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1  |  INTRODUC TION

The world's population is growing older. Since aging represents 
the strongest risk factor for most human diseases, it is therefore 
key to identify anti-aging interventions that could delay or reverse 
the aging process (Partridge et  al.,  2018). Towards this goal, sev-
eral accelerated aging mouse models have been developed (Koks 
et al., 2016; Liao & Kennedy, 2014). Premature aging models could 
speed up the discovery of anti-aging interventions, nevertheless, 

their physiological relevance and whether they truly recapitulate 
or phenocopy natural aging remains controversial. With the re-
cent development of biological aging clocks, epigenetic marks 
can now accurately predict age in multiple tissues in mammals 
(Ake Lu et al., 2021; Bell et al., 2019; Bergsma & Rogaeva, 2020; 
Horvath,  2013; Simpson & Chandra,  2021). Interestingly, several 
anti-aging interventions have been shown to retard these clocks 
(Field et  al.,  2018), including cellular reprogramming (Browder 
et al., 2022; Lu et al., 2020).
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Abstract
Several premature aging mouse models have been developed to study aging and iden-
tify interventions that can delay age-related diseases. Yet, it is still unclear whether 
these models truly recapitulate natural aging. Here, we analyzed DNA methylation in 
multiple tissues of four previously reported mouse models of premature aging (Ercc1, 
LAKI, Polg, and Xpg). We estimated DNA methylation (DNAm) age of these samples 
using the Horvath clock. The most pronounced increase in DNAm age could be ob-
served in Ercc1 mice, a strain which exhibits a deficit in DNA nucleotide excision re-
pair. Similarly, we detected an increase in epigenetic age in fibroblasts isolated from 
patients with progeroid syndromes associated with mutations in DNA excision repair 
genes. These findings highlight that mouse models with deficiencies in DNA repair, 
unlike other premature aging models, display accelerated epigenetic age, suggesting a 
strong connection between DNA damage and epigenetic dysregulation during aging.
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2  |  DNA REPAIR DEFICIENT MOUSE 
MODEL S E XHIBIT ACCELER ATED 
EPIGENETIC AGE

Here, to assess the relevance of several premature aging mouse 
models (Ercc1, Xpg, LAKI and Polg mice), we analyzed the epigenetic 
age of multiple tissues using a DNA methylation clock, known as the 
“Horvath Pan Tissue clock” (Mozhui et al., 2022). In these mice, vari-
ous biological mechanisms are thought to cause premature aging; 
ERCC1 (Weeda et al., 1997) and XPG (Barnhoorn et al., 2014) mice 
exhibit a deficit in nucleotide excision repair (NER) of the nuclear 
DNA, POLG mice show accumulation of mitochondrial DNA muta-
tions (Kujoth et al., 2005; Trifunovic et al., 2004) and LMNA knock-in 
(LAKI) mice suffer from nuclear lamina defects (Osorio et al., 2011; 
Varga et al., 2006). Here, we assessed DNA methylation age (DNAm) 
in Ercc1−/Δ, Xpg−/−, LakiTG/TG, and PolgTG/TG mice at different ages, in-
cluding post-natal development, and middle and old age. Both pro-
liferative (blood and skin) and more terminally differentiated tissues 
(liver, cerebral cortex and skeletal muscle) were analyzed (Figure 1a).

During the generation of experimental mice, we noticed 
that while LAKITG/TG and PolgTG/TG mice were born at a predicted 
Mendelian frequency, Ercc1−/Δ and Xpg−/− showed a perinatal lethal-
ity (Figure S1a). Furthermore, all premature aging animals exhibited 
reduced body weight compared to their control littermates as ex-
pected (Figure 1b). As a quality check, we first looked at the clock 
performance in the control WT mice in multiple tissues. The chrono-
logical age prediction was highly accurate in blood in C57BL6J and 
C57BL6J-FVB backgrounds (r = 0.99 and r = 0.95, respectively) and 
provided sufficient accuracy in the other tissues (r = 0.89 to 0.98) 
(Figure S1b and Table S1), confirming the precision of DNAm clocks. 
Next, we determined DNAm age in Ercc1−/Δ, LAKITG/TG, and Xpg−/− 
at 8 weeks, and PolgTG/TG at 30 weeks of age corresponding to the 
relative middle age of the strain. Importantly, the biological age of 
Ercc1−/Δ mice was mainly increased in blood but also significantly 
increased in brain, liver, skeletal muscle, and skin according to the 
pan-tissue or tissue-specific clocks (Figure 1c and Table S4 respec-
tively). Additionally, Xpg−/− mice showed increased age in blood and 
brain (Figure  1c). Conversely, we did not detect systemic DNAm 
age acceleration in LAKI or Polg mice in any of the tissues analyzed 
(Figure  1c). Additionally, we performed the “Tissue specific clock” 
analysis in mouse samples and we found similar results (Table S4).

Subsequently, we analyzed the methylation age at different ages 
including, Ercc1−/Δ (2, 8 and 20 weeks), LAKITG/TG (8 and 23 weeks), 
and PolgTG/TG (30 and 47 weeks). Interestingly, in the Ercc1−/Δ mice, 
biological age was increased mildly at 2 weeks old in blood, and sig-
nificantly accelerated in liver, and skin at 20 weeks (Figure 1d and 

Table S2). Conversely, DNAm age was not changed in aged LAKITG/TG 
or PolgTG/TG mice (Figure S1c). Together, our results further confirm 
that biological age is increased only in Ercc1 mice, at multiple ages.

Next, to determine if the rate of accelerated aging in Ercc1 mice 
was constant or increasing with age, we calculated the slope of bio-
logical vs. chronological age in both WT and KO mice. Importantly, 
the rate was significantly increased in blood, skeletal muscle, and 
brain (Figure 1e), demonstrating that the delta between biological 
and chronological age increased with age in Ercc1−/Δ mice. All to-
gether, these results suggest DNA repair deficient mice as perhaps 
as one of the most promising mouse models of premature aging.

3  |  INCRE A SED DNAm AGE IN HUMAN 
CELL S FROM PROGEROID SYNDROMES

At last, to determine whether these findings also apply to humans, 
we analyzed the DNAm age of human fibroblasts obtained from 
patients affected by diseases caused by mutations in DNA exci-
sion repair genes associated with aging phenotypes: Xeroderma 
Pigmentosum (XP) (Rizza et al., 2021), and Cockayne Syndrome type 
A (CSA) and B (CSB) (Laugel, 2000) (Table S3). DNAm age was sig-
nificantly higher in the affected patients (Figure 2a), and the differ-
ence between DNAm age and chronological age was significantly 
increased (Figure 2b). These results indicate that human progeroid 
syndromes associated with mutations in DNA excision repair genes 
also display accelerated epigenetic age.

Although premature aging models have been widely used, their 
physiological relevance from the perspective of aging clocks has 
not been deeply investigated until now. Here, we observed accel-
erated epigenetic aging in Ercc1/5-deficient mice, and in related 
human diseases. Depletion of these proteins results in a defect 
in DNA repair, leading to an accumulation of DNA mutations. Our 
results indicate that defective DNA repair, leading to unrepaired 
persistent DNA damage, results in accelerated epigenetic aging, 
strongly suggesting a link between DNA damage and epigenetic 
dysregulation. In this line, DNA damage has been proposed as one 
of the central hallmarks of aging, as well as a potential driver of 
the aging process (Schumacher et al., 2021). We noted that even 
though DNAm age was increased in Ercc1 mice already at 2 weeks, 
greater changes were observed in older animals indicating a pro-
gressive age acceleration during aging. In this line, we propose 
that a higher DNA repair capacity during development (Mitchell & 
Hartman, 1990), might prevent potential epigenetic dysregulation 
as consequence of DNA damage, and could protect these mutant 
mice during gestation. Interestingly, dietary restriction, shown to 

F I G U R E  1 (a) Schematic representation of premature mouse strains, tissues collected, and timepoints taken. (b) Evolution of body weight 
until the euthanize point. (c) Methylation biological age of Ercc1−/Δ, Xpg−/−, LAKITG/TG, and PolgTG/TG mice. (d) Methylation biological age of 
Ercc1−/Δ mice at 2, 8, and 20 weeks in multiple organs/tissues. Data are represented as box plots (center line shows median, box shows 25th 
and 75th percentiles and whiskers show minimum and maximum values), statistical significance was assessed by two-sided unpaired t-test. 
(e) Slope of aging in Ercc1−/Δ and controls mice from 2 to 20 weeks old. Significance of the interaction term in the linear regression was 
analyzed.
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have a preventing impact on aging, dramatically extends lifespan 
of DNA repair-deficient mice (Vermeij et al., 2016) and Ercc1 de-
pletion in blood specifically causes premature aging (Yousefzadeh 
et al., 2021).

Importantly, the methylation clock was more accurate in blood, 
a rapidly proliferative tissue that undergoes constant regeneration, 
in which the most significant and strongest differences were ob-
served in DNA repair deficient mice. Therefore, due to its simple 
collection and strong sensitivity for detection of epigenetic aging, 
we propose the use of blood as one of the best tissues to study and 
analyze the effect of anti-aging interventions. Additionally, the age 
acceleration observed in CS patients is in line with other biomark-
ers previously used to predict biological age such as GlycoAgeTest 
(Vanhooren et al., 2010). At last, while multiple groups have exam-
ined the biological age of human diseases associated with prema-
ture aging and no changes in DNAm age have been observed in the 
blood of Hutchinson-Gilford progeria syndrome patients (Bejaoui 
et  al.,  2022), a significant increase in biological age was observed 
in multiple human genetic disorders such as Werner (Maierhofer 
et  al.,  2017), Down (Xu et  al.,  2022) Sotos (Martin-Herranz 
et al., 2019), Tatton-Brown-Rahman (Jeffries et al., 2019), Leigh (Yu 
et al., 2022) syndromes.

4  |  IN SUMMARY

Our survey of mouse models of premature aging may be expanded 
to alternative models (Koks et al., 2016), additional tissues, and ages. 
Moreover, since one limitation of our study might be the use of the 
Horvath pan-tissue clock mainly, it would be interesting to also as-
sess biological age using other epigenetic clocks, as well as other 

clocks built on different types of omics data, such as transcriptomic, 
proteomic or chromatin accessibility clocks (Lehallier et  al.,  2020; 
Meyer & Schumacher, 2021; Rechsteiner et al., 2022).
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F I G U R E  2 (a) DNAm age versus chronological age and (b) difference between biological and chronological age in control versus Cockayne 
Syndrome (CS) and Xeroderma Pigmentosum fibroblasts isolated from human samples. Data are represented as box plots (center line shows 
median, box shows 25th and 75th percentiles and whiskers show minimum and maximum values), statistical significance was assessed by 
two-sided unpaired t-test.
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