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1  |  INTRODUC TION

The world's population is growing older. Since aging represents 
the strongest risk factor for most human diseases, it is therefore 
key to identify anti- aging interventions that could delay or reverse 
the aging process (Partridge et al., 2018). Towards this goal, sev-
eral accelerated aging mouse models have been developed (Koks 
et al., 2016; Liao & Kennedy, 2014). Premature aging models could 
speed up the discovery of anti- aging interventions, nevertheless, 

their physiological relevance and whether they truly recapitulate 
or phenocopy natural aging remains controversial. With the re-
cent development of biological aging clocks, epigenetic marks 
can now accurately predict age in multiple tissues in mammals 
(Ake Lu et al., 2021; Bell et al., 2019; Bergsma & Rogaeva, 2020; 
Horvath, 2013; Simpson & Chandra, 2021). Interestingly, several 
anti- aging interventions have been shown to retard these clocks 
(Field et al., 2018), including cellular reprogramming (Browder 
et al., 2022; Lu et al., 2020).
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Abstract
Several premature aging mouse models have been developed to study aging and iden-
tify interventions that can delay age- related diseases. Yet, it is still unclear whether 
these	models	truly	recapitulate	natural	aging.	Here,	we	analyzed	DNA	methylation	in	
multiple tissues of four previously reported mouse models of premature aging (Ercc1, 
LAKI, Polg, and Xpg).	We	estimated	DNA	methylation	(DNAm)	age	of	these	samples	
using	the	Horvath	clock.	The	most	pronounced	increase	in	DNAm	age	could	be	ob-
served in Ercc1	mice,	a	strain	which	exhibits	a	deficit	in	DNA	nucleotide	excision	re-
pair. Similarly, we detected an increase in epigenetic age in fibroblasts isolated from 
patients	with	progeroid	syndromes	associated	with	mutations	in	DNA	excision	repair	
genes.	These	findings	highlight	that	mouse	models	with	deficiencies	 in	DNA	repair,	
unlike other premature aging models, display accelerated epigenetic age, suggesting a 
strong	connection	between	DNA	damage	and	epigenetic	dysregulation	during	aging.
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2  |  DNA REPAIR DEFICIENT MOUSE 
MODEL S E XHIBIT ACCELER ATED 
EPIGENETIC AGE

Here, to assess the relevance of several premature aging mouse 
models (Ercc1, Xpg, LAKI and Polg mice), we analyzed the epigenetic 
age	of	multiple	tissues	using	a	DNA	methylation	clock,	known	as	the	
“Horvath	Pan	Tissue	clock”	(Mozhui	et	al.,	2022). In these mice, vari-
ous biological mechanisms are thought to cause premature aging; 
ERCC1	(Weeda	et	al.,	1997)	and	XPG	(Barnhoorn	et	al.,	2014) mice 
exhibit	 a	 deficit	 in	 nucleotide	 excision	 repair	 (NER)	 of	 the	nuclear	
DNA,	POLG	mice	show	accumulation	of	mitochondrial	DNA	muta-
tions (Kujoth et al., 2005; Trifunovic et al., 2004)	and	LMNA	knock-	in	
(LAKI) mice suffer from nuclear lamina defects (Osorio et al., 2011; 
Varga et al., 2006).	Here,	we	assessed	DNA	methylation	age	(DNAm)	
in Ercc1−/Δ, Xpg−/−, LakiTG/TG, and PolgTG/TG mice at different ages, in-
cluding post- natal development, and middle and old age. Both pro-
liferative (blood and skin) and more terminally differentiated tissues 
(liver,	cerebral	cortex	and	skeletal	muscle)	were	analyzed	(Figure 1a).

During	 the	 generation	 of	 experimental	 mice,	 we	 noticed	
that while LAKITG/TG and PolgTG/TG mice were born at a predicted 
Mendelian	frequency,	Ercc1−/Δ and Xpg−/− showed a perinatal lethal-
ity (Figure S1a).	Furthermore,	all	premature	aging	animals	exhibited	
reduced	body	weight	 compared	 to	 their	 control	 littermates	 as	 ex-
pected (Figure 1b). As a quality check, we first looked at the clock 
performance in the control WT mice in multiple tissues. The chrono-
logical age prediction was highly accurate in blood in C57BL6J and 
C57BL6J- FVB backgrounds (r = 0.99	and	r = 0.95,	respectively)	and	
provided sufficient accuracy in the other tissues (r = 0.89	 to	 0.98)	
(Figure S1b and Table S1),	confirming	the	precision	of	DNAm	clocks.	
Next,	we	determined	DNAm	age	 in	Ercc1−/Δ, LAKITG/TG, and Xpg−/− 
at	8 weeks,	 and	PolgTG/TG	 at	30 weeks	of	 age	corresponding	 to	 the	
relative middle age of the strain. Importantly, the biological age of 
Ercc1−/Δ mice was mainly increased in blood but also significantly 
increased in brain, liver, skeletal muscle, and skin according to the 
pan- tissue or tissue- specific clocks (Figure 1c and Table S4 respec-
tively). Additionally, Xpg−/− mice showed increased age in blood and 
brain (Figure 1c).	 Conversely,	 we	 did	 not	 detect	 systemic	 DNAm	
age acceleration in LAKI or Polg mice in any of the tissues analyzed 
(Figure 1c). Additionally, we performed the “Tissue specific clock” 
analysis in mouse samples and we found similar results (Table S4).

Subsequently, we analyzed the methylation age at different ages 
including, Ercc1−/Δ	 (2,	8	and	20 weeks),	LAKITG/TG	 (8	and	23 weeks),	
and PolgTG/TG	 (30	and	47 weeks).	 Interestingly,	 in	 the	Ercc1−/Δ mice, 
biological	age	was	increased	mildly	at	2 weeks	old	in	blood,	and	sig-
nificantly	accelerated	 in	 liver,	 and	skin	at	20 weeks	 (Figure 1d and 

Table S2).	Conversely,	DNAm	age	was	not	changed	in	aged	LAKITG/TG 
or PolgTG/TG mice (Figure S1c). Together, our results further confirm 
that biological age is increased only in Ercc1 mice, at multiple ages.

Next,	to	determine	if	the	rate	of	accelerated	aging	in	Ercc1 mice 
was constant or increasing with age, we calculated the slope of bio-
logical vs. chronological age in both WT and KO mice. Importantly, 
the rate was significantly increased in blood, skeletal muscle, and 
brain (Figure 1e), demonstrating that the delta between biological 
and chronological age increased with age in Ercc1−/Δ mice. All to-
gether,	these	results	suggest	DNA	repair	deficient	mice	as	perhaps	
as one of the most promising mouse models of premature aging.

3  |  INCRE A SED DNAm AGE IN HUMAN 
CELL S FROM PROGEROID SYNDROMES

At last, to determine whether these findings also apply to humans, 
we	 analyzed	 the	 DNAm	 age	 of	 human	 fibroblasts	 obtained	 from	
patients	 affected	 by	 diseases	 caused	 by	 mutations	 in	 DNA	 exci-
sion	 repair	 genes	 associated	 with	 aging	 phenotypes:	 Xeroderma	
Pigmentosum	(XP)	(Rizza	et	al.,	2021), and Cockayne Syndrome type 
A (CSA) and B (CSB) (Laugel, 2000) (Table S3).	DNAm	age	was	sig-
nificantly higher in the affected patients (Figure 2a), and the differ-
ence	 between	DNAm	age	 and	 chronological	 age	was	 significantly	
increased (Figure 2b). These results indicate that human progeroid 
syndromes	associated	with	mutations	in	DNA	excision	repair	genes	
also display accelerated epigenetic age.

Although premature aging models have been widely used, their 
physiological relevance from the perspective of aging clocks has 
not been deeply investigated until now. Here, we observed accel-
erated epigenetic aging in Ercc1/5- deficient mice, and in related 
human diseases. Depletion of these proteins results in a defect 
in	DNA	repair,	leading	to	an	accumulation	of	DNA	mutations.	Our	
results	 indicate	that	defective	DNA	repair,	 leading	to	unrepaired	
persistent	DNA	damage,	 results	 in	 accelerated	 epigenetic	 aging,	
strongly	 suggesting	a	 link	between	DNA	damage	and	epigenetic	
dysregulation.	In	this	line,	DNA	damage	has	been	proposed	as	one	
of the central hallmarks of aging, as well as a potential driver of 
the aging process (Schumacher et al., 2021). We noted that even 
though	DNAm	age	was	increased	in	Ercc1	mice	already	at	2 weeks,	
greater changes were observed in older animals indicating a pro-
gressive age acceleration during aging. In this line, we propose 
that	a	higher	DNA	repair	capacity	during	development	(Mitchell	&	
Hartman, 1990), might prevent potential epigenetic dysregulation 
as	consequence	of	DNA	damage,	and	could	protect	these	mutant	
mice during gestation. Interestingly, dietary restriction, shown to 

F I G U R E  1 (a)	Schematic	representation	of	premature	mouse	strains,	tissues	collected,	and	timepoints	taken.	(b)	Evolution	of	body	weight	
until	the	euthanize	point.	(c)	Methylation	biological	age	of	Ercc1−/Δ, Xpg−/−, LAKITG/TG, and PolgTG/TG	mice.	(d)	Methylation	biological	age	of	
Ercc1−/Δ	mice	at	2,	8,	and	20 weeks	in	multiple	organs/tissues.	Data	are	represented	as	box	plots	(center	line	shows	median,	box	shows	25th	
and	75th	percentiles	and	whiskers	show	minimum	and	maximum	values),	statistical	significance	was	assessed	by	two-	sided	unpaired	t- test. 
(e) Slope of aging in Ercc1−/Δ	and	controls	mice	from	2	to	20 weeks	old.	Significance	of	the	interaction	term	in	the	linear	regression	was	
analyzed.
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(a) Experimental design (b)

Ercc1-/∆ Xpg-/- PolgTG/TGLAKITG/TG

Median 
lifespan 23-25 W 17W 52W15W

2, 8, 20 W 8 W 8, 23W 30, 47WAge sample
collection

Blood, Liver, Skin, Muscle, BrainTissue / Organs

Body Weight

0

10

20

30

40

0 4 8

Bo
dy

 w
ei

gh
t (

g)
 

Weeks

0

10

20

30

40

0 4 8 12 16 20 24 28
Weeks

Polg (n = 8)  
LAKI (n = 8)

C57BL6J (n = 8)  
Xpg (n = 8)  
Ercc1 (n = 8)

C57BL6J/FVB (n = 16)  

***

**

*

***

(c) Methylation biological age in premature aging models at middle age

Bi
ol

og
ic

al
 a

ge
 (w

ee
ks

) 18

15

12

9

6

***

*
p  = 0.016

**
p  = 0.001

**
p  = 0.006

**
p  = 0.049

–/∆
+/+

Xpg Polg

50

40

30

20

TG/TG
+/+

LAKI

15

12

9

TG/TG
+/+

Ercc1

Blood Brain Liver Muscle Skin Blood Brain Liver Muscle Skin Blood Brain Liver Muscle Skin

(e) Rate of accerelated aging in Ercc1 mice

p  = 2·10-4

Aging mouse models

9

12

15

–/–
+/+

18
21

Blood Brain Liver Muscle Skin

0

10

20

30

2W

8W

20W
–/∆

+/+

–/∆

+/+

–/∆

+/+

Methylation biological age in Ercc1 mice at different ages

Blood Brain Liver Muscle Skin

Bi
ol

og
ic

al
 a

ge
 (w

ee
ks

)

(d)

**
p  = 0.005

*
p  = 0.025

***
p  < 0.001

***

*
p  = 0.016

**
p  = 0.001

**
p  = 0.006 *

p  = 0.049

p  = 0.051

p  < 0.001

*
p  = 0.015

*
p  = 0.03

Chronological age (weeks)
0 10 20 30 0 10 20 300 10 20 30

0

10

20

30

Bi
ol

og
ic

al
 a

ge
 (w

ee
ks

)

0 10 20 300 10 20 30

Blood Brain Liver Muscle Skin

–/∆
+/+

S = 0.78

S = 1.29

p  < 0.001
***

S = 0.91

S = 1.20

S = 0.95

S = 1.09

S = 0.44

S = 1.17

p  < 0.001
***

S = 0.63

S =0.77

p  = 0.02
*

Ercc1 mice

**
p  = 0.009



4 of 6  |     PEREZ et al.

have	a	preventing	impact	on	aging,	dramatically	extends	lifespan	
of	DNA	repair-	deficient	mice	(Vermeij	et	al.,	2016) and Ercc1 de-
pletion in blood specifically causes premature aging (Yousefzadeh 
et al., 2021).

Importantly, the methylation clock was more accurate in blood, 
a rapidly proliferative tissue that undergoes constant regeneration, 
in which the most significant and strongest differences were ob-
served	 in	DNA	 repair	 deficient	mice.	 Therefore,	 due	 to	 its	 simple	
collection and strong sensitivity for detection of epigenetic aging, 
we propose the use of blood as one of the best tissues to study and 
analyze the effect of anti- aging interventions. Additionally, the age 
acceleration observed in CS patients is in line with other biomark-
ers previously used to predict biological age such as GlycoAgeTest 
(Vanhooren et al., 2010).	At	last,	while	multiple	groups	have	exam-
ined the biological age of human diseases associated with prema-
ture	aging	and	no	changes	in	DNAm	age	have	been	observed	in	the	
blood of Hutchinson- Gilford progeria syndrome patients (Bejaoui 
et al., 2022), a significant increase in biological age was observed 
in	 multiple	 human	 genetic	 disorders	 such	 as	Werner	 (Maierhofer	
et al., 2017),	 Down	 (Xu	 et	 al.,	 2022)	 Sotos	 (Martin-	Herranz	
et al., 2019), Tatton- Brown- Rahman (Jeffries et al., 2019), Leigh (Yu 
et al., 2022) syndromes.

4  |  IN SUMMARY

Our	survey	of	mouse	models	of	premature	aging	may	be	expanded	
to alternative models (Koks et al., 2016), additional tissues, and ages. 
Moreover,	since	one	limitation	of	our	study	might	be	the	use	of	the	
Horvath pan- tissue clock mainly, it would be interesting to also as-
sess biological age using other epigenetic clocks, as well as other 

clocks built on different types of omics data, such as transcriptomic, 
proteomic or chromatin accessibility clocks (Lehallier et al., 2020; 
Meyer	&	Schumacher,	2021; Rechsteiner et al., 2022).
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median,	box	shows	25th	and	75th	percentiles	and	whiskers	show	minimum	and	maximum	values),	statistical	significance	was	assessed	by	
two- sided unpaired t- test.
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