n, we

have

Cov(&es &) <2E | I{cd€,} — I{ch, € |+ Cov(I{ct €Yy Ict, €1) |
<6(Bk. n>+ﬁ)
n

where B(k, n) is defined in Lemma 2. Hence by using the same arguments of that in Theorem 1 of [ 2], we

have
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1

n

5, <G >,

1<<k<<n<<N

(Bk. +§)< Glog N

The proof is complete.
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