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Abstract Hyperammonemia can be caused by various ac-
quired or inherited disorders such as urea cycle defects. The
brain is much more susceptible to the deleterious effects of
ammonium in childhood than in adulthood. Hyperammonemia
provokes irreversible damage to the developing central nervous
system: cortical atrophy, ventricular enlargement and demyelin-
ation lead to cognitive impairment, seizures and cerebral palsy.
The mechanisms leading to these severe brain lesions are still
not well understood, but recent studies show that ammonium
exposure alters several amino acid pathways and neurotransmit-
ter systems, cerebral energy metabolism, nitric oxide synthesis,
oxidative stress and signal transduction pathways. All in all, at
the cellular level, these are associated with alterations in neuro-
nal differentiation and patterns of cell death. Recent advances in
imaging techniques are increasing our understanding of these
processes through detailed in vivo longitudinal analysis of neu-
robiochemical changes associated with hyperammonemia. Fur-
ther, several potential neuroprotective strategies have been put
forward recently, including the use of NMDA receptor antago-
nists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF
or inhibitors of MAPKs and glutamine synthetase. Magnetic

resonance imaging and spectroscopy will ultimately be a pow-
erful tool to measure the effects of these neuroprotective
approaches.

Introduction

Ammonia is produced by amino acid metabolism and intes-
tinal urease-positive bacteria. In physiological conditions, it
is mostly present as ammonium (NH4

+) in serum. The urea
cycle, which is fully expressed in the liver exclusively,
serves to converts NH4

+ to urea prior to renal excretion
and to maintain low serum concentrations (50–150 μM in
preterm neonates, 50–75 μM in term neonates, and <50 μM
in adults). Although the brain cannot convert NH4

+ to urea,
NH4

+ is also maintained at low levels in the central nervous
system (CNS) by the astrocytic enzyme glutamine synthe-
tase (GS), which synthesizes glutamine (Gln) from gluta-
mate (Glu) and NH4

+ (see Cagnon and Braissant 2007, and
references therein).

Excessive NH4
+ is toxic for the CNS. In adults, liver

failure results in hyperammonemia which in turn leads to
the potentially severe neuropsychiatric disorder hepatic en-
cephalopathy (HE) characterized by altered mental status
and coma. In the absence of irreversible cerebral edema,
HE symptoms in adults are largely reversible when NH4

+

returns to normal levels (Flint Beal and Martin 1998). In
children, hyperammonemia can be caused by numerous
inherited or acquired disorders (Leonard and Morris 2002),
among which the best known are inherited urea cycle dis-
orders (UCD) (Braissant 2010a; Gropman et al 2007;
Tuchman et al 2008). The susceptibility of the developing
brain to hyperammonemia leads to severe cognitive impair-
ment, seizures and cerebral palsy (Enns 2008). Neonates and
infants with important hyperammonemia develop cortical at-
rophy, ventricular enlargement, demyelination or gray and
white matter hypodensities (Enns 2008; Gropman et al
2007; Tuchman et al 2008). The extent of irreversible brain
damage depends on its maturational stage and on the
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magnitude and duration of NH4
+ exposure. Damage may

become irreversible in case of prolonged hyperammonemia
or when blood NH4

+ reaches levels between 200 and 500 μM
during the two first years of life (Bachmann 2003; Enns 2008;
Msall et al 1984; Tuchman et al 2008; Uchino et al 1998).

This review focuses on the most recent advances in
understanding NH4

+ toxicity to the brain, with emphasis
on novel tools, experimental models, therapies and neuro-
protective strategies.

Hyperammonemia in humans

Hyperammonemia and its consequences on the brain develop
secondary to various congenital or acquired causes (Cagnon and
Braissant 2007). Examples include congenital portosystemic
shunts (Kim et al 2012), extrahepatic portal vein obstruction
(Pietrobattista et al 2010), and cirrhosis with portal hyperten-
sion. However, much of what is understood concerning ammo-
nia neurotoxicity stems from patients with UCD.

Non-specific symptoms common to the immature
and mature CNS

Non-specific symptoms are common in most UCD patients
presenting in the neonatal period (poor feeding, vomiting,
somnolence, irritability, tachypnoea) (Braissant 2010a). As
NH4

+ rises in serum, hypothermia, lethargy and coma prog-
ress rapidly (Summar 2001). In cases of partial UCD, clin-
ical presentation can occur as late as months or years post-
natally and are often triggered by illness or catabolic stress.
In this case hyperammonemia is generally less severe and the
symptoms are usually milder than in newborns (Takanashi et
al 2002). Patients with late-onset hyperammonemia can pres-
ent with loss of appetite, cyclic vomiting, lethargy or behav-
ioral abnormalities (Harada et al 2006; Smith et al 2005).
Patients with partial defects tend to sponteaneously avoid
protein, especially female patients with ornithine transcarba-
mylase (OTC) deficiency (Scaglia et al 2002). Mental retar-
dation and learning difficulties are frequent.

Cerebral edema: a common feature of the NH4
+-exposed

CNS

In response to elevated serum NH4
+, the developing and

the mature CNS respond similarly: Gln content in astro-
cytes rises through increased GS activity, and astrocytes
swell. Under high NH4

+ levels, osmoregulation is insufficient
and cerebral edema develops, affecting all areas of the brain.
In its most severe form, increased intracranial pressure even-
tually leads to brain herniation (Cordoba and Blei 1996;
Norenberg et al 2005). In advanced cerebral edema, seizures,
abnormal posture and neuromuscular irritability are frequent

(Butterworth 1998). CNS edema first causes hyperventilation
and respiratory alkalosis later progressing to hypoventilation
and apnea (Brusilow and Maestri 1996). Without any treat-
ment most infants will die. In survivors of infantile hyper-
ammonemia, mental retardation is the norm (Bachmann 2003;
Krivitzky et al 2009; Tuchman et al 2008).

Edema associated with HE can be followed by mag-
netic resonance spectroscopy (MRS) and magnetic reso-
nance imaging (MRI) (Gropman 2010; Gropman et al
2010; Grover et al 2006; Oldham et al 2010). In the
acute setting, serum NH4

+ levels and cerebral edema are
correlated with psychomotor performance (Foerster et al
2009; Yadav et al 2010).

Hyperammonemia in the adult brain does not provoke
significant neuronal loss or structural damage to neurons, in
contrast with what is observed in the developing CNS
(Butterworth 2003).

Irreversible effects of ammonia on the developing brain

Irreversible damage to the developing brain results in mental
retardation inmost surviving children with UCD (Gropman et al
2007; Krivitzky et al 2009; Tuchman et al 2008). Neonatal onset
leads to the most severe brain damage and the least IQ score,
with significant volume loss of different parts of the developing
brain as assessed by later MRI. Diffuse cortical atrophy, lesions
in basal ganglia and thalamus, myelination delay and injury of
the oligodendro-axonal unit are frequent (Majoie et al 2004;
Takanashi et al 2003; Yamanouchi et al 2002). Cerebral MRI in
UCD neonates suggest that some of these lesions might already
be acquired in utero (Filloux et al 1986; Harding et al 1984;
Majoie et al 2004; Takeoka et al 2001).

If hyperammonemia is diagnosed before irreversible ce-
rebral insults, patients may have a normal neurodevelop-
ment (Kurihara et al 2003). Many however remain mentally
retarded or have learning difficulties (Smith et al 2005).
Brain MRIs of late-onset UCD patients show cortical injury
including acute ischemia, ventricular dilatation and myeli-
nation defects (Call et al 1984; Choi et al 2006; de Grauw et
al 1990; Gropman et al 2010; Kim et al 2006; Kurihara et al
2003; Oldham et al 2010; Scaglia and Lee 2006). Similar
lesions are found in patients with propionic acidemia or
hyperammonemia-hyperornithinemia-homocitrullinuria
syndrome who followed an unremarkable neonatal course
(Harding et al 1991; Salvi et al 2001).

Only a few UCD cases have been analyzed by autopsy.
Findings included microcephaly, shrinkage of hemispheres
coupled to multiple cysts, ventricular dilatation, atrophy or
necrosis of various brain nuclei or myelination defects
(Dolman et al 1988; Takeoka et al 2001; Yamanouchi et al
2002). Microscopically, spongious brain tissue with exten-
sive neuronal loss (in cortex and hippocampus particularly)
was observed, together with gliosis and astrocytes with
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water-clear, oval nuclei characteristic of Alzheimer’s type II
astrocytes.

Not all encephalopathies in children are due to UCD or
primary gene defects affecting the liver, and there is increas-
ing understanding that behavioral and neurological changes
are frequent in patients with chronic liver failure (CLF) or
portocaval shunts (PCS) even in absence of any significant
hyperammonemia (Caudle et al 2010, 2012; Yadav et al
2010). Clinical signs and electro-encephalogram findings
in children with acute liver failure (ALF) are relatively well
characterized. In contrast, while children affected with CLF
display neurocognitive deficits at an early age, the subtleties
of their CNS alterations are much less understood (Bajaj et
al 2011; Caudle et al 2010; Yadav et al 2010). In adults,
minimal hepatic encephalopathy (MHE) is often hidden and
only unmasked by specialized tests (Bajaj et al 2012; Felipo
et al 2012). Recent data show that adults with MHE present
cortical thinning that parallels their cognitive impairment
associated with early stages of liver disease (Montoliu et al
2012). Although children with liver disease or PCS can also
display T1 hyperintensity of the pallidi by MR, the clinical,
biological, and imaging subtleties of pediatric MHE still
need to be defined.

Available treatment options

Neonatal hyperammonemia and UCDs

The rapid removal of NH4
+ should be the immediate thera-

peutic goal in neonatal hyperammonemia (Walker 2009).
Protein restriction is the cornerstone of therapy, particularly
in severe cases. Dialysis (hemodialysis, hemodiafiltration or
continuous veno-venous hemofiltration) is indicated for
hyperammonemia which does not correct rapidly or which
is refractory to conservative measures (Leonard et al 2008).
Intravenous glucose (Glc) is essential to reverse catabolism,
together with careful use of insulin to avoid fluctuations in
serum Glc levels (Summar 2001). Intravenous administra-
tion of sodium benzoate and sodium phenylacetate, both
nitrogen scavengers, is an alternative and frequently used
approach to achieve sufficient nitrogen excretion in acute
phases (including neonatal) (Enns 2010; Shih 2007;
Tuchman et al 2008). Long term control of NH4

+ makes
use of the same compounds or oral sodium phenylbutyrate,
in combination with a low-protein diet (Batshaw et al 2001;
Berry and Steiner 2001; Cederbaum et al 2010; Enns et al
2007; Scaglia 2010). In UCD, large doses of arginine (Arg)
for argininosuccinate synthetase (ASS) and argininosucci-
nate lyase (ASL) deficiencies, or citrulline for carbamyl-
phosphate synthetase 1 (CPS-1) and OTC deficiencies,
further promote nitrogen excretion (Brusilow et al 1979;
Leonard and Morris 2002). Orthotopic liver transplantation

is currently the only option for severe, uncontrollable UCD
(Lee and Goss 2001). However, cell-based rather than
organ-based gene therapy is the ultimate goal and is an area
of intense research (Meyburg and Hoffmann 2010).

Early diagnosis and intensive treatment are often insuffi-
cient to prevent death, and neurological problems are fre-
quent in survivors (Bachmann 2003). High resolved proton
spectroscopy (1H-MRS) may prove to be a useful tool in
tailoring the care for patients with hyperammonemia regard-
less of the underlying cause. In patients with CLF for
example, spectroscopic findings consistent with HE/MHE
may be a new indication for liver transplant or for the
prescription of the same nitrogen scavengers as those used
in UCD.

Chronic hepatic encephalopathy

In adult patients with suspected or diagnosed chronic HE,
the mainstay of management is the reduction in gut-derived
ammonia. Historically, the drug of choice was lactulose
which decreases luminal pH, thereby favoring the transfor-
mation of non-resorbable NH4

+ produced by enteric com-
mensals and thus decreasing NH4

+ in portal venous blood
and nitrogen load to the liver (Als-Nielsen et al 2004; Patil
et al 1987). More recently, the oral non-absorbable antibiotic
rifaximin has become the drug of choice. In a pivotal trial in
patients with CLF, rifaximin prevented HE relapse more
efficiently than placebo (Bass et al 2010). A recent meta-
analysis suggests that it is at least as effective as other oral
treatments such as disaccharides and other antibiotics. It
further suggests that it may have fewer side effects than
previously used agents, and that it may in fact improve
performance on psychometric tests (Eltawil et al 2012).

Nitrogen scavengers are also used in HE patients. L-
ornithine-L-aspartate (LOLA) is used to supply ornithine
(Orn) to the urea cycle, thereby favoring NH4

+ conversion
to urea in residual periportal hepatocytes and Gln synthesis
from Glu and NH4

+ in skeletal muscle, which in liver failure
is an important metabolic alternative for the breakdown of
NH4

+. In rodent models, LOLA significantly increased urea
production and blood Gln levels, and decreased CNS NH4

+

while slowing the rise in brain Gln (Rose et al 1998).
Results from human trials are controversial however: both
fasting and post-prandial serum NH4

+ falls within 7-days of
treatment initiation in parallel with improved psychomotor
performance and overall well-being (Kircheis et al 1997).
However, serum Gln rises contributing in turn to ammonia-
genesis, rebound hyperammonemia and severe HE follow-
ing LOLAwithdrawal (Olde Damink et al 2002). No studies
have been done in children, although anecdotal, unpub-
lished reports suggest that daytime drowsiness and attention
deficits may improve in LOLA-treated older ones. L-
ornithine-phenylacetate (OP) is an elegant alternative as it
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is thought to act both on NH4
+ transformation and elimina-

tion. Its Orn moiety uses muscle GS activity to convert
NH4

+ into Gln, while phenylacetate combines with Gln as
phenylacetylglutamine (Jalan et al 2007). OP showed a
beneficial effect in rat models of CLF with acute HE de-
compensation. In lipopolysaccharide-induced HE exacerba-
tion in BDL rats, OP intraperitoneal administration reduced
brain edema and rate of progression to coma (Wright et al
2012). This study is auspicious of benefiting human subjects
since OP was administered once the rats were diagnosed
with HE. Conversely another study showed that pre-emptive
OP limited HE severity in PCS rats in which HE exacerba-
tion was triggered by administration of blood in the gastro-
intestinal tract (Oria et al 2012). Although it can be argued
that patients at risk of severe gastrointestinal bleeds could
benefit from primary OP prophylaxis, this study seems less
clinically significant as the cost-effectiveness of such an
approach might be prohibitive. However, at this time it is
too early to formally conclude since human studies using
this newer compound are forthcoming.

Experimental models to study NH4
+ toxicity to the brain

In vivo: Spf mice, KO mice and rat models
of hyperammonemia

Sparse-fur (Spf) mice have a single point substitution in the
OTC gene, with X-linked transmission, mimicking the human
disease (Veres et al 1987). Hepatic OTC activity is 5–13 % of
that in normal mice. Adult Spf/Y mice show NH4

+ blood and
brain levels increased by 1.5- and five-fold respectively (Rat-
nakumari et al 1992). Neuropathologic studies in Spf mice
show similar brain alterations as those observed in OTC
patients: brain size reduction (including decreased striatum
volume) and ventricular enlargement (Hopkins et al 1998).
Several knock-out (KO) mice have been engineered to model
UCDs (Deignan et al 2008): ASS, ASL, arginase I and argi-
nase II KOmice, as well as double KOmice for arginases I+II.
ASS-/- and ASL-/- mice die a few days after birth, with plasma
NH4

+ increased four-fold. Arginase I and arginases I+II KO
mice die from hyperammonemia 14 days postnatally, with a
ten-fold increase in plasma NH4

+.
Different rat models exist to analyze the effects of hyper-

ammonemia on the CNS. For example, pregnant rats can be fed
a diet containing NH4-acetate from day 1 of pregnancy until
weaning, followed by feeding the pups after weaning with high
NH4

+-containing diet. NH4
+ levels in the brain of these animals

is 1.4 times higher as compared to control (Aguilar et al 2000).
Alternatively, hyperammonemia can be induced in adult rats by
intraperitoneal injections of NH4

+-acetate, continuous iv infu-
sion of NH4Cl, iv urease infusion (Robinson et al 1992b),
administration of a NH4

+-acetate containing diet (Azorin et al

1989) or surgical PCS (Song et al 2002). The following are the
most valid in vivo models of ALF: hepatic-devascularized rats,
thioacetamide-treated rats, NH4

+-treated portocaval-shunted
rats and galactosamine-treated rats (see Butterworth et al 2009
for a review; Bosoi et al 2012; Cauli et al 2011; Chavarria et al
2010; Cudalbu et al 2012b; Kanamori et al 1993; Shen et al
1998; Zwingmann et al 2003).

In vitro: monotypic brain cell cultures and organotypic
mixed-cell cultures

NH4
+ toxicity has been studied in monotypic primary cul-

tures of neurons or astrocytes (Jayakumar et al 2006;
Klejman et al 2005) as well as in organotypic cultures of
hippocampal rat brain slices (Chepkova et al 2006). These
models provide several clues regarding the mechanisms of
cellular NH4

+ toxicity, but they do not allow for the analysis
of the effects of hyperammonemia on the developing CNS,
especially with respect to the relationships between devel-
oping neurons and glia.

To this end, we have developed 3D primary reaggregated
brain cell cultures as a valid experimental model to study the
effects of NH4

+ on the developing CNS (Braissant et al
2002, 2008). These cultures, which are classified as organo-
typic, are prepared from the brain of rat embryos, contain all
types of brain cells (neurons, astrocytes, oligodendrocytes,
microglia) and grow in a manner resembling in vivo CNS
(Honegger and Monnet-Tschudi 2001). In this model hyper-
ammonemia is mimicked by treating cultures with NH4Cl.
Compared to classical monotypic cultures, 3D brain cell
cultures allow for the analysis of irreversible NH4

+ toxicity
in a model that mimics brain complexity at different matu-
rational stages. These cultures are also a useful tool to
examine the effects of hyperammonemia in isolation, devoid
of the confounding variables found in animal models owing
to the secondary effects of hyperammonemia.

Mechanisms of CNS ammonium toxicity

Amino acids disturbances

By synthesizing Gln from NH4
+ and Glu, the astrocytic en-

zyme GS is the major CNS pathway of NH4
+ removal. Ac-

cordingly, hyperammonemia with high NH4
+ levels increase

Gln in brain cells, as seen in OTC patients (Connelly et al
1993), Spf mice (Inoue et al 1987), organotypic brain cell
cultures (Bachmann et al 2004) and in NH4

+-infused rat
(Figs. 1 and 3). Gln is osmotically active and its NH4

+-induced
increase leads to cytotoxic edema by astrocyte swelling.
According to the “Trojan horse” hypothesis, astrocyte swell-
ing under NH4

+ exposure may be subsequent to Gln transport
into mitochondria, Gln being cleaved back to ammonia upon
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entry into mitochondria, thereby producing reactive oxygen
species and inducing the mitochondrial permeability tran-
sition (MPT) (see below) (Albrecht and Norenberg 2006;
Albrecht et al 2010; Rama Rao et al 2012). In ALF, Gln
trapping in astrocytes affects adjacent glutamatergic neu-
rons, decreasing excitatory transmission and increasing
neuroinhibition (Desjardins et al 2012).

Furthermore, astrocyte swelling can cause a secondary
release of Glu into the intercellular space which, coupled to
the conversion of Glu and NH4

+ to Gln, can decrease intra-
cellular pools of Glu, and induce the death of glutamatergic
neurons (Hertz and Kala 2007; Qureshi and Rao 1997). In-
deed, Glu is significantly decreased in the cerebral cortex of
Spfmice and NH4

+-exposed brain cell 3D cultures (Bachmann
et al 2004; Ratnakumari et al 1994a). NH4

+ excess can also be
detoxified by converting α-ketoglutarate to Glu by glutamate
dehydrogenase (GDH), albeit its activity being much lower
than that of GS in astrocytes. The consequence is depletion of
α-ketoglutarate from the tricarboxylic acid (TCA) cycle.

Patients with UCD (except arginase I deficiency) present
with decreased plasma Arg, hence the indication for Arg sup-
plementation (Leonard and Morris 2002; Scaglia et al 2004;
Scaglia and Lee 2006). Arg is the precursor for nitric oxide
(NO) and creatine (Cr) synthesis. Consequently, decompen-
sated UCD is associated with disturbances in the citrulline-
NO cycle and in Cr metabolism both in the brain and periph-
erally (see below). Spfmice display deficient Arg synthesis, not
unlike what is seen in the CNS of OTC patients (Ratnakumari et

al 1996b). In contrast, intracellular Arg increases when brain
cells with a normal Arg supply are exposed to NH4

+. This has
been shown repeatedly in brain cell organotypic cultures
(Bachmann et al 2004), in rat cerebellar synaptosomes (Rao
2002) and in rat primary astrocytes (Zielinska et al 2012). The
NH4

+-induced expression of ASS and ASL in astrocytes may
also contribute to this process (Braissant et al 1999b).

Finally, large neutral amino acids (tryptophan Trp, tyro-
sine, phenylalanine, methionine, histidine) accumulate in
the CNS of Spf mice (Bachmann and Colombo 1984; Inoue
et al 1987). Tryptophan accumulation may lead to distur-
bances in serotoninergic neurotransmission.

Alterations in neurotransmission systems

If amino acid metabolism is altered in hyperammonemia, it
follows that neurotransmission should be affected. NH4

+

exposure leads to astrocyte swelling, pH- and Ca++-depen-
dent Glu release from astrocytes, inhibition of Glu re-uptake
by astrocytes (inhibition of GLAST transporter) and excess
depolarization of glutamatergic neurons (Cagnon and
Braissant 2007; Chan et al 2000; Rose 2006). These abnor-
malities, in turn, induce excess extracellular Glu accumula-
tion. Increased Glu release by brain cells is observed in Spf
mice, in rabbit models of acute hyperammonemia and in
primary astrocytes exposed to NH4

+ (de Knegt et al 1994;
Rao and Qureshi 1999; Rose et al 2005). Excessive extra-
cellular Glu is excitotoxic, essentially through N-methyl-D-

NH4
+

Oxidative 
stress

NO

GLAST

increased
    extracellular
    glutamate

Neuron
Astrocyte

glutamine

Energy deficit

TCA cycle

NMDA
receptors

Respiratory
chain

NO

NOS 
inhibitors iNOS

GS

Energy deficit
Cell death

MPT

NMDA 
antagonists

Oxidative 
stress

NH4
+

CreatineAcetyl-L-carnitine

Creatine Creatine
NH4

+

nNOS

Fig. 1 NH4
+ toxicity for the central nervous system. Toxic effects of

NH4
+ to neurons and astrocytes are shown in red. In particular, NH4

+

exposure generates oxidative stress, energy deficit and cell death in
CNS through disturbances of the NO pathway, inhibition of the TCA
cycle, opening of the mitochondrial permeability transition and sec-
ondary creatine deficiency. Protective effects of creatine, acetyl-L-

carnitine, NMDA antagonists and NOS inhibitors against NH4
+ toxic-

ity are shown in green. GLAST: NA+-dependent Glu/Asp transporter;
GS: glutamine synthase; iNOS: inductible nitric oxide synthase or
NOS2; MPT: mitochondrial permeability transition; NMDA: N-
methyl-D-aspartate; nNOS: neuronal nitric oxide synthase or NOS1;
NO: nitric oxide
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aspartate (NMDA) receptor activation. NMDA receptor acti-
vation in turn leads to an array of metabolic alterations affect-
ing NO metabolism and Na+/K+-ATPase. ATP shortage,
mitochondrial dysfunction, free radical accumulation and ox-
idative stress ultimately ensue (see below) and lead to cell
death (Fig. 1) (Braissant 2010a; Rodrigo et al 2009). AMPA
and mGluR receptors are also affected by NH4

+ exposure.
Finally, NH4

+ can also alter other neurotransmission systems
via its effect on glutamatergic excitotoxicity (e.g., activation
of GABA or benzodiazepine receptors) (Cauli et al 2009).

HE is characterized by an imbalance in cholinergic sys-
tem activity in humans, BDL rats and rats fed with NH4

+

(Garcia-Ayllon et al 2008). A significant decrease of cho-
linergic neurons is observed in the forebrain of Spf mice
(Ratnakumari et al 1994b) as well as in brain cell 3D
cultures exposed to NH4

+ (Braissant et al 2002). In the
CNS of Spf mice choline acetyltransferase (ChAT) activity
decreases immediately after weaning and reaches signifi-
cantly lower levels in adult animals. Likewise, cholinergic
muscarinic M1 (postsynaptic) and M2 (presynaptic) receptors
are altered (Michalak and Butterworth 1997; Ratnakumari et
al 1996a). These data suggest that hyperammonemia can
severely impair cholinergic neurotransmission.

Trp and 5-hydroxyindoleacetic acid (respectively precur-
sor and metabolite of serotonin) are increased in Spf mice
brain and in the CSF of UCD children (Bachmann and
Colombo 1984; Hyman et al 1987). Receptor binding stud-
ies of Spf mice revealed a significant loss of 5HT2 receptor
and a concomitant increase in 5HT1A receptor (Robinson et
al 1992a). These hyperammonemia-induced alterations of
the serotoninergic system may be involved in anorexia and
sleep disturbance observed in UCD (Hyman et al 1986).

Cerebral energy deficit

Spf mice show decreased ATP in their brain (Ratnakumari et
al 1992), together with a lower cytochrome C oxidase ex-
pression and activity, suggesting that ATP reduction might
be due to a slowing of the electron transport chain enzymes
(Fig. 1) (Rao et al 1997). The deficit in brain energy metab-
olites under hyperammonemia might also be due to TCA
cycle inhibition via α-ketoglutarate dehydrogenase (see
above) (Hertz and Kala 2007; Lai and Cooper 1986). How-
ever ATP depletion alone is not enough to induce cell death
in CNS (Marcaida et al 1995).

The Cr/phosphocreatine/creatine kinase system is essen-
tial for cellular energy through buffering and regeneration of
ATP, both systemically and in the brain (Béard and Braissant
2010; Braissant 2012; Braissant et al 2011; Brosnan and
Brosnan 2010; Brosnan et al 2007). Spf mice show de-
creased brain Cr (Ratnakumari et al 1996b), and NH4

+

exposure generates a secondary Cr deficiency in brain cells
(Braissant et al 2008, 2002).

Primary astrocyte cultures, but not neuronal cultures,
exposed to NH4

+ show opening of MPT (Alvarez et al
2011; Bai et al 2001), leading to altered oxidative phosphor-
ylation, cessation of ATP synthesis, production of reactive
oxygen species and cell death (Fig. 1). Increased superoxide
production and decreased antioxidant enzyme activity were
also observed in the brain of NH4

+-infused rats (Kosenko et
al 1997). This was prevented both by nitroarginine-mediated
NOS inhibition and by NMDA receptor antagonists, sug-
gesting that NH4

+-induced oxidative stress is at least in part
due to increased NO formation through excessive NMDA
receptor activation (Kosenko et al 1999, 1998). In keeping
with this hypothesis, free radical production is enhanced in
primary cultures of astrocytes exposed to NH4

+ (Murthy et
al 2001; Reinehr et al 2007).

Alteration of nitric oxide synthesis

NO is produced from Arg by nitric oxide synthase (NOS)
which constitutes the citrulline-NO cycle in concert with
ASS and ASL. The citrulline-NO cycle is well expressed
in CNS, together with cationic amino acid transporters
(CATs, y+LATs) allowing for a steady Arg supply to brain
cells (Braissant et al 1999a, 2001; Wiesinger 2001).

In neurons under Arg normal supply, the activation of
NMDA receptors by NH4

+ exposure activates neuronal
NOS (nNOS or NOS1) and stimulates NO synthesis.
This finding has been demonstrated in PCS rats, in the
CNS of rats infused with NH4

+-acetate, and in primary
cultures of cortical neurons (Kosenko et al 1998; Rao
2002; Rodrigo et al 2005). Likewise, in glial cells, in-
ducible NOS (iNOS or NOS2) activity can generate high
concentrations of NO. NH4

+ exposure induces iNOS
expression and enhances NO synthesis in primary astro-
cyte culture (Schliess et al 2002). This is also coherent
with the observation that brain cell cultures exposed to
NH4

+ increase their Arg content and induce expression of
ASS and ASL in astrocytes, thereby stimulating the
citrulline-NO cycle (Bachmann et al 2004; Braissant et
al 1999b; Zielinska et al 2011).

NH4
+ exposure leads to excessive formation of NO

which can impair mitochondrial respiration by interacting
with superoxide anions leading to formation of highly toxic
peroxynitrites. It therefore follows that neuronal and glial
death ensues from secondary ATP depletion, increased free
radicals and oxidative stress (Rodrigo et al 2009). Moreover,
NH4

+-induced production of NO can inhibit GS thus poten-
tiating the consequences of hyperammonemia on the CNS
(Rose and Felipo 2005).

Recent data also suggest that ammonia may alter blood–
brain-barrier (BBB) permeability through a mechanism involv-
ing increased NO and oxidative stress in the brain microcapil-
lary endothelium, thus contributing to vasogenic edema
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induced in ALF conditions (Jayakumar et al 2012; Skowronska
et al 2012).

NH4
+ effects on NO are different in UCD. Except for argi-

nase I deficiency, other UCDs are associated with Arg shortage
(see above), thus impairing the citrulline-NO cycle. According-
ly, NOS activity and NO synthesis are decreased in CNS of Spf
mice (Ratnakumari et al 1996b). In OTC deficiency, plasma
and urinary NO metabolites (as markers of NO synthesis) are
below the normal range, suggesting decreased NO synthesis
(Nagasaka et al 2004). Arginase I deficiency presents with
elevated plasma Arg levels, thereby inducing an upregulation
of NOmetabolism (Scaglia et al 2004; Scaglia and Lee 2006).

In summary, brain NO metabolism is affected in a num-
ber of ways by NH4

+ exposure. Effects vary depending on
whether the exposure is acute or chronic, on brain cell type,
and whether Arg supply is normal or decreased.

Impairment of axonal and dendritic growth

Cortical atrophy, ventricular enlargement, and gray and white
matter hypodensities are characteristic neuroimaging findings
in children having suffered from hyperammonemia, suggesting
neuronal fiber loss or defects in neurite outgrowth. In layer V
neurons of frontoparietal cortex, Spf mice show a decreased
complexity of dendritic arborescence as well as dendritic spine
density (Hopkins et al 1998). Alteration of neurite outgrowth by
hyperammonemia might be triggered by dysregulation of cyto-
skeletal elements. Rats fed with NH4

+-acetate develop de-
creased phosphorylation of the dendritic protein microtubule
associated protein 2 (MAP-2), together with an increase of
MAP-2 binding to microtubules (Felipo et al 1993). NH4

+

exposure of 3D developing brain mixed-cell primary cultures
decreases mediumweight neurofilament (NFM) expression and
phosphorylation and inhibits axonal growth (Braissant et al
2002). This occurs only in developing brain cells but not after
neuronal differentiation, in line with the clinical differences
between pediatric and adult patients (see above).

Cell death and signaling transduction pathways

Irreversible damage caused by NH4
+ exposure on the devel-

oping CNS is consistent with brain cell death, which we
showed in neurons and oligodendrocytes of NH4

+-exposed
organotypic brain cell cultures (Braissant 2010a; Cagnon
and Braissant 2007, 2008). In particular, NH4

+ induces
neuronal apoptosis through activation of caspases and cal-
pain. We further showed that NH4

+-induced calpain activa-
tion cleaves the cdk5 activator p35 to p25, which induces
neurodegeneration.

NH4
+ exposure may also trigger endogenous protective

mechanisms to prevent or limit brain damage. We showed that
ciliary neurotrophic factor (CNTF), an injury-associated surviv-
al factor expressed by astrocytes, is up-regulated by NH4

+

through p38 mitogen-activated protein kinase (MAPK) activa-
tion (Cagnon and Braissant 2009), with secondary roles of the
two other MAPKs, SAPK/JNK and Erk1/2 in oligodendrocytes
and neurons respectively. Erk1/2, SAPK/JNK and p38 are
activated in primary astrocytes by NH4

+, and phosphorylation
of Erk1/2 and p38 appears responsible for NH4

+-induced astro-
cyte swelling, while phosphorylation of SAPK/JNK and p38 is
involved in NH4

+-induced inhibition of Glu uptake by astro-
cytes (Jayakumar et al 2006;Moriyama et al 2010; Schliess et al
2002). P53, a downstream target of MAPKs, is activated in
NH4

+-exposed astrocytes, contributing to astrocyte swelling
and Glu uptake inhibition (Panickar et al 2009).

Channels and transporters

Brain edema due to hyperammonemia is thought to occur
essentially through astrocyte swelling. In recent studies both
in primary astrocyte cultures exposed to NH4

+ and in
thioacetamide-treated rats (an in vivo model of ALF), the
Na+-K+-Cl- cotransporter-1 (NKCC1)was activated in response
to NH4

+ exposure, thus increasing water entry in astrocytes
(Jayakumar and Norenberg 2010; Jayakumar et al 2011). It
was shown that connexin 43 (Cx43), aquaporin 4 (Aqp4) and
the astrocytic inward-rectifying K+ channels Kir4.1 and Kir5.1
are decreased in astrocytes of Spf/GFAP-EGFP mice (Lichter-
Konecki et al 2008). Kir4.1 is also down-regulated in the cortex
of rats with liver failure (Obara-Michlewska et al 2011). In a rat
model of ALF, Aqp4 is increased in the astrocytic feet lining
BBB (Rama Rao et al 2010), where these channels are co-
localized and regulate K+ and water transport. NH4

+ is known
to cross some aquaporins, which might link cerebral metabo-
lism to volume control (Holm et al 2005). Astrocytes may
respond to elevated blood NH4

+ by inducing a protective down-
regulation of Cx43, Aqp4, and Kir4.1/Kir5.1, thus slowing
NH4

+ influx and decreasing water and K+ efflux. Increased
brain extracellular K+ and water may come with a price, how-
ever: brain edema, a phenomenon which has been observed in
UCD patients (Lichter-Konecki et al 2008).

Impairment of cognitive performance

Consistent with what is seen in patients, several animal models
with hyperammonemia show impaired cognitive performance.
Spf mice show deficits in cognition during hyperammonemic
episodes (D’Hooge et al 2000). Prenatal and neonatal exposure
to NH4

+ in rats appears to impair memory or conditioned
learning, while no such effect is observed when NH4

+ exposure
occurs in adults (Aguilar et al 2000). Long term potentiation
(LTP), which is considered as the molecular basis of some
forms of memory and learning, is significantly decreased in
hippocampal slices from rats prenatally and neonatally exposed
to ammonia (Munoz et al 2000). LTP impairment in hyper-
ammonemia might be responsible for at least some of the
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cognitive alterations found in hyperammonemic rats and Spf
mice, and could be involved in some aspects of mental retar-
dation in pediatric patients exposed to NH4

+.

Neuroprotection strategies

The progressive discovery of the various toxic effects of NH4
+

on the CNS, as described above, has led in the last years to the
proposal of various neuroprotective strategies. They all have
the following aims: 1) restoring CNS energy status 2) allow-
ing normal brain cell development and 3) protecting them
from cell death. These different approaches were developed
both in in vitro and in vivo models, but have yet to be tested in
human subjects. Their potential lies in their association with
treatments aimed at decreasing NH4

+ levels, the idea being to
protect neurons all the while reducing the insult.

Preventing NH4
+-induced excitotoxicity through NMDA

receptors and excessive production of NO was proposed by
using NMDA receptor antagonists such as MK-801 and 2-
amino-5-phosphonovaleric acid (APV), which appear to
improve neuron survival in primary cortical neurons of
newborn rats exposed to NH4

+ (Klejman et al 2005).
NMDA receptor antagonists have also demonstrated their
neuroprotective properties in a galactosamine-injected rat
model of ALF (Rodrigo et al 2009). Moreover, APV dimin-
ishes the NH4+-induced impairment of LTP in rat hippo-
campal slices (Izumi et al 2005). NMDA antagonists and
NOS inhibitors such as nitroarginine are potential candi-
dates to counter the deleterious effects of NH4

+-induced
NO upregulation (Klejman et al 2005; Kosenko et al 1998,
1999), as they can prevent increased superoxide production
and decreased antioxidant enzyme activity in the brain of
NH4

+-infused rats (Kosenko et al 1997).
Cr and acetyl-L-carnitine have been proposed to protect

from NH4
+-induced cerebral energy deficits. NH4

+ exposure
can lead to a secondary Cr deficiency (Braissant et al 2008).
However, Cr co-treatment under NH4

+ exposure is neuropro-
tective. Cr appears to protect axonal growth in NH4

+-exposed
organotypic cultures of rat brain cells, where it also restores
NFM expression and phosphorylation in a glial cell-dependent
manner (Fig. 2) (Braissant et al 2002; Braissant 2010b). In the
same model, Cr also prevent the loss of cholinergic neurons. Cr
is also neuroprotective by inhibiting MPTopening (Dolder et al
2003). Using Cr as a neuroprotective agent may be facilitated
by the NH4

+-induced activity of the Cr transporter SLC6A8
both at BBB and in surrounding astrocytes (Bélanger et al 2007;
Braissant et al 2008; Braissant 2012). Offspring of Spf mice
treated with acetyl-L-carnitine from day 1 of conception dis-
played a significant restoration of ChAT activity when exposed
to NH4

+, suggesting a neuroprotective role for acetyl-L-
carnitine (Ratnakumari et al 1995). Its neuroprotective mecha-
nismsmay include restoration of cytochrome C oxidase activity

(Rao et al 1997) or free-radical scavenger action to protect cells
against oxidative stress (Zanelli et al 2005).

Protecting NH4
+-exposed brain cells by modulating intra-

and extracellular signaling pathways may also be effective.
We have shown that roscovitine, a cdk5 inhibitor, protects
neurons from NH4

+-induced death. However, as roscovitine
also impairs axonal growth probably through inhibition of the
remaining cdk5/p35 activity, cdk5 appears as a promising
therapeutic target to treat hyperammonemic newborns or
infants provided that one can selectively inhibit cdk5/p25
(Cagnon and Braissant 2008). Specifically inhibiting the p38
MAPK pathway, which is activated under NH4

+-exposure
(Cagnon and Braissant 2009), appears to be neuroprotective
in portacaval shunted rats (Agusti et al 2011). We also dem-
onstrated that co-treatment with exogenous CNTF protects
oligodendrocytes from NH4

+ toxicity through SAPK/JNK
(Cagnon and Braissant 2009), suggesting that CNTF may
have therapeutic implications to counteract demyelination in
hyperammonemic patients.

Finally, attenuating NH4
+-induced edema in the CNS by

inhibiting GS activity through the use of methionine sulfoxi-
mine (MSO) has long been proposed. MSO was demonstrated
to decrease NH4

+-induced astrocyte swelling and brain edema
in various in vivo rat models (Tanigami et al 2005; Willard-
Mack et al 1996), and was recently shown to divert NH4

+

detoxication from Gln synthesis (GS activity) to alanine (Ala)
through GDH activity in co-cultures of astrocytes and neurons
(Dadsetan et al 2011). MSO also appeared beneficial in mice
under ALF by promoting their survival, however in that case
through CNS-independent mechanisms (Jambekar et al 2011).
As MSO is not a specific inhibitor of GS, but also affects other
targets such as γ-glutamyl cysteine synthetase, further work is
needed in search of more specific GS inhibitors to evaluate the
potential of brain GS inhibition in NH4

+ exposure.
In conclusion, much more work is needed to establish the

best neuroprotective strategies, which may use the above-
mentioned molecules alone or in combination, and coupled
to NH4-lowering agents.

In vivo investigation of the brain during HE

Understanding the pathophysiology of HE and NH4
+ toxicity to

the brain requires experimental approaches focusing on the
CNS in its cellular and molecular complexity (Braissant
2010a; Butterworth 2012; Cagnon and Braissant 2007). Al-
though there is extensive research examining the biochemistry
of ammonia-induced neurotoxicity in various in vitro systems
varying from primary monolayer cultures (neuronal or glial) to
organotypic cultures (including mixed ones neuronal + glial)
(see above), in vivo data are often missing. In the last decades,
MRI and MRS have become powerful and reliable diagnostic
tools with the unique advantages of being applicable in vivo,
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non-invasively and longitudinally to monitor disease progres-
sion or effect of treatments (Cudalbu et al 2012a).

In vivo 1H magnetic resonance spectroscopy
and spectroscopic imaging (SI) to study brain osmolytes,
energy metabolism and neurotransmission in HE

Proton MRS (1H MRS) is a powerful tool to non-invasively
investigate in vivo brain metabolism of rodents and humans.
Very high magnetic field strengths (≥7T) combined with the
possibility of acquiring spectra at very short echo time (TE) (<
10 ms) have dramatically increased the number of brain metab-
olites detectable in vivo. At present, this neurochemical profile

comprises about 20 metabolites and neurotransmitters (Mekle
et al 2009; Mlynarik et al 2008a; Pfeuffer et al 1999; Tkác et al
1999, 2009). They are involved in: myelination/cell prolifera-
tion (phosphocholine, glycerophosphocholine, phosphoetha-
nolamine, N-acetylaspartate NAA, N-acetylaspartylglutamate
NAAG), energy metabolism (Glc, lactate Lac, Cr, phosphocre-
atine, Ala), osmoregulation (taurine, myo-inositol), neurotrans-
mission (Glu, Gln, aspartate, γ-aminobutyrate GABA, glycine)
and antioxidants (ascorbate, glutathione). While 1H MRS
allows signal detection from a well-defined single volume in
the brain (Fig. 3a), proton spectroscopic imaging (1H SI) allows
the simultaneous detection of multiple spectra from different
brain regions and thus the study of spatial metabolite
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Fig. 2 Proposed mechanisms leading to brain cell death under NH4
+

exposure, and effects of NH4
+ exposure on CNS intracellular and extra-

cellular signaling pathways. Toxic effects of NH4
+ are shown in red,

while protective effects of creatine, roscovitine and exogenous CNTF are
shown in green. NH4

+ activates calpain, which can induce neuronal death
directly. Activated calpain also cleaves p35 to p25 and activates caspase-
3, causing neuronal death. Roscovitine decreases neuronal death by
inhibiting cdk5/p25 and the subsequent caspase-3 activation. By inhibit-
ing cdk5, roscovitine activates the Erk1/2 pathway, which stimulates the
phosphorylation of neurofilaments. However, roscovitine also inhibits

axonal growth through inhibition of cdk5/p35. Targeting cdk5 to inhibit
NH4

+-induced neuronal death should thus be focused on the specific
inhibition of cdk5/p25. Creatine protects axonal growth under NH4

+

exposure in a glial cell-dependent way. NH4
+ activates MAPKs in brain

cells, and particularly p38 in astrocytes, which increases their release of
CNTF. Exogenous CNTF exerts a protective effect on oligodendrocytes,
through SAPK/JNK. CNTF: ciliary neurotrophic factor; Erk1/2: extra-
cellular signal regulated kinases 1/2;MAPKs: mitogen-activated protein
kinases; p38: p38 kinase; SAPK/JNK: stress-activated protein kinase or
c-Jun NH2-terminal kinase
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distribution in various regions of the brain (Fig. 3b) (Cudalbu et
al 2010;Mlynarik et al 2008b). In vivo 1HMRS and 1H SI were
used to study brain metabolism in animal models of hyper-
ammonemia without liver failure (continuous infusion or single
i.p. injection of ammonia) (Cauli et al 2007; Cudalbu et al
2012b; Fitzpatrick et al 1989) or ALF (galactosamine injection,
portacaval anastomosis followed by hepatic artery ligation)
(Cauli et al 2011; Chavarria et al 2010; Nyberg et al 1998)
and in human studies of ALF and CLF (Chavarria et al 2011;
Rovira et al 2008; Spahr et al 2002). The main finding in all of
these studies is the increase in brain Gln concentration as shown
in Fig. 3a and b.

In a recent in vivo study using continuous infusion of NH4Cl
we showed that Gln increased immediately after the initiation of
NH4

+ exposure and continued to increase linearly over time (2.3
± 0.4 μmol/g before infusion, reaching 17.7 ± 4.0 μmol/g at the
end of infusion) (Fig. 3a), suggesting that no delay in Gln
accumulation occurred (Cudalbu et al 2012b). No significant
differences in the total concentrations of all other metabolites
were observed. The linear and continuous increase of total Gln
under NH4Cl infusion observed in our in vivo 1H MRS data
implies an increased anaplerosis coupled to the NH4

+ detoxifi-
cation pathway (Berl et al 1962; Shen et al 1998; Zwingmann
2007). Furthermore, we mapped regional brain metabolism
using 1H SI (Cudalbu et al 2010) in the same rat model of
hyperammonemia. Figure 3b illustrates the metabolic maps of
Gln, Glu, Ins, NAA+NAAG and Lac superimposed on the
anatomical T2w images and acquired at different time points
during NH4

+ infusion. As for 1H MRS data, the Gln increase at
different time points was apparent from the maps with no
significant differences for the concentration of other brain
metabolites. Additionally, the Gln increase was higher in the
cortex than in the hippocampus (16.2±2.7 mmol/kgww in the
cortex and 11.5±1.2mmol/kgww in the hippocampus after 5.5 h
of NH4

+ infusion, p00.03). Consequently, these results showed
a higher net Gln synthesis flux in cortex than in hippocampus.

Studies performed on animal models of ALF (e.g., galac-
tosamine injection, portocaval anastomosis followed by he-
patic artery ligation) reported additional alterations in brain
Lac concentration at later stages and the presence of brain
edema. The mechanisms leading to Lac increase are not
clear, but may indicate brain energy impairment secondary
to ammonia metabolism and brain edema (Chavarria et al
2010). CLF is associated with an additional drop in brain
osmolytes (Ins, tCho and Tau) (Chavarria et al 2011; Rovira
et al 2008; Spahr et al 2002) probably reflecting an osmo-
regulatory response to Gln increase. The differences in brain
osmolytes may partially explain the differential frequency of
brain edema between ALF and CLF (Cordoba 1996). We
recently characterized for the first time the in vivo and
longitudinal progression of HE in a rat model of CLF by
BDL by using 1H SI and diffusion tensor imaging (McLin et
al 2012). Gln was increased at all time points after BDL.

Among other brain osmolytes, Ins, tCho and Tau decreased
significantly over time. We concluded that prior to the
appearance of severe neurological signs in CLF, the osmotic
imbalance created by continuous increase of Gln is likely to
be compensated by a concomitant decrease of other idio-
genic osmolytes resulting in minimal brain edema.

In vivo 13C MRS to study neuroglial energy metabolism

Cerebral metabolism is compartmentalized between neurons
and glia (Gruetter 2002). Glc is the primary substrate for
cerebral energy production, while Lac exchange between
astrocytes and neurons is not excluded under specific con-
ditions (Magistretti et al 1999). In vivo 13C MRS together
with administration of [1,6-13C]-Glc and an appropriate
mathematical model of neuronal-glial metabolism is a
unique technique to non-invasively investigate compart-
mentalized cerebral energy metabolism (Gruetter 2002). In
particular, we measured 13C incorporation into different
carbon positions of Glu and Gln to determine fluxes through

�Fig. 3 a Representative in vivo 1H MR spectra acquired at 9.4T in the
rat brain during ammonium infusion, adapted from Cudalbu et al
(2012b) (echo time 2.8 ms, 160 averages, voxel size of 5×7×7 mm3;
continuous infusion of NH4Cl at 4.5 mmol/h per kilogram). From
bottom to top: spectrum acquired before infusion and spectra acquired
during infusion (200, 300 and 500 min of infusion); only Gln is marked
in the last spectrum since it is the only metabolite changing its con-
centration, hereby increasing under NH4

+ infusion. Asp: aspartate; Cr:
creatine; GABA: γ-aminobutyrate; Gln: glutamine; Glu: glutamate;
GPC: glycerophosphocholine; Ins: myo-inositol; Lac: lactate; NAA:
N-acetylaspartate; PCho: phosphocholine; PCr: phosphocreatine;
Tau: taurine. b In vivo metabolic maps of Gln, Glu, Ins, NAA+ NAAG
(N-acetyl-aspartyl-glutamate) and Lac, superimposed on the anatomi-
cal T2w images and acquired at different time points during NH4

+

infusion at 9.4T, using 1H SI (echo time 2.8 ms). The increase in the
Gln pool at different time points during NH4

+ infusion is apparent from
the maps. c In vivo 13C MRS spectra acquired in the rat brain during
continuous infusion of [1,6-13C]-glucose: c1) Time course showing the
incorporation of 13C into different carbon positions of Glu and Gln
(only the first 90 min are shown) in a bile duct-ligated (BDL) rat; c2) In
vivo brain 13C MRS spectra acquired in control and BDL rats during
the last hour (5th hour) of [1,6-13C]-glucose infusion. Only the metab-
olites used for modeling are marked in the figure (Glu and Gln labeled
at positions C4, 3 and 2). In red are shown the metabolites which are
changing in the BDL rat as compared with control (Gln at positions C4,
3 and 2). d Representative series of in vivo 15N spectra acquired under
infusion of 15N-enriched ammonium at 9.4T in a rat brain at different
time points during infusion, adapted from Cudalbu et al (2012b). The
15N labeling incorporation of NH4

+ at position 5N of Gln ([5-15N]Gln)
allows the direct measurement of glutamine synthetase flux, whereas
the incorporation of 15N into [2-15N]Gln+Glu provides further insight
into the net flux through glutamate dehydrogenase. e In vivo diffusion
tensor images (DTI) acquired at 9.4T in an animal model of hyper-
ammonemia (continuous infusion of NH4Cl): e1) b0 image (b 0
0 mm2/s), diffusion tensor trace (ADC) and fractional anistropy (FA)
maps acquired before and during NH4

+ infusion; e2) images acquired
before infusion, with the diffusion coefficient maps. b0 image (b 0
0 mm2/s) and color encoded map
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important pathways involved in energy metabolism includ-
ing: glycolysis, neuronal and astrocytic TCA cycle, malate-
aspartate shuttle activity and glial anaplerotic pyruvate car-
boxylation (Fig. 3c). In addition, the Glu/Gln neurotrans-
mitter cycle within the neuron-astrocyte functional unit can
be measured. The rate of 13C label incorporated as a func-
tion of time is related to metabolic rate thereby permitting
the measurement of absolute metabolic fluxes. For example,
the accumulation of 13C label in Glu at the position C4 is
indicative of both the neuronal and glial TCA cycle fluxes,
whereas the labeling on Gln at the same position reveals the
Glu-Gln neurotransmission flux. Further separation of the
glial and neuronal TCA cycle activities is possible when
measuring the C3 and C2 positions of Glu and Gln, due to
the glial-specific activity of pyruvate carboxylase, diluting the
carbon position 3 and labeling the position 2 of glial Glu.

In rat models of hyperammonemia by continuous infusion
of NH4

+ without liver failure, in vivo 13C MRS has been used
to measure neuroglial metabolism in conjunction with Glc
infusion labeled at different positions, i.e., [1,6-13C], [1-13C]
or [2-13C]-Glc. Lanz et al (2011) and Sibson et al (1997, 2001)
reported that anaplerosis appears to be the major NH4

+ detox-
ification pathway, as measured in our 1H MRS and 15N NH4

+

studies (Cudalbu et al 2010, 2012b), emphasizing the contri-
bution of astrocytes in cerebral NH4

+ processing. Neuronal
metabolism appears less affected, as reflected by GluC4 and
GluC3 fractional enrichment time courses.

Only a few studies have tried to measure energy metabolism
in animal models of ALF. These were performed ex vivo using
brain extracts, and reported increased Lac and alanine synthesis
as well as stimulated pyruvate carboxylation. These findings
suggest that a deficit in brain Glc metabolism rather than Gln
accumulation is the major cause of cerebral complications in
this model of ALF (Chatauret et al 2003; Zwingmann 2007).

We have recently characterized in vivo brain energy me-
tabolism of rats with CLF (BDL) by using 13C MRS together
with administration of [1,6-13C]-Glc and by following the
kinetics of 13C incorporation in Glu and Gln at positions C4,
C3 and C2 over 5 h of [1,6-13C]-Glc infusion (Fig. 3c1).
Continuous acquisition in live animals showed that 13C incor-
poration in Gln at positions C4, C3 and C2was higher in BDL
rats than in controls (Fig. 3c), suggesting an increase in glial
TCA cycle activity. In addition, 13C incorporation in position
C2 of Gln was higher than in positions C4 or C3, indicating
increased activity of glial-specific pyruvate carboxylase flux
as compared with controls. Additional data from these dy-
namic studies are forthcoming and promise to shed important
mechanistic information on metabolic fluxes during HE.

15N MRS to study glutamate-glutamine metabolism

15N MRS is an alternative approach to 13C MRS to study
Glu-Gln metabolism under hyperammonemia, which

provides a more direct interpretation. In vivo 15N MRS
using 15N-labeled NH4

+ infusion was first used to analyze
the incorporation of 15N-NH4

+ into [5-15N]Gln and measure
the GS flux (Kanamori et al 1993; Shen et al 1998). The
incorporation of 15N into [2-15N]Gln+Glu was further use to
study the net flux through GDH (Kanamori and Ross 1995).
We recently developed a new 15N pulse sequence to simul-
taneously detect [5-15N]Gln and [2-15N]Gln+Glu in vivo
(Fig. 3d) (Cudalbu et al 2012b). Mathematical modeling of
in vivo 1H and 15N MRS data, acquired interleaved on the
same animal, allowed to reduce the number of assumptions
and provided reliable determination of GS (0.30 ±
0.050 μmol/g/min), apparent neurotransmission (0.26 ±
0.030 μmol/g/min), GDH (0.029 ± 0.002 μmol/g/min) and
net Gln accumulation (0.033 ± 0.001 μmol/g/min). Our in
vivo measurements allowed to clearly show the increase of
brain GS activity and net Gln accumulation under hyper-
ammonemia conditions, supporting the concept of their
implication in cerebral NH4

+ detoxification.

In vivo MR diffusion to study brain edema

MR diffusion techniques (diffusion weighted or tensor imag-
ing) (Fig. 3e) are used to investigate brain edema by measuring
the relative translational motion of water molecules which is
expressed as the apparent diffusion coefficient (ADC) (Le
Bihan 1995). Changes in ADC reflect the presence of edema,
which can be divided into cytotoxic (intracellular) and vaso-
genic (extracellular) edema. Most human and animal models
have shown cytotoxic edema in ALF (Cauli et al 2011;
Chavarria et al 2011, 2010; Ranjan et al 2005), while some
studies proposed the coexistence of cytotoxic and vasogenic
edema (Cauli et al 2011). A limited number of human studies
on brain edema in CLF speak in support of the presence of
mild vasogenic edema (Kale et al 2006).

As shown in the present review, several pathogenic
mechanisms involved in HE can be explored in vivo using
MRS and MRI. However, we need to emphasize that addi-
tional in vivo MRS and MRI studies are needed to assess the
relationship between plasma NH4

+ concentrations, brain
Gln accumulation, osmoregulation, brain energy metabo-
lism and brain edema in HE.

Conclusion and future directions

Hyperammonemia during brain development is associated
with neuronal cell loss and cerebral atrophy leading to mental
retardation and cerebral palsy in pediatric patients. In survi-
vors, the pathogenic mechanisms of NH4

+ toxicity to the brain
involve alterations in amino acids pathways, neurotransmis-
sion systems, cerebral energy, NO synthesis, axonal and den-
dritic growth or signal transduction pathways (Figs. 1 and 2).
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These disturbances can lead to cytotoxic brain edema, cell
death, impairment of neurite outgrowth, defects in nerve cell
migration, or hypomyelination, in turn leading to brain tissue
atrophy, ventricular enlargement, gray or white matter hypo-
densities and demyelination. These toxic effects of NH4

+ are
specific to the developing brain, as neuronal damage is not
observed in CNS of adult patients with hyperammonemia due
to liver failure. In the mature brain, the main effect of NH4

+

toxicity is the rise of Gln in astrocytes while osmoregulation is
insufficient and cerebral edema develops, affecting CNS
areas. Why the developing brain is so vulnerable to fluctua-
tions in serum NH4

+ levels remains to be elucidated. MRS
promises to be a powerful tool both to characterize the mo-
lecular modifications characterizing the pathobiology in the
developing brain and to monitor the effects of potential neuro-
protective therapies.

Apart from the use of NH4
+ scavengers such as Na+-

benzoate, Na+-phenylacetate, Na+-phenylbutyrate, OP or
LOLA, new neuroprotective strategies have been proposed,
making use of NMDA receptor antagonists, NOS inhibitors,
Cr, acetyl-L-carnitine, inhibition of CDK5/p25, CNTF or
inhibitors of MAPKs and GS (Figs. 1 and 2).

Understanding the pathophysiology of ammonia toxicity to
the CNS, or unraveling new therapeutic targets to protect CNS
from hyperammonemia, requires experimental approaches fo-
cusing on the brain in its cellular complexity, examining neurons
and glia together (in vivo mouse and rat models; ex vivo CNS
organotypic cultures; in vitro primary 3D brain cell cultures in
aggregates). The extraordinary development of in vivo CNS
imaging technologies (MRI, MRS, Fig. 3) should contribute
significantly to directing future investigations, in particular by
focusing on intra- and extra-cellular metabolic and signaling
pathways disturbed in the brain during NH4

+ exposure.
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